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ABSTRACT
Comprehensive functional annotation of vertebrate genomes is
fundamental to biological discovery. Reverse genetic screening has
been highly useful for determination of gene function, but is untenable
as a systematic approach in vertebrate model organisms given the
number of surveyable genes and observable phenotypes. Unbiased
prediction of gene-phenotype relationships offers a strategy to direct
finite experimental resources towards likely phenotypes, thus
maximizing de novo discovery of gene functions. Here we prioritized
genes for phenotypic assay in zebrafish through machine learning,
predicting the effect of loss of function of each of 15,106 zebrafish
genes on 338 distinct embryonic anatomical processes. Focusing on
cardiovascular phenotypes, the learning procedure predicted known
knockdown and mutant phenotypes with high precision. In proof-of-
concept studies we validated 16 high-confidence cardiac predictions
using targeted morpholino knockdown and initial blinded phenotyping
in embryonic zebrafish, confirming a significant enrichment for cardiac
phenotypes as compared with morpholino controls. Subsequent
detailed analyses of cardiac function confirmed these results,
identifying novel physiological defects for 11 tested genes. Among
these we identified tmem88a, a recently described attenuator of Wnt
signaling, as a discrete regulator of the patterning of intercellular
coupling in the zebrafish cardiac epithelium. Thus, we show that
systematic prioritization in zebrafish can accelerate the pace of
developmental gene function discovery.
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INTRODUCTION
De novo gene function discovery has been greatly facilitated by
systematic gene deletion and observation of resulting phenotypes in
scalable model organisms. Indeed, systematic gene disruptions in S.
cerevisiae (Costanzo et al., 2010; Giaever et al., 2002), C. elegans
(Kamath et al., 2003) and Drosophila (Boutros et al., 2004) have
each revealed molecular functions for thousands of genes. However,
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given the breadth and complexity of observable phenotypes in
vertebrates, comprehensive assessment of gene function through
serial observation of all possible phenotypes following gene
disruption remains infeasible. A more efficient alternative would be
to use gene function prediction to prioritize gene candidates for
more detailed phenotypic testing based on a variety of known gene
and protein properties and relationships.

Computational prediction of molecular function has been effective
in assigning physiological roles to genes across eukaryotic model
organisms (Deng et al., 2004; Guan et al., 2008; Huttenhower et al.,
2009; Karaoz et al., 2004; Lee et al., 2004; Mostafavi et al., 2008;
Tasan et al., 2012; Tasan et al., 2008; Troyanskaya et al., 2003).
Similar prediction frameworks have been applied to predict
associated phenotypes in yeast (King et al., 2003; Saha and Heber,
2006) and worm (Lee et al., 2008) and to identify putative human
disease gene candidates (Linghu et al., 2009; Woods et al., 2013) but
have not been systematically coupled with in vivo validation in a
vertebrate model organism.

Predictions of gene function or phenotype have generally used at
least one of two basic strategies. The first strategy, termed guilt-by-
profiling (GBP), begins by identifying gene properties (features, e.g.
‘gene is expressed in the brain’) that are common to the genes
currently associated with a particular function of interest (training
set, e.g. ‘genes known to be important for cognition’). Additional,
untested genes (test set) exhibiting the hallmarks of the function of
interest are then predicted to have that function. A second general
strategy, termed guilt-by-association (GBA), identifies gene-gene
relationships (e.g. a physical interaction between the corresponding
proteins) that tend to connect genes that share a function. Untested
genes that are ‘well-connected’ to the set of genes known to hold a
particular function are then prioritized as top candidates.

Although there are many effective prediction algorithms, a recent
benchmarking comparison (Peña-Castillo et al., 2008) ranked the
Funckenstein approach (Tian et al., 2008) highly, based on estimates
of precision of top-ranked function predictions. Funckenstein uses both
GBA and GBP, combining results to output a single confidence score
for each potential gene-function or gene-phenotype association. These
predicted relationships can then be directly validated experimentally.

Zebrafish embryos are transparent, small, fast growing and are
developmentally similar to higher vertebrates (Howe et al., 2013),
making them ideal for large-scale study of vertebrate developmental
gene functions. Zebrafish are amenable to forward genetics via
chemical (Driever et al., 1996; Haffter et al., 1996) or retroviral-
based (Amsterdam et al., 1999; Golling et al., 2002) mutagenesis,
and to reverse genetics via knockdown (Nasevicius and Ekker,
2000), small molecules (Burns et al., 2005; Peterson et al., 2000) or,
more recently, targeted gene deletion (Huang et al., 2011; Hwang et
al., 2013; Meng et al., 2008). Morpholinos, which are oligomers that
block translation through steric transcript inhibition, are particularly
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efficient (Nasevicius and Ekker, 2000), offering scalable, specific
gene product inhibition lasting for up to 72 hours.

Here we predicted the effects of gene knockdown on 338
zebrafish embryonic anatomical processes (Bradford et al., 2011),
with the results of these predictions being made publicly available
as a community resource through two searchable online gene
browsers: FuncBase and GeneMANIA. We deliberately focused on
the prediction of morphant rather than mutant phenotypes so as to
allow direct confirmation of prediction results at a reasonable scale.
Because extant data indicated high performance for predictions of
cardiac phenotypes, we aimed to experimentally validate this
framework for cardiovascular phenotype prediction. Expecting a
broad range of potential cardiac phenotypes, we used a five-
parameter manual evaluation system to assess cardiac function, and
applied it in a blinded fashion to predictions and to positive and
negative controls. Subsequent quantitative assessments of cardiac
physiology largely confirmed the predictions, identifying novel
myocardial effects for 11 surveyed genes. These 11 include
tmem88a, a known attenuator of Wnt signaling (Lee et al., 2010),
shown here to influence the physiological coupling of embryonic
cardiomyocytes.

RESULTS
A combined guilt-by-association and guilt-by-profiling
learning procedure predicts a broad range of gene-
phenotype associations
We implemented a machine learning procedure based on a diverse
collection of large-scale datasets to predict phenotypes resulting
from loss of gene function across the zebrafish genome (Fig. 1). We
then used each of the generated computational models (one for each
of the 338 anatomical process terms) to score the 15,103 zebrafish
genes with available gene feature information. The over 5 million
assigned scores each reflect the likelihood of observing a given
phenotype (disruption of a given anatomical process) following loss
of function of a specific gene.

Gene features most important for the prediction process differed
for guilt-by-association (GBA) and guilt-by-profiling (GBP)
predictors. For GBP, feature importance varied based on the
phenotype being predicted, but tissue expression and phylogenetic
relationships appeared to consistently be the most relied upon
features (see supplementary material Table S1 for gene feature
rankings). In GBA, where only a single random forest classifier was
used to create a gene-gene functional linkage network, phylogenetic
profile similarity was the most important feature, followed by
similarity in GO terms (especially those describing cellular
compartments), and then similarity in protein family IDs. These
feature importance results are consistent with the observed
usefulness of phylogenetic profiles in predicting gene function and
phenotype in other species (Levesque et al., 2003; Pellegrini et al.,
1999).

Examining the training data for the 338 phenotype predictors, the
broadest phenotypic terms assigned to the most genes (e.g.
anatomical system, whole organism) had poor performance, either
because of the limited number of negative training examples or
because the predictive features we used simply held little value in
predicting function at this level of abstraction. Predictions also
appeared highly variable when only a small number of positive
training examples were present (see supplementary material
Table S2 for a full list of prediction scores by phenotype). Filtering
out anatomical process terms on both extremes of the specificity
spectrum (supplementary material Table S2) resulted in 242 retained
terms.

Examining remaining predictions by anatomical process term, the
prediction process appeared to be most effective for neuronal,
sensory and cardiac phenotypes (Fig. 2A), and performed most
poorly for hematopoietic phenotypes (supplementary material
Table S2). Additionally, within each phenotypic category there was
substantial variation in the precision of predictors. For example,
among cardiovascular phenotypes (Fig. 2B), predictors of cardiac
structures (e.g. heart tube, cardiac muscle cell, myocardium) showed
greater performance than terms abstractly describing vascular
structure and the endocardium. This did not appear to be a ‘rich-
getting-richer’ scenario of terms with many training examples
showing greater performance, as the top five scoring cardiovascular
phenotype terms had 15 or fewer training examples. We hypothesize
instead that performance stems from the fidelity of observation of
anatomical structures in the transparent embryo, which might have
allowed these defects to be more rigorously and consistently
characterized. For example, in the case of hematopoietic
phenotypes, abnormal blood flow or blood accumulation is often
reported as a secondary consequence of another phenotype, which
might have led to inconsistency among associated genes and poor
performance for the term ‘blood’. Conversely, the term ‘nucleate
erythrocyte’, which is more stringently defined, showed better
performance (supplementary material Table S2).

Examining individual gene-phenotype predictions in the test set,
8742 gene/term predictions involving 2459 genes and 93 terms were

Fig. 1. Combined guilt-by-association and guilt-by-profiling prediction
technique. Overview of the computational strategy that we followed to
prioritize genes for phenotypic testing. For over 5 million phenotype-gene
combinations, we estimated the likelihood that the given gene will affect a
given anatomical process upon knockdown.
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above an 80% estimated precision cut-off. These high-confidence
predictions (see supplementary material Table S3) are searchable
online in the context of the FuncBase Genome Browser
[http://zfunc.mshri.on.ca (Beaver et al., 2010)] and the GeneMANIA
functional annotation browser [http://www.genemania.org
(Mostafavi et al., 2008)]. The majority (87%) of these 2459 genes
were predicted to affect five or fewer anatomical processes at this
precision level, with genes encoding ribosomal constituents
frequently being most pleiotropic. Indeed, using gene set enrichment
analysis (Subramanian et al., 2005) we found that genes annotated
as being ribosomal were significantly enriched for participation in a
greater number of phenotypes (q<0.001). This is consistent with the
observed phenotypic importance of ribosomal proteins in other
organisms (Giaever et al., 2002), as well as in prior genetic screens
in zebrafish (Amsterdam et al., 2004).

External evidence confirms high-confidence cardiovascular
phenotype predictions
As substantial literature support exists for cardiovascular
phenotypes, we examined the literature surrounding our
cardiovascular predictions in more detail. The phenotype term
broadly describing the cardiovascular system exhibited a precision
at 20% recall value of 0.72 (Fig. 2C). Examination of independent

lines of evidence for top hits also suggested prediction results for
‘cardiovascular system’ to be of high quality. Indeed, six of the ten
top-scoring predictions were already known to be associated with
cardiovascular defects. These genes had not been used as positive
training examples either because the phenotype was observed
through genetic mutation rather than morpholino, because a
morpholino had been injected into a zebrafish line not used for
training purposes, or because the publications were curated in the
Zebrafish Information Network (ZFIN) database (Bradford et al.,
2011) subsequent to the download of phenotypic data to establish a
training set. Examples of literature-validated predictions include
vmhc, in which a premature stop codon causes ventricular failure
(Auman et al., 2007), and apobec2a, which causes decreased heart
rate upon knockdown (Etard et al., 2010).

To more systematically determine whether the predictive value of
our framework extends beyond morpholino-mediated gene
knockdown, we obtained all mutant-phenotype association data
from ZFIN (using an identical approach to that used above for
morpholino-phenotype data). In total, 818 genes in our test set had
associated mutants with phenotype information. We used our
‘cardiovascular system’ phenotype predictor, trained exclusively
using morpholino experimental data, to rank these genes based on
likelihood to elicit a cardiovascular phenotype. Of the 50 highest

Fig. 2. Cross-validation suggests high prediction accuracy over a range of phenotypes. Plotting relative precision [precision at 20% recall divided by the
fraction of positive training examples (the prior probability); see Materials and methods] for phenotype predictors (A) reveals a diversity in high-scoring terms,
with terms related to neural, sensory or cardiovascular phenotypes seeming to appear most frequently. Relative precision also shows substantial diversity
among terms in the same general phenotypic category, as illustrated using cardiovascular phenotype terms (B). A precision recall plot of the term describing
general cardiovascular phenotypes (‘cardiovascular system’) (C) shows a precision of 0.72 at 20% recall (blue line), with precision approaching the prior as
recall approaches 100% (green line). D
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ranked genes, 41 had associated mutants with a cardiovascular
phenotype (P<1×10−9, Fisher’s exact test).

Phenotyping confirms predictions of cardiovascular
function
To more directly test the results of our cardiovascular phenotype
predictions, we selected all genes exceeding an estimated 95%
precision cut-off for targeted morpholino knockdown, excluding
genes for which morpholinos targeting the transcription start site
could not be designed (as a result of high GC content or self-
complementarity). To increase the potential for novel discovery, we
also excluded genes that had existing deletion mutants or
morpholino experimentation confirming cardiac function, or which,
despite not having experimental evidence, had an apparent cardiac
function (e.g. vmhcl). This resulted in a list of 16 target genes
(Table 1). To determine how well our procedure could discriminate
against genes unlikely to cause a phenotype, the five genes with the
lowest prediction score were screened as well. Finally, a morpholino
targeting a gene with a known severe cardiac developmental
phenotype [slc8a1a, which encodes a sodium calcium exchanger
(Langenbacher et al., 2005; Stainier et al., 1996)] was screened as a
positive control (see supplementary material Table S4 for a list of all
morpholinos used).

We used a simple five-parameter categorical system to score
cardiac effects (‘S score’ hereafter; see Materials and methods and
supplementary material Fig. S1), comparing S scores for all five
cardiac parameters between test genes and negative controls. We
reasoned that a manual, blinded evaluation of cardiac function
would be more sensitive in identifying a range of potential cardiac
defects than other comparable quantitative approaches. Using a cut-
off value of S>0.5 to identify cardiovascular defects, 12 of 16 test
genes were found to have a defect in at least one quantified
parameter of heart function following knockdown, as compared with
zero of five negative control genes (P<0.05, Fisher’s exact test;
Table 1). Our results were not sensitive to the S score threshold used,
in that test genes scored significantly higher than negative controls

at a range of cut-offs spanning 0.3 to 0.8 (supplementary material
Fig. S2A). Additionally, all five parameters of heart function scored
significantly higher in test genes than negative controls (P<0.05;
supplementary material Fig. S2B). Together, these data confirm that
a machine learning procedure can be successfully used to
differentiate genes for which loss of function elicits a cardiovascular
phenotype.

One area of experimental concern given our deliberate focus on
morphants was whether the cardiac effects observed could be due to
morpholino toxicity or non-specific binding effects. Morpholino
toxicity occurs randomly for reasons thought to be related to p53-
mediated activation of apoptosis (Robu et al., 2007) and can induce
a phenotype with a cardiovascular component. Additionally,
although morpholino sequences were vetted for binding fidelity, off-
target effects remain a possibility. The phenotypes observed
appeared diverse with respect to the cardiac parameters affected,
suggesting that these responses were not due to a shared general
morpholino effect (supplementary material Fig. S2C). Based on the
lack of phenotype observed in any of our five negative control
morpholinos (each targeting a characterized gene and thus
potentially subject to both morpholino toxicity and non-specific
binding effects), we estimated the prevalence of cardiac phenotypes
due to non-specific effects to be below 20%, which is in keeping
with prior work (Ekker and Larson, 2001; Heasman, 2002;
Nasevicius and Ekker, 2000). However, even if three of 12 hits
(25%) were due to non-specific effects, highly ranked test genes
would remain significantly differentiated from low-ranked controls
(P<0.05, Fisher’s exact test).

Quantifiable decreases in cardiac function underlie screen
results
We next used more detailed physiological measures to further
characterize observed cardiac defects. We first examined alterations
in cardiac output (CO) following injection of all test morpholinos.
Here we followed a previously described approach to further
confirm that observed defects were not due to non-specific toxicity:

Table 1. Quantitative scoring system differentiates high-ranking genes from low 
Score 

Group Gene  Looping Atrial contraction Ventricular contraction Atrial morphogenesis Ventricular morphogenesis 
Test gene ldb3b 0 0 0.03 0.01 0 
Test gene tnni1b 1.49 2.97 2.52 1.7 1.3 
Test gene zgc:56376 0.82 0.62 0.43 0.51 0.36 
Test gene trdn 1.32 1.24 1.24 1.21 1.18 
Test gene nppa 1.1 0.52 0.61 0.89 0.63 
Test gene zgc:92689 0 0 0 0 0 
Test gene itpr3 0.62 0.56 0.13 0.35 0.34 
Test gene tmem88a 1.12 1.01 0.56 1.12 0.67 
Test gene fhl2a 0.75 0.46 0.14 0.59 0.34 
Test gene zgc:113625 1.26 0.74 0.5 0.8 0.59 
Test gene hspb7 0.69 0.75 0.49 0.93 0.52 
Test gene ccdc80 0.37 0.72 0.57 0.39 0.19 
Test gene si:ch211-192p3.1 0 0.03 0 0 0 
Test gene adprhl1 0.7 0.97 0.33 0.52 0.39 
Test gene itga9 1.09 1.25 0.54 0.93 0.48 
Test gene rbpms2 0.35 0.42 0 0.19 0.13 
Negative control zcchc8 0.28 0.28 0.03 0.03 0.09 
Negative control zgc:101123 0.22 0.09 0.03 0 0.03 
Negative control zc3h15 0.09 0.12 0.07 0.03 0.06 
Negative control atg13 0 0.03 0 0 0 
Negative control trim9 0.09 0.12 0 0 0.06 
Scores were assigned in each of the five quantified cardiac parameters to test and control morpholino-injected embryos, relative to respective sham 
injections, based on blinded manual examination of heart videos. Scores highlighted in gray exceeded the assigned S score threshold of 0.5, indicating a 
cardiac defect in this parameter. D
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all CO experimentation was performed following co-injection of the
test morpholino with a morpholino targeting p53 (also known as
tp53) (Robu et al., 2007).

Of the 12 test morpholinos identified through the S score (S>0.5)
as inducing a cardiac phenotype, eight caused a significant reduction
in CO (supplementary material Table S5). Among these eight was
tnni1b, which has known cardiac expression (Fu et al., 2009) and high
similarity to human troponin I type 1 (skeletal, slow), but no known
phenotype. Knockdown of tnni1b caused virtually complete asystole
(supplementary material Movies 1, 2) with no obvious effects on
zebrafish motility, a phenotype similar to that observed upon
knockdown of cardiac troponin T (tnnt2a), the gene underlying the
contractile defect in the silent heart mutant (Sehnert et al., 2002). A
second morpholino targeting tnni1b splicing also demonstrated near
asystole (supplementary material Movie 3) with no apparent motility
defects, supporting this as a gene-specific effect.

Also among the set of genes causing reduced CO was hspb7, the
human ortholog of which has been associated with heart failure
through large-scale genome-wide association screening (Stark et al.,
2010; Villard et al., 2011). A reduction in CO was confirmed using
an additional morpholino targeting an mRNA splice site in the hspb7
transcript. However, unlike tnni1b, the phenotype following hspb7
knockdown did not appear exclusively cardiac. Most obviously, at
the highest dose nearly half of all splice morpholino-injected
embryos had a shortened tail, abridged at the trunk region (a
phenotype not seen with any other morpholino injection;
supplementary material Fig. S3). Supporting the generality of the
systematic gene prioritization strategy, hspb7, in addition to its
predicted cardiac effects, was associated with the phenotypic term
‘trunk’ at an estimated precision of 0.89.

Although they were confirmed as having a cardiac phenotype
according to the S score, knockdown of nppa, itpr3, tmem88a and
adprhl1 did not cause a significant reduction in CO. However,
valvular regurgitation was observed in 55% of nppa morphant
embryos examined at the highest injected dose (supplementary
material Movie 4), as compared with 3% of wild-type embryos (as
assessed through blinded manual evaluation; P<1×10−5, Fisher’s
exact test). A regurgitation phenotype was confirmed using a second
morpholino targeting the nppa transcription start site through an
alternative sequence (31% of injected embryos versus 4% in
controls, P<0.05).

Next, itpr3 (inositol 1,4,5-triphosphate receptor, type 3)
knockdown caused a notable alteration in atrial contraction,
without a corresponding significant reduction in CO (CO is largely
a metric of ventricular function). Because itpr3 is known to
mediate the release of intracellular calcium in epithelial cells
(Maranto, 1994) we went on to examine calcium dynamics in
isolated hearts following itpr3 knockdown. We found a significant
decrease in diastolic calcium concentration in the atrium of
morphants following injection of both the initial itpr3 morpholino
and a second morpholino targeting an itpr3 mRNA splice site
(Fig. 3).

Finally, unlike nppa, itpr3 and tmem88a (tmem88a knockdown
caused quantifiable alterations in cardiac conduction; more detail
below), the adprhl1 knockdown phenotype was largely abrogated
by co-injection with p53 morpholino. This suggests that the initially
observed adprhl1 phenotype is either p53 dependent or is due to
morpholino toxicity.

Thus, of 12 test genes that were both computationally predicted
and subsequently identified through the S score as having a cardiac
phenotype, 11 were further validated to have underlying alterations
in atrial function, valvular function, CO or cardiac conduction.

Tmem88a regulates coupling in the developing ventricular
myocardium
The transmembrane protein Tmem88 is a recently reported inhibitor
of the Wnt signaling pathway in multiple species, acting through
interaction with Dishevelled (Dvl) via a C-terminal tri-peptide VWV
interaction motif (Lee et al., 2010). Knockdown of the zebrafish
tmem88 ortholog tmem88a caused observable alterations in heart
function at the injected dose (Table 1), albeit with no significant
corresponding change in CO. Similarly, mosaic overexpression of a
tmem88a transcript lacking the VWV motif (see Materials and
methods) resulted in severe, systematic growth defects for 17% of
embryos and observable cardiac defects for an additional 20% of
embryos. By contrast, mosaic expression of the full tmem88a
transcript resulted in no observable phenotypes.

Given the known effect of the Tmem88 VWV motif on Wnt
signaling (Lee et al., 2010), the described role of wnt11 in
establishing physiological myocardial electrical polarities in the
developing zebrafish ventricle (Panáková et al., 2010), and the
apparent cardiac defects following tmem88a knockdown, we next

Fig. 3. itpr3 knockdown reduces cardiac calcium availability. Diastolic calcium concentration was determined in isolated zebrafish hearts at 72 hpf
following knockdown of itpr3 through either ATG-targeting or splice-blocking morpholinos. Calcium availability, measured as the 340/380 fluorescence ratio
following staining with the ratiometric dye Fura-2 (see Materials and methods) was determined at regions of fixed size at the center of the atrium and ventricle
(red squares), and was significantly lowered in atria (but not the ventricles) of morpholino-injected embryos (A). A general decrease in diastolic calcium was
obvious throughout the atrium as shown by heatmaps indicating calcium levels in control hearts (B) or hearts isolated from ATG (C) or splice (D) morpholino-
injected embryos. *P<0.05 (Student’s t-test, n>5 for each condition). Error bars indicate standard error. V, ventricle; A, atrium. D
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sought to identify any functional synergy between wnt11 and
tmem88a. Co-injection of either the tmem88a ATG morpholino
tested above or a second morpholino blocking tmem88a splicing
[both independently validated as targeting tmem88a (Cannon et al.,
2013)] with a previously validated wnt11 morpholino (Panáková et
al., 2010) showed sensitization of the wnt11 cyclopia phenotype
(Fig. 4). This suggests a synergistic genetic interaction between
tmem88a and wnt11. Quantifying cell coupling, we found an
increase in impulse propagation velocity in the body of the ventricle
following tmem88a knockdown by both the ATG and splice-
blocking morpholinos (Fig. 5A-D). This finding is consistent with
an effect that enhances the intercellular coupling gradient induced
by physiological levels of Wnt11 (Panáková et al., 2010). We found
no appreciable difference in epithelial morphogenesis or ventricular
connexin 43 expression following tmem88a inhibition that could
otherwise account for this alteration in impulse propagation
(Fig. 5E-L).

We next examined the expression of several key developmental
markers following tmem88a knockdown to confirm that the
observed effect of tmem88a on cardiac cell coupling is not a
secondary consequence of a generalized effect on development
(Fig. 6). fli1 served as an in situ hybridization marker for the
integrity of endothelial development, myoD (also known as myod1)
enabled monitoring of muscle formation, and beta-globin E3
(hbbe3) provided a readout for functional circulation and timing of
hematopoiesis, as its expression is reduced by 48 hours
postfertilization (hpf). Expression of fli1 and myoD in tmem88a
morphant embryos was comparable to that in the wild-type
reference. beta-globin E3 showed an apparent upregulation at 48 hpf
in morphants and a slightly longer persistence of expression at 72
hpf when voltage measurements were taken (Fig. 6). These results
suggest that tmem88a morpholinos might induce alterations in
hematopoiesis at the injected dose [consistent with recent findings

(Cannon et al., 2013)], but do not cause any obvious systematic
developmental abnormalities that might otherwise account for the
cardiac effects observed at the time point surveyed.

DISCUSSION
In this study we used high-confidence predictions of gene-
phenotype association across over 15,000 genes to prioritize the
screening of novel gene candidates for developmental functions.
Through rigorous experimental assay we identified genes affecting
a range of observable cardiac phenotypes. This approach to large-
scale phenotype prediction and in vivo validation in a vertebrate
establishes a framework for de novo discovery of gene functions
across a broad spectrum of vertebrate developmental phenotypes.

Using machine learning, we identified patterns in gene
expression, conservation and interaction to generate over 5 million
predictions of gene-phenotype association in embryonic zebrafish.
We have made the resulting high-confidence predictions of gene-
phenotype association available through two public browsers:
FuncBase and GeneMANIA. GeneMANIA is capable of integrating
existing predictions with new gene feature data as they become
available, thereby acting as a dynamic resource for future
experimentation. The precision of phenotype predictions appeared
highest for consistently defined anatomical phenotypes, suggesting
that effective gene prioritization can be achieved for any
standardized phenotype with sufficient rigorous training
information.

We used morpholino knockdown to both train and test our
computational approach. Morpholinos enable gene knockdown at a
reasonable scale, but can have appreciable phenotypic noise due to
non-specific toxicity. Despite these confounders, a clear phenotypic
enrichment was seen using our in silico prediction strategy.

To directly test the fidelity of our gene-phenotype association
predictions, we chose to focus on the observation of cardiovascular
phenotypes. From modeling basic processes such as cellular
migration (Lazic and Scott, 2011; Zhou et al., 2011) and intercellular
coupling (Panáková et al., 2010), to complex arrhythmogenic
(Arnaout et al., 2007) and structural (Vogel et al., 2009) cardiac
disorders, zebrafish are a powerful model organism for the study of
cardiac development. Zebrafish have over 1000 genes with
detectable cardiac expression [as annotated by ZFIN (Bradford et
al., 2011)] and thus systematic screening of each gene for associated
phenotypes would require tremendous experimental resources.
Alternatively, our method allowed focus on a set of genes enriched
for potential phenotypes.

Through testing and validation, we were able to identify 11 genes
with cardiac phenotypes. Notably, despite the fact that cardiac
specificity of predicted phenotypes was not included as a criterion
for initial survey, the majority of these 11 genes had an apparently
cardiac-specific phenotype upon knockdown (supplementary
material Table S4). Eight of these genes were demonstrated to
reduce CO and the remaining three (nppa, itpr3 and tmem88a) were
shown to alter other quantifiable aspects of cardiac function.

nppa, which was known to have variant expression associated
with alteration in valve tissue formation in zebrafish (Camarata et
al., 2010), was shown here to be associated with regurgitant defects
in vivo. Additionally, itpr3, recently shown to be dysregulated in
human arrhythmia (Hasdemir et al., 2010), was observed to have a
direct role in atrial calcium handling. Last, tmem88a, a proposed
attenuator of Wnt signaling (Lee et al., 2010), was demonstrated
here to regulate ventricular cell coupling.

We observed the influence of tmem88a on wnt11 in two separate,
quantifiable phenotypes (cyclopia and myocardial cell coupling),

Fig. 4. tmem88a sensitizes the wnt11 cyclopia phenotype. Embryonic
zebrafish were injected with low doses of morpholinos targeting either wnt11
or tmem88a (both ATG targeting and splice blocking) and morphants scored
for cyclopia at 48 hpf. Cyclopia classes (A) are as previously defined (Marlow
et al., 1998), such that in class 1 eye spacing is comparable to that of wild
type, class 2 the spacing is decreased, class 3 eyes are marginally fused,
class 4 eyes are completely fused, and class 5 have one eye. The proportion
by class (B) is significantly different (P<0.05, Chi-squared test) for both wnt11
+ tmem88a ATG and wnt11 + tmem88a splice morpholino co-injections as
compared with wnt11 morpholino alone. D
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suggesting a functional synergy between these two genes. Both
wnt11 overexpression and knockdown are associated with a
disruption of the myocardial electrical gradient (Panáková et al.,
2010). tmem88a knockdown enhanced this gradient, suggesting that
the relationship between tmem88a and wnt11, potentially mediated
by the known interaction between tmem88a and dvl (Lee et al.,
2010), appears more complex than a simple activation or
inactivation. Notably, two additional studies have been published
during the review of our manuscript (Novikov and Evans, 2013;
Palpant et al., 2013), both confirming a Wnt-dependent role for
tmem88a in cardiomyocyte differentiation.

The number of vertebrate phenotypes potentially observable even
within the finite timeframe of embryonic development is vast. When
combined with the enormous number of potential genotypes in a
genome, it is clear that comprehensive experimental mapping from
genotype to phenotype is unlikely without informed direction of
experimental effort. Here we demonstrate that systematic data
integration and objective gene prioritization can successfully direct

limited experimental resources for high-resolution phenotyping to
ranked subsets of genes for each phenotype, accelerating the
potential for gene function discovery in vertebrates. With large-scale
projects underway to generate and phenotype zebrafish carrying null
alleles (Kettleborough et al., 2013) and other allelic classes, future
iterations of our approach will be crucial in deciphering the complex
relationship between genotype and phenotype.

MATERIALS AND METHODS
Collection of feature and training data
We obtained gene-phenotype associations to train our learning procedure
from the Zebrafish Information Network (ZFIN) database (Bradford et al.,
2011) and included only experimentally verified gene-phenotype
associations that satisfied the following two criteria: (1) gene inhibition was
via a morpholino that had only one identifiable target annotated by ZFIN;
and (2) the morpholino causing the observed phenotype was injected into a
wild-type (i.e. non-transgenic) fish line, as we anticipated carrying out
experimental verification using wild-type lines. Phenotypes used in the
learning procedure were based on a hierarchical list of anatomical terms

Fig. 5. tmem88a inhibition alters cardiac ventricular polarity. Following knockdown of tmem88a by ATG-targeting or splice-blocking morpholinos,
conduction velocity as measured in isolated hearts following staining with Di-8-ANEPPS was significantly increased along the outer curvature of the ventricle
(A). This difference is also illustrated through isochronal maps showing voltage propagation along a control heart (B) versus hearts from embryos injected with
the ATG (C) or splice-blocking (D) morpholinos (isochrons are 5 mseconds apart, conduction goes from blue to red). There was no apparent change in
connexin 43 expression or cell number accompanying this alteration in cell coupling. Expression of connexin 43 (E) was strong in the atria, but weak in the
ventricles in control hearts (F), and did not appear to change with inhibition of tmem88a (ATG-blocking morpholino in G, splice-blocking morpholino in H). Cell
number as measured by manual counting of ventricular nuclei (I) revealed no obvious differences between control hearts (J) and hearts from embryos injected
with the ATG (K) or splice (L) morpholinos (β-catenin in green, DAPI in blue). *P<0.05 (Student’s t-test, n>4 for each condition). Error bars indicate standard
error.
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developed by a consortium of researchers together with ZFIN (Bradford et
al., 2011). Through literature curation, ZFIN has captured the anatomical
structures in embryonic development that are affected by injection of a given
morpholino. Existing gene-phenotype associations were propagated to
ancestral terms within the ontology prior to training.

Gene feature data used for training and prediction included: expression
data [both tissue localization (in situ data collected by ZFIN) and microarray
experimental data (more below)], phylogenetic profiles, annotated protein
domains, Gene Ontology (GO) (Ashburner et al., 2000) and KEGG

(Kanehisa et al., 2008) annotations, and genetic and protein interactions
mapped through orthology from human, mouse and yeast. Only
systematically obtained interaction data were mapped from additional model
organisms so as to reduce the impact of ascertainment bias. As functional
annotations can be derived directly from phenotypic evidence and thus
introduce circularity into our prediction procedure, annotations derived from
GO underwent stringent filtering before use. Expression data included both
cell type-specific expression (annotated by ZFIN) and an experimental
expression compendium generated for this purpose. To generate this

Fig. 6. Expression analysis confirms the lack of a systematic developmental delay following tmem88a knockdown. Markers specific to the endothelium
(fli1), developing muscle (myoD) and hematopoiesis (beta-globin E3) were visualized using in situ hybridization at 24 (A-I), 48 (J-R) and 72 (S-AA) hpf in wild-
type embryos (A-C,J-L,S-U) and following injection of either the ATG (D-F,M-O,V-X) or splice-blocking (G-I,P-R,Y-AA) tmem88a morpholinos. Whereas fli1 and
myoD expression appears unaltered, beta-globin E3 shows a slight elevation in expression following tmem88a knockdown at 48 hpf, which is largely alleviated
by 72 hpf. High-resolution images of any panel are available upon request.

D
ev

el
op

m
en

t



232

RESEARCH ARTICLE Development (2014) doi:10.1242/dev.099796

compendium, we combined over 60 experimental datasets that had been
published using the Affymetrix zebrafish platform from the Gene Expression
Omnibus (Barrett and Edgar, 2006), after renormalizing each set using
genechip robust multiarray averaging (Wu et al., 2004) via Bioconductor
(Gentleman et al., 2004).

Learning procedure
The phenotype prediction procedure used here was based on the
Funckenstein approach previously used to make predictions of gene function
in yeast (Tian et al., 2008), mouse (Tasan et al., 2008) and human (Tasan et
al., 2012). Briefly, separate classifiers were used to infer putative gene-
phenotype associations based on correlations between gene features and
phenotypes (Guilt-By-Profiling; GBP), and to transfer known phenotype
associations between genes (Guilt-By-Association; GBA) (Fig. 1). Both
GBA and GBP used random forest classifiers for prediction. A random forest
classifier is an ensemble-based learner in which collections of decisions trees
are constructed, each using a randomly selected subset of training
information and features. 

For GBP, separate random forest classifiers were constructed for each
ZFIN anatomical term, resulting in a gene by anatomical term matrix of
confidence values. Positive training examples for each anatomical term were
genes for which inhibition through morpholino affected that term
(‘phenotype’ hereafter). Negative training genes were all other genes
annotated with at least one phenotype term. We used out of bag (OOB)
scores to evaluate prediction accuracy for each phenotype, such that each
gene is assigned a score using only models that had not been trained using
information about that gene. 

For GBA, gene feature data were used to construct a functional linkage
network (FLN), a graph in which gene-gene linkage weight corresponds to
the strength of association between two genes, as estimated via a random
forest classifier. Positive training examples were all genes with any shared
phenotype, while negative examples were all other gene pairs drawn from
the same set that failed to exhibit any shared phenotypes. OOB scores were
used to generate performance estimates for gene-gene associations. Gene-
phenotype associations were then derived from the FLN probabilistically.
Specifically, edge weights within an FLN clique containing all genes
annotated as causing a particular phenotype (herein referred to as the ‘core’
set) were used to derive a probability density function (PDF), an estimate of
the distribution of edge weights expected of gene pairs sharing the
phenotype of interest. A separate PDF was created using edge weights
between the core set and all other genes not having the phenotype of interest.
Edge weights between each candidate gene and the core set were then
obtained, and a gene-phenotype association score was assigned to be the log
of the likelihood of obtaining the observed edge-weight distribution under
the core PDF model relative to the likelihood under the non-core PDF, as in
previous approaches (Tasan et al., 2012). GBA and GBP scores were then
combined for each term using a logistic regression model optimized to
maximize the cross-validated estimates of area under the cumulative
precision recall curve. 

Gene feature data were used differently for GBA and GBP. For example,
while phylogenetic data were used as a feature for both GBA and GBP, GBP
contained all species used in phylogenetic profiling as individual features,
while GBA used only the similarity in phylogenetic profile between any two
genes. Similarly, correlation in expression over the 60 combined
experimental datasets was used as an individual feature in GBA. However,
in GBP, genes were clustered based on correlation in expression over these
60 datasets, and the presence in any of these expression clusters was used
as an individual feature. In total, there were 65 features used to train the
GBA predictor, while 3034 were used for GBP. Feature importance for both
GBA and GBP was calculated as the root mean square error introduced by
excluding the given feature. 

Efficacy of each of the phenotype predictors was assessed according to
the precision at 20% recall using cross-validation. This measure quantifies
precision (the estimated fraction of predicted gene-phenotype associations
that are true, i.e. the positive predictive value) at a given recall (the fraction
of known gene-phenotype associations that were correctly predicted, i.e. the
true positive rate or sensitivity). Precision-recall curves for each phenotype
were generated using ROCR (Sing et al., 2005), and interpolated precision

at 20% recall was calculated as previously described (Manning et al., 2008).
Where the precision at 20% recall values were compared for multiple
predictors, a relative precision score was calculated as the precision at 20%
recall divided by the prior expectation (fraction positive training examples).
This was done when comparing across multiple phenotypes to reduce the
influence of differences in prevalence (i.e. the fraction of genes known to be
associated with the phenotype). To generate the high confidence gene-
phenotype association list, a likelihood score corresponding to a precision
of 0.8 was determined for each phenotype, and all genes not in the original
training data scoring above this threshold were included. 

Cross-validation
For GBA, feature data were used to construct a functional linkage network
(FLN), a graph in which edge weight corresponds to the strength of
association between two genes as estimated via a random forest classifier.
This classifier was trained to predict edge weights based on known examples
of shared phenotype (positive), versus all other gene pair combinations in
the training set (negative), with all possible gene-gene pairings acting as a
test set. To avoid the inflated performance estimates that can arise from
overfitting, we used out of bag (OOB) scores (such that each gene is
assigned a score using only models that had not been trained using
information about that gene) to generate performance estimates for gene-
gene associations. Gene-phenotype associations were then derived from the
FLN probabilistically. Specifically, edge weights within an FLN clique
containing all genes annotated as causing a particular phenotype (herein
referred to as the ‘core’ set) were used to derive a probability density
function (PDF), an estimate of the distribution of edge weights expected of
gene pairs sharing the phenotype of interest. A separate PDF was created
using edge weights between the core set and all other genes not having the
phenotype of interest. Edge weights between each candidate gene and the
core set were then obtained, and a gene-phenotype association score was
assigned to be the log of the likelihood of obtaining the observed edge-
weight distribution under the core PDF model relative to the likelihood
under the non-core PDF, as in previous approaches (Tasan et al., 2012).
Performance estimates for the gene-phenotype association predictions were
evaluated using leave-one-out cross-validation.

For GBP, separate random forest classifiers were constructed for each
phenotype, resulting in a gene by phenotype matrix of confidence values.
OOB scores were used to evaluate prediction accuracy for each phenotype.
GBA and GBP scores were then combined for each term using a logistic
regression model optimized to maximize the cross-validated estimates of
area under the cumulative precision versus recall curve. 

Empiric testing of predictions using morpholinos
ATG-blocking morpholinos were designed using Gene Tools oligo design
service for uniformity. To ensure a lack of off-target binding, the resultant
morpholino sequences were aligned against the zebrafish genome using
BLAST (Altschul et al., 1990) with settings optimized for small
sequences.

Male and female wild-type (AB) fish were housed and embryos bred for
microinjection using standard protocols. Embryos were collected, pooled
and immediately used for injection. Techniques used for morpholino
injection follow those previously outlined (Westerfield, 2000). Briefly,
morpholinos (Gene Tools) were resuspended in sterile water at 1 mM and
diluted to working concentration with Danieau’s solution [58 mM NaCl, 0.7
mM KCl, 0.4 mM MgSO4, 0.6 mM Ca(NO3)2, 5 mM HEPES]. Morpholinos
were introduced into the zebrafish yolk via microinjection no later than the
two-cell developmental stage. Injected embryos were then kept at 28.5°C in
E3 solution (5 mM NaCl, 0.17 mM KCl, 0.33 mM CaCl2, 0.33 mM
MgSO4).

Evaluation of cardiac defects
Each morpholino was injected into zebrafish embryos at a range of doses
high enough to elicit an observable phenotype (each initially at three doses:
0.5, 0.25 and 0.125 pmol). If any morpholino caused frequent, systematic
growth deformities, or resulted in greater than 30% mortality at the highest
dose, a lower dose was used for further experimentation. Once a suitable D
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morpholino dose was found, injections were performed in triplicate (at least
40 embryos per injection, three sets of embryos resulting from separate mate
pairings).

Images of live zebrafish hearts were acquired at 48 hpf on an Axioplan
(Zeiss) upright microscope with a 5× objective lens using integrated
incandescent illumination and a FastCam-PCI high-speed digital camera
(Photron) with a 512×480 pixel grayscale image sensor. Images were
obtained at 250 frames per second, with 1088 frames (~8 cardiac cycles)
being acquired per condition. Our cardiovascular function classification
system evaluated five parameters from beating hearts using sequential image
files: atrial morphogenesis, ventricular morphogenesis, looping, atrial
contraction, and ventricular contraction (see supplementary material Fig. S1
for a full score description). Raw scores between 1 and 4 (with 1 being
normal and 4 being a severe defect) were assigned to each parameter
manually with the evaluator (G.M.) being blinded as to the identity of the
heart video file (ten videos per condition, in triplicate). The final score S for
each of these parameters was calculated as:

where n is the number of embryos analyzed per experiment, T the score for
a morpholino-injected embryo, and C the score for a sham-injected control
embryo from the same clutch. In order to be considered substantially
affected, a cardiac parameter would need to have an average score of greater
than 0.5. This would correspond, for example, to an excess of phenotypic
observations in treated embryos relative to controls of 16.67% for severe
defects, 25% for moderate defects, or 50% for mild defects.

Heart rate and cardiac output
Custom software (implemented in MATLAB; freely available upon request)
was used to determine heart rate from sequential image files (obtained as
above), while measurements of ventricular long and short axis in both
diastole and systole were obtained manually for each video using ImageJ
(http://rsbweb.nih.gov/ij/) and used to estimate chamber volume using
standard geometric assumptions. Cardiac output was then calculated as
diastolic minus systolic ventricular volume multiplied by heart rate, in a
method analogous to previous approaches (Shin et al., 2010), for at least ten
embryos per morpholino dose.

In situ hybridization
In situ hybridization was performed as previously described (Thisse and
Thisse, 2008).

Immunohistochemistry
For β-catenin and Connexin 43 analysis, isolated hearts from 72 hpf
embryos were fixed in Prefer fixative (Anatech) and incubated with primary
antibodies mouse  β-catenin (1:200; BD Biosciences, 610154) or rabbit
Connexin 43 (1:50; Sigma-Aldrich, C6219) followed by goat anti-mouse
Alexa Fluor 488 (1:1000; Invitrogen, A11029) or donkey anti-rabbit Alexa
Fluor 555 (1:1000; Invitrogen, A31572), respectively. Stained hearts were
mounted in ProLong Gold antifade reagent with DAPI (Invitrogen) and
imaged using a Leica SP5X laser-scanning confocal microscope at 63×
magnification. Images were analyzed using ImageJ.

Voltage and calcium transient mapping
Hearts were isolated from embryos at 72 hpf and stained with either the
transmembrane potential-sensitive dye di-8-ANEPPS (Invitrogen) or the
calcium-sensitive ratiometric dye Fura-2AM (Invitrogen) for measurement
of voltage or calcium transients, respectively. Resulting fluorescence
intensities were recorded with a high-speed charge-coupled device camera
(RedShirtImaging) and images analyzed using software implemented in
MATLAB (Panáková et al., 2010). Pacing at a constant rate of 80 beats per
minute was used for calcium mapping to eliminate heart rate effects. For all
comparisons, regions of interest were determined and compared between
morpholino-injected embryos and controls from at least two separate mate
pairings using a two-sided Student’s t-test.
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Overexpression of tmem88a
RNA was isolated from 48 hpf wild-type embryos and used to synthesize
cDNA as previously described (Peterson and Freeman, 2009). tmem88a-
specific primers containing the MultiSite Gateway attB1 and attB2
recognition sites were then used to amplify tmem88a from cDNA by PCR.
To generate the abridged tmem88a transcript (tmem88aΔVWV), the reverse
primer carried a stop codon immediately before the C-terminal VWV motif.
The verified PCR product was combined with pDONR221 in a BP reaction
(BP Clonase II; Invitrogen) to generate MultiSite Gateway entry vectors
pENTR_tmem88a and pENTR_tmem88aΔVWV. These entry vectors were
combined with p3E-polyA [Tol2kit #302 (Kwan et al., 2007)], a Tol2
destination vector containing an alpha-crystallin:YFP selection marker, and
pENTR5′_ubi [containing the ubiquitin promoter (Mosimann et al., 2011)],
in an LR reaction (LR Clonase Plus II; Invitrogen) to generate the
ubi:tmem88a and ubi:tmem88aΔVWV expression vectors. Zebrafish
embryos were injected with 20 pg of either of these vectors and 10 pg
transposase at the one-cell developmental stage, and screened for
fluorescence and developmental phenotypes at 48 hpf.

Evaluation of Wnt11 synergy
Test morpholinos were injected either singly or in combination with a
previously verified morpholino targeting wnt11 (Panáková et al., 2010) at
low doses to identify potential synergistic effects. Resulting morphants were
scored for cyclopia at 48 hpf based on the five classes previously described
(Marlow et al., 1998). The evaluator (G.M.) was blinded as to the identity
of the morphants at the time of survey. Percentages reflect the total embryos
in each cyclopia class summed over three separate mate pairings. Results
were compared using a Chi-squared test.
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Figure S1 – The five-category score of heart function used to identify differences in 
morphology and heart conduction. Numerical scores ranging from 1-4 (with 1 being 
nearest wild type) were assigned to 5 parameters of cardiovascular function from 
anonymized heart videos. Criteria for assigning these scores are outlined in A. Frames 
from analyzed video files depict hearts scoring progressively higher for all 5 parameters 
(B-D).  Specifically: B is phenotypically normal, while C shows abnormal looping and a 
minor defect in both atrial and ventricular morphogenesis, and D depicts severe 
abnormalities in looping, conduction, and morphology. Red and black arrows show atria 
and ventricles, respectively. 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2 – Categorical scores differentiate test genes from controls. Phenotypes 
scored following injection of morpholinos targeting high-scoring (test) genes are 
significantly differentiated from negative control morpholino injections across a wide 
range of score cutoffs (A, red line indicates the p = 0.05 threshold), with scores for all 5 
parameters significantly higher for test morpholinos than for controls (B). Differences in 
the 5-parameter scores assigned to each gene become obvious when displayed 
graphically (C; grade of blue coloring indicates severity of defect). The outermost (red) 
line represents a positive control morpholino targeting slc8a1a, which substantially 
affected all 5 quantified parameters of cardiovascular function.  Alternately, zcchc8 
(grey), the highest-scoring negative control gene, showed no substantial phenotypic 
defects in any parameter upon knockdown. Test gene tmem88a (green) showed 
consistently more moderate defects in looping, atrial morphogenesis, and atrial 
contraction upon knockdown, while tnni1b (purple) resulted in near-complete atrial and 
ventricular asystole as well as frequent looping defects and consequent alterations in 
morphology. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S3 – hspb7 morpholino injection causes cardiac and tail truncation 
phenotypes. Compared to wild-type controls at 48hpf (top panel), hpsb7 ATG (middle 
panel) and splice blocking (lower panel) morpholinos caused a reduction in cardiac 
output. In addition to the cardiac phenotype, the ATG morpholino caused an apparent 
thinning of the musculature in the tail, while the splice morpholino caused tail truncation.  
 
Movie 1. Wild-type zebrafish embryo. All videos were taken at 48 hpf using standard 
light microscopy (see Methods). Videos were originally taken at 250 frames per second 
(~4 seconds long, 1088 frames total), but are slowed here to 30 frames per second for 
ease of phenotype visualization. Videos are also compressed and shortened to allow ease 
of download. Full-length, uncompressed videos are available upon request. 
Movie 2. Knockdown of tnni1b (ATG morpholino) 
Movie 3. Knockdown of tnni1b (splice morpholino) 
Movie 4. Knockdown of nppa (ATG morpholino 1) 
 
Table S1: List of gene features used for each learner, with feature importance measured 
as root mean square error (RMSE) introduced by removing the given feature. For GBA, 
features were binarized based on specific qualifiers. For example, having a Pearson’s 
correlation coefficient of greater than 0.7 in a given expression dataset was included as a 
single feature for gene pairs. The ‘GBA’ worksheet lists all features in descending order 
by RMSE, along with the qualifier used. The ‘GBP’ worksheet is an anatomical term by 
feature matrix, with each element of this matrix corresponding to the RMSE for that 
feature, in that term’s prediction.  
 



Table S2: Evaluation of each of the 388 phenotype predictors. Please note that although 
all terms are included here, highly specific (i.e. less than 7 positive training examples), 
and broadly defined terms were excluded from further analysis due to variability in 
performance (indicated in the ‘Removed’ column). Metrics included are area under the 
receiver operating characteristic curve (ROC-AUC), precision at 20% recall (p@20r), 
and precision at 20% recall over prior (p@20r over prior).  
 
Table S3: Spreadsheet containing all gene-anatomical term associations scoring above an 
80% precision cutoff as estimated independently for each term. Each row indicates an 
individual gene-phenotype association prediction and the assigned precision score as 
estimated through cross validation. 
 
Table S4: Description of all morpholino sequences designed for this study. Targeted 
genes are divided into test (high-scoring), confirmation (second morpholino screened for 
a given gene), negative control (low-scoring), or positive control (slc8a1a). Morpholino 
target type, whether transcription start site (ATG) or exon/intron or intron/exon boundary 
(Splice Blocking) is also indicated. Table also indicates gross morphological phenotypes 
observable at the indicated dose. 
 
Table S5: Cardiac output (CO) for all morpholino injections. These injections were 
performed as co-injections with a morpholino targeting p53 and compared against p53 
morpholino injection alone. Red coloring indicates a significant reduction in CO. CO is 
reported as nL/min. 
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