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Scaling morphogen gradients during tissue growth by a cell
division rule
Inna Averbukh1,*, Danny Ben-Zvi2,*, Siddhartha Mishra3,4,* and Naama Barkai1,‡

ABSTRACT
Morphogen gradients guide the patterning of tissues and organs
during the development of multicellular organisms. In many cases,
morphogen signaling is also required for tissue growth. The
consequences of this interplay between growth and patterning are
not well understood. In the Drosophila wing imaginal disc, the
morphogen Dpp guides patterning and is also required for tissue
growth. In particular, it was recently reported that cell division in the
disc correlates with the temporal increase in Dpp signaling. Here we
mathematically model morphogen gradient formation in a growing
tissue, accounting also for morphogen advection and dilution. Our
analysis defines a new scaling mechanism, which we term the
morphogen-dependent division rule (MDDR): when cell division
depends on the temporal increase in morphogen signaling, the
morphogen gradient scaleswith the growing tissue size, tissue growth
becomes spatially uniform and the tissue naturally attains a finite size.
This model is consistent with many properties of the wing disc.
However, we find that the MDDR is not consistent with the phenotype
of scaling-defective mutants, supporting the view that temporal
increase in Dpp signaling is not the driver of cell division during late
phases of disc development. More generally, our results show that
local coupling of cell division with morphogen signaling can lead to
gradient scaling and uniform growth even in the absence of global
feedbacks. The MDDR scaling mechanism might be particularly
beneficial during rapid proliferation, when global feedbacks are hard
to implement.
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INTRODUCTION
Individuals of the same species vary in size due to environmental,
genetic and stochastic fluctuations. The body plan remains robust to
size variations, in part owing to mechanisms that function at early
development to adjust (scale) the pattern of the developing tissue
with its size. Scaling entails an effective transmission of global size
information to the local setting of each cell. Proposed scaling
mechanisms include opposing molecular gradients emanating from
opposite poles and dilution of some molecular component defining
the morphogen length scale (Wartlick et al., 2011). Most of these
theoretical scalingmechanisms assume that tissue pattern is adjusted
with tissue size, while size itself is defined independently of the
patterning process (Barkai and Ben-Zvi, 2009; Ben-Zvi et al., 2008;

Cheung et al., 2011; Gierer and Meinhardt, 1972; Gregor et al.,
2008; Houchmandzadeh et al., 2002; Patel and Lall, 2002; Wolpert,
1969). Yet patterning is often concomitant with tissue growth.
Furthermore, the same molecules that guide patterning may also be
required for tissue proliferation, directly coupling pattern and size
(Lanctot et al., 2013; Sato and Kornberg, 2002; Towers et al., 2008).
How global tissue properties such as pattern scaling and tissue
growth are affected by this local coupling is not well understood.

The Drosophila wing imaginal disc provides a central model for
studying both pattern scaling and the coordination of patterning and
growth. This monolayer epithelium is patterned along the anterior-
posterior (AP) axis by a concentration gradient of the Bmp4 homolog
Dpp,which is secreted froma line-like source along theAPborder and
decays gradually away from it (Kicheva et al., 2007). The Dpp
concentration gradientwas directly visualized and shown to scalewith
the size of the discwhen disc sizewas perturbed by geneticmutations,
and also during the growth of the wild-type disc (Ben-Zvi et al.,
2011a; Hamaratoglu et al., 2011; Teleman and Cohen, 2000;Wartlick
et al., 2011). Recent results by several groups (including ours) suggest
that Dpp gradient scaling depends on expansion-repression (ExR)
feedback, inwhich a diffusible ‘expander’molecule that facilitates the
spread of the morphogen is repressed by morphogen signaling (Ben-
Zvi and Barkai, 2010) (Fig. 1A,B). The secreted molecule Pentagone
(Magu – FlyBase) acts as an expander: it is widely diffusible,
facilitates the spread of Dpp in a non-cell-autonomous manner and its
production is repressed by Dpp signaling (Vuilleumier et al., 2011).
Indeed, scaling was lost in third instar wing discs of pentagone null
mutants, or when its expression was constitutive throughout the disc
(Ben-Zvi et al., 2011a, b; Hamaratoglu et al., 2011; Restrepo and
Basler, 2011).

In addition to its role as amorphogen patterning thewing disc, Dpp
is a growth factor required for the proliferation of cells in the
disc (reviewed by Affolter and Basler, 2007; Schwank and Basler,
2010). Interestingly, although Dpp levels decay along the disc, cell
proliferation is spatially homogenous (Milan et al., 1996). This
spatially uniform growth may be beneficial for reducing mechanical
stress (Shraiman, 2005) and for increasing patterning robustness
(Schwank and Basler, 2010). Different models were suggested to
explain how a graded morphogen profile can direct uniform tissue
growth. One proposal is that growth depends on the relative slope of
morphogen concentration, which remains position-independent for
exponentially decaying gradients (Day and Lawrence, 2000; Rogulja
and Irvine, 2005); however, this model cannot explain growth within
or at the borders of clones with uniform Dpp signaling (Schwank
et al., 2008). Others have proposed that cell division is influenced by
mechanical forces that depend on morphogen signaling but spread
uniformly along the tissue (Aegerter-Wilmsen et al., 2007; Hufnagel
et al., 2007; Shraiman, 2005). Notably, growth of the disc is regulated
by additional pathways including Wg and Hippo signaling (Johnston
and Sanders, 2003; Rogulja et al., 2008), and by systemic signals such
as insulin-like growth factors (Bohni et al., 1999). These signals couldReceived 11 December 2013; Accepted 26 March 2014
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compensate for the graded distribution of Dpp to account for uniform
growth (Schwank et al., 2011).
Dpp signaling and cell division rates have been quantified in vivo in

the growing wing disc. The division cycle was shown to strongly
correlate with the temporal increase in Dpp signaling, such that cells
divided when Dpp signaling increased by∼50% relative to its level at
the beginning of the division cycle (Wartlick et al., 2011).
This correlation might suggest that cell division is defined by this
temporal increase in Dpp signaling. Wartlick et al. noted that such a
division rule could lead to spatially uniform growth, provided that the
Dpp gradient scales with disc size through some external mechanism.
An emerging idea is, therefore, that the ExR mechanism

functions to scale the Dpp gradient with the size of the growing
disc, while the Dpp-dependent growth rule described above ensures
spatially uniform growth. We examined the consistency of this
proposal and were particularly interested in two aspects of
this combined dynamics. First, the ExR feedback is effective in
scaling morphogen gradients during slow growth, which gives the
expander sufficient time to spread in the tissue, but becomes less
effective when growth is rapid and the expander does not have time
to diffuse and affect the entire tissue. We therefore studied the
relation between morphogen gradient and disc size throughout
the dynamics of disc growth, including early times when growth is
rapid. Second, cells in the lateral domain of the disc receive very
little if any Dpp signaling and express Brinker but proliferate at the
same rate as medially located cells. Moreover, Brinker-expressing
clones in the medial domain proliferate normally (Schwank et al.,
2012). These observations led to a debate as to whether the
correlation between cell division and the temporal increase in Dpp
signaling seen in wild-type discs reflects a causal relationship
(Schwank et al., 2012; Wartlick et al., 2012). We were interested in
understanding qualitative properties of the proposed Dpp-
dependent growth rule to evaluate its consistency with respect to
different mutant backgrounds.
To this end, we simulated the ExR feedback in the growing disc

using a mathematical framework that accounts for morphogen
diffusion, advection and dilution during growth of the tissue. The
morphogen-dependent division rule was incorporated into the
dynamics, while other contributions to tissue growth were ignored,
enabling us to focus exclusively on the properties of this proposed

growth mechanism. Surprisingly, scaling and uniform growth were
observed throughout the dynamics, also at early times when
proliferation was too rapid for the ExR feedback to be effective.
Extensive numerical analysis showed that scaling and uniform
growth are intertwined at this stage and result solely from the
dependence of cell division on the temporal increase in Dpp
signaling. Prompted by this observation, we show analytically and
numerically that this local MDDR mechanism can result in three
global tissue properties: gradient scaling, uniform growth and a final
size. We find thatMDDR is consistent with many properties of wing
disc growth. However, it cannot explain growth of the disc in
pentagone null discs, in which scaling is lost in third instar,
supporting the view that Dpp-independent factors contribute to
growth of the disc at that time. More generally, our study
demonstrates that local coupling of cell division with morphogen
signaling may provide an efficient mechanism for establishing
global pattern scaling and tissue growth properties, effective
particularly under situations in which global feedbacks are harder
to implement.

RESULTS
Model: simulating the ExR feedback in a growing tissue
We consider a one-dimensional growing tissue of size [0,L(t)]. The
tissue consists of dividing cells whose division times τ(x,t) depend
on time t and cell position x. Since cell division leads to tissue
growth, each cell moves with a velocity u(x,t) defined by the cell
division rate (see methods in the supplementary material):

du

dx
; ux � lnð2Þ

tðx; tÞ : (1)

Here, and in the following, ux denotes the derivative of u with
respect to x. Wemodel a morphogen gradient that is established over
the growing tissue. The morphogen with concentrationM is secreted
from the proximal edge (x=0), diffuses with some diffusion
coefficient DM, and degrades linearly at some rate α. To simulate
the ExR feedback, we assume that the diffusion and/or degradation
of the morphogen depend on some secreted molecule (the expander)
with concentration E, the production of which is repressed by
morphogen signaling. The expander is widely diffusible and is

Fig. 1. ExR and coupling growth and patterning by a morphogen. (A) The expansion-repression (ExR) feedback topology. The morphogen represses
the secretion of an expander. The expander, which is diffusible and stable, expands the morphogen gradient by enhancing morphogen diffusion and/or
decreasing morphogen degradation. (B) Expansion of the morphogen gradient leads to the gradual restriction of the expander secretion domain towards the
distal region of the tissue. TExpander is the threshold for expander production repression. The gradient continues to expand until the expander is repressed
almost throughout the entire field. The expander accumulates during the expansion of the gradient, such that larger fields will require higher levels of the
expander. (C) Morphogen dynamics in a growing tissue. Coupling between growth and patterning by a morphogen gradient. The morphogen gradient profile
is determined by morphogen diffusion (1) and its degradation (2). Owing to growth, two other terms shape the distribution: advection of the morphogen
(3) and its dilution (4).
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degraded slowly. Using the Reynolds transport theorem, we can
model the dynamics of the morphogen-expander system using
advection-reaction-diffusion equations (Bittig, 2008) (see methods
in the supplementary material):

Mt ¼ DM ðEÞ �Mxx � aðEÞ �M � u �Mx � ux �M , (2a)

Et ¼ DE � Exx � aE � E � u � Ex � ux � E þ bE � hðMÞ: (2b)

The first two terms on the right-hand sides of Eqn 2 describe the
change in morphogen or expander concentration due to their
respective diffusion and degradation. We assume that both secreted
molecules are transported across the field by the movement of the
underlying cells, to which they are weakly bound, e.g. through
interaction with the extracellular matrix. This movement is
described by the third (advection) term. Finally, growth of the
tissue dilutes both morphogen and expander, thereby reducing their
concentration. This dilution depends on the proliferation rate ux and
is accounted for by the fourth term (Fig. 1C). We assume a constant
flux at the proximal boundary: DMMx(L=0,t)=–η, zero morphogen
flux at the distal boundary, and zero flux at both boundaries of the
expander. βE denotes the rate by which the expander is produced
and h(M )=(1+(M/Trep)

n)–1 describes the morphogen-dependent
repression of expander production, which is low at proximal
regions where morphogen is high, and high at distal regions where
morphogen concentration is low. Note that the region in which the
expander is repressed increases as the morphogen expands. We
also assume that the expander functions by limiting morphogen
degradation, i.e. we set α(E)=(αM/(1+E)) and DM(E)=DM with αM
the morphogen degradation rate without the expander. The analysis
is equivalent for assuming modulation of diffusion.
We began by simulating the temporal dynamics of the

morphogen-expander distributions in discs growing at different,
spatially uniform growth rates (supplementary material Fig. S1) and
compared the scaling of the profile in the presence or absence of

ExR feedback. As expected, ExR improved scaling at slow growth
rates q, but was less effective in faster growing tissues (Ben-Zvi
et al., 2011a; Hamaratoglu et al., 2011).

Simulating the Dpp gradient in a growing tissue
We next incorporated the growth rule implied by Wartlick and
colleagues, whereby the cell divides when subject to a 50% increase
in morphogen signaling (Wartlick et al., 2011). This division rule
can be formulated as:

tðx; tÞ�1 ¼ u�1
_M

M
, (3)

where _M denotes the full (advective) derivative ofMwith respect to
time, corresponding to the change in morphogen concentration as
sensed by the moving cell, and θ=0.5 is the fractional change in
morphogen signaling required for triggering cell division. Together,
Eqns 1-3 describe a closed system in which tissue growth and
morphogen gradient formation are coupled.

We simulated this coupled system using parameters measured for
the Drosophila wing imaginal disc (Fig. 2). The normalized
morphogen profile scaled with the size of the growing tissue in
accordance with experimental observations (Wartlick et al., 2011)
(Fig. 2A,B,F). Growth began rapidly, but gradually slowed down
asymptotically at a finite tissue size, comparable to the behavior
observed in the wing imaginal disc (Wartlick et al., 2011) (Fig. 2D).
Finally, cell division rate was practically independent of cell
position along the tissue, consistent with the spatially uniform
growth dynamics reported (Milan et al., 1996; Wartlick et al., 2011)
(Fig. 2C). Notably, the proliferation rate was much smaller than the
Dpp degradation rate throughout the dynamics (Fig. 2E).

We conclude that the coupled dynamics consisting of ExR
feedback and MDDR is consistent with growth of the wild-type
disc in at least three key aspects: scaling of the Dpp gradient with
the size of the growing tissue, spatially uniform tissue growth, and

Fig. 2. Numerical simulation results for morphogen gradient dynamics in a tissue growing according to the MDDR with ExR feedback. Parameters
correspond to reported measurements of third instar Drosophila wing imaginal disc (Wartlick et al., 2011). In all cases, we assume a constant morphogen
flux from the source. (A) Morphogen level as a function of position in the tissue at various times. (B) Relative morphogen level as a function of relative
position in the tissue. Overlap of the profiles indicates scaling of morphogen gradient with size. (C) Proliferation rate at various times as a function of relative
position. Growth is spatially uniform and its rate declines with time. (D) Fold change increase in tissue size as a function of time. (E) Effective morphogen

degradation rate α (dotted blue line) and growth rate q¼
_L
L
(black solid line) as functions of tissue length L. Shown on a log log plot. (F) Scaling error defined

as:
@l

@L
L

����
���� as a function of time. The scaling error is a dimensionless parameter describing the change in the sharpness of the gradient (λ) relative to the growth

of the tissue. Excellent scaling is achieved when
@l

@L
L

����
����,1.
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growth termination at final time. We verified that all three
properties were observed over a wide range of parameters and were
also observed for nonlinear morphogen degradation, absorptive
boundary conditions and size-dependent Dpp flux (Table 1A;
supplementary material Table S1 and Figs S11, S12). Including
MDDR increased the robustness of scaling relative to the system in
which growth was independent of morphogen signaling: it was
now significantly easier to define parameters leading to scaling
and uniform growth.

Morphogen-dependent cell division leads to scaling and
uniform growth in the absence of an expander
We expected scaling to be established towards late growth, when
proliferation slows down. We were therefore surprised to note that
scaling and uniform growth were evident very early in the
dynamics. In fact, the Dpp gradient scaled even at growth rates

that were too rapid to enable efficient compensation by the ExR
motif (supplementary material Fig. S2). This is in contrast to the
situation of morphogen-independent growth, where scaling was lost
in rapidly growing tissues (supplementary material Fig. S1). We
therefore asked whether scaling can also be obtained in the absence
of ExR feedback.

We simulated the morphogen dynamics in the absence of an
expander. Strikingly, although no global feedback was present,
this local dynamics was sufficient to reproduce the three global
properties described above: scaling of the morphogen gradient
with the size of the growing tissue (Fig. 3A,B,F), spatially
uniform growth (Fig. 3C) and growth arrest at a finite size
(Fig. 3D). While the sharpness of the gradient, as well as the
final tissue size, were sensitive to model parameters, all three
qualitative properties were observed for a wide range of
parameters and were robust also for temporal and spatial noise
in the division rule itself (Tables 1, 2; supplementary material Figs
S4-S6, S8). In particular, MDDR also provided scaling when the
morphogen decay rate was faster than tissue growth, αM>q, as is
typical for developing tissues. The effects of the advection and
dilution terms are important in the initial phases of growth
corresponding to first to early second instar, setting the scaled
exponential profile for the entire dynamics consistent with our
analytical analysis below. Later during growth, morphogen
degradation is dominant over dilution and advection, and the
local growth law by itself maintains the scaled gradient (Fig. 3E;
supplementary material Figs S13-S15).

Analytical derivation
Our simulation results demonstrated that the local coupling of cell
division to morphogen signaling can by itself provide gradient
scaling, spatially uniform growth, and a finite size without the ExR

Table 1. Scaling and uniform growth percentages

(A) MDDR with ExR

Property %

Final size 100
Scaling 98.5
Uniform growth 81
Scaling and uniform growth 80.4

(B) MDDR

Property %

Final size 100
Scaling 75
Uniform growth 100
Scaling and uniform growth 75

Fig. 3. Numerical simulation results for morphogen gradient dynamics in a tissue growing according to the MDDR without ExR feedback. In all
cases, we assume a constant morphogen flux from the source. (A) Morphogen level as a function of position in the tissue at various times. (B) Relative
morphogen level as a function of relative position in the tissue. Overlap of the profiles indicates scaling of morphogen gradient with size. (C) Proliferation rate
at various times as a function of relative position. Growth is spatially uniform and its rate declines with time. (D) Fold change increase in tissue size as a

function of time. (E) Morphogen degradation rate α (dashed blue line) and growth rate q¼
_L
L
(black solid line). Since there is no expander, morphogen

degradation is constant. Note that scaling is achieved during most of the dynamics, when growth rate is much slower than morphogen degradation.

(F) Scaling error defined as
@l

@L
L

����
���� as a function of time. The scaling error is a dimensionless parameter describing the change in the sharpness of the

gradient relative to the growth of the tissue. Excellent scaling is achieved when
@l

@L
L

����
����,1.
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mechanism. To better understand the origin of this behavior, we
examined analytically the solution of Eqn 1 above, considering the
scaled form of the morphogen profile observed numerically:

MðX ; tÞ
Mð0; tÞ ¼ M̂

X

L

� �
:

Assuming scaling of the gradient, together with the observation
that the system converges to some steady state, implies that the
resulting profile is exponential throughout the dynamics, following
a short transient. This scaled solution further implies that the growth
is uniform in space (see methods in the supplementary material for
full derivation):

ux ¼
_LðtÞ
LðtÞ , (4)

which is consistent with our simulation results. The scaled solution
is then of the form (see methods in the supplementary material):

Mðx; tÞ ¼ hlLðtÞ
DM

exp � 1

l

x

LðtÞ
� �

; (5)

LðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2f ð1� expð�aM tÞÞ þ L20expð � aM tÞ

q
;

Lf ¼ 1

l

ffiffiffiffiffiffiffi
DM

aM

r
: (6)

Here, λ is a dimensionless constant, defining the morphogen
gradient length scale in the relative spatial coordinate x/L(t).

It depends on different parameters of the dynamics, including
the initial length L0 and θ (supplementary material Figs S5, S6).
The only division rule consistent with this scaled solution is
given by:

_M

M
� lnð2Þ

tðtÞ (7)

when written in the coordinates of the moving cell. This solution is
indeed consistent with the growth rule assumed in our simulations
(Eq. 3), with θ=ln(2). As we saw in the simulations, choosing
different θ values maintains the same qualitative behavior
(Table 1B; see methods in the supplementary material for
parameter values, Figs S8 and S10).

Taken together, this analytical result explains our numerical
finding that MDDR can provide, by itself, gradient scaling, uniform
growth and attainment of a finite size.

ExR feedback prolongs growth, increases tissue size and
improves robustness
Next, we returned to the integrated system composed of both ExR
and MDDR to examine whether the addition of ExR provides
additional advantages. An extensive numerical screen revealed that
scaling, uniform growth and finite tissue size are highly robust to the
kinetic parameters of the system, both in the presence and absence
of ExR feedback (Table 1). Final size and sharpness of the gradient
were most sensitive to the growth parameter θ. Sensitivity to most
parameters was reduced after introducing ExR (Table 2, Fig. 4A;
supplementary material Figs S4 and S5). The percentage of scaled
parameter sets increased with the addition of the expander,
particularly in cases in which morphogen degradation was
significantly faster than the typical cell cycle time (supplementary
material Fig. S7).

To obtain analytical insight into the function of the expander in
this integrated system, we approximated the ExR dynamics, Eqns 2a
and 2b, assuming a flat expander profile. This is justified by
previous analysis showing that ExR-dependent scaling requires a
highly diffusible expander. Scaling together with a flat expander
profile resulted in uniform tissue growth (see methods in the
supplementary material). Further, we retrieve the exponential
morphogen profile given by Eqn 5 as a solution to the coupled
morphogen-expander system, with the temporal dynamics of the
tissue length and expander concentration being specified by a
system of ordinary differential equations (see methods in the

Table 2. Sensitivity to model parameters

Parameter MDDR MDDR with ExR

(A) Final size sensitivity
Morphogen diffusion coefficient (DM) 0.31 0.22
Morphogen degradation rate (αM) 0.31 0.35
Morphogen incoming flux (η) 0.02 0.01
Growth parameter (θ) 0.7 0.6
Initial tissue length (L0) 0.3 0.2

(B) Dynamics duration sensitivity
Morphogen diffusion coefficient (DM) 0.13 0.15
Morphogen degradation rate (αM) 0.07 0.02
Morphogen incoming flux (η) 0.036 0.035
Growth parameter (θ) 0.48 0.42
Initial tissue length (L0) 0.31 0.15

Fig. 4. ExR increases robustness, final size and prolongs growth. (A) Sensitivity log ratio of the final tissue size Lf and the gradient length scale λ,

log2
SðpÞwith ExR
SðpÞNoExR

, to variousmodel parameters with versus without ExR. Sensitivity (S) of a quantity (X) to a parameter (p) is defined as the average over p of
p
X

@X
@p

����
����.

In most cases, ExR improves robustness (blue shades). (B) The effect of expander degradation and production rates on log2 fold change in size:

log2
ðLf=L0Þwith ExR
ðLf=L0ÞNoExR

. (C) The effect of the expander degradation and production rates on log2 fold change in growth duration (tss): log2
ðtssÞwithExR
ðtssÞNoExR

.
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supplementary material, Eqs. 62 and 68). The resulting steady-state
tissue length and expander concentration are given by:

Ef ¼ c�bE

aE
; Lf ¼ 1

l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DM

aM
1þ c�bE

aE

� �s
: (8)

Here, c* denotes the fraction of the tissue where the expander is
expressed, which becomes constant following a short initial transient,
once scaling commences (supplementary material Fig. S9). The
morphogen and expander profiles are consistent with the cell division
rule Eqn 7 (see methods in the supplementary material).
Eqn 8 suggests that the expander increases final tissue size. It also

extends the time required to reach a steady state by reducing
morphogen degradation rate, which is the dominant time scale in
this system. This was indeed confirmed by our numerical screen: as
predicted by Eqn 8, the fold increase in tissue length and in growth
duration due to the addition of an ExR feedback depended on the
typical expander level βE/αE (Fig. 4B,C). The fold increase in tissue
size was also dependent on morphogen length scale at steady state
(supplementary material Fig. S3):

lM ¼
ffiffiffiffiffiffiffi
DM

aM

r
,

while the increase in growth duration was proportional to αM, which
is the morphogen degradation rate in the absence of the expander
(supplementary material Fig. S3). Thus, removal of the expander
from this integrated system is predicted to primarily affect the disc
size and growth duration, while having a relatively low impact on
the accuracy of scaling. This is in contrast to the experimental results
obtained in the wing disc, when removal of pentagone resulted in
a loss of scaling, but had a relatively minor effect on disc size
(Ben-Zvi et al., 2011a, b; Hamaratoglu et al., 2011). This leads us to
support the hypothesis that growth in the disc is not driven solely by
Dpp signaling, as we discuss below.

DISCUSSION
The main result of the present study is the definition of a theoretical
novel scaling mechanism that does not require global feedbacks but
depends only on a local division rule, whereby cells divide when
subject to some given increase in morphogen signaling. Previous
studies have shown that this division rule leads to uniform growth,
provided that the gradient scales by some other means (Wartlick
et al., 2011). Here we show that, in fact, this division rule by itself
can lead to morphogen gradient scaling. The simplicity of this
growth rule, which depends only on local feedbacks, together with
its robustness to the different parameters including those defining
the growth rule itself, suggest that it might be employed during
initial stages of tissue development when dynamics and growth are
relatively fast and global feedbacks are harder to implement.
We identified the MDDR scaling mechanism while studying

growth dynamics in the wing disc, where this morphogen-
dependent growth rule was implicated in the context of the Dpp
morphogen. We and others have recently shown that scaling of the
Dpp morphogen in the wing disc depends on Pentagone, which is
likely to function as the expander in the ExR mechanism (Ben-Zvi
et al., 2011a; Hamaratoglu et al., 2011). We find that the integrated
dynamics composed of both the ExR and the Dpp-dependent
MDDR is consistent with many properties of the wing disc.
Interestingly, it might also resolve an apparent limitation of the ExR
in explaining the independent growth control of the anterior and

posterior compartments of the wing disc: inhibition of Dpp
signaling in one half of the disc does not substantially affect
growth in the other half. This result appears incompatible with
global feedback mechanisms, such as those proposed in ExR
models. Interestingly, when simulating ExR dynamics combined
with an early phase in which the MDDR is active, we find that it can
in fact contribute to scaling at the two compartments independently
(supplementary material Fig. S10).

In the context of the integrated dynamics, ExR functions
primarily in extending the growth duration and increasing tissue
size. Removing this feedback is predicted to reduce tissue size but
not to alter scaling significantly. This, however, is not consistent
with the findings in the wing disc, where removal of pentagone
abolished scaling but resulted in only a minor reduction (∼25%) in
length of the AP axis of the disc. Therefore, either our model does
not apply to the disc entirely, or it supports the hypothesis that at
third instar growth is not entirely driven by the temporal increase in
Dpp, and is defined either by absolute Dpp levels or by alternative
signals as well (Schwank et al., 2011). If indeed the MDDR model
applies to the wing disc, we expect during first and second instars
that Dpp levels will correlate with cell division pattern and that
scaling will persist in both wild-type and pentagone null wing discs.
Notably, scaling of the Dpp gradient in wild type would still imply a
correlation of cell division with the temporal increase in Dpp
signaling (Wartlick et al., 2011), despite the lack of causality as
shown by our analytical analysis.

To summarize, we propose that the morphogen-dependent
growth rule may complement ExR feedback during wing disc
growth, but is unlikely to be instructive for growth at late stages.
More generally, our results suggest that a local coupling of cell
division with morphogen signaling can establish global pattern
scaling and tissue growth properties.

MATERIALS AND METHODS
Parameters
See methods in the supplementary material for full parameter lists.

Numerical method
In order to perform numerical simulations, we transform the morphogen
evolution equation by [x,t]→[Y,t], with Y being the starting position of a cell
at position x and time t. By setting �MðY ; tÞ ¼ Mðx; tÞ, �EðY ; tÞ ¼ Mðx; tÞ the
morphogen dynamics equation (Eqn 2) results in:

�Mt ¼ DM

xY

�MY

xY

� �
Y

�aðEÞ � �M � lnð2Þt�1ðY ; tÞ � �M , (9)

�Et ¼ DE

xY

�EY

xY

� �
Y

�aE � �E � lnð2Þt�1ðY ; tÞ � �E þ bE hð �MÞ, (10)

dxY
dt

¼ lnð2Þt�1xY xY ð0Þ ¼ 1: (11)

The growth law in Eqn 7 leads to the following equivalent growth law (see
methods in the supplementary material for derivation) for the growth
parameter θ:

t�1 ¼ 1

lnð2Þ þ u

DM

xY �M

�MY

xY

� �
Y

�aðEÞ
� �

: (12)

The above coupled system is solved numerically using an explicit finite
difference scheme (see methods in the supplementary material) and the
solutions are re-interpolated to the growing domain. All simulations are
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performed using MATLAB (MathWorks). The numerical method is
described in detail in methods in the supplementary material.

Acknowledgements
We thank Dr Shlomi Kotler, Dr Dann Huh, Mr Oren Raz, Prof. Benny Shilo and
members of our group for fruitful discussions.

Competing interests
The authors declare no competing financial interests.

Author contributions
I.A., D.B.-Z. and S.M. developed the concepts, performed simulations and analytical
calculations, analyzed the results and prepared the manuscript prior to submission.
N.B. developed the concepts, analyzed the results and prepared the manuscript
prior to submission.

Funding
This work was supported by the European Research Council and the Israel Science
Foundation. N.B. is the incumbent of the Lorna Greenberg Scherzer Professorial
Chair, and the Minerva Foundation. D.B.-Z. is supported by the HFSP long term
postdoctoral fellowship and by the Rothschild and Fulbright postdoctoral
fellowships. S.M is supported by the European Research Council.

Supplementary material
Supplementary material available online at
http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.107011/-/DC1

References
Aegerter-Wilmsen, T., Aegerter, C. M., Hafen, E. and Basler, K. (2007). Model for
the regulation of size in the wing imaginal disc of Drosophila. Mech. Dev. 124,
318-326.

Affolter, M. and Basler, K. (2007). The Decapentaplegic morphogen gradient: from
pattern formation to growth regulation. Nat. Rev. Genet. 8, 663-674.

Barkai, N. and Ben-Zvi, D. (2009). ‘Big frog, small frog’–maintaining proportions in
embryonic development: delivered on 2 July 2008 at the 33rd FEBS Congress in
Athens, Greece. FEBS J. 276, 1196-1207.

Ben-Zvi, D. and Barkai, N. (2010). Scaling of morphogen gradients by an
expansion-repression integral feedback control.Proc. Natl. Acad. Sci. U.S.A. 107,
6924-6929.

Ben-Zvi, D., Shilo, B.-Z., Fainsod, A. and Barkai, N. (2008). Scaling of the BMP
activation gradient in Xenopus embryos. Nature 453, 1205-1211.

Ben-Zvi, D., Pyrowolakis, G., Barkai, N. and Shilo, B.-Z. (2011a). Expansion-
repression mechanism for scaling the Dpp activation gradient in Drosophila wing
imaginal discs. Curr. Biol. 21, 1391-1396.

Ben-Zvi, D., Shilo, B.-Z. and Barkai, N. (2011b). Scaling of morphogen gradients.
Curr. Opin. Genet. Dev. 21, 704-710.

Bittig, T. (2008). Morphogenetic Signaling in Growing Tissues. Dresden: Institut für
Theoretische Physik Fakultät Mathematik und Naturwissenschaften, Technische
Universität.
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SCALING MORPHOGEN PATTERN WITH TISSUE SIZE

IN THE ABSENCE OF GLOBAL FEEDBACKS

(SUPPORTING INFORMATION)

1. Mathematical Framework.

We consider a one-dimensional growing tissue [0, L(t)]. The domain growth
is modeled with a flow type growth law given by,

(1)

dx(t)

dt
= u(x(t), t), ∀x ∈ [0, L(t)] t > 0,

x(0) = Y.

Here, u is the (local) flow rate of the growing tissue.
As growth is on account of cell division (we ignore the changes in cell

shape and cell movement in this study), the cell proliferation rate (rate at
which the cell divides) is given by

ux =
du

dx
.

Now consider any infinitesimal length element [x1, x2] with |x2−x1| << 1.
As (1) holds, we have

(2)

dx1(t)

dt
= u(x1, t),

x1(0) = Y1,

and

(3)

dx2(t)

dt
= u(x2, t),

x2(0) = Y2,

Subtracting (2) from (3), we obtain,

d(x2 − x1)

dt
= u(x2, t)− u(x1, t),

as |x2 − x1| << 1 ⇒ d(x2 − x1)

dt
≈ ux(x1, t)(x2 − x1)

(x2 − x1)(0) = Y2 − Y1,

Solving the above ordinary differential equation leads to an infinitesimal
length element that evolves (in time) as,

(4) (x2 − x1)(t) ≈ (Y2 − Y1)e

t∫
0

ux(x1,s)ds
.

1



2 SUPPORTING INFORMATION

As proliferation is on account of cell division, any infinitesimal tissue element
doubles in size within the cell cycle life time i.e, the amount it takes for a
cell to divide into two. Denoting the cell cycle time as τ , we observe from
(4) that the length element [Y1, Y2] doubling its size in time τ implies,

2(Y2 − Y1) ≈ (Y2 − Y1)e

τ∫
0

ux(x1,s)ds

⇒ ln(2) ≈
∫ τ

0
ux(x1, s)ds ≈ ux(x1, t)τ

⇒ ux(x1, t) ≈
ln(2)

τ(x1, t)
.

As x1 is any point in [0, L], we can replace it with x and obtain Eq. 1 in the
main text. Note that we have assumed that the proliferation rate ux does
not change (by much) during the cell cycle in the above derivation.

1.1. Governing equations. Given the above growth model, the rate of
change of morphogen concentration M(x, t) in a growing domain (with
expander-dependent degradation) is

d

dt

δ2(t)∫
δ1(t)

M(x, t)dx = ν(δ2(t), t)− ν(δ1(t), t)−
δ2(t)∫
δ1(t)

α(E)M(x, t)dx,

for any infinitesimal length element (δ1(t), δ2(t)). Here ν = DM (E)Mx rep-
resents the flux on account of diffusion of the morphogen and α(E) is the
morphogen degradation. Both the diffusion and the degradation rates can
depend on the expander E. Using the Reynolds theorem [1] and the growth
condition (1), we obtain the morphogen evolution equation,

(5) Mt = DM (E)Mxx − α(E)M − uMx − uxM, (x, t) ∈ [0, L(t)]× [0, T ].

Here, u is the flow rate from (1). The above equation is a advection-reaction-
diffusion equation, that has to be supplemented with suitable initial and
boundary conditions.

Similarly, the rate of change of expander concentration E(x, t) in a grow-
ing domain is given by,

d

dt

δ2(t)∫
δ1(t)

E(x, t)dx = µ(δ2(t), t)− µ(δ1(t), t)−
δ2(t)∫
δ1(t)

αEE(x, t)dx+

δ2(t)∫
δ1(t)

βEh(M(x, t))dx,

for any infinitesimal length element (δ1(t), δ2(t)). Here µ = DEEx represents
the flux on account of diffusion of the expander. The degradation rate αE
is constant as is the rate of optimal expander concentration βE and the
source (production) function h depends on the Morphogen concentration M .
Using the Reynolds theorem [1] and the growth condition (1), we obtain the
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morphogen evolution equation,

(6) Et = DEExx−αEE−uEx−uxE+βEh(M), (x, t) ∈ [0, L(t)]× [0, T ].

This establishes the derivation of morphogen and expander evolution equa-
tions 2(a) and 2(b) in the text.

For the rest of the paper, we assume that the expander only limits mor-
phogen degradation. Hence, the morphogen diffusion rate DM (E) ≡ DM

and the expander dependent morphogen degradation rate is

α(E) =
αM

1 + E
Ec

, Ec ≡ 1.

The morphogen dependent expander repression is

h(M) =
Tnrep

Tnrep +Mn
,

Here, n >> 1 is the Hill coefficient. We remark that in the limit of n→∞,
the Hill function converges to the indicator function,

(7) h(M) = IP =

{
1 if x ∈ P,
0 otherwise.

with Trep being the threshold of repression of the expander by the morphogen
and P being the expander expression domain:

(8) P(t) = {x ∈ [0, L(t)] : M(x, t) ≤ Trep} , P (t) = Length(P(t)).

For the rest of the analytical results section, we assume that the Hill coeffi-
cient n >> 1 and use the above approximation for the repression function.

2. Analytical solution properties in the absence of the
expander

Motivated by the numerical results presented in the main text (figure 3)
that scaling, uniform growth and a finite final tissue size can emerge di-
rectly from the coupling of the morphogen patterning to the experimentally
observed growth law Eq. 3 of the main text even in the absence of the
expander, we analyze the morphogen evolution equation (5) in the absence
of the expander E. To do so, we set E = 0 in the morphogen evolution
equation (5) to obtain:

(9) Mt = DMMxx − αMM − uMx − uxM, (x, t) ∈ [0, L(t)]× [0, T ].

Our aim is to solve the morphogen evolution equation (9) analytically
under biologically reasonable hypothesis. To do so, we first establish a series
of desirable properties of the solution.



4 SUPPORTING INFORMATION

2.1. Scaling leads to a finite final tissue size. The most desirable prop-
erty that we require of the morphogen profile is that it scales with the grow-
ing tissue. For constant morphogen boundary conditions at the edge x = 0,
the relevant notion of scaling is that the morphogen concentration depends
only on the relative cellular position ξ = x

L(t) leading to

(10) M(x, t) = M(ξ) = M

(
x

L(t)

)
.

Similarly, when the morphogen flux is set to constant on the proximal
boundary, the relevant notion is normalized scaling i.e,

(11) M(x, t) = M(0, t)M̂(ξ) = M(0, t)M̂

(
x

ωL(t)

)
,

Since we have flux boundary conditions at the proximal boundary, the
above equation implies

DMMx(0) = η,

⇒ DMM(0, t)M̂ ′(0)

ωL(t)
= η.

As M̂ ′(0) is a constant, the above expression yields,

(12) M(0, t) =
Cωη

DM
L(t) = m̄L(t), with m̄ =

Cωη

DM
.

Thus, we require that the morphogen width scales with size but the ampli-
tude of the morphogen can increase linearly with tissue size. In this section,
we assume that the (normalized) morphogen profile scales and derive several
interesting consequences of this assumption.

First, we show that under the assumption of scaling and other biologically
reasonable assumptions, the tissue has to a attain a finite final size. The
precise result is stated in the form of the following lemma,

Lemma 2.1. Let M be a solution of (9) with the following assumptions,

(i.) Constant flux boundary conditions on the proximal boundary i.e,

(13) DMMx(0, t) = η, η < 0.

(ii.) The (normalized) morphogen profile scales, i.e it satisfies (11)
(iii.) There exists a time t∗ > 0 such that for all t > t∗, there exists

a relative position L∗(t) = CL(t) and some (possibly very small)
amount of morphogen in a part of the tissue [0, L∗] i.e, there exists
an ε > 0 (possibly very small) such that

(14) M(x, t) ≥ ε, ∀x ∈ [0, L∗(t)], t > t∗.

This assumption corresponds to requiring that there is at least a part
of the tissue that contains a minimal amount of morphogen after
scaling commences at time t = t∗.

(iv.) The tissue growth is always non-negative i.e, u ≥ 0.
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(v.) The morphogen concentration forms a gradient i.e, M̂ ′(ξ) ≤ 0.

Then, the size of the tissue at any time is finite.

Proof. First, we observe that scaling (11) implies

(15) Mt = m̄L′(t)
(
M̂ − M̂ ′(ξ)ξ

)
≥ 0,

as the morphogen concentration and growth are always non-negative, the
gradient is non-increasing and relative position ξ ∈ [0, 1].

Next, for any time t > t∗, we integrate the evolution equation (9) over
[0, L∗(t)] to obtain using the fundamental theorem of calculus that,∫ L∗(t)

0
Mtdx = DM

∫ L∗(t)

0
Mxxdx− αM

∫ L∗(t)

0
Mdx−

∫ L∗(t)

0
(uM)xdx,

= DMMx(L∗(t), t)−DMMx(0, t)− αM
∫ L∗(t)

0
Mdx

− u(L(t), t)M(L(t), t) + u(0, t)M(0, t)

≤ −η − αM
∫ L∗(t)

0
Mdx− u(L(t), t)M(L(t), t),

≤ −η − αM
∫ L∗(t)

0
Mdx

In the above, we have used boundary conditions (13), the scaling assumption
(11) and the non-decreasing gradient assumption v. and the fact that u(0) =
0 and growth and morphogen concentration are always non-negative. From
the above and (14), we obtain

(16)

0 ≤
∫ L∗(t)

0
Mtdx ≤ −η − αM

∫ L∗(t)

0
Mdx

⇒ 0 ≤ −η − αML∗(t)ε

⇒ L∗(t) ≤ −η
αM ε

⇒ L(t) ≤ −η
CαM ε

Noting that η < 0, the above equation clearly shows that L(t) is finite for
any time t.

Similar results hold for constant morphogen boundary conditions also.

Remark. Given our assumption that cell proliferation drives growth, infi-
nite growth can happen in finite time if the proliferation rate becomes infi-
nite. However, the above argument clearly shows that the cell proliferation
rate (defined by our model) remains finite for all time. This is completely
consistent with biologically realistic scenarios.
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2.2. Finite final size implies exponentially decay morphogen gra-
dients and uniform growth. Once the tissue attains a finite final size,
clearly u, ux ≡ 0 and the equation will converge to a steady state. The
steady solution of (5) with flux boundary conditions is given by,

(17) Mst(x) = CLfe
− x
λLf ,

for some constant C (determined from the boundary conditions) and for
some λ that needs to be determined. Here, Lf is the final tissue size (also
to be determined). As the solution scales throughout the dynamics (at
least after an initial transient), it is reasonable to assume from the shape
of the solution at steady state (19) that the unsteady solution is also a
exponentially decaying morphogen profile:

(18) M(x, t) = m̄L(t)e
− x
λL(t) ,

with the same C, λ as in (19) and with L(t) being the length of the tissue
at time t. The solution for constant morphogen boundary conditions can be
determined analogously.

Given the solution (18), we plug it in (5) to obtain,

(19)
L′(t)

L(t)
+
xL′

λL2
= DM

(
1

λL

)2

− αM − ux + u
1

λL
.

Differentiating the above equation by x we get

(20) uxx =
1

λL
ux −

1

λL

L′

L

The general solution for the above equation is ,

(21) ux = a(t)e
x
λL +

L̇

L

Integrating again over x we get

(22) u = a(t)λLe
x
λL + x

L′

L
+ b(t)

From the definition of u (1), we obtain the boundary conditions are u(x =
0) = 0, u(x = L) = L′(t). Substituting, we get that a(t) = 0, and therefore
uxx = 0 and ux is independent of space, i.e. growth is uniform. Note that
the above argument employs a general solution of the equation (20) and
this solution cannot be uniquely determined due to the presence of time-
dependent coefficients a, b. However, the assertion that growth is uniform is
still valid as the coefficients in (20) are independent of the space variable.

2.3. Explicit solutions for scaled morphogen profiles. We have shown
that scaling can imply uniform growth. Consequently,

(23) x(t) = Y g(t).
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Here, g(t) is the time dependent uniform growth rate. From (1), we observe
that for uniform growth,

dx(t)

dt
= Y ġ(t),

= x(t)
ġ(t)

g(t)
= x(t)

L̇(t)

L(t)
, as L(t) = L0g(t)

g(0) = 1.

Hence,

(24) u(x, t) =
xL̇(t)

L(t)
.

Substituting the above form of the flow rate u into the evolution equation (9),
we obtain the morphogen evolution (in growing coordinates) for a uniformly
growing tissue:

(25) Mt + x
L̇(t)

L(t)
Mx = DMMxx − αMM −

L̇(t)

L(t)
M,

If we assume normalized scaling (11), we show above that we obtain
uniform growth (23). Consequently,

(26)
Mt +

xL̇

L
Mx =

L̇

L
M − xL̇

L2
M̂ ′(ξ) +

xL̇

L2
M̂ ′(ξ)

=
L̇

L
M,

Substituting the above into the morphogen evolution equation (25), we ob-
tain

(27)
M̂ ′′(ξ)

M̂(ξ)
=

ω2

DM

(
2L(t)L̇(t) + αML(t)2

)
.

The left hand side of the above equation (27) depends only on the relative
position ξ and the right hand side depends only on the time variable. The
equality of these terms implies that both the left and right hand sides have
to be equal for all values i.e, for some constant λ, we have

(28)
M̂ ′′(ξ)

M̂(ξ)
=

1

λ
2 ,

and

(29)
ω2

DM

(
2L(t)L̇(t) + αML(t)2

)
=

1

λ
2 .
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By setting λ = ωλ, we can solve the ODEs (28) and (29) explicitly and
obtain the analytical solutions

(30)

M(x, t) = mL(t)e
−x
λL(t)

L(t) =
√
L2
f (1− e−αM t) + L2

0e
−αM t,

Lf =
1

λ

√
DM

αM
,

Thus recovering the explicit solution Eq.5, Eq.6 in the main text. Note that
Lf is the final tissue size in this case.

Remark. An alternative derivation of the solution formulas (30) can be
performed by using the scaled exponential ansatz (18) into (19). However,
this derivation requires an a priori assumption of an exponentially decay-
ing gradient. On the other hand, our derivation, as presented above, only
requires the assumptions of scaling and uniform growth and derives an ex-
ponentially decaying gradient as a consequence of these assumptions.

For the case of point boundary conditions i.e, when the level of morphogen
at the proximal boundary is kept constant, we substitute the perfectly scaled
solution profile (10) into (58), and obtain

(31)
M ′′(ξ)

M(ξ)
=

ω2

DM

(
L(t)L̇(t) + αML(t)2

)
.

The left hand side of the above equation (31) depends only on the relative
position ξ and the right hand side depends only on the time variable. The
equality of these terms implies that both the left and right hand sides have
to be equal for all values i.e, for some constant λ, we have

(32)
M ′′(ξ)

M(ξ)
=

1

λ
2 ,

and

(33)
ω2

DM

(
L(t)L̇(t) + αL(t)2

)
=

1

λ
2

We can solve the ODEs (32) and (33) explicitly and obtain the analytical
solutions

(34)

M(x, t) = M0e
−x
λL(t)

L(t) =
√
L2
f (1− e−2αt) + L2

0e
−2αt,

Lf =
1

λ

√
DM

αM
,
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Remark. In both sets of explicit solutions, (30) for constant flux boundary
conditions and (34) for constant morphogen (level) boundary conditions, we
observe that the scaled morphogen profiles are only consistent with expo-
nentially decaying initial morphogen gradients. This fact is easy to realize
by setting t = 0 in both explicit solution formulas. Therefore, when the ini-
tial data is not an exponentially decaying profile, we expect that there is an
initial transient 0 ≤ t ≤ T∗, during which the morphogen profile dynamically
evolves into a scaled solution profile of the form

M(x, t) = M0e
−x
λL(t) , ∀x ∈ [0, L(t)], ∀t > T∗.

This onset time T∗ is necessary for the solution to start scaling. Further
discussion about the onset time and the initial transient is provided in the
section on numerical experiments. In the presence of an initial transient i.e
if T∗ > 0, the above theory still holds for t ≥ T∗ and all the expressions
derived above can be readily modified to accommodate this onset time.

2.4. Derivation of simplified consistent growth laws. In the case of
flux boundary conditions, we see that the explicit morphogen profile (30)
satisfies,

Ṁ = Mt + uMx,

⇒ Ṁ

M
=
Mt

M
+
xL̇

L

Mx

M
,

=
L̇

L
+
xL̇

L2
− xL̇

L2
,

=
L̇

L
=

ln 2

τ

Thus, deriving Eq. 7 in the main text.
Similarly, for the explicit solutions (34) for constant morphogen levels at

the source (proximal) boundary conditions, a direct calculation shows

(35)

Ṁ = Mt + uMx,

⇒ Ṁ

M
=
Mt

M
+
xL̇

L

Mx

M
,

=
xL̇

L2
− xL̇

L2
,

≡ 0.

This establishes that for point boundary conditions, Ṁ ≡ 0, i.e, in other
words, the cells divide to maintain homeostasis.
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2.5. Homeostatic growth law as a limit case of growth law Eq. 3
(main text). The simplified growth law (Eq. 3 in the main text) is

(36)
1

τ
=

1

θ

Ṁ

M
.

Clearly, setting θ = ln(2) recovers Eq. 7 (the case of constant flux boundary
conditions).

It is reasonable to assume that the cell division time τ > 0 i.e, the cell
cycle cannot be infinitely fast. We have the following calculation,

θ

τ
=
Ṁ

M
,

hence, lim
θ→0

θ

τ
= 0⇒ lim

θ→0

Ṁ

M
= 0,

⇒ lim
θ→0

Ṁ = 0.

The above follows from the fact that the morphogen M > 0 i.e, there is some
basal (very small) morphogen signalling. Thus, the limit case of the growth

law Eq. 3 of the main text, when θ → 0 leads recovers the homeostasis Ṁ =
0, which is consistent with constant morphogen levels at source boundary
conditions.

2.6. Noise in the growth parameter θ. As indicated in the main text,
the global properties of scaled morphogen profile, uniform tissue growth and
attainment of a finite final size are quite robust to the various biochemical
parameters of the system when the morphogen evolution equation (9) is
simulated together with the growth law, Eq. 3 in the main text. A crucial
role is played by the growth parameter θ as it determines when exactly
the cell divides. It is reasonable to suppose that an universal value of the
parameter θ (i.e, the same value of θ for all cells in the tissue) is probably
unrealistic in real biological scenarios. A more plausible assumption is to
introduce some noise in θ. Will the global properties be robust with respect
to this intrinsic noise ? To answer this question, we simulated the morphogen
equation (9) with growth law Eq. 3 in the main text, with a noisy θ = ln(2)+
0.2N with N denoting the standard normal. The resulting mean morphogen
profile as function of relative concentration and mean proliferation rate as a
function of relative tissue position are shown in figure S8. The results clearly
show that the properties of scaled morphogen profiles and uniform tissue
growth were robust to the noise in the growth parameter. Both properties
are obtained with a standard deviation which is less than 1 percent of the
mean (calculated over 500 samples).

3. Analytical results in the presence of the expander

The above analytical results and the numerical results presented in the
main text show that scaling and uniform growth can result directly from
local cell division rule, even in the absence of the expander. The analytical
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results presented below explain the role that the expander plays in this
paradigm.

3.1. Scaled morphogen profiles lead to a finite final tissue size,
even in the presence of the expander. First, we show that under the
assumption of normalized scaling of the morphogen (11) and other biolog-
ically reasonable assumptions, the tissue has to a attain a finite final size.
The precise result is stated in the form of the following lemma,

Lemma 3.1. Let M be a solution of (5) with the following assumptions,

(i.) Constant flux boundary conditions on the proximal boundary i.e,

(37) DMx(0, t) = η, η < 0.

(ii.) The (normalized) morphogen profile scales, i.e it satisfies (11)
(iii.) There exists a time t∗ > 0 such that for all t > t∗, there exists

a relative position L∗(t) = CL(t) and some (possibly very small)
amount of morphogen in a part of the tissue [0, L∗] i.e, there exists
an ε > 0 (possibly very small) such that

(38) M(x, t) ≥ ε, ∀x ∈ [0, L∗(t)], t > t∗.

This assumption corresponds to requiring that there is at least a part
of the tissue that contains a minimal amount of morphogen after
scaling commences at time t = t∗.

(iv.) The tissue growth is always non-negative i.e, u ≥ 0.

(v.) The morphogen concentration forms a gradient i.e, M̂ ′(ξ) ≤ 0.
(vi.) The expander concentration is bounded (finite) for all time, i.e, there

exists a constant K such that ∀t > 0,

E(x, t) ≤ K, ∀x ∈ [0, L(t)].

Then, the size of the tissue at any time is finite.

Proof. First, we observe that scaling (11) implies

(39) Mt = m̄L′(t)
(
M̂ − M̂ ′(ξ)ξ

)
≥ 0,

as the morphogen concentration and growth are always non-negative, the
gradient is non-increasing and relative position ξ ∈ [0, 1].
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Next, we integrate the evolution equation (13) over [0, L∗(t)] to obtain
using the fundamental theorem of calculus that,∫ L∗(t)

0
Mtdx = DM

∫ L∗(t)

0
Mxxdx− αM

∫ L∗(t)

0

M

1 + E
dx−

∫ L∗(t)

0
(uM)xdx,

= DMMx(L(t), t)−DMMx(0, t)− αM
∫ L∗(t)

0

M

1 + E
dx

− u(L(t), t)M(L(t), t) + u(0, t)M(0, t)

≤ −η − αM
∫ L∗(t)

0

M

1 + E
dx− u(L(t), t)M(L(t), t),

≤ −η − αM
∫ L∗(t)

0

M

1 + E
dx

In the above, we have used boundary conditions (37), the scaling assumption
(11) and the non-decreasing gradient assumption v. and the fact that u(0) =
0 and growth and morphogen concentration are always non-negative.

From the above, the assumption [vi.] on the expander and (38), we obtain

(40)

0 ≤
∫ L∗(t)

0
Mtdx ≤ −η − α

∫ L∗(t)

0

M

1 + E
dx

⇒ 0 ≤ −η − αML∗(t)ε

⇒ L∗(t) ≤ −η
αM ε

⇒ L(t) ≤ −η
CαM ε

with ε = ε̄
1+K . The above equation clearly shows that L(t) is finite for any

time t.

3.2. Finite final tissue size and flat expander profile implies ex-
ponentially decaying morphogen gradients and uniform growth.
Henceforth, we will assume that the expander profile is flat i.e,

(41) E(x, t) = E(t), ∀x ∈ [0, L(t)].

This assumption is reasonable, particularly for highly diffusible expanders
i.e, when DE >> 1, see [2] for motivation of why using a flat expander
profile is biologically realistic.

Once the tissue attains a finite final size, clearly u, ux ≡ 0 and the equa-
tions will converge to a steady state. As the expander profile is assumed
to flat (spatially uniform), the steady solution of (5) with flux boundary
conditions and a constant (in space) steady state morphogen concentration
Mst, is given by,

(42) Mst(x) = m̄Lfe
− x
λLf ,

for some decay length λ that needs to be determined. Here, Lf is the final
tissue size (also to be determined). As the solution scales throughout the
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dynamics (after a possible initial transient stage), it is reasonable to assume
from the shape of the solution at steady state (19) that the unsteady solution
is also a exponentially decaying morphogen profile:

(43) M(x, t) = mL(t)e
− x
λL(t) ,

with the same C, λ as in (42) and with L(t) being the length of the tissue
at time t. The solution for constant morphogen boundary conditions can be
determined analogously.

Given the solution (43), we plug it in (5) to obtain,

(44)
L′(t)

L(t)
+
xL′

λL2
= DM

(
1

λL

)2

− αM
1 + E(t)

− ux + u
1

λL
.

Using the fact that the expander profile is flat in space (41) and differenti-
ating the above equation by x we get

(45) uxx =
1

λL
ux −

1

λL

L′

L
The general solution for the above equation is ,

(46) ux = a(t)e
x
λL +

L̇

L
Integrating again over x we get

(47) u = a(t)λLe
x
λL + x

L′

L
+ b(t)

From the definition of u (1), we obtain the boundray conditions are u(x =
0) = 0, u(x = L) = L′(t). Substituting, we get that a(t) = 0, and therefore
uxx = 0 and ux is independent of space, i.e. growth is uniform.

3.3. Effective evolution equation for a flat expander profile in an
uniformly growing tissue. Under the assumptions that the expander pro-
file is flat and the expander is assumed to very diffusive, i.e., DE >> 1, we
can (formally) derive an effective equation for the expander dynamics. We
do so using an operator splitting approach.

Observing the expander evolution equation (6) reveals that three different
effects (operators) contribute to the dynamics:

1. Production characterized by the term βEIP i.e, the expander is pro-
duced in an expression domain (part of the tissue) at a constant rate,
with I being the indicator function defined in (7).

2. Diffusion characterized by the term DEExx.
3. Dilution modeled by the terms αEE (expander degradation), uXE

(dilution due to growth) and uEx (transport due to growth).

Our strategy would be to analyze the expander evolution equation at any
given time t, by factoring the total evolution over a given very small time step
∆t into three parts. Given a spatially uniform expander profile E(t) at time
t, first, we will produce the expander assuming that it does not diffuse or
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dilute (due to the very small time step), then we diffuse it without producing
or diluting it and finally, we dilute it without producing or diffusing it. The
process is iterated over each small time step to obtain the global (in time
and space) dynamics of the expander. We formalize the above heuristics
below:

Let St be the evolution operator for E from the evolution equation (6).
In other words,

(48) St : E(x, 0) 7→ E(x, t), E(x, t) = StE(x, 0).

For a small time step ∆t, the operator can be split (factorized) into three
constituent operators i,e,

(49) E(x, t+ ∆t) := S∆tE(x, t) = S3
∆tS2

∆tS1
∆tE(x, t).

Here, S1
t is the solution operator associated with the production equation:

(50) Et = βEIP(t).

Similarly, S2
t is the solution operator associated with the diffusion equation:

(51) Et = DEExx,

and S3
t is the solution operator associated with the transport-dilution equa-

tion:

(52) Et + uEx + uxE = −αEE,

Note that the global evolution can be obtained by iteration of the above
procedure over k time steps with k∆t = t i,e,

Assuming a flat initial expander profile (41) for a given time, we can
explicitly solve the equation (50) for a small time step ∆t to obtain,

(53) S1
∆tE(x, t) = E(t) + ∆tβEIP(t).

Thus, the expander concentration that we obtain after the production step
is a jump discontinuity between E(t) and E(t) + βE∆t.

Now, we consider the diffusion step i.e, solve the diffusion equation (51)
with initial data S1

∆t as calculated above. As the diffusion is fast, i.e, DE >>
1, this jump discontinuity very rapidly diffuses to a constant:

(54) S2
∆tS1

∆tE(x, t) = Eav(t+ ∆t).

Note that integrating the diffusion equation (51) over the length of tissue
[0.L(t)] and using the zero flux boundary conditions for the expander we
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obtain that

L(t)∫
0

Et(x, t)dx = DE

L(t)∫
0

Exx(x, t)dx,

⇒ d

dt

L(t)∫
0

E(x, t)dx = DE(Ex(L(t), t)− Ex(0, t)) integration by parts,

≡ 0.

⇒
L(t)∫
0

E(x, t+ ∆t)dx ≡
L(t)∫
0

E(x, t)dx, ∀∆t.

The last equation above is a statement of the conservation of total expander
concentration in the whole domain when there is no flux across its boundaries
and when it is only diffusing inside the domain.

Using the above mass conservation and the formula (53), we can calculate
the constant (in space) Eav in (54) as

LEav(t) =

L(t)∫
0

S2
∆tS1

∆tE(t)dx

=

L(t)∫
0

S1
∆tE(t)dx

= (L− P )E(t) + P (E(t) + βE∆t)

= LE(t) + PβE∆t.

⇒ Eav(t) = E(t) +
P (t)

L(t)
βE∆t.

In the final step, we solve the transport-dilution equation (52) with the
above initial data. As the data is a constant, the transport has no effect and
the data is just diluted by the (uniform in space) degradation terms, i.e,

(55) S3
∆tE

av(t) = Eav(t)−∆t(αE + ux)Eav(t).

Therefore, combining each of the above three steps, the evolution of the
expander for the short time ∆t is given by,

(56)

E(x, t+ ∆t) := S3
∆tS2

∆tS1
∆tE(x, 0),

= E(t) +
P (t)

L(t)
βE∆t− αEE(t)∆t− uxE∆ +O((∆t)2).
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Hence,

Et = lim
∆t→0

E(t+ ∆t)− E(t)

∆t

= lim
∆t→0

(
P (t)

L(t)
βE − αEE(t)− uxE(t) +O(∆t)

)
,

=
P (t)

L(t)
βE − αEE(t)− uxE(t).

Therefore, the effective expander evolution equation for highly diffusible
expander is given by

(57) Ė =
P (t)

L(t)
βE − (αE + ux)E.

3.4. Explicit solutions for scaled morphogen profiles. We have shown
that scaling and a flat expander profile imply that the tissue grows uniformly.
Therefore, the morphogen evolution equation (5) takes the form:

(58) Mt + x
L̇(t)

L(t)
Mx = DMMxx − αM

M

1 + E
− L̇(t)

L(t)
M,

If we assume normalized scaling (11), we obtain from (58) that

(59)
Mt +

xL̇

L
Mx =

L̇

L
M − xL̇

L2
M̂ ′(ξ) +

xL̇

L2
M̂ ′(ξ)

=
L̇

L
M,

Substituting the above into the morphogen evolution equation (58), we ob-
tain

(60)
M̂ ′′(ξ)

M̂(ξ)
=

ω2

DM

(
2L(t)L̇(t) + αM

L(t)2

1 + E

)
.

The left hand side of the above equation (60) depends only on the relative
position ξ and the right hand side depends only on the time variable. The
equality of these terms implies that both the left and right hand sides have
to be equal for all values i.e, for some constant λ̄, we have

(61)
M̂ ′′(ξ)

M̂(ξ)
=

1

λ̄2
.

By setting λ = ωλ̄, the general solution of the above ODE is given by,

(62) M(x, t) = m̄L(t)e
−x
λL(t)

which is precisely Eqn 4 in the main text. Note that the presence of a flat
expander results in exactly the same scaled profile as the absence of the
expander
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Similarly, the right hand side of (60) results in the ODE,

(63)
L̇

L
=
DMλ

2

2L2
− αM

2(1 + E)
.

This, together with the effective expander evolution equation (57),

(64) Ė =
P

L
βE − αEE −

L̇

L
E.,

together constitutes a coupled system whose solution determines the tissue
length and the expander concentration in time.

3.5. Explicit expression of the expander production domain. In or-
der to complete the system (57) and (63), we need to specify the expander
expression domain P. To this end, we use the explicit morphogen profile
(62) and calculate P (8) directly below.

As M is monotonically decreasing in space, we have two possible cases:

• Case 1: For any given t, M(0, t) < Trep. In this case, the mor-
phogen has not accumulated enough to repress the expander any-
where through the tissue length. Hence,

P(t) = [0, L(t)], P (t) = L(t),

• Case 2: There exists a x∗ ∈ [0, L(t)] such that

M(x∗, t) = Trep

⇒ m̄L(t)e
−x∗
λL(t) = Trep

⇒ x∗ = λL ln (L)− λL ln

(
Trep
m̄

)
.

Therefore,

(65) P(t) = [x∗(t), L(t)], P (t) = L− x∗ = L− λL ln (L) + λL ln

(
Trep
m̄

)
Hence, in this case,

(66)
P

L
= 1− λ ln (L) + λ ln

(
Trep
m̄

)
.

We can make a further approximation in the case of relatively
large tissues i.e if L >> 1, the L ln (L) ≈ L and the length of the
expander domain (65) simplifies as

(67) P (t) = (1− λ)L+ λL ln

(
Trep
m̄

)
and

(68)
P (t)

L(t)
= 1− λ+ λ ln

(
Trep
m̄

)
= c∗.
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Thus, in both cases (at least for relatively long tissues), the expander is
expressed in a domain which is a constant fraction of the tissue length and
grows linearly with the tissue length. Henceforth, we will assume that Case
2 holds as this is indeed true for the long time asymptotics of the system as
in a biological relevant system, enough morphogen eventually accumulates
to suppress the expander at least in some part of the tissue.

Hence, the effective equation for the evolution evolution is

(69) Ė = c∗βE − αEE −
L̇

L
E.

Combining (63) and (69), we derive the equations that govern the dynamics
of coupled tissue length-expander concentration system.

We have not been able to obtain explicit solution formulas for (63) and
(69), one can easily show that the right hand side of the ODE is Lipschitz
continuous when L > 0. Hence, by the classical Cauchy-Lipschitz theorem,
unique solutions of the ODE system exist for all time. Furthermore, exten-
sive numerical simulations show that the ODE system converges (in a finite
time) to the steady state of the form,

(70) Est =
c∗βE
αE

, Lst =
1

λ

√
D

α

(
1 +

c∗βE
αE

)
.

Thus, we derive Eq. 8 in the main text. An example of a simulation of the
ODE system (63) and (69) is shown in figure S9. The example clearly shows
convergence to the predicted steady states in finite time.

Remark. The case of absence of expander can be easily recovered from
the above analysis by setting E ≡ 0 in (5). We obtain the explicit solutions
(30) for the flux boundary conditions. Note that ODE (63) is decoupled and
can be readily solved.

3.6. Point boundary conditions. The above analysis for scaled solutions
and flat expander profiles can also be carried analogously in the case where
the absolute concentration of morphogen, rather than its flux, is fixed at the
proximal boundary i.e,

M(0, t) ≡M0, ∀t.
In this case, we can require for the morphogen profile to be scaled i.e, the
morphogen concentration depends only on the relative cellular position ξ =
x
L(t) leading to

(71) M(x, t) = M(ξ) = M

(
x

L(t)

)
.

By carrying out the steps in the derivation, as in the case of flux boundary
conditions, one can show that the scaled morphogen profile is of the form,

M(x, t) = M0e
−x
λ̄L(t)
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Also, the tissue length and expander concentration are related by the ODE
system,

(72)

L̇

L
=
Dω2

L2
− α

1 + E
,

Ė = c∗βE − αEE −
L̇

L
E.

3.7. Derivation of consistent growth laws. In the case of flux boundary
conditions, we see from the morphogen evolution equation (58) that scaled
solutions (11) satisfy,

Ṁ = Mt + uMx,

⇒ Ṁ

M
=
Mt

M
+
xL̇

L

Mx

M
,

=
L̇

L
+
xL̇

L2
− xL̇

L2
,

=
L̇

L
=

ln 2

τ
Thus, deriving Eq. 7 in the main text.

4. Numerical schemes

As stated in the main text, our aim is to systematically investigate the
solutions of the coupled growth-patterning system Eqs, 1,2 (main text) with
growth law Eq. 9 (main text) and to show that the resulting morphogen
profile scales, the resulting tissue grows uniformly and attains a finite final
size. We carry out this investigation over a very large range of the parameter
space with extensive numerical simulations.

The numerical simulation of Eqs. 1,2,9 of main text is challenging on
account of the fact that we are trying to approximate a nonlinear system of
advection-reaction-diffusion equations on a growing domain and with non-
linear coupling between the growth law and the morphogen evolution. The
main idea behind an efficient numerical simulation is to transform the mor-
phogen and expander evolution equations in growing coordinates to the fixed
coordinates.

4.1. Governing equation in fixed coordinates. For the numerical sim-
ulation of the system (5), we need to transform the morphogen evolution
equation on a growing domain into a fixed coordinate system. We do so by
transforming (5) to the fixed initial domain [0, L0] by using the coordinate
transformation:

(73) M(Y, t) = M(x, t), E(Y, t) = E(x, t).

Here the relation between the position x = x(t) and the fixed coordinate Y
is established through (1) i.e, x(t) is the position at time t of the cell that
was located at position Y at time t = 0.



20 SUPPORTING INFORMATION

Differentiating (1) with respect to Y, we obtain the flow equation,

(74)

d

dt
xY = uY ,

xY (0) = 1.

Similarly differentiating (73) with respect to time on both sides, we obtain,

MY Yt +M t = Mt +Mxxt,

⇒M t = Mt + uMx.

Note that in the above derivation, we use Yt ≡ 0 (as the initial condition
Y remains fixed in time) and also the flow type growth law (1). Similar
computation results in

Et = Et + uEx.

Using the above relations, we transform the advection-diffusion-reaction
morphogen and expander evolution equations (5) and (6) to fixed coordi-
nates resulting in

(75)

M t =
DM

xY

(
MY

xY

)
Y

− α(E)M − uY
xY

M, ∀(Y, t) ∈ [0, L0]× [0, T ],

Et =
DE

xY

(
EY
xY

)
Y

− αEE −
uY
xY

E + βEh(M).

The only input required to complete the evolution equations (75) and (74)
is the cell proliferation rate: uY

xY
as,

(76)
d

dt
xY = uY =

uY
xY

xY =
ln(2)

τ
xY

This establishes Eqs. 9 and 10 in the main text.
From the growth law Eq. 3 of the main text , the above expression reduces

to,

1

τ
=

1

θ

(
DM

xYM

(
MY

xY

)
Y

− α(E)− ln(2)

τ

)
⇒ (θ + ln(2))

1

τ
=

DM

xYM

(
MY

xY

)
Y

− α(E),

⇒ 1

τ
=

1

θ + ln(2)

(
D

xYM

(
MY

xY

)
Y

− α(E)

)
,

Thus, deriving Eq. 11 in the main text.
From (76), we define,

(77) K = ux =
uY
xY

=
ln(2)

ln(2) + θ

((
D

XYM

(
MY

XY

)
Y

− α(E)

))
,

and obtain the accompanying growth law.
We numerically approximate the coupled system (75), (76) with growth

law (77) with the following finite difference scheme: the fixed domain [0, L0]
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is discretized into N + 1 equally spaced points Yj = j∆y, with ∆y = L0/N
being the mesh size. The time interval of simulation [0, T ] is discretized with
N intervals tn = n∆t. The approximate solutions are denoted as

M
n
j ≈M(Yj , t

n), E
n
j ≈ E(Yj , t

n),

We use a standard (forward Euler) finite difference of the form,

(78)

M
n+1
j −Mn

j =
2Dσ

(XY )nj

(
M

n
j+1 −M

n
j

(XY )nj + (XY )nj+1

)

− 2Dσ

(XY )nj

(
M

n
j −M

n
j−1

(XY )nj + (XY )n+1
j−1

)
−∆tα(E

n
j )M

n
j −∆tKn

jM
n
j ,

E
n+1
j − Enj =

2Dσ

(XY )nj

(
E
n
j+1 − E

n
j

(XY )nj + (XY )nj+1

)

− 2Dσ

(XY )nj

(
E
n
j − E

n
j−1

(XY )nj + (XY )n+1
j−1

)
−∆tαEE

n
j −∆tKn

j E
n
j + ∆tβEh(M

n
j ),

with σ = ∆t
(∆y)2 .

Furthermore, we use a backward Euler discretization of the ODE (74):

(79) (XY )n+1
j =

(XY )nj
(1−∆tKn

j )
,

with the growth law being set by,

(80)

Kn
j =

ln(2)

ln(2) + θ

(
2DMσ

(XY )njM
n
j

(
M

n
j+1 −M

n
j

(XY )nj + (XY )nj+1

))

− ln(2)

ln(2) + θ

(
2DMσ

(XY )njM
n
j

(
M

n
j+1 −M

n
j

(XY )nj + (XY )nj+1

))

−
ln(2)α(E

n
j )

ln(2) + θ
.

We implement point boundary conditions by fixing morphogen concen-
tration at source:

M(0, t) = M0,

and flux boundary conditions by specifying the morphogen flux at the source:

DMY

XY
(0, t) = η.
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The boundary conditions at the lateral boundary are set to be non-reflecting
Neumann type boundary conditions:

DMY

XY
(L0, t) = 0.

Similarly, we use zero-flux boundary conditions for the expander at both the
proximal and distal boundaries:

EY (0, t) = EY (L0, t) ≡ 0.

4.2. Scaling and uniform growth scores. In our simulations, we need
to decide whether a system has a scaled morphogen gradient or not. For
any given time t, we fit an exponential of the form (18) to the computed
morphogen profile. Then, we calculate the time tss at which growth has
reached steady state. The steady state for growth is reached when

(81) 100
Lt+∆t − Lt

Lt
< 0.001,

i.e, steady state is reached when the relative increase in L between consec-
utive time points is below 0.001%.

The time tλ of the onset of scaling is reached when

(82) 100
λt+∆t − λt

λt
< 0.006.

In other words, scaling is attainted once the relative increase in λ between
consecutive time points is below 0.006%. The tissue is declared to be scaled
if the morphogen gradient scales to the growing tissue for at least 50% of
the duration of growth:

(83)
tss − tλ
tss

> 0.5

In order to decide whether the system grows uniformly or not, we adopt the
following criteria. At any given time, we track the proportion that lineage of
the first 10% and third 20% of cells occupy in the growing tissue. As in the
case of specifying the scaling score, a tissue is considered to grow uniformly,
if for at least 50% of the time before tss the relative increase in the part of
the tissue of the first 10% or the third 20% between consecutive time points
is below 6.5%

The fine tuning of the numerical thresholds mentioned above was done
empirically by observing simulations. Observe that both the scaling criteria
and uniform growth criteria take into account the fact that there is an initial
phase of development during which the morphogen may not scale and the
tissue may not grow uniformly. We remark that the scaling score and the
uniform growth score have been used in generating table 1 in the main text
(results).
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4.3. Scaling error. The scaling error is a dimensionless parameter describ-
ing the change in the sharpness of the gradient in relative coordinates (λrel),
relative to the growth of the tissue. Since this is a dimensionless quantity
which is ideally zero, excellent scaling is achieved when

∣∣∂λ
L

∣∣� 1. Scaling is

reasonable when
∣∣∂λ
L

∣∣ ≈ 1.
In order to compare scaling quality as a function of proliferation rate

(q) between simulations with decreasing q and simulations with constant q,
we have used this scaling error. In the constant q case, the scaling error
converges during a simulation to a certain value and remains stable until
a very large size is reached (for constant q tissue length increases exponen-
tially). Then, the morphogen level is almost zero everywhere except the
proximal end rendering the simulation biologically invalid. This behavior
was observed in numerous simulations. Therefore, in the constant q case
the scaling error is taken as this stable value.

4.4. Simulation scenarios and parameter values.

4.4.1. Figure 2. We simulated a tissue with a morphogen dependent growth
law and ExR with following parameters consistent with experimental mea-
surements for the wing disc:

DM [µm2sec−1] 400
αM [h−1] 10
η[a.u.] 100
DE [µm2sec−1] 400
αE [h−1] 0.05
βE [a.u.] 10
TExpander[a.u.] 0.01
θ 0.5
L0[µm] 10

4.4.2. Figure 3. A tissue with a morphogen dependent growth law, no ExR:
DM [µm2sec−1] 100
αM [h−1] 0.1
η[a.u.] 10
θ 0.5
L0[µm] 10

4.4.3. Figure 4. Sensitivity SX(p) of a quantityX to a parameter p is defined

as the average over p of p
X

∣∣∣∂X∂p ∣∣∣.
In plot (a) we tested the Sensitivity ratio of the final tissue size and the

gradient length scale (in relative coordinates), log2
S(p)withExR
S(p)NoExR , to various

model parameters. For this test we used a basic parameter set:



24 SUPPORTING INFORMATION

DM [µm2sec−1] 10
αM [h−1] 0.1
η[a.u.] 1
DE [µm2sec−1] 100
αE [h−1] 10−2

βE [a.u.] 0.25
TExpander[a.u.] 0.01
θ 1
L0[µm] 10

In order to calculate each SX(p) for every p0 we simulated this parameter
set 10 times when only the value of p0 varies between simulations. We then
calculated SX(p0) for X = Lf and X = λ (relative coordinates), using the
formula

SX(p0) = meanp0

(
po
X

∣∣∣∣∂X∂p0

∣∣∣∣)
, averaging over the 10 runs. We did this twice for each SX(p0) - once with
ExR and once without. We then calculated for each P and X,

log2
S(p)withExR

S(p)NoExR

, which is the quantity plotted in the figure 4a. The value ranges used for
each p was,

DM [µm2sec−1] ∈ [1,100]
αM [h−1] ∈ [0.01,1]
η[a.u.] ∈ [0.1,10]
DE [µm2sec−1] 100
αE [h−1] 10−2

βE [a.u.] 0.25 or 0
TExpander[a.u.] 0.01
θ ∈ [0.4,2]
L0[µm] ∈ [5,50]

In plots 4b and 4c, the basic parameter set is the one used in 4a. In 4b
and 4c, we varied the values of αE and βE . For each combination (αE , βE)
we compared the result (Lf in 4b and relative λ in 4c) with ExR to the
result without ExR. The range of values of αE and βE used can be seen in
figures 4b and 4c.

4.4.4. Table 1. Valid runs are runs in which the tissue grew at least 2 fold.
Only valid runs were taken into account for percentages of scaling and uni-
form growth. The parameter ranges are shown below. In both table 1a and
1b all possible parameter combinations were simulated.
Table 1a:
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DM [µm2sec−1] 10,100
αM [h−1] 1,10
η[a.u.] 1,10,100
DE [µm2sec−1] 10,100
αE [h−1] 10−2, 10−3, 10−5

βE [a.u.] 0.1,1,10
TExpander[a.u.] 0.01
θ 0.5
L0[µm] 10,40
# runs 864
# valid runs 663

Table 1b:

DM [µm2sec−1] 1,10,50,100,150
αM [h−1] 0.1,0.5,1,5,10
η[a.u.] 0.1,1,10,70,100
θ 0.5,0.8,1.2
L0[µm] 5,10,20
# runs 3375
# valid runs 2010

4.4.5. Table 2. See figure 4a

4.4.6. Figure S1. The following parameter set was simulated for several val-
ues of the proliferation rate q:

DM [µm2sec−1] 100
αM [h−1] 100
η[a.u.] 100
DE [µm2sec−1] 100
αE [h−1] 10−3

βE [a.u.] 10
TExpander[a.u.] 0.1
q ∈ [0.001,1]
L0[µm] 10

4.4.7. Figure S2. Morphogen dependent growth law and ExR: same param-
eters as figure S1, with θ = 1.2. ExR alone: same parameters as figure
S1

4.4.8. Figure S3. We simulated the following parameter set (morphogen de-
pendent growth law with ExR) varying for each run DM and αM :
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DM [µm2sec−1] ∈ [1,100]
αM [h−1] ∈ [0.01,1]
η[a.u.] 1
DE [µm2sec−1] 100
αE [h−1] 10−2

βE [a.u.] 0.25
TExpander[a.u.] 0.01
θ 1
L0[µm] 10

20 different values for DM and 20 different

values for αM were chosen and all possible (DM , αM ) combinations were
simulated. The total number of simulations used for this plot is 400, the
values of (DM , αM ) chosen were logarithmically spaced 20 element vectors
in the above specified ranges.

4.4.9. Figure S4-S5. See figure 4a.

4.4.10. Figure S6. Similarly to figures S4, S5 the same basic parameter set
was used. Here, SX(p) are plotted when X are ExR only parameters. For
every X, 10 equally spaced values were simulated. The values used were
DM [µm2sec−1] 10
αM [h−1] 0.1
η[a.u.] 1
DE [µm2sec−1] ∈ [10,1000]
αE [h−1] ∈ [0.002, 0.2]
βE [a.u.] ∈ [0.025,2.5]
TExpander[a.u.] ∈ [0.004,0.4]
θ 0.5
L0[µm] 10

4.4.11. Figure S7. Plots a-d:

DM [µm2sec−1] 100
αM [h−1] 1
η[a.u.] 1
θ 1
L0[µm] 10

Plots e-h:
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DM [µm2sec−1] 100
αM [h−1] 1
η[a.u.] 1
DE [µm2sec−1] 100
αE [h−1] 10−2

βE [a.u.] 1
TExpander[a.u.] 0.01
θ 1
L0[µm] 10

Plot i:

DM [µm2sec−1] 10
αM [h−1] 1
η[a.u.] 1
DE [µm2sec−1] 100
αE [h−1] 10−2

βE [a.u.] 1
TExpander[a.u.] 0.01
q 0.1
L0[µm] 10

4.4.12. Figure S10. Plots a-c: (Right compartment)

DM [µm2sec−1] 400
αM [h−1] 10
η[a.u.] 100
DE [µm2sec−1] 400
αE [h−1] 0.05
βE [a.u.] 10
TExpander[a.u.] 0.01
θ 0.5
L0[µm] 10

Plots a-c: (Left compartment)
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DM [µm2sec−1] 400
αM [h−1] 10
η[a.u.] 100
DE [µm2sec−1] 400
αE [h−1] 0.05
βE [a.u.] 0
TExpander[a.u.] 0.01
θ 0.5
L0[µm] 10

Plots d-f: (Right compartment)

DM [µm2sec−1] 400
αM [h−1] 10
η[a.u.] 100
DE [µm2sec−1] 400
αE [h−1] 0.05
βE [a.u.] 10
TExpander[a.u.] 0.01
θ 0.5
L0[µm] 10

Plots d-f: (Left compartment)

DM [µm2sec−1] 400
αM [h−1] 10
η[a.u.] 100
DE [µm2sec−1] 400
αE [h−1] 0.05
βE [a.u.] 0
TExpander[a.u.] 0.01
θ 0.8
L0[µm] 10

Plots g-i: (Right compartment)

DM [µm2sec−1] 400
αM [h−1] 10
η[a.u.] 100
DE [µm2sec−1] 400
αE [h−1] 0.05
βE [a.u.] 10
TExpander[a.u.] 0.01
θ 0.5
L0[µm] 10
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Plots g-i: (Left compartment)

DM [µm2sec−1] 400
αM [h−1] 10
η[a.u.] 100
DE [µm2sec−1] 400
αE [h−1] 0.05
βE [a.u.] 0
TExpander[a.u.] 0.01
θ 0.8
L0[µm] 10

4.5. Figures S11,S12. 1. The morphogen flux is taken to be increasing
in time ,i.e,

η(t) := 0.1η0L(t).

Figures S11 a,b: (MDDR + ExR:)

DM [µm2sec−1] 100
αM [h−1] 10
η0[a.u.] 10
DE [µm2sec−1] 100
αE [h−1] 0.01
βE [a.u.] 10
TExpander[a.u.] 0.01
θ 0.5
L0[µm] 10

Figures S12 a,b: (MDDR alone:)

DM [µm2sec−1] 100
αM [h−1] 0.1
η0[a.u.] 10
θ 0.5
L0[µm] 10

2. Absorbing boundary conditions for the morphogen M on the edge
distant from the morphogen source (distal boundary):
Figure S11 c,d (MDDR + ExR)
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DM [µm2sec−1] 100
αM [h−1] 1
η[a.u.] 1
DE [µm2sec−1] 10
αE [h−1] 0.01
βE [a.u.] 10
TExpander[a.u.] 0.01
θ 0.5
L0[µm] 10

Figures S12 c,d: (MDDR alone:)

DM [µm2sec−1] 100
αM [h−1] 0.1
η[a.u.] 10
θ 0.5
L0[µm] 10

3. Nonlinear degradation of M with degradation term,

α(M) := −α(E)M − nl(E)M2, nl(E) := (nl)M (1 + E)p1.

Figure S11 e,f (MDDR + ExR)

DM [µm2sec−1] 100
αM [h−1] 0
(nl)M 1
η[a.u.] 1
DE [µm2sec−1] 10
αE [h−1] 0.05
βE [a.u.] 10
TExpander[a.u.] 0.01
θ 0.5
L0[µm] 10

Figures S12 e,f: (MDDR alone:)

DM [µm2sec−1] 100
αM [h−1] 0
(nl)M 1
η[a.u.] 10
θ 0.5
L0[µm] 10

4: Nonlinear degradation of E with (nl)E , being the coefficient of quadratic
degradation:

α(E) := −αEE − nlEE2.
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Figure S11 g,h (MDDR + ExR)

DM [µm2sec−1] 100
αM [h−1] 1
η[a.u.] 10
DE [µm2sec−1] 100
αE [h−1] 0
(nl)E 0.01
βE [a.u.] 10
TExpander[a.u.] 0.01
θ 0.5
L0[µm] 10

5. Different h(M) and α(E). As in the previous two tables,

h(M) :=
1

1 +
(

M
Trep

)hl , α(E) := αE(1 + E)p1.

Table S11 i,j: (MDDR + ExR)

DM [µm2sec−1] 10
αM [h−1] 1
η[a.u.] 1
DE [µm2sec−1] 10
αE [h−1] 0.05
βE [a.u.] 10
TExpander[a.u.] 0.01
θ 0.5
L0[µm] 10
hl 1
p1 -2

4.6. Table S1. In this table, valid runs are those runs where the tissue grew
two fold. Only valid runs were taken into account for calculating percentages
for scaling and uniform growth. The parameter ranges are shown below. In
all the tables below, all possible parameter combinations were simulated.

4.6.1. Case. 1: The morphogen flux is taken to be increasing in time ,i.e,

η(t) := 0.1η0L(t).

Table S1a: (MDDR + ExR)
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DM [µm2sec−1] 10,100
αM [h−1] 1,10
η0[a.u.] 1,10,
DE [µm2sec−1] 10,100
αE [h−1] 0.05, 0.01
βE [a.u.] 1,10
TExpander[a.u.] 0.01
θ 0.5
L0[µm] 10
# runs 64
# valid runs 63

Table S1b: (MDDR alone)

DM [µm2sec−1] 10,100
αM [h−1] 1,10
η[a.u.] 1,10
θ 0.5,0.8
L0[µm] 10,20
# runs 32
# valid runs 8

4.6.2. Case 2: Absorbing boundary conditions for the morphogen M on the
edge distant from the morphogen source (distal boundary): Table S1c:
(MDDR + ExR)

DM [µm2sec−1] 10,100
αM [h−1] 1,10
η[a.u.] 1,10
DE [µm2sec−1] 10,100
αE [h−1] 0.05, 0.01
βE [a.u.] 1,10
TExpander[a.u.] 0.01
θ 0.5
L0[µm] 10
# runs 64
# valid runs 38

Table S1d: (MDDR alone)
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DM [µm2sec−1] 10,100
αM [h−1] 1,10
η[a.u.] 1, 10
θ 0.5,0.8
L0[µm] 10,20
# runs 32
# valid runs 6

4.6.3. Case 3: Nonlinear degradation of M with degradation term,

α(M) := −α(E)M − nl(E)M2, nl(E) := (nl)M (1 + E)p1.

Table S1e: (MDDR + ExR)

DM [µm2sec−1] 10,100
αM [h−1] 1,10
(nl)M 1, 10
η[a.u.] 1,10
DE [µm2sec−1] 10,100
αE [h−1] 0.05
βE [a.u.] 10
TExpander[a.u.] 0.01
θ 0.5
L0[µm] 10
# runs 48
# valid runs 48

Table S1f: (MDDR alone)

DM [µm2sec−1] 10,100
αM [h−1] 1,10
η[a.u.] 1, 10
(nl)M 1, 10
θ 0.5,0.8
L0[µm] 10,20
# runs 48
# valid runs 32

4.6.4. Case 4: Nonlinear degradation of E with (nl)E , being the coefficient
of quadratic degradation:

α(E) := −αEE − nlEE2.

Table S1g: (MDDR + ExR)
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DM [µm2sec−1] 10,100
αM [h−1] 1,10
η[a.u.] 1,10
DE [µm2sec−1] 10,100
αE [h−1] 0, 0.05
(nl)E 0.01, 0.05
βE [a.u.] 10
TExpander[a.u.] 0.01
θ 0.5
L0[µm] 10
# runs 64
# valid runs 50

4.6.5. Case 5: Different h(M) and α(E). As in the previous two tables,

h(M) :=
1

1 +
(

M
Trep

)hl , α(E) := αE(1 + E)p1.

In the previous two tables, we set hl = 4, p1 = −1. In the following table,
we vary these coefficients in order to test different functional forms of these
functions.

Table S1h: (MDDR + ExR)

DM [µm2sec−1] 10,100
αM [h−1] 1,10
η[a.u.] 1,10
DE [µm2sec−1] 10,100
αE [h−1] 0.05
(nl)E 0.01, 0.05
βE [a.u.] 10
TExpander[a.u.] 0.01
θ 0.5
L0[µm] 10
hl 1,2
p1 -2,-5
# runs 64
# valid runs 63

4.7. Final tissue length prediction.
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4.7.1. Without ExR. The predicted final size in this case is given by formula
(30):

LPredictedf =
1

λ

√
DM

αM
.

In order to calculate this value for a certain parameter set, we ran the simu-
lation until final size was reached and then took the relative gradient length
scale achieved as λ for the calculation. We then compared the final length
the tissue reached in the simulation, Lf , to the prediction by calculating the

ratio:
Lf

LPredictedf

. We calculated this ratio for all valid parameter sets used

for table 1b (2010 sets) and by averaging over all 2010 sets obtained the
following result:

Lf

LPredictedf

= 1.15± 0.06

.

4.7.2. With ExR. In this case, the final sizes are predicted by (70) to be

LPredictedf =
1

λ

√
DM

αM

(
1 + c∗

βE
αE

)
with

c∗ = Est
αE
βE

,

resulting in

LPredictedf =
1

λ

√
DM

αM
(1 + Est).

This prediction is valid in cases of flat expander profile. In order to test
this prediction we took 72 parameter sets which had flat expander profile
and ran each simulation until final size was reached. We took the relative
gradient length scale achieved as λ for the calculation and the spatial aver-
age of expander level achieved as Est. We then compared the final length
the tissue reached in the simulation, Lf , to the prediction by calculating

the ratio:
Lf

LPredictedf

. We calculated this ratio for all parameter sets and by

averaging over all sets obtained the following result:

Lf

LPredictedf

= 1.3± 0.03.

The parameter sets tested are all possible combinations of the following val-
ues:
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DM [µm2sec−1] 80,100,150
αM [h−1] 5,10,20
η[a.u.] 1
DE [µm2sec−1] 10,100
αE [h−1] 0.008,0.01
βE [a.u.] 1,2
TExpander[a.u.] 0.01
θ 0.5
L0[µm] 10
# runs 72
# valid runs 72

4.8. The role of advection and dilution in MDDR dynamics. In the
absence of the expander, the morphogen evolution equation (5) consists of
four different terms,

• Morphogen diffusion, modeled by DMMxx.
• Morphogen degradation, modeled by αMM .
• Advection, modeled by uMx, for flow rate u and
• Dilution on account of growth, modeled by uxM .

In order to compare the relative contributions of each of the above terms
(and the underlying physical effects) to the global dynamics, we calculate
the amplitudes (as a function of the tissue domain) of each term and plot
these amplitude at different time snapshots in SI Figure 13. The amplitudes
are calculated from the morphogen concentration M and flow rate u using
simple finite differences. The parameter set used to generate SI Figure 13 is
exactly the same as the parameter set used to generate Figure 3, i.e, Table
4.4.2.

From SI figure 13, it is clear that initially and for a short period of time
(about T=5), the advection and dilution terms are indeed comparable to
the morphogen degradation. However, after this short initial transient, the
growth rate slows and the advection and dilution terms rapidly decay in
amplitude as compared to the morphogen degradation. As shown in Figure
3, the morphogen gradient continues to scale with tissue size and the tissue
continues to grow. In fact, the tissue grows about two to three fold during
this time window. In this case, the initially comparable dilution and advec-
tion were enough to yield scaling and uniform growth, through the MDDR
mechanism.

To further test the role of advection and dilution in the global dynamics,
we performed the following simulations:

4.8.1. SI Figure 14. First, we simulated tissues that do not grow. In such
tissues, the morphogen is secreted at the source and diffuses through the
length of the tissue, while being subject to degradation. To do so, we set
the flow rate u ≡ 0 in the morphogen evolution equation (5) and use the
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following parameters:

DM [µm2sec−1] 10
αM [h−1] 0.1
η[a.u.] 1
L0[µm] 10, 20, 40

The results are shown in SI Figure 14 (a,b,c,d). In SI Figure 14 (a,b), we
consider the spread of morphogen (via diffusion) for three different tissue
lengths. The corresponding steady state morphogen concentration in both
absolute and relative coordinates is plotted. As seen from SI Figure 14
(b), the morphogen gradient does not scale as the normalized morphogen
concentration depends on the absolute position in the tissue. Thus, pure
diffusion and degradation are not enough to provide scaling.

In SI figure 14 (c,d), we plot the temporal dynamics of a non-growing
tissue of tissue length L = 20. The other parameters are the same as in
the previous table. As seen from SI Figure 14 (c,d), the morphogen gradient
diffuses into the tissue and reaches a steady state when the diffusion balances
the degradation. But as expected (see [2]), the gradient does not scale in
any sense as the concentration depends on the absolute position.

In contrast to this case, we consider the situation of a tissue that grows
with the MDDR mechanism. The corresponding parameters are reported in
the following table:

DM [µm2sec−1] 10
αM [h−1] 0.1
η[a.u.] 1
θ 1
L0[µm] 10, 20, 40

The parameters for diffusion, degradation, initial tissue length and mor-
phogen flux are exactly the same as in previous of non-growing tissue. The
results for this simulation are plotted in SI Figure 14 (e,f). As seen before in
Figure 3, the morphogen gradient scales with the growing tissue in this case
(see SI Figure 14 f). Thus, the role of advection and dilution is essential
in producing scaling of the morphogen gradient through the MDDR growth
mechanism.

This role can be further explained with the following observation. Once
the tissue grows, advection and dilution are inevitable consequences of growth.
These terms will be small for most of the dynamics as growth rate is expo-
nentially decaying (see SI figure 13 and also the analytical formula (30)) but
they will not be negligible initially. We start from zero (or constant) mor-
phogen initial condition and have morphogen flux coming into the tissue. As
our growth law calculates the temporal relative change in concentration, the
growth rate has to be high and non-negligible in comparison to degradation
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initially (as morphogen starts coming in). Growth rate then decreases, as
we observe analytically and in all the simulations.

Again from the simulations, we observe that the dynamics starts with an
initial (very short) transient phase that is due to the growth law being based
on relative change. During this transient, the morphogen gradient is formed
and it is not yet scaled. The scaling happens once this transient is over and
the gradient can be described in terms of the formula (30) for some final
tissue length Lf and gradient decay length λ. Then, the tissue continues
growing and the gradient continues to scale until steady state is reached at
a time scale of 1

αM
. During this rather long phase, advection and dilution

terms are negligible in comparison to degradation (see SI figure 13). The
contribution of advection and dilution is to determine the scaled form the
gradient that will take on at steady state i.e, determining the morphogen
decay length λ in (30).

4.8.2. SI figure 15. To further emphasize the role of the dilution and advec-
tion, we simulated a system which grows according to MDDR, but without
a dilution term in the morphogen evolution equation, on multiple parameter
sets and compared the results with the same system with a dilution term.
The results are presented in SI figure 15 which is generated with the follow-
ing parameters:
For SI figure 15, a-h, we use,
DM [µm2sec−1] 100
αM [h−1] 0.1
η[a.u.] 10
θ 0.5
L0[µm] 10

For SI figure 15, i-p, we use,
DM [µm2sec−1] 100
αM [h−1] 0.1
η[a.u.] 1
θ 0.5
L0[µm] 10

For SI figure 15, q-x, we use,
DM [µm2sec−1] 100
αM [h−1] 0.1
η[a.u.] 1
θ 1.2
L0[µm] 10

The results of this study (eliminating dilution in the morphogen evolution)
can be divided into these 4 cases:

• Discarding the dilution term results in: larger final size, yet poorer
scaling and lack of uniform growth.
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• Discarding the dilution term results in: smaller final size, yet rea-
sonably good scaling but without uniform growth.
• Discarding the dilution term results in: smaller final size, non-uniform

growth and bad scaling.
• Discarding the dilution term results in a non-biological morphogen

profile (too shallow) or non-biological growth (step function like
growth)

As we predicted, in all simulations removing the dilution term resulted in
different λ’. Scaling was still retained in most cases while uniform growth
was more sensitive to the removal of dilution. At times, the profiles obtained
were non biological: too shallow due to not enough morphogen degradation
in the absence of dilution or step like growth. These results are consistent
with our understanding of the role of dilution and advection as described
above. Since the advection term is always smaller or similar in amplitude to
dilution, we expect similar results when eliminating it from the morphogen
equation.

Summarizing the above discussion, we would like to point out that ad-
vection and dilution play an essential role in the MDDR mechanism, par-
ticularly for the initial period of growth. In the absence of these terms or
when the terms are negligible compared to degradation for the whole growth
period, MDDR may not suffice for scaling and additional mechanisms, such
as expansion-repression, might be needed. Moreover, advection and dilu-
tion decay rapidly in amplitude with time and are negligible compared to
degradation (SI Figure 13) for most of the growth window. Hence, our simu-
lation results are consistent with experimental findings of slow growth (with
negligible advection and dilution) in the third instar.
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Figure S1. ExR improves scaling and becomes more effective as growth rate q decreases.    

In plots (a)-(i) Morphogen or expander level as a function of position in the tissue is shown for 10 
evenly spaced time points throughout the dynamics, from earliest time point in blue to latest time 
point in red. In all plots the same parameter set is simulated for various values of the growth rate 
q, with and without ExR. 

(a,d,g): Morphogen relative level (normalized to the level at the source) as a function of 
relative position (x/L) in the tissue at various times without ExR: For q=1 [1/h] in plot 
(a), for q=0.1 [1/h] in plot (d) and for q=0.001 [1/h] in plot (g).  
(b,e,h): Morphogen relative level (normalized to the level at the source) as a function of 
relative position (x/L) in the tissue at various times with ExR: For q=1 [1/h] in plot (b), 
for q=0.1 [1/h] in plot (e) and for q=0.001 [1/h] in plot (h).  
(c,f,i): Expander level as a function of position in the tissue at various times: for q=1 [1/h] 
in plot (c), for q=0.1 [1/h] in plot (f) and for q=0.001 [1/h] in plot (i).  
(j)  Scaling error defined as:  �𝜕𝜆

𝜕𝐿
𝐿�  as a function of q, with ExR. With constant q, the 

scaling error in the simulation converges to a constant after a certain time T, that constant 
is shown in the plot.    



Figure S2. With MDDR and ExR scaling is achieved even for rapid growth rates. 

Scaling error defined as  �𝜕𝜆
𝜕𝐿
𝐿�  as a function of growth rate  𝑞 = 𝐿̇

𝐿
 for a particular parameter set. 

In the blue solid line for MDDR and ExR feedback and in the black dashed line for the same 
parameter set only with a constant q growth function and ExR feedback. With constant q, the 
scaling error in the simulation converges to a constant after a certain time T, that constant is 
shown in the plot.    

 

Figure S3. The effect of ExR on tissue growth and duration of growth. 

a) The effect of ExR on fold change in tissue length:log2
(𝐿𝑓 𝐿0⁄ )𝑤𝑖𝑡ℎ 𝐸𝑥𝑅

(𝐿𝑓 𝐿0⁄ )𝑁𝑂 𝐸𝑥𝑅 
  for various λM =

�DM
αM

 and αM. Final size is increased by ExR for a large variety of parameter sets. This 

increase depends on λM = �DM
αM

 which is the length scale of the morphogen.  

b) The effect of ExR on growth duration: log2
(tss)with ExR
(tss)NO ExR

 for various λM = �DM
αM

 and αM.  

ExR significantly prolongs dynamics which allows for further growth and a larger final 
size.  The expander’s effect mainly depends on αM, which is the quantity modulated by 
the expander.  

 

Figure S4. Sensitivity of fold change in size to model parameters, with vs. without ExR. 

Dependence of fold change of the final tissue size compared with initial tissue size on the 
morphogen diffusion coefficient (a,f), morphogen degradation rate (b,g), morphogen flux (c,h), 
growth parameter (d,i) and initial size (e,i). (a-e) describe a system with a morphogen dependent 
growth law and an expander, (f-j) describe the same system without an expander.  Sensitivity, S, 
of final size Lf to a parameter p was determined by simulating the parameter set with different 
values of p and calculating the average over 10 values p of p

Lf
�∂Lf
∂p
�.  

 

Figure S5. Sensitivity of morphogen gradient length scale to model parameters, with vs. 
without ExR. 

The gradient scales, and is well described by an exponential with a length scale of λ in the 
relative coordinates. Sensitivity of λ to a parameter p was determined by simulating the wild type 
parameter set with different values of p and calculating the average over 10 values p of  p

λ
�∂λ
∂p
�. (a-

e) describe a system with a morphogen dependent growth law and an expander, (f-j) describe the 
same system without an expander.   

  



Figure S6. Sensitivity of fold change in size and morphogen gradient length scale to ExR 
parameters. 

Sensitivity S (defined as in figure S4,S5) of final tissue size relative to initial size (a-d) and the 
morphogen gradient relative length scale (e-h) to variations of expander parameters: expander 
diffusion coefficient (a,e), expander degradation rate (b,f), expander production rate (c,g), 
morphogen threshold concentration above which expander production is repressed (d,h). 

 

Figure S7. For parameter sets which did not scale under the  𝜶𝑴 ≫ 𝒒  regime, adding ExR 
improves scaling and uniform growth. 

a-d morphogen dependent growth only. 

a) growth rate q and morphogen degradation rate αM as a function of time; b) the tissue grows 
less, and growth takes less time; c) the gradient fails to scale, x-axis in relative coordinates; d) 
scaling error remains high throughout the growth. 

(e-h)  Adding ExR to the system with the same parameters affects the dynamics dramatically.  

e) Growth rate q and morphogen degradation rate αM as a function of time. Note that αM decreases 
as a result of expander activity; f) growth is longer and the tissue grows extensively; 

g) The tissue shows very good scaling, x-axis in relative coordinates; h) scaling error is very low 
in most of the dynamics. 

i) The same system with ExR only and spatially uniform external growth with q=0.01. The 
simulation was run until the tissue grew 2 fold, ExR alone resulted in poor scaling.  

 

Figure S8. Simulation of Eq.7 (SI) with a noisy θ. 

a) Distribution of θ. 
b) Mean relative morphogen concentration (Y-axis) vs. relative position (X-axis) for several 

time points T[h] shows scaling. 
c) Mean proliferation rate (Y-axis) [1/h] vs. relative position (X-axis) for several time points 

T[h]shows uniform growth. All statistics were computed with 500 samples.  

 

Figure S9. Numerical solution of the ODE system 61 and 67 (SI) using ODE45 in MATLAB. 

The figure clearly shows that the expander concentration and the tissue length converge to steady 
state values given by 68 (SI) for this parameter set. The same convergence holds for all tested 
parameter sets (approximately 1000).  

The parameter values are: E(t=0) =1[a.u];L(t=0) = 1.66[µm]; c* = 0.5; βE = 2[a.u]; αE = 
0.1[1/h];DM = 2[µm2/h]; αM= 0.1[1/h] 



Figure S10. Simulating the two compartments of the wing disc with different conditions in 
each compartment. 

a-c:  

The left compartment which is at −1 ≤ 𝑥 ≤ 0, was simulated with no expander production. The 
right compartment which is at 0 ≤ 𝑥 ≤ 1, was simulated with the same parameters as the left but 
with expander production (Fig 2 parameters, matching measured wing disc quantities). In both 
compartments, growth was according to MDDR.  

a) Fold change increase in tissue size as a function of time.  
b) Relative morphogen level as a function of relative position in the tissue.  
c) Expander level as function of relative position in the tissue at various times.  

d-f:  

The left compartment (−1 ≤ 𝑥 ≤ 0) and the right compartment (0 ≤ 𝑥 ≤ 1) were simulated with 
the same parameters (Fig 2 parameters, matching measured wing disc quantities) except for the 
growth parameter θ which was 0.5 in the right compartment and 0.8 in the left.  In both 
compartments, growth was according to MDDR.  

d) Fold change increase in tissue size as a function of time.  
e) Relative morphogen level as a function of relative position in the tissue.  
f) Expander level as function of relative position in the tissue at various times.  

 

g-i:  

The left compartment (−1 ≤ 𝑥 ≤ 0) and the right compartment (0 ≤ 𝑥 ≤ 1) were simulated with 
the same parameters (Fig 2 parameters, matching measured wing disc quantities) except for the 
growth parameter θ which was 0.5 in the right compartment and 0.8 in the left.  In both 
compartments, growth was according to MDDR for 𝑡 ≤ 𝑡0. For the rest of the simulation, 
𝑡0 ≤ 𝑡 ≤ 𝑇, growth was determined by an external input. The  𝑡0 chosen was 0.5 𝑇.  

g) Fold change increase in tissue size as a function of time.  
h) Relative morphogen level as a function of relative position in the tissue.  
i) Expander level as function of relative position in the tissue at various times.  

 

 

 

 

 

 



Figure S11. Simulating MDDR with ExR for different conditions. 

a-b: Increasing morphogen flux 

a) Relative morphogen level as a function of relative position in the tissue.  
b) Growth rate as a function of relative position in the tissue at various times.  

c-d: Absorbing B.C for the morphogen on the distal edge of the tissue 

c) Relative morphogen level as a function of relative position in the tissue.  
d) Growth rate as a function of relative position in the tissue at various times.  

e-f: Nonlinear morphogen degradation 

e) Relative morphogen level as a function of relative position in the tissue.  
f) Growth rate as a function of relative position in the tissue at various times.  

g-h: Nonlinear expander degradation 

g) Relative morphogen level as a function of relative position in the tissue.  
h) Growth rate as a function of relative position in the tissue at various times.  

 
i-j: Different forms of h(M) and α(E) 

i) Relative morphogen level as a function of relative position in the tissue.  
j) Growth rate as a function of relative position in the tissue at various times.  

 

Figure S12. Simulating MDDR alone for different conditions. 

a-b: Increasing morphogen flux 

a) Relative morphogen level as a function of relative position in the tissue.  
b) Growth rate as a function of relative position in the tissue at various times.  

c-d: Absorbing B.C for the morphogen on the distal edge of the tissue 

c) Relative morphogen level as a function of relative position in the tissue.  
d) Growth rate as a function of relative position in the tissue at various times.  

e-f: Nonlinear morphogen degradation 

e) Relative morphogen level as a function of relative position in the tissue.  
f) Growth rate as a function of relative position in the tissue at various times.  

 

 

 

 



Figure S13. Comparing the amplitude of the 4 terms of eq. 2a for several time points.   

The amplitude of the 4 terms of eq. 2a for an MDDR alone system: 

Diffusion: 𝐷𝑀 ∙ 𝑀𝑥𝑥 

Degradation: 𝛼𝑀 ∙ 𝑀 

Advection: 𝑢 ∙ 𝑀𝑥 

Dilution: 𝑢𝑥 ∙ 𝑀 

For consecutive time points as stated in the title of each plot.  

 

Figure S14. Comparing morphogen dynamics with vs. without growth.   

a-b: System without growth, the steady state of the morphogen gradient is plotted for several 
tissue lengths. In the absence of growth, the gradient doesn’t scale with tissue length.  

a) Absolute morphogen level as a function of absolute position in the tissue.  
b) Relative morphogen level as a function of relative position in the tissue.  

c-d: System without growth simulated for a fixed tissue length. Temporal dynamics of the 
gradient is shown for several time points (see legend). 

c) Absolute morphogen level as a function of absolute position in the tissue.  
d) Relative morphogen level as a function of relative position in the tissue.  

e-f:  System with growth according to MDDR. Temporal dynamics of the gradient is shown for 
several time points (see legend). 

e) Absolute morphogen level as a function of absolute position in the tissue.  
f) Relative morphogen level as a function of relative position in the tissue.  

All simulations were done with the same parameters (see SI for values).Comparing the 2 bottom 
rows shows morphogen dynamics is different with Vs. without growth.  

 

Figure S15. Comparing morphogen dynamics with and without dilution.  

In all simulation growth was according to MDDR without an expander. The morphogen evolution 
equation did or did not include a dilution term (see legend).  

a-h: Discarding dilution results in: larger final size, lesser scaling and uniform growth.  

a-d: Morphogen evolution equation with dilution 
e-h: Morphogen evolution equation without dilution 

 



i-p: Discarding dilution results in: smaller final size, lesser scaling and uniform growth.  

i-l: Morphogen evolution equation with dilution 
m-p: Morphogen evolution equation without dilution 

 

q-x:  Discarding dilution results in: smaller final size, less uniform growth and bad scaling.  

q-t: Morphogen evolution equation with dilution 
u-x: Morphogen evolution equation without dilution 
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Table S1. Scaling and uniform growth percentages for various simulation scenarios 

                           A 

Increasing morphogen flux MDDR with ExR  
Final size 100% 
Scaling 100% 
Uniform growth 98% 
Scaling and Uniform growth 98% 

                             

                           B 

Increasing morphogen flux MDDR  
Final size 100% 
Scaling 100% 
Uniform growth 100% 
Scaling and Uniform growth 100% 

                           

 C 

Absorbing B.C for 
morphogen 

MDDR with ExR  

Final size 100% 
Scaling 100% 
Uniform growth 100% 
Scaling and Uniform growth 100% 

                             

                           D 

Absorbing B.C for 
morphogen 

MDDR  

Final size 100% 
Scaling 87% 
Uniform growth 100% 
Scaling and Uniform growth 87% 

 

 E 

Nonlinear morphogen 
degradation  

MDDR with ExR  

Final size 100% 
Scaling 100% 
Uniform growth 43% 
Scaling and Uniform growth 43% 

                             



                           F 

Nonlinear morphogen 
degradation 

MDDR  

Final size 100% 
Scaling 91% 
Uniform growth 47% 
Scaling and Uniform growth 47% 

 

 G 

Nonlinear expander 
degradation  

MDDR with ExR  

Final size 100% 
Scaling 96% 
Uniform growth 84% 
Scaling and Uniform growth 84% 

                             

                           H 

Different forms of h(M) and 
α(E) 

MDDR with ExR 

Final size 100% 
Scaling 100% 
Uniform growth 72% 
Scaling and Uniform growth 72% 
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