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Summary
Spatial patterns of the hormone auxin are important drivers of
plant development. The observed feedback between the active,
directed transport that generates auxin patterns and the auxin
distribution that influences transport orientation has rendered
this a popular subject for modelling studies. Here we propose a
new mathematical framework for the analysis of polar auxin
transport and present a detailed mathematical analysis of
published models. We show that most models allow for self-
organised patterning for similar biological assumptions, and find
that the pattern generated is typically unidirectional, unless
additional assumptions or mechanisms are incorporated. Our
analysis thus suggests that current models cannot explain the
bidirectional fountain-type patterns found in plant meristems in
a fully self-organised manner, and we discuss future research
directions to address the gaps in our understanding of auxin
transport mechanisms.

Key words: Computer simulation, Mathematical biology, Plant
hormone

Introduction
Polar auxin transport
The plant hormone auxin plays a crucial role in the spatiotemporal
control of plant development, and its patterns of distribution and
activity must be tightly regulated. For example, in the root
meristem a gradient of auxin with its maximum in the root tip
determines the location of the quiescent centre and surrounding
stem cells (Sabatini et al., 1999) and the regions where cell
division, expansion and differentiation occur. Local maxima of
auxin in the shoot apical meristem and in the differentiation zone
of the mature root guide primordium outgrowth (Casimiro et al.,
2001; Reinhardt et al., 2000), while in leaves, streams of auxin
precede vein formation (Scarpella et al., 2006).

Much of the spatial distribution of auxin is caused by directional
transport [polar auxin transport (PAT); see Glossary, Box 1]. The
low pH in cell walls causes auxin to become protonated, allowing
it to enter cells relatively easily. In addition, influx carriers of the
AUX/LAX family pump auxin into cells. Owing to the higher pH
in the cytosol, cellular auxin loses its ability to cross the membrane.
Thus, auxin needs to be actively pumped out of cells by efflux
carriers. Proteins of the PIN-FORMED (PIN) family are an
important group of efflux carriers (Gälweiler et al., 1998; Muller et
al., 1998, Paponov et al., 2005; Friml, 2003). They typically have
a polar cellular distribution, leading to directed auxin transport
across only those membranes where PINs are localised (hereafter,
we describe PINs as ‘pointing’ in the direction along which auxin
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HYPOTHESIS

Box 1. Glossary
Cell polarity. The cell has two distinct equilibria in which PIN levels
are high on one membrane segment and low on the opposite
membrane segment.
Equilibrium. Intersection point of two equilibrium lines in the
phase plane, where both variables of the system are in steady-state
(i.e. do not change their value).
Equilibrium line. Connected series of points in the phase plane
for which one of the system variables is in steady-state.
Feedback. Effect of an input variable or process (e.g. auxin level or
auxin flux) on an output variable or process (e.g. PIN level or PIN
cycling dynamics).
Gradient-driven amplification. Amplification of a persistent
gradient prepattern due to positive feedback (self-amplification).
Linear feedback. Linearly proportionate effect of input auxin levels
or fluxes (x) on output PIN levels or dynamics (y): y=ax. 
Maximal self-organising potential. The most autonomous
pattern formation a system is able to generate, with self-
organisation being more autonomous than self-amplification.
Mechanistic feedback. Feedback rules based on molecular 
data (bottom-up) as opposed to tissue level observations (top-
down).
Membrane bistability. The membrane has two distinct, stable
equilibria in which the PIN concentration is either high or low.
Phase plane. Graph that represents the dynamics of two
interdependent variables, containing equilibrium lines, equilibrium
points and vectors.
Polar auxin transport (PAT). The auxin transport that is mediated
by polarly localised PIN proteins.
Polarity-driven self-organisation. The ability to self-organise
patterns as a result of feedback mechanisms producing cell polarity.
Superlinear (or supralinear) feedback. A more than linearly
proportionate effect of input auxin levels or fluxes (x) on output PIN
levels or dynamics (y): y=axn, with n>1 (if n=2 the feedback is
termed quadratic).
Saturating (or saturated) feedback. A feedback function in
which the amount of increase of output (y) with increases in input
(x) declines when input levels are higher, until output no longer
increases when input level increases. y=ax/(h+x) represents a linear
saturated feedback, whereas y=axn/(hn+xn) with n>1 represents a
superlinear saturated feedback.
Self-amplification. Amplification of the differences present in a
persistent prepattern due to positive feedback.
Self-organisation. The ability to generate patterns from a
transient perturbation and maintain patterns without the presence
of a persistent prepattern.
Stable equilibrium. An equilibrium to which the state of the
dynamic system converges, resulting in a constant concentration of
the variables of the system defined by the location of the
equilibrium.
Turing-type pattern formation. Persistent pattern formation due
to local activation and global inhibition, resulting in spot or stripe
patterns.
Unstable equilibrium. Equilibrium from which the state of the
dynamic system diverges, resulting in a change of variables away
from the values defined by the location of the equilibrium.
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flow is induced by the PIN distribution). This polar localisation
depends on both developmental conditions and cell type (Petrášek
et al., 2006; Wisniewska et al., 2006). In leaves, cell files with polar
PIN distributions generate auxin-transporting veins (Fig. 1A),
whereas in the epidermis of the shoot apical meristem PINs point
toward the different auxin maxima that demarcate subsequent
incipient primordia, thus producing phyllotactic patterns (Fig. 1B)
(Reinhardt et al., 2003). Within these individual shoot primordia,
PINs in the outer tissue layers are localised toward the auxin
maximum in the primordium tip, whereas inner layers form veins
with PINs pointing away from the maximum, connecting the
primordium to the vasculature (Fig. 1C) – a pattern known as a
reverse-fountain. Finally, in the root tip and lateral root primordia,
an opposite PIN pattern (whereby PINs in the outer layers transport
auxin away from the local maximum, whereas inner files of cells
direct auxin towards the maximum) is observed (Fig. 1D), and this
is referred to as a fountain (Blilou et al., 2005). Mathematical
models for the root (Grieneisen et al., 2007) and shoot (de Reuille
et al., 2006) meristem have demonstrated that the experimentally
observed PIN polarity patterns are both necessary and sufficient for
the correct build-up of auxin maxima.

PIN proteins undergo constant cycling to and from the plasma
membrane (PM) (Geldner et al., 2001; Dhonukshe et al., 2007),
allowing them to dynamically maintain their polarity and to quickly
redistribute in response to endogenous triggers (primordia
formation, gravitropic response) or external stimuli (wounding,
stretching). It has been experimentally shown that externally
applied auxin can induce new primordia (Reinhardt et al., 2000;
Reinhardt et al., 2003), indicating its ability to alter the polar
distribution of PIN proteins and thus implying a feedback (see
Glossary, Box 1) loop between auxin and its own transport. As PIN
proteins constantly cycle to and from the PM, it is likely that this

feedback represents a regulatory effect of auxin on PIN cycling.
Indeed, it has been shown (Paciorek et al., 2005; Robert et al.,
2010) that ectopically added auxin counteracts the PIN
internalisation induced by the exocytosis-inhibiting drug BFA, and
this has been interpreted as an inhibitory effect of auxin on
endocytosis. However, it is currently hard to establish whether
intra- or extracellular auxin or auxin flux is affecting PIN cycling
in these experiments, and whether cells sense auxin directly or also
indirectly via mechanosensitive signalling pathways.

PAT models
Long before the discovery of PIN proteins and the auxin
dependence of their polar localisation, it was already hypothesised
that auxin positively influences its own transport and spatial
distribution, implying that auxin patterning might be self-
amplifying and potentially even self-organising (Sachs, 1969). It is
this implication that served as a major inspiration for the numerous
modelling studies in this area. In the case of self-amplification (see
Glossary, Box 1), the plant is capable of responding to and
enhancing a superimposed auxin prepattern, for example a local
source or sink, but requires this prepattern to persist. By contrast,
in the case of self-organisation (see Glossary, Box 1), a transient
prepattern is sufficient for initialisation and subsequent autonomous
maintenance of the formed pattern. 

Owing to the current lack of a fully mechanistic molecular
understanding of how cells sense auxin and how this subsequently
influences PIN polarity and auxin transport, most current models
have taken a top-down approach, correlating the observed auxin
and PIN polarity patterns in the tissue of interest to derive a
hypothetical feedback mechanism. Based on their proposed
feedback mechanism, PAT models can be divided into two main
classes: flux-based and concentration-based models.

Flux-based models are based on Sachs’ canalisation hypothesis
(Sachs, 1969), which states that cells experiencing flux of a
molecule in a certain direction will increase their capacity to
transport the molecule in that direction, and is based on the
observation that, during vein formation, auxin transport channels
become gradually more distinct. The auxin transport capacity is
represented by membrane permeability in early models (Mitchison,
1980; Mitchison, 1981) and by membrane PIN concentration in
later models (e.g. Fujita and Mochizuki, 2006; Feugier and Iwasa,
2006; Alim and Frey, 2010; Feugier et al., 2005; Stoma et al.,
2008). Flux-based models have mainly been used to model
venation patterns, and demonstrate that small fluctuations in auxin
may be amplified into more distinct streams, with PINs pointing in
the direction of the flux, i.e. with-the-flux (Fig. 1A, inset).

Concentration-based models (e.g. Smith et al., 2006; Newell et
al., 2007; Jönsson et al., 2006; Merks et al., 2007) were formulated
after the discovery of PIN proteins and therefore all explicitly
model membrane PIN levels. In these models, PIN levels increase
on the membrane facing the neighbouring cell with the highest
auxin level, i.e. up-the-gradient. This proposed feedback
mechanism was inspired by observations in the shoot apex, where
PINs in the epidermal layer orient toward local auxin maxima that
develop into organ primordia (Fig. 1B, inset) (Reinhardt et al.,
2003). Concentration-based models are sufficient to obtain
phyllotaxis-like patterns by amplifying small local increases in
auxin into distinct maxima while simultaneously depleting
neighbouring cells, resulting in the occurrence of new maxima at
fixed distances from older maxima. 

More recently, efforts have been made to construct PAT models
capable of displaying both up-the-gradient phyllotaxis and with-
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Fig. 1. Schematic representations of PIN and auxin patterns in
different plant tissues. Auxin is in blue and PIN proteins in red; arrows
indicate the direction of auxin flux. (A) Auxin-accumulating veins in a
developing leaf. (Inset) PIN proteins point with the flux of auxin toward
the base of the leaf. (B) Phyllotaxy pattern on the shoot apical meristem,
where auxin maxima precede primordia and form in a regular pattern.
(Inset) PIN proteins point toward each auxin maximum. (C) Reverse-
fountain-like pattern in a developing shoot primordium. In the inner
layers, PINs transport auxin away from the maximum (direction 1),
whereas in the outer layer, PINs transport auxin toward the maximum
(direction 2). (D) Fountain-like pattern in the root tip. PINs in the outer
layer transport auxin away from the maximum (direction 1), whereas PINs
in the inner layers transport auxin toward the maximum (direction 2).
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the-flux venation types of PIN patterning (Bayer et al., 2009;
Merks et al., 2007; Stoma et al., 2008) in order to explain reverse-
fountain-type patterns (Fig. 1C). Additionally, somewhat more
mechanistic feedback (see Glossary, Box 1) loops of auxin on PAT
have been suggested. Based on the observation that PIN polarity
correlates with stress-related microtubule alignment, a model has
been proposed in which auxin influences wall stress, which in turn
influences PIN localisation (Heisler et al., 2010). Alternatively, it
has been proposed that PIN polarity is regulated by auxin receptors
in the apoplast, which inhibit local PIN endocytosis after binding
auxin (Wabnik et al., 2010).

A framework to analyse and compare PAT models
In this Hypothesis we will perform a detailed comparison and
analysis of a broad range of models for auxin patterning in plant
development. For flexible developmental patterning, the feedback
between active polar auxin transport, which generates auxin
distribution patterns, and these auxin distributions in turn shaping
the strength and direction of this polar auxin transport, is crucial.
Therefore, we restrict this analysis to models that incorporate polar
auxin transport and its auxin-dependent regulation, focusing on
both the auxin and PIN distribution patterns that are generated.
Thus, we will not include strictly mechanical models that do not
consider feedback on auxin transport, Turing-type models (see
Glossary, Box 1) in which only passive undirected auxin transport
is considered, or models in which the directions of active PAT are
assumed to be constant (e.g. Grieneisen et al., 2007).

One straightforward way to evaluate and compare the various
PAT models is by analysing the tissue level auxin and PIN patterns
that they generate and compare these with experimental data. A
number of excellent reviews have been written that describe these
efforts (Wabnik et al., 2011; Heisler and Jönsson, 2006; Kramer,
2009; Garnett et al., 2010). However, for a mathematical model to
work, detailed specifications have to be made for the dynamics on
the subcellular membrane segment, cellular and tissue levels.

Indeed, apart from the simple dichotomy in concentration and flux-
based models, a variety of mathematical formulations for processes
such as PIN-mediated auxin pumping, PIN dynamics and auxin-
PIN feedback functions are used in the different models, the precise
relevance of which is not trivial for even the experienced modeller.
Therefore, as recently pointed out in a review by Jönsson and
Krupinski (Jönsson and Krupinski, 2010), it is of crucial
importance to develop a general framework to analyse and
compare these different mathematical formulations, classify them
into a limited number of corresponding biological assumptions, and
determine how these influence model patterning behaviour.

Another crucial aspect is to determine the extent to which the
model generates these patterns in an autonomous self-organised
manner. Although self-organising and self-amplifying models may
produce similar spatial patterns, whether this patterning requires a
persistent prepattern is of key relevance. If auxin patterning
required a prepattern, then a mechanism would be needed to
explain the generation of these prepatterns. Furthermore, changes
in auxin patterns precede major changes in the expression of
developmental genes and cell morphology. Thus, for plants to keep
generating new organs robustly throughout their life, it seems
essential that the new auxin patterns required by each newly
forming organ primordium arise in a largely self-organised manner
independently of a prepattern.

In this Hypothesis we develop a general mathematical and
simulation framework in which we analyse and compare most
currently published PAT models. We translate the various
mathematical formulations that are used into biological
assumptions, and analyse how these relate to model behaviour,
investigating both the type of auxin patterns generated and to what
extent these are fully self-organised. We restrict our analysis to
assumptions regarding PIN-mediated auxin transport dynamics, PIN
cycling and auxin-PIN polarisation feedback, assuming these to be
the main determinants for auxin patterning. The transcriptional
effect of auxin on PIN expression levels (Vieten et al., 2005) is
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Fig. 2. Mathematical framework to study PAT models. (A) At the membrane segment level, we focus on the PIN concentration (ranging from white
for low to red for high) at a membrane segment (P) and the auxin concentration (blue) in the adjoining neighbouring cell (A). The resulting system of
two equations is used to investigate whether the model allows for bistability at the membrane segment level. (B) The single-cell model is constructed
from two membrane segments. The result is a four-variable model system, describing the PIN concentrations at the cell’s two membrane segments (P0
and P1) and the corresponding auxin concentrations in both neighbouring cells (A0 and A1). The focus is on whether a cell can be polar. (C) A tissue is
formed by combining five cells into a file flanked by a source and a sink, or by forming a closed ring, in order to model tissue level patterning behaviour
with respect to a persistent global gradient (formed through the presence of a source and sink), or a transient perturbation in the auxin level of a single
cell (red arrow), respectively. We focus on whether the model is self-organised. D
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mostly ignored because the short-term effect of auxin on PIN
polarisation is expected to be more important for the self-organising
capabilities of a mechanism than the long-term effect of auxin on
overall PIN levels. Model behaviour will be analysed with regard to
three levels of increasing complexity: the membrane segment,
single-cell and one-dimensional (1D) tissue levels (Fig. 2A-C,
respectively). Our 1D tissue level analysis does not allow us to
directly determine the type of 2D or 3D patterns that a model can
generate. However, it allows us to determine whether PINs orient
away or toward an auxin maximum and whether a single
mechanism can generate the two opposite polarisation patterns
observed in fountain-type patterns. Additionally, we can establish a
model’s self-organising potential in simple 1D tissue simulations. If
a model generates self-organised patterns in one dimension, it will
also do so in two or three dimensions. Thus, we can still extrapolate
our 1D results to qualitatively predict the extent to which a model
can generate complex tissue patterns, such as fountain-like patterns,
and to what extent this patterning might be self-organised. 

Our analysis will demonstrate that most published models are
capable of producing robust, self-organised auxin and PIN patterns,
and that flux-based and concentration-based models achieve this
with largely similar biological assumptions. It appears that flux-
based models are somewhat more versatile in explaining different
PIN orientations, but both model categories seem to have
difficulties in explaining the bidirectional fountain-type patterns
observed in planta in a fully self-organised manner. We thus
conclude that none of the currently available models robustly
produces fountain-like patterns by a single mechanism. Finally,
future directions for research are recommended in order to close in
on the mechanistic basis of auxin feedback in plants and determine
how fountain-type patterns are generated.

Model behaviour on three levels of organisation
In the following sections, published PAT models will be compared
in terms of the mathematical formulations used for PIN-mediated
auxin pumping dynamics, PIN cycling and auxin-PIN feedback, the
biological assumptions to which these correspond, and the resulting
model behaviour on the membrane segment, single-cell and tissue

levels. A major goal of our analysis is to determine the maximal
self-organising potential (see Glossary, Box 1) of models and the
mathematical and biological assumptions on which this potential
critically depends. As model behaviour depends both on
mathematical formulations and parameter settings, we will classify
a model as self-organising if self-organising patterns occur in at
least a region of parameter space. We will first analyse in detail two
representative examples of PAT models (chosen solely to facilitate
discussion of our analysis of self-organising properties), following
which we apply the same evaluation to a broader range of
published models. 

We have developed a generalised mathematical framework to
study model assumptions and resulting behaviour (Fig. 2). In our
analysis, the original mathematical formulation and biological
assumptions of the discussed models are followed, but some
simplifications are used to allow for an analytical approach. For
ease of comparison we introduce a single set of variable and
parameter names used for all models, rather than adopting the
different names used in the various publications (see Table 1 for
these parameters and variables, their biological meanings and
default values). An in-depth description of the mathematical
framework is provided in supplementary material Appendix S1.

We start with a simplified model at the membrane segment level
and extend this first to the single-cell and subsequently to the 1D
tissue level. Boxes 2 and 3 explain the mathematical formulation
and analysis of the membrane segment and single-cell models.
With regard to membrane segments, we are interested in whether
the model allows for two alternative stable equilibria (see Glossary,
Box 1) – termed membrane bistability (see Glossary, Box 1) – in
which case membrane segments have either a discrete high or low
PIN level. Alternatively, membrane segments may have a single
equilibrium PIN level, in which case the PIN levels on a membrane
segment may vary only according to locally experienced auxin
levels that influence the precise location of this equilibrium
(‘graded distribution’) (Fig. 2A).

At the cell level we are interested in whether the model allows
for stable equilibria in which a cell has a distinct high PIN level on
one membrane segment and a distinct low PIN level on the
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Table 1. Frequently used variables and parameters, their biological meanings, units and default values

Variable Biological meaning Units

Pi PIN concentration on membrane segment of interest []
Ai Auxin concentration in neighbouring cell of interest []
F Auxin flux over membrane segment of interest into neighbouring cell of interest []s−1

Parameter Biological meaning Units and default values

p Auxin production 1 []s−1

d Auxin decay 0.5 s−1

ipas Passive influx over the membrane segment of interest into the neighbouring cell of interest 0.01 []s−1

ipin PIN-mediated influx over the membrane segment of interest into the neighbouring cell of interest 1 s−1[]−1

e Total efflux out of the neighbouring cell of interest over the membrane segment of interest 1 s−1

epas Passive efflux out of the neighbouring cell of interest over the membrane segment of interest 0.01 s−1

epin PIN-mediated efflux out of the neighbouring cell of interest over the membrane segment of interest 1 s−1[]−1

kon PIN exocytosis/recycling rate –
konb Basal exocytosis/recycling rate 0.01 s−1

konf Auxin-dependent exocytosis/recycling rate 1 s−1

koff PIN endocytosis rate 1 s−1

koffb Basal endocytosis rate –
kofff Auxin-dependent endocytosis rate –
Ptot The total amount of PINs in one cell 10 []

Note that under default conditions feedback is on kon, with koff constant. Consequently, kon is not defined as a constant value, but is instead a function of konb, konf and
auxin level or flux, while koff has a defined constant value and koffb and kofff are not defined. If, instead, feedback is on koff the situation is reversed. [] is used for
concentration. D
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opposing membrane segment, thus allowing for cell polarity (see
Glossary, Box 1) (Fig. 2B). In the absence of such cell polarity,
opposing membranes will only display different PIN levels if
persistently different auxin levels are present near both membranes.
We analyse and discuss the relationship between membrane
segment bistability and cell level polarity.

Tissue level behaviour is analysed using a 1D array of five cells
(Fig. 2C). First, the cells are organised as a file with a source of
auxin at one end and a sink at the other. This allows us to test
whether cells polarise and to determine the direction of polarity
with respect to the global auxin gradient (i.e. the type of pattern
formed) (Fig. 2C). Second, the file is wrapped into a ring, and a
transient increase in the auxin level of a single cell is applied. In
this system, we can investigate whether a transient perturbation
spreads out and leads to persistent patterning or dies out, causing
the tissue to return to its uniform state. If persistent pattern
formation occurs in both configurations (file and ring) the tissue
pattern is self-organising. If patterning is self-organised and driven
by lower level membrane bistability and cell polarity, we will name
it polarity-driven self-organisation (see Glossary, Box 1) to
distinguish it from more conventional and well-analysed Turing-
like self-organised patterning. If patterning is not self-organised and
is instead maintained only in the presence of sources and sinks, the

pattern formation is considered as gradient-driven amplification
(see Glossary, Box 1), i.e. to be self-amplifying.

Analysis of published models
Example 1: flux-based model
Stoma et al. (Stoma et al., 2008) developed a flux-based PAT model
in which the PIN concentration at a given membrane segment is
assumed to increase with the net efflux of auxin over that membrane
segment. Both linear and quadratic feedback functions for the
dependence of PIN levels on auxin were used. Linear feedback (see
Glossary, Box 1) implies that similar flux increases cause similar PIN
level increases independently of the flux level. By contrast,
superlinear (e.g. in this case quadratic) feedback (see Glossary, Box
1) implies that similar flux increases cause larger PIN increases for
higher flux levels. The authors furthermore assumed that the
availability of PIN proteins within a single cell is never limiting, i.e.
the allocation of PINs to membrane segments does not lower the
amount of PINs available for exocytosis/recycling sufficiently to
cause competition between membrane segments. Finally, pumping
of auxin by PIN proteins is assumed to depend linearly on
intracellular auxin concentrations. In biological terms this assumption
requires that PIN proteins are sufficiently available to handle large
auxin concentrations and are thus not limiting for the rate of flux. 

Box 2. The membrane segment

At the membrane segment level, we take into account the model’s
description of PIN (P) dynamics on a single membrane segment and
auxin concentration (A) in the adjoining neighbouring cell (see Fig. 2).
Other PIN and auxin concentrations are assumed to be constant,
which constitutes a mathematical tool enabling our membrane level
analysis by limiting the number of variables included in the model,
rather than a biological assumption; indeed, as we move in our
analysis to the single-cell and tissue level these concentrations are no
longer assumed constant. As we do not explicitly model the cell wall,
the efflux over the membrane segment equals the influx into the
neighbouring cell and vice versa. Hence, we can write for the auxin
concentration:

with parameter symbols, meanings and default values described in
Table 2.

Eq. 2 describes the auxin equilibrium line, which is the series of
points (A,P) for which the auxin concentration is in equilibrium
(dA/dt=0):

which is the solid line in panel A. To the left of the equilibrium line,
net influx occurs and auxin increases (→), whereas to the right, auxin
decreases due to net efflux (←).

Taking into consideration the dynamic cycling of PIN proteins
between membrane and cytosol, we can model membrane segment
PIN levels as:

dA
dt

= p + ipas + ipinP eA dA , (1 )

P =
e + d( )A p ipas

ipin
, (2)
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If kon and koff are constant (no feedback), the equilibrium line for
PINs (dP/dt=0) is given by P=kon/koff (dashed line in B). Above this line,
PINs decrease (↓), whereas below this line they increase (↑). A positive
feedback of auxin flux or concentration on PIN levels is incorporated
by allowing the auxin flux or level to either increase kon or decrease
koff. This dependence of kon or koff on auxin can be modelled using
either a linear feedback (e.g. y=ax), a superlinear feedback (e.g.
y=axn), a (sub)linear saturating feedback [e.g. y=ax/(h+x)] or a
superlinear saturating feedback [e.g. y=axn/(hn+xn)], depending on the
assumed effect of auxin on PIN cycling dynamics (with a and h being
arbitrary scaling parameters and n a measure of cooperativity). A
hypothetical PIN equilibrium line resulting from a saturating
superlinear feedback is given in C. 

In D and E the auxin equilibrium line and auxin dynamics are drawn
together with the two PIN equilibrium lines and PIN dynamics,
allowing us to assess the overall behaviour of the membrane segment
model. In the figures we can find the system’s equilibrium points
(circles), in which both dA/dt=0 and dP/dt=0 and hence no changes
occur, as intersection points of the A and P equilibrium lines. In
addition, we can determine the stability of the equilibria from the
direction of the dynamics (arrows) near an equilibrium. An equilibrium
is stable if all arrows point toward it (black circles), whereas an
equilibrium is unstable if one or more arrows point away from it
(white circles). In D, the system has a single stable equilibrium. In E,
the system has three equilibria, the middle one being unstable and
the outer two stable, and thus represents a bistable membrane
segment system.

dP
dt

= kon koff P . (3)
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The authors demonstrated that, in an otherwise homogeneous
tissue, persistent sinks attract a small initial flux, causing PINs to
orient toward them and auxin patterns to be built up. They showed
that, if the degradation of auxin in sinks is sufficiently fast, auxin
concentrations become lowest in the sinks, producing with-the-flux
and down-the-gradient patterning as expected for with-the-flux
models. If, instead, sinks degrade auxin relatively slowly, sinks turn
into auxin maxima, resulting in with-the-flux but up-the-gradient
PIN localisation. This flexibility is used to simulate, in a 2D tissue,
the combination of up-the-gradient maximum formation in the
epidermis and with-the-flux down-the-gradient vein formation in
the subepidermal tissues, by assuming that primordia act as auxin
sinks for the epidermis and as auxin sources for the underlying
tissues (see Fig. 1C). In addition, whereas in the epidermis linear
feedback resulting in laminar up-the-gradient flows was used, in
the subepidermal tissues quadratic feedback was used to generate
spatially distinct veins. 

Our mathematical analysis of the Stoma et al. (Stoma et al.,
2008) model is shown in Box 4. For superlinear, quadratic
feedback, we find that a situation with one stable and one unstable
equilibrium (see Glossary, Box 1) for membrane segment PIN
levels occurs (Fig. 3A). Below the unstable equilibrium, the PIN
and auxin levels go to the low stable equilibrium. Above the
unstable equilibrium, unlimited growth of PIN and auxin
concentrations takes place. This is a special case of bistability, with

two separate regions of membrane segment behaviour, but not two
stable equilibria. Owing to the absence of a limiting PIN pool,
membrane PIN levels are fully independent of each other and only
depend on local flux. Consequently, given a bistable membrane
segment, a single cell can have four equilibria that are
combinations of the two equilibria at each membrane segment.
There is a single stable equilibrium in which both membrane
segments have the same low PIN level, which we will refer to as
the apolar rest state. In addition to this, there are three unstable
equilibria, separating regions for which either one or both of the
membrane segments obtain unlimited PIN levels. Thus, in this
model cells can become polar or apolar depending on their initial
auxin and PIN concentrations (Fig. 3B).

When we couple five cells into a cell file flanked by a source
and a sink, we observe the expected with-the-flux PIN localisation
in the direction of the sink, as in the original paper (Fig. 3C).
Furthermore, the strength of the sources and sinks does not
influence either the ability to polarise or the strength of polarisation
(Fig. 3C, upper two cell files). Finally, for parameter settings in
which auxin decay is very slow and hence auxin concentrations are
higher in the sinks rather than in the source, we also observed up-
the-gradient behaviour (Fig. 3C, bottom cell file). PIN polarity can
also be formed and maintained in a ring of cells that only receives
a transient perturbation in auxin levels (Fig. 3C). Note that as all
cells in the ring pump auxin to their right and receive auxin from
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This leaves us with two equations for the PINs (Eq. 4b or Eq. 5) in
which either kon or koff rates depend on auxin flux or concentration
and hence on the equilibrium values of auxin given by Eq. 6.

The behaviour of the cell model depends both on the behaviour of
the model at the membrane segment level and on whether a limiting
PIN pool is assumed. If the PIN pool is non-limiting, P0 and P1 are
completely independent of each other, and cell level equilibria arise
from all possible combinations of membrane segment equilibria. In
the case of a single membrane segment equilibrium, cell level
equilibrium lines intersect once in a single stable equilibrium (panel
A, solid line for P0, dashed line for P1) and differences between P0 and
P1 can only arise if the two membranes persistently experience
different auxin concentrations or fluxes, thus simply shifting the
location of this single equilibrium. By contrast, in the case of a
bistable membrane segment, cell level equilibrium lines intersect nine
times, producing a total of four stable equilibria: two alternative polar
states, an apolar rest state, and a bipolar state (B). If, by contrast, P0

and P1 do influence each other via competition for a limiting PIN pool,
different situations arise. In the case of a membrane segment with a
single equilibrium there is most likely still only one, symmetrical,
equilibrium at the single-cell level (A). In the case of a bistable
membrane segment model there may be only two stable apolar
equilibria (C), or an additional apolar rest state, in which P0 and P1 are
equal and low (D), but no bipolar state is present.

Ai =
p + ipas + ipinPi

e + d
. (6)

Box 3. The single cell

To model a single cell in a simplified manner we consider the PIN
levels on the two opposing membrane segments of the cell (P0 and
P1) and the auxin concentrations in the two neighbouring cells (A0

and A1) (see Fig. 2). Again, we assume other auxin and PIN
concentrations to be constant. The cell level model thus can be
written as:

with i=0 or 1.
If, in a model, a limiting PIN pool is assumed, the equation for Pi

becomes:

The recycling rate now depends on the amount of available PINs in
the cytosol, which is the total amount of PINs per cell (Ptot) minus the
PINs that are bound to membrane segments.

To simplify the system and allow for 2D phase plane (see Glossary,
Box 1) analysis, we make a quasi-steady-state assumption by letting
the auxin dynamics at all times be in equilibrium with the amount of
PINs at the membrane segment (dAi/dt=0). This assumption does not
alter the model behaviour in which we are interested, namely the
number of equilibria. Hence, the expression for Ai becomes:

dAi
dt

= p + ipas + ipinPi eAi dAi , (4a)

dPi
dt

= koni koffi Pi , (4b)

dPi
dt

= koni (Ptot P0 P1) koffi Pi . (5)
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their left neighbour, a circular auxin flux arises that results in a
pattern in which final auxin levels are the same across all cells
(Fig. 3C). Together, this demonstrates that the model displays
polarity-driven self-organisation.

For a small range of parameters, linear feedback also permits two
membrane segment equilibria (Fig. 3A), four single-cell equilibria
(Fig. 3B) and self-organised polarity-driven patterning (Fig. 3C), as

for quadratic feedback. However, for most parameter values, the
upper unstable membrane segment equilibrium, and the domain of
unlimited PIN levels that it demarcates, do not occur and instead
only a single stable equilibrium will be produced (Fig. 3D). Under
these conditions, the single-cell level model will have a single stable
equilibrium, resulting in apolar cells (Fig. 3E). In the absence of cell
polarity, the tissue level pattern now strongly depends on the
persistence of sources and sinks and is not able to sustain itself after
a temporal perturbation. Hence, the model behaves in a gradient-
driven rather than a self-organising manner (Fig. 3F).

We conclude that the Stoma et al. (Stoma et al., 2008) model has
the ability to self-organise for both linear and superlinear feedback,
although self-organisation occurs in a considerably broader
parameter range for the superlinear than the linear feedback. Note
that it was analytically shown by Mitchison (Mitchison, 1980) that
the formation of distinct veins rather than laminar flows in 2D tissue
poses the more stringent requirement for superlinear feedback. This
additional requirement for 2D symmetry breaking to generate distinct
veins cannot be recovered using our 1D framework.

Altering the model to include a limiting PIN pool
A much discussed aspect of most flux-based models is the low
auxin concentrations that they produce in veins (Kramer, 2008;
Rolland-Lagan and Prusinkiewicz, 2005), which disagrees with
the experimental data (Scarpella et al., 2006). The (non-
physiological) cell level assumption of a PIN pool that is so large
that membrane segments do not compete for it (termed
‘unlimited’) can be the cause of low auxin levels in the veins, as
it allows for an unlimited increase in membrane PIN levels in
response to auxin flux, and hence an unlimited efflux of auxin out
of these flux channels. 

By incorporating a limiting PIN pool (see Box 4) into the Stoma
et al. (Stoma et al., 2008) model, maximum membrane PIN levels
become limited by the total amount of PINs that a cell contains.
Note that a similar effect can be obtained by assuming a saturating
feedback function, which limits the level of PINs that auxin can
induce on a membrane segment. At the membrane segment level,
the addition of a finite PIN pool causes the model to become truly
bistable (Fig. 3G), with a stable high equilibrium as opposed to a
region of unlimited growth, independent of whether a linear or
quadratic feedback is assumed. In addition, this bistability occurs
for much broader parameter regimes.

At the single-cell level, there is still an apolar rest state, in which
both membrane segments have the same low PIN concentration,
but now there are two polar equilibria in which one membrane
segment has a high but limited PIN concentration and the other has
a low PIN level (Fig. 3H). The addition of the finite PIN pool
abolishes the state in which both membranes can have (infinitely)
high PIN levels. The increased parameter region in which
membrane bistability occurs together with the abolishment of the
bipolar equilibrium induced by the finite PIN pool increase the
robustness with which polarity-driven self-organised patterning is
generated by the model. 

At the tissue level, the model with a limiting PIN pool behaves
similarly to the model without a limiting PIN pool (Fig. 3C), the
difference being that polar cells now have a low PIN concentration
on one membrane segment but a finite, high PIN concentration on
the other. Thus, adding a finite PIN pool eliminates the unlimited
growth of PIN concentrations and thus limits the maximal flux out
of the cells. This is sufficient to allow auxin concentrations to build
up in veins, as was demonstrated by Feugier and Iwasa (Feugier
and Iwasa, 2006).

Box 4. Mathematical analysis of the flux-based model
of Stoma et al. (Stoma et al., 2008) 

Membrane segment level
The auxin equation is given by Eq. 1. The PIN equation for this
model depends on the feedback of auxin flux on membrane PIN
levels. Flux (F) consists of influx and passive and active efflux over
the membrane segment:

Note that we use the same terminology as in the auxin equation
(Eq. 1). Since in the cell to which the membrane segment belongs
auxin is constant, it is incorporated in ipas and ipin. Feedback of the
auxin flux on membrane segment PIN levels is modelled through an
increased recycling rate of PINs (kon). Two alternative feedback
functions have been proposed by the authors: the linear function
kon=konb+konf F and the quadratic function kon=konb+konf F2. In both
cases, the feedback only takes place when the flux is larger than 0,
i.e. when there is net efflux. See Table 2 for parameter definitions
and default values. Incorporating the linear feedback function in the
dP/dt equation (Eq. 3) gives the PIN equilibrium line:

which gives the dashed line in Fig. 3A or 3D. This line can intersect
twice with the auxin equilibrium line given by Eq. 2 (but see Fig.
3D). The lower equilibrium is stable and the upper is unstable.
Above this equilibrium, unlimited increase of PINs and auxin takes
place. The PIN equilibrium line with quadratic feedback gives similar
results (dotted line in Fig. 3A).

Single-cell level
At the single-cell level, the authors assume the availability of PINs
to be non-limiting. Hence, P0 and P1 can be described by Eq. 4b
and, assuming that auxin concentrations are in dynamic equilibrium
(Eq. 6), PIN equilibrium lines are given by:

Eq. 9 indeed shows that P0 and P1 are independent of each
other. The equilibrium lines are exactly horizontal and vertical
(Fig. 3B, solid lines for P0 and dashed lines for P1), intersecting once
in a stable apolar equilibrium and three times in unstable equilibria.
Above and to the right of these unstable equilibria, unlimited
growth of either P0 or P1 or both takes place.

Adding a limiting PIN pool
We include a limiting PIN pool by incorporating the feedback
functions into Eq. 5 rather than into Eq. 4b. The resulting
equilibrium lines have similar shapes for linear and quadratic
feedback (Fig. 3G). Owing to the limiting PIN pool, the top part of
the PIN equilibrium line curves to the right, allowing for two stable
equilibria at the membrane segment level. At the single-cell level,
the curves now obtain a complicated shape that allows them to
intersect in three stable equilibria: two polar and an apolar rest state
(Fig. 3H).

F = ipas + ipinP eA . (7)

P =

konb + konf ipas eA( )
koff konf ipin

 if F > 0

kon,b

koff
                          if F 0

, (8)

Pi =
konf ipasd ep( )+ konb (e + d )

koff e + d( ) konf ipind
 with i = 0,1. (9)

D
E
V
E
LO

P
M
E
N
T



2260

Example 2: concentration-based model
Smith et al. (Smith et al., 2006) formulated a model for phyllotaxis
in the growing shoot apical meristem. Membrane PIN levels were
assumed to depend positively on the auxin levels in neighbouring
cells. The authors used a superlinear saturating feedback function
(see Glossary, Box 1), meaning that at first PIN levels increase more
than linearly with auxin concentrations until maximum membrane
PIN levels are reached. In addition, a limited PIN pool is assumed,
causing a competition for PINs between the different membrane
segments of a cell. Finally, auxin pumping by the PINs is assumed
to saturate with auxin levels in the neighbouring cell. The authors
show that, for an initially homogenous ring of cells, evenly spaced
peaks of auxin arise after the application of small, transient
perturbations, with PINs pointing toward the neighbouring cell with
the highest auxin level. In a 2D epidermal tissue layer, the model also
produced distinct peaks; however, this occurred at variable distances

from one another. However, after incorporating differences in auxin
handling between the cell types of different meristem domains, the
model can produce stable phyllotaxis patterns. The authors
furthermore showed that distinct phyllotaxis patterns can be
reproduced by the model depending on parameter values such as
meristem size and the transport and diffusion of auxin. 

Our analysis of the model by Smith et al. (Smith et al., 2006) is
described in Box 5. We find that, at the membrane segment level,
the model indeed allows for bistable behaviour (Fig. 4A).
Combined with the limiting PIN pool that causes competition for
PINs between membrane segments, this results in a cell model with
two stable equilibria in which either P0 is high and P1 is low or vice
versa (Fig. 4B). Hence, cells in this model display polar behaviour.
Note that this differs from the model by Stoma et al. (Stoma et al.,
2008) after incorporating a finite PIN pool, in which a stable apolar
rest equilibrium was also present (Fig. 3H).
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Fig. 3. Analysis of the flux-based model of Stoma et al. (Stoma et al., 2008). Analysis is without (A-F) or with (G,H) a limiting PIN pool. In membrane
segment level A-P phase planes (A,D,G), solid lines are A equilibrium lines and dotted or dashed lines are P equilibrium lines. In single-cell P0-P1 phase
planes (B,E,H), solid lines are P0 equilibrium lines and dashed lines are P1 equilibrium lines. Black circles in phase planes represent stable equilibria,
whereas white circles indicate unstable equilibria. Arrows indicate the direction of the dynamics of the system variables. (A) At the membrane segment
level, the PIN equilibrium line resulting from either linear feedback under particular limited parameter settings (dashed line) or from superlinear
feedback for all parameter settings (dotted line) intersects twice with the auxin equilibrium line (solid line). (B) These two equilibria lead to four
equilibria at the single-cell level, one of which is stable. Additionally, there are three regions where either P0 or P1 or both increase unlimitedly. (C) In a
file of cells, the with-the-flux cell polarity is not dependent on the strength of the sink (upper two cell files). For slow auxin degradation, with-the-flux
but up-the-gradient polarisation arises (bottom cell file). In a ring of cells, a transient perturbation (red arrow) causes stable polarisation. (D) For linear
feedback, most parameter settings produce a PIN equilibrium line that allows for only one equilibrium at the membrane segment level. (E) This results
in a single stable equilibrium at the single-cell level. (F) At the tissue level, patterning is now gradient-driven, with cell polarity depending on the
strength of the sink at the end of the cell file, and transient perturbation (red arrow) in a ring of cells failing to produce persistent patterning. (G) If a
limiting PIN pool is assumed, the membrane segments become bistable, both for linear and superlinear feedback. (H) At the cell level this results in two
stable polar equilibria and a stable apolar rest state. Default parameter settings are used (see Table 2), except: (A) koff=0.1 for both feedbacks; (D) koff=0.5,
linear feedback; (G,H) koff=0.5, linear feedback. Note that similar behaviour can be obtained for a range of parameters.
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In a file of cells, we find that PINs are oriented up-the-gradient
(Fig. 4C), which is consistent with the premise of the model whereby
PINs are localised on the membrane segment apposing the
neighbouring cell with highest auxin levels. Polarised cells display a
low PIN concentration on the membrane segment facing the sink and
a high PIN concentration on the membrane facing the source, and
these levels are independent of the strength of the source and sink.
When a ring of cells is simulated, a transient perturbation in one of
the cells spreads throughout the entire cell file, producing a persistent
polarisation of all cells. The cell that received the perturbation, in the
form of a transient increase in auxin, develops into an auxin
maximum due to the pointing of the polarised cells towards it, and
an auxin minimum arises at the opposing side of the cell file, from
which the polarised cells point away. Thus, in contrast to what
happens in the flux-based model, the polarisation of cells is
accompanied here by a patterned rather than homogeneous auxin
distribution (Fig. 4C). Our analysis thus confirms that pattern
formation in the Smith et al. (Smith et al., 2006) model is self-
organising, and that this self-organisation is polarity-driven, in
agreement with the model behaviour reported in the original paper.

The feedback function used by Smith et al. (Smith et al., 2006)
results in a PIN equilibrium line (see Glossary, Box 1) that shifts

as a function of the difference in auxin concentration between two
neighbouring cells (see Fig. 4D,E). As a result, one of the two
membrane segment equilibria may disappear, abolishing
membrane bistability and cell polarity. Therefore, not all cells
within a tissue necessarily experience the auxin concentration
differences that are necessary to polarise. This might explain why
the authors observed strongly polarised cells close to maxima, but
weaker or no polarisation at a greater distance from the maxima.

Removing the limiting PIN pool from the model
Next we examine whether the model behaviour changes if we
assume that there is no competition between membrane segments for
a limiting PIN pool (see Box 5 for details). Obviously, this is not
increasing the physiological realism of the model. However,
performing this analysis allows us to compare the flux-based and
concentration-based models both under conditions with and without
a finite PIN pool. On the membrane segment level, we find that there
is still bistability, with either two stable and one unstable equilibrium
as in Fig. 4A (Fig. 4H, for saturating feedback) or with one stable
and one unstable equilibrium (Fig. 4F, for non-saturating feedback).

On the cell level, we find four alternative equilibria for non-
saturating feedback (Fig. 4G), which result from combining the two

Box 5. Mathematical analysis of the concentration-based model of Smith et al. (Smith et al., 2006)

Membrane segment level
To model auxin dynamics, Smith et al. (Smith et al., 2006) take into
account production, decay, influx and efflux processes. Auxin
production is assumed to be limited by the amount of auxin already
present in the cell. Auxin efflux depends in a saturating manner on
auxin content in the neighbouring cell, thus both influx and efflux are
dependent on auxin in the neighbouring cell (Ai) and auxin in the cell
to which the membrane segment of interest belongs (Ac):

in which κ is the factor by which auxin inhibits its own production,
epas is the passive efflux out of the neighbouring cell and epin is the
PIN-mediated efflux, which is half maximum when A=hpin. Note that
both Ac and the PINs on the membrane of a neighbouring cell are still
assumed to be constant. The resulting auxin equilibrium line is given
by:

Smith et al. (Smith et al., 2006) assume the PIN pool to be
limiting, all PINs to reside on membranes and PIN dynamics to
always be in equilibrium. Thus, they determine the PIN equilibrium
line directly:

where b is a base parameter that the authors set to 2 or 3, and the
sum is taken over the auxin concentrations in all neighbouring cells
(n). Ptot contains explicit (auxin-induced) production and decay of PINs.
Given that we maximally consider two auxin concentrations in
neighbouring cells, we can replace Eq. 12 with:

Note that, at the membrane segment level, we assume Aj to be
constant. There are a total of three intersection points between the
PIN and auxin equilibrium lines (dashed and solid lines in Fig. 4A), of

dAi
dt

= p
1+ Ai

dAi + ipas +
ipinPiAc2

hpin2 + Ai2
epasAi

epinAi2

hpin2 + Ac2
 with i = 0,1,  (10)

Pi =
hpin2 + Ai2

ipinAc2
Ai d + epas( )+ epinAi2

hpin2 + Ac2
p

1+ Ai
ipas  with i = 0,1.  (11 )

P = PtotbA

n
bAi

, (12)

Pi =
PtotbAi

bAi + bAj
 with i = 0,1 and j =1,0 . (13)

which the outer two equilibria, corresponding to low and high PIN
levels, are stable. 

The PIN equilibrium line shifts with the value of bAj (Eq. 13). It
moves to the right when Aj is high and to the left when Aj is low (Fig.
4D,E, respectively), potentially eliminating two equilibria and thus the
potential for bistability. Thus, whether cells can polarise depends on
their local auxin context.

Single cell
For the cell level, the PIN equilibrium line is given by Eq. 13, in which
now both Ai and Aj are variable. We substitute these in the auxin
equations (Eq. 10) and solve to obtain the auxin equilibrium lines in
Fig. 4B. These intersect three times in two stable polar equilibria
separated by an unstable one. Since the PINs are assumed to be in
equilibrium with the auxin levels (Eq. 13), they can be directly
deduced from the auxin levels in the equilibria.

Removing the limiting PIN pool
To study how the model behaviour changes if there is no competition
for a limited PIN pool, we have to reverse-engineer Eq. 12. The PIN
equation is given by Eq. 5 and there are two possible ways to create
the sigmoid PIN equilibrium line through feedback of auxin on kon:
through a non-saturating (kon=konb+konf bA) or a saturating [kon=konb+
konf bA/(bhA+bA)] function. Substituting these feedbacks into the PIN
equation without a limiting PIN pool (Eq. 3) results in the PIN
equilibrium lines:

Both of these lines can intersect more than once with the auxin
equilibrium line. In the case of Eq. 14a there are two equilibria
(Fig. 4F). The lower one is stable, and the upper, which is unstable,
separates a region of unlimited increase in PINs. In the case of Eq.
14b, the system has two stable equilibria separated by an unstable
one (Fig. 4H). At the cell level this results in one stable equilibrium
and three regions of increase of either P0, P1, or both for Eq. 14a
(Fig. 4G) or four stable equilibria, two polar and two apolar, for Eq.
14b (Fig. 4I).

P = 1
koff

konb + konf bA( ) , (14a)

P = 1
koff

konb +
konf b

A

bhA + bA
. (14b)

D
E
V
E
LO

P
M
E
N
T



2262

equilibria for P0 with the two equilibria for P1. The single stable
equilibrium corresponds to the apolar cell state in which both
membrane segments have a low PIN level. The unstable equilibria
separate this apolar rest state from the alternative states in which
unlimited growth of PINs on either one or both of the membrane
segments occurs. If, instead, the feedback is saturating, there are a
total of nine equilibria at the single-cell level (Fig. 4H), which
result from combining the three equilibria at the membrane
segment level. In this case there are four stable equilibria: one
apolar, two alternative polar equilibria, and one bipolar. Thus,
despite the removal of the PIN pool the model retains its potential
to produce polar cells. However, it acquires a bipolar state, with
high PINs on both membranes or a region in which both
membranes increase their PIN level unlimitedly, and an apolar rest
state in which both membranes have low PIN levels. Consequently,
the robustness of polarity-driven self-organised patterning is
decreased. Thus, the tissue level behaviour is similar upon removal
of the PIN pool, but whether a cell is polar or not now depends
more strongly on its context.

Evaluation of other PAT models
Having analysed these two example models in detail, we now
briefly discuss our analysis of other PAT models found in the
literature. The full analysis can be found in supplementary material
Appendix S1, and an overview of all model assumptions and the
generated behaviour is given in Table 2.

Flux-based models
In addition to the model by Stoma et al. (Stoma et al., 2008) that
we used as an example, we analysed a variety of published flux-
based models (Mitchison, 1980; Mitchison, 1981; Feugier and
Iwasa, 2006; Feugier et al., 2005; Fujita and Mochizuki, 2006;
Alim and Frey, 2010). Summarising, we find that all flux-based
models, independent of the shape of the feedback function, auxin
pumping dynamics or whether a limiting PIN pool is assumed, are
capable of generating polarity-driven self-organised auxin and PIN
patterns. Furthermore, all these models contain a stable rest state
equilibrium at the single-cell level, in which both membranes
contain low PIN levels, that is separated from the two alternative
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Fig. 4. Analysis of the concentration-based model of Smith et al. (Smith et al., 2006). Analysis is with (A-E) and without (F-I) a limiting PIN pool.
Equilibrium lines, equilibria and arrows are the same as in Fig. 3 for the membrane segment A-P (A,D,E,F,H) and single-cell (B,G,I) phase planes. In the
single-cell A0-A1 phase planes (B,G,I), the solid equilibrium line is for A0 and the dashed equilibrium line is for A1. (A) At the membrane segment level the
PIN and auxin equilibrium lines can intersect three times. (B) At the single-cell level, there are two stable, polar equilibria. (C) At the tissue level, up-the-
gradient polarisation occurs with cellular polarity that is independent of the strength of the sink and that can sustain itself in a ring of cells after a
transient perturbation (red arrow). (D,E) When Aj is high (D) or low (E), the PIN equilibrium line moves such that membrane segment equilibria are lost.
(F) At the membrane segment level, in the case of non-saturated feedback and a non-limiting PIN pool (Eq. 14a) the PIN equilibrium line can intersect
twice with the auxin equilibrium line. (G) At the cell level, this results in one stable equilibrium and three unstable equilibria demarcating alternative
regions of behaviour in which either one, the other, or both PIN levels increase infinitely. (H,I) If, instead, a saturated feedback is assumed (Eq. 14b), there
are two stable equilibria at the membrane segment level (H) and four stable equilibria, two of which are polar and two apolar, at the cell level (I). Default
parameters are used (see Table 2), except: κ=1, hpin=1, b=2, Ac=12; (A) Aj=10, dynamic PINs (Eq. 14b): konb=0.01, konf=5, koff=0.5 for both feedbacks; (D)
Aj=20; (E) Aj=1; (F) dynamic PINs (Eq. 14a): konb=0.01, konf=0.5, koff=5. Note that similar behaviour can be obtained for a range of parameters. 
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polar states by unstable equilibria. Consequently, cell polarisation
in these models requires perturbations that push the system beyond
these unstable equilibria into the realm of the polar equilibria.

We find that in those models (Feugier and Iwasa, 2006; Feugier
et al., 2005; Fujita and Mochizuki, 2006; Alim and Frey, 2010), in
which a finite PIN pool is assumed, no bipolar equilibrium with
high PIN levels at both membranes is present. By contrast, in the
early models by Mitchison (Mitchison, 1980; Mitchison, 1981) and
in the model by Stoma et al. (Stoma et al., 2008) (which is based
on these early models) no limiting PIN pool is incorporated and a
bipolar state does occur, resulting in more possibilities for nonpolar
cells. Similar to the model by Stoma et al. (Stoma et al., 2008), the
other flux-based models show with-the-flux behaviour, but can
generate up-the-gradient auxin transport depending on the strength
of localised sinks. In all cases, we find that a superlinear
dependence of membrane PIN levels on auxin flux increases the
parameter range for membrane bistability and hence the robustness
of self-organised patterning.

Concentration-based models
Besides the model by Smith et al. (Smith et al., 2006), we applied
our analysis to several further published concentration-based
models (Jönsson et al., 2006; Merks et al., 2007; Newell et al.,
2007; Sahlin et al., 2009). For the model by Newell et al. (Newell
et al., 2007), which combines auxin concentration feedback on
PINs and mechanical effects, we have not considered the
mechanical effects. Concentration-based models do not
automatically allow for self-organised patterning. For polarity-
driven self-organised patterning to arise, either a non-linear
feedback function (Smith et al., 2006; Jönsson et al., 2006) and/or
non-linearity in auxin pumping dynamics (Jönsson et al., 2006;
Merks et al., 2007; Sahlin et al., 2009) is necessary. This difference
between concentration-based and flux-based models is due to the
inherent presence of non-linearity in flux-based models. First, in
most flux models, feedback only occurs for net efflux, with PIN
levels abruptly switching to the minimum concentration for
negative efflux. Hence, even a seemingly linear function is
transformed into a non-linear function. Second, flux is essentially
the product of the PIN level and auxin concentration. Thus, even if
flux feeds back linearly on PINs, this results in a direct positive
feedback of PINs on PINs, effectively making the feedback non-
linear. Increased non-linearity in feedback or auxin pumping,
saturating feedback and a finite PIN pool contribute to the
robustness of polarity-driven self-organised patterning, as was the
case in flux-based models. Introduction of a limiting PIN pool in
concentration-based models abolishes both the bipolar and the
apolar rest equilibrium, whereas in flux-based models only the
bipolar equilibrium disappears. Consequently, concentration-based
models incorporating a finite PIN pool always produce polar cells
without requiring any substantial perturbation, as no stable apolar
cell state is present.

In addition to polarity-driven self-organised patterning, we find
an additional self-organisation mechanism in concentration-based
models that occurs if a finite PIN pool is combined with a linear
feedback function and linear auxin pumping dynamics (Newell et
al., 2007; Jönsson et al., 2006). Owing to the absence of non-
linearity, no polarity-driven self-organisation can arise. However,
on the tissue level, auxin and PIN polarity patterns look similar,
as for the polarity-driven self-organisation discussed for Smith et
al. (Smith et al., 2006). The principal difference is that, in
isolation, single membrane segments are not bistable and single
cells are not polar, and hence polarity arises only at the tissue

level. This mechanism of self-organisation resembles Turing-type
patterning. The positive feedback from cellular auxin levels on
PIN levels in the membranes of neighbouring cells amplifies local
auxin maxima, thus functioning as short-range activation, while
the resulting depletion of auxin from surrounding tissue prevents
the formation of nearby maxima, thus serving as long-range
inhibition. For certain parameter conditions, and combined with
a finite PIN pool that causes competition for PINs between
membranes and hence promotes cellular polarity, these effects
destabilise the single stable equilibrium of the system and lead to
the formation of auxin maxima and PIN polarity (see our
bifurcation analysis in  supplementary material Appendix S1).
The detailed analysis by Sahlin et al. (Sahlin et al., 2009)
suggests that this mechanism might, in addition to the isolated
maxima needed for phyllotactic patterns, also generate stripe-like
patterns.

Finally, in contrast to flux-based models, concentration-based
models are capable only of generating up-the-gradient patterning.

Mechanistic models
An alternative hypothesis for PIN polarisation was introduced by
Heisler et al. (Heisler et al., 2010). The model was inspired by the
observation that PIN polarity is correlated with the alignment of
cortical microtubules. This led the authors to propose that PINs
localise to membrane segments adjoining cell walls that experience
the most stress, which in turn is the result of local cell expansion
due to auxin. The model can thus be seen as a more mechanistic
version of concentration-based models, with wall stress being the
readout of auxin content in the neighbouring cells. The
combination of non-linear auxin pumping dynamics and a finite
PIN pool causes the model to behave in a self-organised polarity-
driven manner that generates up-the-gradient patterning, similar to
concentration-based models. 

Recently, Wabnik et al. (Wabnik et al., 2011) proposed yet
another alternative hypothesis for the feedback of auxin on
membrane PIN levels. In their model, extracellular auxin binds to
free receptors in the apoplast. The resulting auxin-receptor
complexes inhibit endocytosis of PIN proteins on the nearest
membrane segment. Furthermore, the complexes limit the diffusion
of auxin and receptor, producing both an intra-apoplast auxin
gradient and competition for receptors between segments on either
side of the cell wall. We extended our framework with cell wall
compartments and receptor variables in order to study this model
(see supplementary material Appendix S1). Our analysis shows that
the model allows for membrane bistability and cell polarity and
produces with-the-flux tissue polarisation patterns under the
additional requirement that auxin has a low diffusion speed in the
cell wall, hence allowing for wall gradients.

Models for fountain-like patterns
For the model by Stoma et al. (Stoma et al., 2008), we discussed
how the authors used the flux-based mechanism to generate both
up-the-gradient maximum formation in the epidermis and down-
the-gradient with-the-flux vein formation in subepidermal tissues.
In order to achieve this, distinct model settings were required for
the different tissue layers. Similarly, Merks et al. (Merks et al.,
2007) proposed a concentration-based model to simulate these two
processes in combination. In addition to the assumption that cells
position their PINs toward the neighbouring cell with the highest
auxin concentration, auxin is assumed to induce PIN expression
(Vieten et al., 2005), which destabilises the position of the auxin
maximum. As a result, the initially epidermal maximum propagates D
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Table 2. Evaluation of different models according to assumptions and behaviour on all levels of organisation 

Reference Mechanism 
Feedback 
function 

Biological 
interpretation 

Auxin 
transport 

Biological 
interpretation PIN dynamics 

Biological 
interpretation 

Bistable 
membranes? 

Polar 
cells? 

Maximal 
organisation 

Up or 
down 

gradient? 
Stoma et  
al., 2008 

Flux-based kon F  Exocytosis 
increases linearly 
with flux 

Linear: T PA  Neither [PIN] 
nor [auxin] is 
limiting   

dP
dt

= kon – koffP  
PINs cycle to 
and from the 
membrane; 
exocytosis  
does not  
lower the 
availability of 
cytosolic PINs 

Yes Yes Self-
organised: 
polarity-
driven 

Up and 
down 

kon F 2  Exocytosis 
increases more 
with flux when 
flux becomes 
higher 

Smith et  
al., 2006 

[]-based 
P

b A

n
b An

 
[PIN] increases 
faster with  
higher [auxin] in 
neighbour, and 
saturates for  
high [auxin] 

Saturated: 

T P
A2

h2 + A2  

[PIN] is  
limiting: 
transport 
saturates for 
high [auxin] in 
neighbouring 
cell 

P
Pcb A

n
b An

 

PINs produced and 
decayed in Pc 

PIN pool is 
limiting, all 
PINs are on  
the membrane, 
and cycling is  
in equilibrium; 
auxin induces 
PIN expression 

Yes Yes Self-
organised: 
polarity-
driven 

Up 

Mitchison, 
1980 

Flux-based 
D

F 2

h2 + F 2
 

Permeability 
increases more 
with flux when 
flux becomes 
higher and 
saturates for  
high flux 

Linear: T PA  Neither 
permeability 
nor [auxin] is 
limiting 

– – Yes Yes Self-
organised: 
polarity-
driven 

Down 

Mitchison, 
1981 

Flux-based D F 2  Permeability 
increases more 
with flux when 
flux becomes 
higher 

Linear: T PA  Neither 
permeability 
nor [auxin] is 
limiting 

– – Yes Yes Self-
organised: 
polarity-
driven 

Down 

Feugier et 
al., 2005 

Flux-based Various Various Various Various Various Various Yes Yes Self-
organised: 
polarity-
driven 

Down 

Feugier  
and Iwasa, 
2006 

Flux-based kon F 2  Exocytosis 
increases more 
with flux when 
flux becomes 
higher 

Linear: T PA  Neither [PIN] 
nor [auxin] is 
limiting 

dP
dt

= konPtot koffP  
PINs cycle to 
and from the 
membrane,  
PIN pool is 
limiting 

Yes Yes Self-
organised: 
polarity-
driven 

Down 

Fujita and 
Mochizuki, 
2006 

Flux-based 
P

1
1+ e F

 
[PIN] increases 
more with flux 
when flux 
becomes higher 

Linear: T PA  Neither [PIN] 
nor [auxin] is 
limiting 

P
1

1+ e F
 

PIN pool is 
limiting, all 
PINs are on  
the membrane 
and cycling is  
in dynamic 
equilibrium 

Yes Yes Self-
organised: 
polarity-
driven 

Down 

Alim and 
Frey, 2010 

Flux-based kon F 2  Exocytosis 
increases more 
with flux when 
flux becomes 
higher 

Linear: T PA  Neither [PIN] 
nor [auxin] is 
limiting 

dP
dt

= konPtot koffP  
PINs cycle to 
and from the 
membrane,  
the PIN pool is 
limiting 

Yes Yes Self-
organised: 
polarity-
driven 

Down 

Jönsson et 
al., 2006 

[]-based 
P

A

n
An

 
[PIN] increases 
linearly with 
[auxin] in 
neighbour and 
saturates for  
high [auxin] 

Linear: T PA  Neither [PIN] 
nor [auxin] is 
limiting 

P
Ptot A

n
An

 
PIN pool is 
limiting, all 
PINs are on  
the membrane, 
cycling is in 
equilibrium 

No No Self-
organised: 
other (see 
text) 

Up 

kon
A3

h3 + A3

 

Exocytosis 
increases faster 
with higher 
[auxin] in 
neighbour and 
saturates for  
high [auxin] 

Saturated: 

 
T P

A
h + A

 

[PIN] is  
limiting: 
transport 
saturates for 
high [auxin] 

dP
dt

= konPtot koffP  
PINs cycle to 
and from the 
membrane,  
PIN pool is 
limiting 

Yes Yes Self-
organised: 
polarity-
driven 

Up 

Merks et  
al., 2007 

[]-based 
kon

A
h + A

 
Exocytosis 
increases linearly 
with [auxin] in 
neighbour and 
saturates for  
high [auxin] 

Saturated: 

 
T P

A
h + A

 

[PIN] is  
limiting: 
transport 
saturates for 
high [auxin] 

dP
dt

= konPc koffP  

PINs produced and 
decayed in Pc 

PINs are 
produced, 
decayed and 
cycle to and 
from the 
membrane; 
auxin induces 
PIN expression 

Yes Yes Self-
organised: 
polarity-
driven 

Up 

Newell et 
al., 2007 

[]-based kon A  Exocytosis 
increases linearly 
with [auxin] 

Linear: T PA  Neither [PIN] 
nor [auxin] is 
limiting 

dP
dt

= konPtot koffP  
PINs cycle to 
and from the 
membrane,  
the PIN pool is 
limiting 

No No Self-
organised: 
other (see 
text) 

Up 

Sahlin et  
al., 2009 

[]-based Various Various Saturated: 

T P
A

h + A
 

[PIN] is  
limiting: 
transport 
saturates for 
high [auxin] 

dP
dt

= konPtot koffP  
PINs cycle to 
and from the 
membrane,  
the PIN pool is 
limiting (some 
tests 
performed 
with an 
unlimited PIN 
pool)  

Yes Yes Self-
organised: 
polarity-
driven 

Up 
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subepidermally through the tissue and leaves basally pointing PINs
in its wake. Thus, whereas the model by Stoma et al. (Stoma et al.,
2008) required different assumptions for different tissue layers to
combine auxin maximum and vein formation, the model by Merks
et al. (Merks et al., 2007) is only capable of generating the two
patterns sequentially, with one replacing the other.

In another attempt to explain fountain-like pattern formation,
Bayer et al. (Bayer et al., 2009) developed a model that explicitly
combines concentration-based and flux-based feedback, using an
auxin level threshold to decide which type of feedback should be
applied locally. The model generates auxin maxima in the
epidermis by invoking up-the-gradient feedback and then switches
to with-the-flux feedback that positions PINs in underlying tissues
away from the maximum. In the up-the-gradient regime, the
authors chose the same feedback function as in their previous
concentration-based model (Smith et al., 2006). Hence, the
membrane segments are bistable and single cells are polar,
allowing polarity-driven self-organised pattern formation. In the
with-the-flux regime, the feedback function is superlinear. As
shown by Feugier et al. (Feugier et al., 2005) and following from
our analysis, these conditions also allow for polar cells and
polarity-driven self-organising vein formation with high auxin
concentrations in the veins. However, given that two distinct
feedback mechanisms need to be invoked, the overall pattern is not
fully self-organised.

Extrapolating our analysis to 2D and 3D tissue
and in vivo plant patterns
Our analysis is restricted to the self-organising potential of
published models at the membrane segment, single-cell and 1D
tissue level and the type (orientation) of 1D patterns that they
generate. The reason for this restriction is mainly the feasibility of
a rigid analytical approach. Obviously, this limits the degree to
which we can predict the 2D and 3D tissue patterns generated by
the models and how far these model patterns correspond to in vivo
patterns. For example, based on our analysis we cannot predict the
precise spacing and arrangement between phyllotactic maxima or
leaf veins. Indeed, Mitchison (Mitchison, 1980) showed
analytically that to obtain an additional symmetry breaking in 2D
tissue and generate distinct veins rather than laminar flow patterns,

superlinear feedback of auxin flux on PIN polarisation is required.
Based on our 1D analysis, we can only conclude that both linear
and superlinear feedback generate self-organised with-the-flux
oriented polarisation patterns, but cannot determine this additional
demand for distinct veins. In other words, we can determine the
necessary requirements for self-organised patterning, but we cannot
determine requirements for a specific phyllotactic or venation
pattern. However, we are able to extrapolate our 1D analysis to
higher dimensional tissue patterns to a qualitative extent, focusing
on the orientation and self-organised nature of the patterning.

Let us consider the fountain and reverse-fountain types of flux
pattern observed in the shoot primordia and root tip (Fig. 1C,D).
Two main transport directions can be distinguished in both organs:
toward (labelled 2) and away (labelled 1) from a maximum. In the
root tip (Fig. 1D), auxin flux is directed toward the root tip
maximum in the inner tissue layers and away from the maximum
in the outer layer(s). The pattern in a shoot primordium is reversed
(Fig. 1C). Our 1D analysis reveals how, in each model, PINs can
polarise with respect to a maximum. We found that concentration-
based models always direct PINs toward an auxin maximum,
whereas flux-based models generally locate PINs away from the
maximum but can be made to display an opposite orientation under
particular parameter conditions. Hence, concentration-based
models can explain the arrows labelled 2 in Fig. 1C,D, which point
towards the auxin maximum, but cannot explain those labelled 1 in
an autonomous manner. However, it has been shown that
expression of the gene PINOID can switch the polar orientation of
PINs from a basal to an apical orientation (Friml et al., 2004) by
influencing intracellular PIN trafficking (Michniewicz et al., 2007).
Thus, in the root, PINOID expression in the outer tissue layer(s)
could account for the switch to away-from-maximum localisation
in these layers. However, this would not explain the away-from-
maximum arrows in the inner tissues of the shoot primordium.
Flux-based models can in theory account for both arrows.
However, this requires that the auxin maximum serves as a sink
(that attracts auxin) for the inner layers and as a source for the outer
layers in the root tip (with the reverse for the shoot primordium)
[see model by Stoma et al. (Stoma et al., 2008)].

Thus, based on our analysis we conclude that, despite their
ability to generate self-organised patterns, neither concentration-

Table 2. Continued 
Bayer et  
al., 2009 

Flux-based 
and []-
based  

P
bF

n
bFn

 

 

P
b A

n
b An

 

[PIN] increases 
faster with  
higher 
flux/[auxin] in 
neighbour and 
saturates for  
high flux/[auxin] 

Saturated: 

T P
A2

h2 + A2
 

[PIN] is  
limiting: 
transport 
saturates for 
high [auxin] 

 

P
PcbF

n
bFn

 

 

P
Pcb A

n
b An

 

PINs produced and 
decayed in Pc 

PINs are 
produced, 
decayed; 
cycling is in 
dynamic 
equilibrium 
and all PINs  
are on the 
membrane; 
auxin induces 
PIN expression 

Yes Yes Self-
organised: 
polarity-
driven 

Up and 
down 

Heisler and 
Jönsson, 
2006 

[]-based 

 

P
A

n
An

 
Exocytosis 
increases linearly 
with [auxin] in 
neighbour and 
saturates for  
high [auxin] 

Saturated: 

 
T P

A
h + A

 

[PIN] is  
limiting: 
transport 
saturates for 
high [auxin] 

 

P
Ptot A

n
An

 
PIN pool is 
limiting, all 
PINs are on  
the membrane, 
and cycling is in 
dynamic 
equilibrium 

Yes Yes Self-
organised: 
polarity-
driven 

Up 

Wabnik et 
al., 2011 

Cell wall  
[]-based 

  
koff

1
h + A

 

Endocytosis 
decreases  
linearly with 
[auxin] in cell  
wall and  
saturates for  
high [auxin] 

Saturated: 

 
T P

A
h + A

 

[PIN] is  
limiting: 
transport 
saturates for 
high [auxin] 

 

dP
dt

= konPc koffP  

PINs produced and 
decayed in Pc 

PINs are 
produced, 
decayed and 
cycle to and 
from the 
membrane; 
auxin induces 
PIN expression 

Yes Yes Self-
organised: 
polarity-
driven 

Up 

[] is used for concentration, D represent membrane permeability, T represents transport. 
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based nor flux-based models can explain fountain-type patterns in
a fully autonomous self-organised manner, but require additional
tissue- or location-specific assumptions. This implies either that
auxin patterning in plants is not fully self-organised and that tissue-
specific responses are required, or that the currently proposed
feedback mechanisms need to be revised to fully explain self-
organised auxin patterning.

Conclusions
Auxin patterning plays a central role in robust, yet
developmentally and environmentally flexible, plant
development. The long-standing idea that auxin influences its
own transport, thus potentially allowing for self-organised
patterning, has inspired numerous modelling studies. Apart from
the major and easily understood distinction assumed in the
feedback mechanism – whether auxin flux across the membrane
or auxin levels in neighbouring cells impacts membrane PIN
levels – models differ in their mathematical descriptions of the
details of this feedback, as well as of auxin transport dynamics
and PIN cycling dynamics. The relevance of these variations for
model output is less obvious. In addition, little attention has been
devoted to whether the generated model patterns arise in an
autonomous self-organised manner or are strongly dependent on
persistent prepatterns or additional assumptions. However, largely
self-organised patterning is essential for robust, repeated and
flexible patterning during plant development. Here we developed
a generalised analytical and simulation framework to compare
most of the currently published PAT models, translating the wide
range of mathematical functions employed into a limited set of
underlying biological assumptions, and reporting the model
behaviour that this results in on the membrane segment, cell and
tissue levels. We focused on the directionality of PIN polarisation
and the extent of self-organised patterning that the models
generate. 

To summarise our analysis, flux-based models are somewhat
more flexible in the direction of polarisation that they can generate,
and do not necessarily require non-linearity or a limiting PIN pool
to generate self-organised patterning. By contrast, concentration-
based models allow for two different modes of self-organised
patterning, and require less perturbation for cell polarisation to
occur in the case of a limiting PIN pool. Still, both model types
require largely similar biological assumptions to generate patterns
in a robust self-organising manner, and both display only a single
strongly preferred direction of polarisation. However, in plants,
opposite polarities often co-occur. In the shoot and lateral root
primordia, leaves, the primary root and the developing embryo,
(reverse) fountain-like patterns are found, with neighbouring cell
files displaying opposite PIN polarisations with respect to the same
tissue gradient. Based on our analysis, we therefore hypothesise
that neither concentration-based nor flux-based models are
currently capable of explaining bidirectional fountain-type patterns
in a fully self-organised manner.

Future directions
In this exploration of published PAT models, we have demonstrated
that all current models explain in planta auxin and PIN patterning
to the same limited extent and for similar conditions. Consequently,
based on our current knowledge it remains unclear which feedback
mechanism is at work in real plants – concentration-based,
feedback-based, a combination of the two, or an alternative
mechanism. Further, it is not clear how these models can explain
the robust and repeated formation of fountain-type patterns in

primordia and apical and basal meristems. In which directions
should future modelling and experimental research proceed in
order to answer these questions?

Let us first focus on the modelling. Our analysis shows that a
positive auxin-PIN feedback, combined with a non-linearity in
either feedback or auxin pumping or a limiting PIN pool, suffices
for generating robust self-organised patterning. Thus, we would
argue that further extending the number of flux-based and
concentration-based models (by varying the type of mathematical
functions used for describing the biological processes and by
varying how the required non-linearity is incorporated) will not
advance the current situation, but will simply provide more of the
same results. However, this knowledge does allow us to easily
generate alternative feedback models – for example, a feedback of
local, intracellular auxin concentration on membrane PIN levels as
suggested by Kramer (Kramer, 2009) – that have self-organising
capacity, and to study to what extent such alternative feedback
models are capable of generating fountain-type patterns in a self-
organised manner. 

Second, we discussed how tissue-specific PINOID expression
combined with a concentration-based feedback, or a differential
source and sink behaviour of an auxin maximum for different tissue
layers combined with a flux-based model (Stoma et al., 2008), may
be capable of generating at least certain fountain-type patterns.
However, as these tissue-specific properties are superimposed, this
patterning is not fully self-organised. Although only partly
successful in the model by Merks et al. (Merks et al., 2007), a
possibly fruitful approach might be to incorporate gene expression
regulation into PAT models in such a manner that the tissue-specific
requirements for different flux orientations are automatically
generated as part of the patterning process. Important candidate
genes to consider are the PINs themselves, additional exporters
such as the P-GLYCOPROTEINs (PGPs), but also auxin importers
such as the AUX/LAX genes, and PIN cycling dynamics regulators
such as PINOID (e.g. Swarup et al., 2000; Bandyopadhyay et al.,
2007; Benjamins et al., 2001). Together, these two approaches will
hopefully allow us to determine the type of feedback, non-
linearities and gene regulation mechanisms that are theoretically
capable of generating self-organised fountain patterns. 

To establish the mechanisms at work in real plants a combined
experimental and modelling approach is necessary. Thus, a third
important direction for future research is to formulate more
molecularly mechanistic PAT models that allow for explicit
experimental verification. This applies to tissue properties, such as
cell walls and subcellular compartments, that have been ignored in
a subset of the current models, but most importantly to the
mechanism by which auxin feeds back on PIN localisation. The
field has recently begun to move in this direction with models
(Heisler et al., 2010; Wabnik et al., 2010) in which cells measure
wall stress or use the ABP1 receptor to sense apoplast auxin levels,
rather than measuring auxin levels in neighbouring cells. Although
most molecular mechanisms behind the interactions proposed by
Heisler et al. (Heisler et al., 2010) have yet to be determined, a
property such as wall stress is compliant to experimental
manipulation. Similarly, a local requirement for the ABP1 receptor,
which plays a central role in the model by Wabnik et al. (Wabnik
et al., 2010), can be tested experimentally. In addition, this model
requires and predicts a steep auxin gradient in the apoplast. Ideally,
spatiotemporally refined methods for measuring extracellular auxin
concentrations should be established to test the existence of this
gradient. One could also propose more mechanistic models for
flux-based feedback, for example by assuming that PINs measure
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the auxin efflux that occurs through them, rather than membranes
measuring the total net efflux across them, which would be more
amenable to experimental tests.

To enable the construction and refinement of these more
mechanistic models, we need to gain a much better understanding
of PIN cycling, expression and degradation, and how these might
depend on auxin levels or fluxes. For example, our analysis points
to the importance of a limiting cellular PIN pool for the robustness
of self-organised patterning and for realistic auxin levels in veins.
However, we also find that, in models that take PIN production and
decay into account, the seemingly reasonable assumption that PIN
degradation is limited to non-membrane-bound PINs implicitly
causes the PIN pool to be non-limiting (Merks et al., 2007; Wabnik
et al., 2010). Thus, we need to experimentally verify whether
membranes compete for a finite cellular PIN pool by performing
detailed quantification of the amount of PIN proteins present in
different cellular compartments under different conditions. In
addition, for these conditions, experiments using photo-convertible
tags should be performed to determine PIN cycling rates to and
from the membrane. 

The proposed combining of, and iteration between, increasingly
mechanistic PAT models and experiments, together with an
extension of PAT models to encompass alternative feedback
mechanisms and regulated gene expression, will allow us to
eventually pinpoint the inner workings of auxin patterning in
plants.
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S.1 Phase plane analysis

To study the dynamic behaviour of the simpli�ed models we use the so-called method of phase plane analysis
(�gure S.1, table S.1) . This method can be applied if the model consists of two variables (P and A at membrane
segment level) or when the model has been further simpli�ed to two variables (P0 and P1 at single cell level,
when auxin dynamics are assumed to be in quasi steady state). The major idea behind the method of phase plane
analysis is to depict the dynamics of the two model variables in a 2-dimensional plane (the phase plane).

Consider a general model with two variables x and y, whose dynamics are typically dependent on each other
(e.g. P and A or P0 and P1). For this model system we can draw a phase plane with x on the horizontal and y on
the vertical axis. Each point in this phase plane represents a potential state of the model system, its coordinates
representing the values of x and y in this state. In this phase plane we can depict the dynamics of the variables at
each point, using horizontal arrows to depict increases (�) and decreases (�) in x and vertical arrows to depict
increases (^) and decreases (_) in y. Together these arrows constitute a vector �eld (note that we can determine
the dynamics of x and y in a point simply from the values of dxdt and dy

dt in that point).
A phase plane contains two (sets of) equilibrium lines, also named isoclines, for which one of the variables

does not change in time. These lines are obtained by setting the equation dx
dt or dydt , respectively, equal to 0. The

vector �eld for each variable switches sign when crossing the respective equilibrium line. Change of this variable is
either positive (growth) below or to the left of the equilibrium line and negative (decrease) above or to the right,
or vice versa. When these equilibrium lines intersect, both variables are in steady state and an equilibrium occurs.
Equilibria can be stable (�gure S.1A) or unstable (�gure S.1B). When a system that is in a stable equilibrium is
perturbed, it will move back to this equilibrium. When the equilibrium is unstable, a perturbation will cause the
system to move away from it. Stability of equilibria can often be determined directly by looking at the vector �eld:
if all arrows point towards the equilibrium it is stable, if one or more arrows point away from the equilibrium it is
unstable.

A crucial point in our analysis is the distinction between systems with one and systems with multiple stable
states. In systems with a single stable equilibrium the system's state will in the long run converge to that
equilibrium. In contrast, in bistable system where two stable equilibria are separated by an unstable equilibrium
the initial conditions of the system determine to which of the two stable equilibria the system converges (�gure
S.1C).

S.1.1 Di�erence between single equilibrium and bistable system

Figure S.2 illustrates the di�erences in behaviour at the single cell level between a system with one stable equilibrium
and a bistable system. In the absence of transient perturbations or an external gradient (�g S.2A and D), the
system can be in a symmetric equilibrium in which P0 = P1. When transiently perturbed from this symmetric
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Table S.1: Summary of terms
term meaning

system one or more coupled variables for which a di�erential equation
describes the change over time

phase plane (2D) all possible combinations of x and y values i.e. all possible states of
the system

vector �eld representation of direction of change for each variable at each
position in the phase plane

equilibrium line, isocline x and y values for which one of the variables does not change
equilibrium point in which two equilibrium lines intersect and both variables do

not change
stable equilibrium, attractor equilibrium to which a system converges
unstable equilibrium equilibrium from which a system diverges when perturbed
bistability situation in which a system has two stable equilibria, separated by

an unstable one; or more generally a situation in which a system
has an unstable equilibrium separating two distinct long term
attractors of the system

PAT model interpretation

bistability (membrane
segment)

a membrane segment either has high or low concentration of PIN
proteins

polarity (cell) a single cell contains at least one membrane segment with high PIN
concentration and at least one with low PIN concentration

gradient-driven pattern
formation (tissue)

cells within the tissue are not polar, constant sources and sinks
keep patterns intact

self-organisation (tissue) externally applied biases like sources and sinks are not required to
maintain a pattern

polarity-driven
self-organisation (tissue)

self-organisation results from the ability of single cells to polarise
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Figure S.1: Examples of phase planes of x and y. Two arbitrary straight equilibrium lines intersect once, providing
one equilibrium (A and B). Depending on the equations (not shown) the vector �eld can point toward (A) or away
(B) from the equilibrium, i.e. the equilibrium is either stable or unstable. C: example of a bistable system. The
two equilibrium lines intersect three times. The vector �eld shows that the outer two equilibria are stable whereas
the middle one is unstable.

equilibrium by increasing P0 (red dots in �g S.2B and E), the single equilibrium system will eventually return to
its symmetrical equilibrium (�g S.2B) whereas the bistable system will leave its unstable symmetrical equilibrium
and converge to the stable polar equilibrium in which P0 is high and P1 is low (�g S.2E). Figure C shows in red
how the phase plane of the single equilibrium model changes when the cell lies in an external auxin gradient. Due
to the gradient the membranes of the cells now experience di�erent auxin concentrations, causing P0 and P1 to
become di�erent from each other such that the single stable equilibrium is no longer symmetrical (P0 > P1, or
vice versa in case of the opposite gradient). Figure F shows in red how the phase plane changes for the bistable
model when the cell lies in an auxin gradient. We see that the region of the phase plane for which the system
will converge to the P0 � P1 polar state (boundary of which is given by the dotted line) becomes larger and now
includes the symmetrical initial conditions. Now, even when the cell is initiated in a uniform, symmetrical, state,
it will polarise. Note that the polar stable equilibria in �g S.2D-F are fundamentally di�erent from the somewhat
polarised state in C. In the former case, the system is strictly polar, whereas the di�erent concentrations of P0

and P1 obtained in the latter are a direct result of the external auxin gradient.
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Figure S.2: Phase planes of single equilibrium (A-C) and bistable (D-F) single cell models and reactions to
temporal perturbations or a global gradient. A and D: no perturbations or gradient present. B and E: phase
plane after perturbation by increasing the level of P0. C and F: change of phase plane when a constant global
gradient is present. Solid equilibrium lines are for P0, dotted equilibrium lines are for P1. The equilibrium to which
a system converges is markes with a large red circle. Red dots in B and E are initial conditions in which P0 is
slightly increased. In C and F, altered equilibrium lines and equilibria are marked in red.

S.2 Mathematical framework to study PAT models

S.2.1 Membrane segment model analysis

The caricature membrane segment model consists of an equation for the PIN level at the membrane segment (P )
and and equation for auxin in the adjoining neighbouring cell (A). All other PIN and auxin concentrations are
assumed to be constant. We use these two variables for all discussed models, but take into account the speci�c
mathematical details of individual models. All phase planes are drawn with P on the y- and A on the x-axis.
However, in some cases it is much easier to write A as a function of P .

The default auxin equation is given by:

dA

dt
= p+ ipas + ipinP − eA− dA (S.1)

p and d are the production and decay rates respectively. ipas is the passive and ipinP the active rate of in�ux
over the membrane of interest and into the neighbouring cell. E�ux occurs at rate e. A number of models takes
into account saturation of auxin transport through the PIN proteins. In our caricature membrane segment model,
this translates into:

dA

dt
= p+ ipas + ipinP − (epas +

epin
hpin +A

)A− dA (S.2)

Note that the ipinP term is not a�ected, since auxin concentration in the cell to which the membrane segment
belongs is assumed to be constant. Instead, we split up the e�ux from the neighbouring cell of interest into
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a passive (epas) and active e�ux (epin), the latter of which saturates with the auxin concentration and is half

maximum when A = h.
The auxin equilibrium line is obtained by setting dA

dt = 0. The default auxin equilibrium line is given by (eq 1
in box 1 in the main text):

P =
(e+ d)A− p− ipas

ipin
(S.3)

If PIN-mediated e�ux is saturated, the auxin equilibrium line is given by:

P =
(epas +

epin
hpin+A

+ d)A− p− ipas
ipin

(S.4)

Ignoring auxin feedback on PIN dynamics for a moment, the equation for PIN dynamics can be written as (eq
3 in box 1 in the main text):

dP

dt
= kon − koffP (S.5)

Depending on the type of feedback of auxin on PIN dynamics, either exocytosis rate kon or endocytosis rate
koff depend on auxin �ux or concentration.

The assumption of a limiting PIN pool a�ects PIN dynamics as the membrane segment of interest depletes
the pool and thus inhibits its own availability of PINs. This alters the PIN equation to:

dP

dt
= kon(Ptot − P )− koffP (S.6)

In which Ptot is the total amount of PINs the cell contains. In some models the cytosolic PIN pool is modeled
dynamically.

S.2.2 Single cell model analysis

Our single cell model consists of one cell containing PIN levels on two membrane segments (P0 and P1) and auxin
levels in the two corresponding neighbouring cells (A0 and A1). As for the membrane segment model, all other
PIN and auxin concentrations are assumed to be constant. Equations for auxin are the same as for the membrane
segment model (eq S.1 or S.2) and the same is true for the PIN equation if there is no limiting PIN pool (equation
S.5). If there is a PIN pool, it is now depleted by both membrane segments:

dPi
dt

= kon(Ptot −
∑
n

Pi)− koffPi with i = 0, 1 (S.7)

with n being the total number of membrane segments belonging to one cell. In order to simplify this 4 variable
model into a 2 variable model that we can analyse using the phase plane method, we assume that auxin dynamics
are fast and hence are in steady state. This allows us to use a so-called quasi steady state (QSS) assumption for
auxin dynamics, setting the auxin di�erential equations to 0. For the simplest auxin equation (eq S.1) we then
�nd:

Ai =
p+ ipas + ipinPi

e+ d
(S.8)

Substituting equation S.8 in the PIN equations now leaves us with a 2-variable system that we can study with
phase plane analysis. Hence, most single cell phase planes will have P1 on the y- and P0 on the x-axis. In some
cases, however, the authors have already implemented a QSS for the PIN equations and we draw a phase plane
for A1 and A0 instead.
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S.2.3 Concentration, �ux and the shape of the PIN equilibrium line

To determine the precise shape of the PIN equilibrium lines in both the membrane segment and single cell models
we need to �ll in the feedback of auxin on PIN cycling dynamics. Feedback of auxin on membrane PIN levels
occurs in most models through either auxin concentrations in neighbouring cells or through auxin �uxes across the
membrane.

S.2.3.1 Concentration-based feedback

First let us consider a few elementary shapes for the function describing feedback of auxin concentration on PIN
cycling. We use the example of feedback through kon. Feedback on koff will give similar results. A number of
ways in which kon might depend on auxin concentration in the neighbouring cell are: linear (kon = konb

+konf
A),

superlinear (e,g, quadratic, kon = konb
+ konf

A2) or saturating with A (kon = konb
+

konb
An

hn
A+An ). In all cases, konb

is the basal exocytosis rate, konf
is the extra exocytosis rate that depends on auxin. In case of the saturating

feedback hA is the auxin concentration for which kon is half maximum. If n > 1, the saturation is sigmoid.
Substituting these into the PIN equation without a limiting PIN pool (eq S.5) and putting it to zero would

produce the following PIN equilibrium lines (all phase planes are shown in �g S.3 with a reference to the equation
that produces the PIN equilibrium line):

1: linear feedback and unlimiting PIN pool:

P =
konb

+ konf
A

koff
(Conc.1.a)

2: quadratic feedback and unlimiting PIN pool:

P =
konb

+ konf
A2

koff
(Conc.2.a)

3: saturating feedback and unlimiting PIN pool:

P =
konb

koff
+

konf
An

koff (hnA +An)
(Conc.3.a)

If instead the PIN pool is limiting (eq S.6), the PIN equilibrium lines become:
4: linear feedback and limiting PIN pool:

P =
Ptot(konb

+ konf
A)

koff + konb
+ konf

A
(Conc.1.b)

5: quadratic feedback and limiting PIN pool:

P =
Ptot(konb

+ konf
A2)

koff + konb
+ konf

A2
(Conc.2.b)

6: saturating feedback and limiting PIN pool:

P =
Ptot(konb

hnA + (konb
+ konf

)An)

((konb
+ koff )hnA + (konb

+ konf
+ koff )An)

(Conc.3.b)

Hence, the addition of a limiting PIN pool e�ectively alters the linear PIN equilibrium (eq Conc.1.a) line into
a line that saturates with auxin (eq Conc.1.b) and the quadratic PIN equilibrium (eq Conc.2.a) line into a sigmoid
one (eq Conc.2.b). If the feedback was already saturating, the limiting PIN pool changes the exact position, but
not the shape of the PIN equilibrium line (compare eq Conc.3.a and eq Conc.3.b).
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S.2.3.2 Flux-based feedback

In order to �ll in the feedback of auxin �ux on PIN cycling we �rst need to formulate an expression for across
membrane auxin �ux, which we will derive here. Both at the membrane segment and single cell level we study PIN
concentrations at a membrane segment and the auxin concentration in the corresponding neighbouring cell. Flux
is regarded with respect to the membrane segment(s) of interest and is positive in case of net e�ux and negative
in case of net in�ux. Hence the equation for (non-saturating) �ux (F ) is:

F = ipas + ipinP − eA (S.9)

Note that we use the same nomenclature as for the auxin in the neighbouring cell (ipas and iPIN are in�uxes
into the neighbouring cell and e�uxes over the membrane segment of interest, e is e�ux from the neighbouring
cell and in�ux over the membrane segment of interest). Similarly, since the focus is on the membrane segment
(with PIN level P ) and its neighbouring cell (with auxin level A), the auxin in the cell to which the membrane
segment belongs is assumed to be constant, and is incorporated in ipas and ipin. Most �ux-based models assume
that only net e�ux feeds back on PIN localisation, using a Heaviside function θ(F ) to switch feedback on if �ux
is positive and o� if �ux is negative.

Now let us consider the same elementary shapes for �ux feedback functions and the PIN equilibrium lines they
produce. It is important to notice that when calculating the �ux, both P and A are taken into account. Hence,
if �ux feeds back on PIN cycling, the PIN concentration feeds back on itself.

1: linear feedback (kon = konb
+ konf

θ(F )F ) and unlimiting PIN pool:

P =


konb

koff
if F ≤ 0

konf
(eA−ipas)−konb

konf
ipin−koff

if F > 0
(Flux.1.a)

2: quadratic feedback (kon = konb
+ konf

θ(F )F 2) and unlimiting PIN pool:

P =


konb

koff
if F ≤ 0

2konf
ipin(eA−ipas)+koff+

√
4konf

koff ipin(eA−ipas)+k2off−4konf
i2pinkonb

2konf
i2pin

if F > 0
(Flux.2.a)

3: saturating feedback (kon = konb
+ konf

θ(F ) Fn

hn
F+Fn ) and unlimiting PIN pool:

P =
konb

koff
if F ≤ 0

A = 1
e

(
ipas + ipinP + n

√
hn
F (koffP−konb

)

koffP−konb
−konf

)
if F > 0

(Flux.3.a)

And, as well, with limiting PIN pool:
4: linear feedback and limiting PIN pool:P =

konb
Ptot

koff+konb
if F ≤ 0

A =
konf

(ipasP+ipinP
2−ipinPtotP−ipasPtot)−konb

(Ptot−P )+koffP

konf
e(P−Ptot)

if F > 0
(Flux.1.b)

5: quadratic feedback and limiting PIN pool:P =
konb

Ptot

koff+konb
if F ≤ 0

A =
konf

((ipas+ipinP )(P−Ptot)+
√
−konf

((P−Ptot)(konb
P+koffP−konb

Ptot))

konf
(P−Ptot)e

if F > 0
(Flux.2.b)

6: saturating feedback and limiting PIN pool:
P =

konb
Ptot

koff+konb
if F ≤ 0

A = 1
e

(
ipas + ipinP − n

√
hn
F (konb

P+koffP−konb
Ptot)

konb
(Ptot−P )+konf

(Ptot−P )−koffP

)
if F > 0

(Flux.3.b)
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In all cases, the Heaviside function θ(F ) causes a sharp switch in the PIN equilibrium line, which makes it
inherently non-linear. The limiting PIN pool causes the PIN equilibrium line to curve back, such that it becomes
a sigmoid-like line.

S.3 Membrane segment variants

Here we present an overview of distinct model behaviours at the membrane segment level for all possible combi-
nations of auxin and PIN dynamics. At the membrane segment we can distinguish between systems with one, two
(semi-bistable) or three (bistable) equilibria. Di�erent combinations of auxin and PIN equilibrium lines can lead
to one of these cases:

MS.I: straight A equilibrium line and (sub)linear P equilibrium line: one equilibrium If the straight A
equilibrium line that results from our default auxin equation S.1 is combined with a PIN equilibrium line that
is linear or saturates with n = 1 (eq Conc.1.a, Conc.1.b, Conc.3.a and Conc.3.b), there can be only one stable
equilibrium, and thus no bistability (�g S.3A) independent of whether or not a limiting PIN pool is assumed.

MS.II: straight A equilibrium line and superlinear P equilibrium line: two equilibria When the auxin
equilibrium line is a straight line (eq S.3 as follows from the auxin eq S.1), bistability can occur when the PIN
equilibrium line is superlinear and non-saturating (eq Conc.2.a, Flux.1.a and Flux.2.a). There are two equilibria.
The lower equilibrium is stable and the upper unstable. Above the upper equilibrium there is a region of unlimited
increase of PIN levels. This situation results in a bistable system, since it has two regions of distinctly di�erent
behaviour, even though there is only one stable equilibrium (�g S.3B) and an unlimiting PIN pool is assumed.

MS.III: straight A equilibrium line and sigmoid P equilibrium line: three equilibria A straight auxin
equilibrium line can intersect thrice with a sigmoid PIN equilibrium line (eq Conc.3.a with n = 2, Conc.2.b,
Conc.3.b with n = 2, Flux.1.b, Flux.2.b, Flux.3.a and Flux.3.b) (�g S.3C). The outer two equilibria are stable
and the middle one is unstable. Hence, bistability arises from a sigmoid saturating feedback or a non-linear
feedback combined with a limiting PIN pool.

MS.IV: both A and P equilibrium lines are non-linear: two or three equilibria Non-linearity in the auxin
equilibrium line (eq S.4) can introduce bistability when combined with a PIN equilibrium line that previously would
not give bistability (eq Conc.3.a with n = 1, Conc.1.b, Conc.3.b with n = 1) (�g S.3D).

S.4 Single cell variants

At the cell level we are interested in whether the system can display polar behaviour. For this the model needs
to have two stable polar equilibria, one with high PIN levels on one membrane segment and low PIN levels on
the other and one vice versa. The di�erent possible combinations of model assumptions produce a total of three
di�erent scenarios, for two of which cell polarity can occur.

SC.I: non-bistable membrane segments combined with a limiting PIN pool: no polarity As an example
of this scenario, consider the concentration-based, linear, feedback that is not able to give membrane bistability.
Combining this feedback with a limiting PIN pool gives the following PIN equations for P0 and P1:

dPi
dt

= (konb
+ konf

Ai)(Ptot − Pi − Pj)− koffPi with i = 0, 1 and j = 1, 0 (S.10)

Substituting the auxin QSS, to reduce the system to two variables gives us the full PIN equation:

dPi
dt

=

(
konb

+ konf

(
p+ ipas + ipinPi

e+ d

))
(Ptot − Pi − Pj)− koffPi with i = 0, 1 and j = 1, 0 (S.11)
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Figure S.3: Overview of the di�erent membrane segment variants with corresponding PIN equilibrium lines and
references to PAT models with (similar) auxin and PIN dynamics. Dashed lines: P equilibrium lines. Solid lines: A
equilibrium lines. Closed circles: unstable equilibria. Open circles: stable equilibria. Arrows represent the direction
of dynamics.
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The resulting equilibrium lines are shown in �g S.4A Although P0 and P1 are interdependent, their equilibrium
lines are only able to intersect once in a stable equilibrium in which (given no external bias) P0 = P1. Hence, no
cell polarity occurs.

SC.II: bistability at the membrane segment level combined with a limiting PIN pool: polarity (+ rest
state) As an example of this scenario, consider the concentration-based, quadratic, feedback as in equation
Conc.2.b. Implementing this feedback at the single cell level gives us the following PIN equations for P0 and P1:

dPi
dt

= (konb
+ konf

A2
i )(Ptot − Pi − Pj)− koffPi with i = 0, 1 and j = 1, 0 (S.12)

Substituting the auxin QSS gives us the full PIN equation:

dPi
dt

=

(
konb

+ konf

(
p+ ipas + ipinPi

e+ d

)
2

)
(Ptot − Pi − Pj)− koffPi with i = 0, 1 and j = 1, 0 (S.13)

The resulting equilibrium lines can intersect three times (�g S.4B). Two of these equilibria are stable and
asymmetrical (P0 > P1 and P0 < P1), one is unstable and symmetrical (P0 ∼ P1). If a model contains only these
three equilibria it polarises automatically due to noise.

Additionally, a third stable equilibrium, and corresponding unstable equilibria, might occur. This happens in
case feedback is concentration-based and sigmoid (eq Conc.3.b with n = 2) and in case of �ux-based feedback
(due to the Heaviside function). This third equilibrium occurs for P0 = P1 and represents an apolar rest state.
The system has to be su�ciently perturbed from this state in order to become polar.

SC.III: non-bistable membrane segments combined with an unlimiting PIN pool: no polarity As an
example, if the linear concentration-based feedback (eq Conc.1.a) is combined with an unlimiting PIN pool, the
PIN equations become:

dPi
dt

= konb
+ konf

Ai − koffPi with i = 0, 1 (S.14)

Implementing the QSS for Ai gives us the full PIN equations:

dPi
dt

= konb
+ konf

(
p+ ipas + ipinPi

e+ d

)
− koffPi with i = 0, 1 (S.15)

And the resulting PIN equilibrium line:

Pi =
konb

(e+ d) + konf
(p+ ipas)

koff (e+ d)− konf
ipin

with i = 0, 1 (S.16)

Since this equilibrium line is a mere combination of parameters, it is an exactly horizontal or vertical line in
the phase plane. The two equilibrium lines can, thus, only intersect once (�g S.4C). The intersection point is a
stable equilibrium in which (given no external bias) P0 = P1. Hence, no cell polarity occurs.

SC.IV: bistability at the membrane segment level combined with an unlimiting PIN pool: polarity (+
rest state + bipolar state) As an example of this scenario, consider the sigmoid concentration-based feedback
(Conc.III.a with n = 2) with an unlimiting PIN pool. The resulting single cell level PIN equation is:

dPi
dt

= konb
+

konf
A2
i

h2A +A2
i

− koffPi with i = 0, 1 (S.17)

Implementing the QSS for Ai and setting dPi

dt to 0 gives us three solutions for Pi, i.e. the PIN equilibrium
lines are either three horizontal or three vertical lines. These lines intersect a total of nine times, giving rise to �ve
unstable and four stable equilibria (�g S.4D). Two of the stable equilibria are polar, one represents the apolar rest
state in which P0 = P1 and both are low, and the last represents a bipolar state in which P0 = P1 and both are
high.
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Figure S.4: Overview of the di�erent single cell variants with references to PAT models with (similar) single cell
dynamics. Solid lines: P0 equilibrium lines. Dashed lines: P1 equilibrium lines. Closed circles: unstable equilibria.
Open circles: stable equilibria. Arrows represent the direction of dynamics.
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S.5 Analysis of discussed PAT models

Here we describe how we formulated equations for PIN and auxin dynamics at the membrane segment and single
cell behaviour and thus analysed model behaviour for the models discussed less extensively in the main text.

S.5.1 Flux based models

S.5.1.1 Mitchison (1980)

Mitchison [1980] developed a model in which membrane segment permeability depends on �ux over that membrane.
Since his model does not contain PINs, we cannot use our default auxin equation. Translating his model to our
membrane segment model gives the following equation for auxin in the neighbouring cell (named �signal� in the
original paper):

dA

dt
= p− dA+ F (S.18)

in which p is production of the signal. In the original model, signal decay only takes place in a certain area of
the tissue. In order to analyse behaviour at the membrane segment and cellular level we replace this with a decay
taking place in each cell. Flux depends on the permeability of the membrane segment (D) and consists of the
in�ux over the membrane segment of interest and e�ux out of the neighbouring cell

F = D − eA (S.19)

Together equation S.18 and S.19 give the auxin equilibrium line:

A =
p+D

e+ d
(S.20)

In turn, membrane permeability, depends on �ux in a superlinear, saturating manner (membrane segment
variant 1a):

D = α
F 2

γ + F 2
+ β (S.21)

Substituting equation S.19 for F and rewriting such that A becomes a function of D gives a quadratic function.
Hence, the permeability equilibrium line has two solutions:

A =


αD+βD−D2+

√
αγD−αβγ−γD2+2βγD−γβ2

(α−D+β)e if F > 0

−−αD−βD+D2+
√
αγD−αβγ−γD2+2βγD−γβ2

(α−D+β)e if F ≤ 0
(S.22)

These two equilibrium lines (equation S.20 and S.22) can intersect in three equilibria, two of which are stable
(�g S.3C). Hence, bistability can occur at the membrane segment level (MS.III).

Each membrane segment in the model determines its permeability without taking into account the other
membrane segments of this cell, i.e. there is no competition for a "permeability factor" (SC.IV). As a result,
there are 9 possible equilibria, 4 of which are stable (�g S.4D). Two stable equilibria are symmetrical, they represent
apolar cells in which both membrane segments have a low or a high permeability. The two asymmetrical equilibria
represent polar cells with a low permeability of one membrane segment and a high permeability of the other.

S.5.1.2 Mitchison (1981)

In his second model [Mitchison, 1981], Mitchison did not take into account production of auxin in individual cells,
but instead allowed it to come in from a local source and redistribute along a tissue. On a similar note as above,
we replaced this localised production and decay by production and decay processes taking place in each cell. The
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auxin equation and auxin equilibrium line therefore remains the same with respect to the previous model (equation
S.18 and S.20 respectively).

In this second model, two aspects have changed with respect to the previous model. First, direction of �ux is
now important. Instead of absolute �ux, net e�ux feeds back on D. Second, the feedback no longer saturates,
but is a quadratic function. In addition, D is now a dynamic variable:

dD

dt
= αθ(F )F 2 + β −D (S.23)

which is equivalent to eq Flux.2.a.β is the basal �ux rate over the membrane segment of interest when F < 0.
By taking into account �degradation� of the permeability (−D), Mitchison already hints toward the existence of
a physical pump that is subject to turnover.

D now depends as follows on �ux:

D = αθ(F )F 2 + β (S.24)

Substituting the �ux and rewriting A as a function of D gives the full D equilibrium line (similar to eq Flux.2.a):{
A = αD+

√
−αβ+αD
αe if F > 0

D = β if F ≤ 0
(S.25)

which can intersect twice with the auxin equilibrium line (�g S.3B). The bottom equilibrium is stable, the
upper equilibrium is unstable. Above this unstable equilbrium, unlimited growth of membrane permeability takes
place. Thus bistability can occur at the membrane segment level (MS.II).

Similarly to the previous model by the same author, there is no communication between membrane segments
of one cell. Therefore the model falls into variant SC.IV (�g S.4D).

S.5.1.3 Feugier et al. (2005)

In Feugier et al. [2005], production of auxin depends on a dynamically modeled enzyme (S):

dS

dt
= p(1− A

Aeq
)− δS (S.26)

In which p is production of the enzyme, Aeq is the value of auxin for which the enzyme production becomes 0
and δ is decay of the enzyme. Setting dS

dt = 0 and �lling it in in the auxin equation gives:

dA

dt
= ε

p

δ
(1− A

Aeq
) + ipas + ipinP − eA (S.27)

which gives the same auxin equilibrium line as our default auxin equation (eq S.3). The authors also test the
e�ect of saturated e�ux, which does not alter the model's self-organising potential in our analysis.

In this model, net e�ux feeds back on konin 9 di�erent manners, most of which �t into our overview of
possible feedback functions (section S.2.3.2). In �g S.3 we indicate which possible combinations of auxin and PIN
dynamics are studied in the Feugier et al. [2005] model. All of these give bistable membrane segments (variants
MS.II and MS.III).

When these feedbacks are combined with a limiting PIN pool, they fall into category SC.II. If, instead, the
PIN pool is unlimiting, the models behave like the SC.IV variant.

S.5.1.4 Feugier and Iwasa (2006)

In Feugier and Iwasa [2006], a similar model was used as in the previous paper by the same authors, although
slight changes were implemented. The auxin dynamics are described by equation S.1 and thus give the auxin
equilibrium line from equation S.3. Net e�ux feeds back on kon in a quadratic manner and an limiting PIN pool
is assumed. Hence the PIN equation becomes (similar to eq Flux.2.b):
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dP

dt
= (konb

+ konf
θ(F )F 2)(Ptot − P )− koffP (S.28)

With konb
the basal exocytosis and konf

the �ux-dependent exocytosis. The resulting PIN equilibrium line
is given by eq Flux.2.b. Thus, the model behaves as variant MS.III (�g S.3C). As a result of the superlinear
feedback function and the limiting PIN pool, the single cell level is polar (variant SC.II, �g S.4B).

In this second model, the authors add a "�ux-bifurcator" in order to generate loop formation in veins. The
additional e�ects of the �ux-bifurcator on the 2-dimensional model behaviour are beyond the scope of our analysis.

S.5.1.5 Fujita and Mochizuki (2006)

Fujita and Mochizuki [2006] studied the stability of a simpli�ed �ux-based model. The auxin equation is given
by equation S.1 and, thus, the auxin equilibrium line by equation S.3. In the model, �ux feeds back on PIN
localisation in a superlinear manner. The model is not mechanistic, in that the feedback of �ux on PINs is not
speci�c for certain cycling rates. The PIN equation is:

dP0

dt
= m

(
1

1 + e−α(F0−β)
+

1

Ptot

(
1

1 + e−α(F0−β)
+

1

1 + e−α(F1−β)

)
P0

)
(S.29)

In which m is the growth rate, F0 and F1 are �uxes over the two membrane segments of one cell (given by
equation S.9), respectively, and α and β are constants determining the shape of the feedback. The resulting
PIN equilibrium line is given by (which for reasons of simplicity we write for A as a function of P ) (similar to eq
Flux.3.b):

A =
1

αe

(
(ipas + ipinP − β)α+ ln

(
(Ptot − P )eα(−F1+β) + Ptot − 2P

P

))
(S.30)

This line is able to intersect three times with the auxin equilibrium line, thus bistability occurs at the membrane
segment level (similar to MS.III, �g S.3C). Similar to the Smith et al. [2006] model, this PIN equilibrium line can
shift to the right or left due to changes in the context of the cell and so lose its bistability.

Due to the �nite PIN pool, that is at all times divided between P0 and P1, there is polarity at the single cell
level (variant SC.II, �g S.4B).

S.5.1.6 Alim and Frey (2010)

Alim and Frey [2010] use the same assumptions as Feugier and Iwasa [2006] (in our analysis, disregarding the
�ux-bifurcator), i.e. the PIN pool is limiting and PIN exocytosis depends superlinearly on the �ux (PIN equilibrium
line Flux.2.b). Hence, the Alim and Frey [2010] model belongs to membrane segment variant MS.III and single
cell variant SC.II (�g S.3C and S.4B).

S.5.2 Concentration based models

S.5.2.1 Jönsson et al. (2006)

The model constructed by Jönsson et al. [2006] is a concentration-based model used to simulate phyllotaxis. In
this model auxin in the neighbouring cells feeds back on the PIN localisation at the membrane segments and
membrane segments compete for a limiting PIN pool. Auxin transport is non-saturating. The authors apply two

di�erent feedback functions, a linear one and a superlinear, saturating one (where kon = A3

h3+A3 ). The linear
feedback function is used for analysis on spacing of peaks. In this case, it is assumed that the PIN dynamics are
in equilibrium and that all PINs recide on the membrane. Hence the PIN equilibrium line is given by:

P =
PtotA∑n
i Ai

(S.31)
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Additionally, when studying a 1D �le, the authors assume that the pumping of auxin by PINs is linear. Therefore,
the auxin equilibrium line is given by eq S.3. These equilibrium lines can only intersect once, hence the linear
feedback does not allow for bistable behaviour at the membrane segment level (variant MS.I, �g S.3A). The
superlinear, saturating feedback that is used for the 2-dimensional simulations, introduces non-linearity into the
PIN equilibrium line and therefore does allow for bistable behaviour (variant MS.III, �g S.3C).

The linear feedback, combined with linear pumping, does not give cell polarity at the single cell level (variant
SC.I, �g S.4A), whereas the superlinear, saturating feedback, combined with saturated pumping, does (variant
SC.II, �g S.4B).

Interestingly, our tissue level analysis does show self-organised behaviour for the linear feedback function and
linear pumping that does not give bistability or cell polarity. To further investigate this alternative Turing-like
self-organising behaviour, we performed a bifurcation analysis on a 1-dimensional �ve cell model, consisting of 5
auxin and 10 PIN equations, speci�cally focusing on the parameter regions for which the cells in the tissue become
polarised. Fig S.5 shows a bifurcation diagram of how the tissue level equilibria in a ring of �ve cells depend on the
parameters Ptot and koff for the Jönsson et al. [2006] model and a modi�ed model that does not have a limiting
PIN pool (eq Conc.3.a with n = 1). In order to obtain insight in whether polar equilibria occur, we introduce
the variance (V ) which re�ects the di�erence in PIN levels on opposing membranes. Furthermore, to test for
consistent polarisation among all 5 cells of the tissue, we sum these di�erences across cells. Thus, a large variance
implies the presence of a strongly polar equilibrium in all cells of the tissue, whereas a variance of 0 implies that
all cells are apolar. Variance is thus formally de�ned as:

V =
∑

(Pi,0 − Pi,1)2 with i = 1, 2, 3, 4, 5 (S.32)

For the Jönsson et al. [2006] model we see that, above a critical Ptot and below a critical koff value, a
bifurcation occurs that leads to a situation with persistenly polarised cells across the tissue. In contrast, no such
behaviour was found for the alternative model without a limiting PIN pool. We therefore conclude that the limiting
PIN pool is required to obtain the self-organising behaviour found in the Jönsson et al. [2006] model.

S.5.2.2 Merks et al. (2007)

In the concentration-based model by Merks et al. [2007], e�ux of auxin through the PINs saturates. The authors
do not take into account production and decay of auxin in all cells, but allow auxin to �ux into the tissue from
a source and to leave it through a sink. Again, we approximate this global production and decay with local,
cellular production and decay processes. Therefore we can use equation S.2 for the auxin which provides the auxin
equilibrium line in eq S.4.

In contrast to other models in which a limiting PIN pool is assumed, the authors describe the cytosolic PINs
(Pc) dynamically:

dPc
dt

= ppin − dpinPc + koff
∑

Pi −
∑ konPc

km + Pc
(S.33)

In which ppin is the production of PINs, whereas dpin is the decay rate. Endocytosis as well as exocytosis are
summed over all membrane segments of the cell. The exocytosis rate saturates with the amount of PINs in the
cytosol and the half-maximum rate is obtained when Pc = km.

At the membrane segment level, P is described as:

dPi
dt

=
konPc
km + Pc

− koffPi (S.34)

kon depends on auxin in a saturating manner:

kon =
konf

A

hA +A
(S.35)

Setting equation S.33 to 0, given only one membrane segment (
∑
Pi = P ) and assuming that PIN production

and decay are in equilibrium gives us a measure for Pc. Filling this and kon from equation S.35 into equation S.34
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Figure S.5: Bifurcation diagrams for a ring of cells in the Jönsson et al. [2006] model and eq Conc.3.a with n = 1.
Dependence of variance V on Ptot (upper panels) and koff (lower panels). The Jönsson et al. [2006] model shows
stable equilibria in which V > 0 and, thus, permanent tissue polarisation occurs. The model with eq Conc.3.a
with n = 1 has only one equilibrium for V = 0. Hence, no polarity is found.
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and setting the resulting dP
dt equation to 0 provides the following PIN equilibrium line (similar to eq Flux.3.b) for

P at the membrane segment:

P =
ppinkonf

A

koff (ppinA+ dpinkmA+ ppinhA + dpinkmhA)
(S.36)

This line can intersect thrice with the auxin equilibrium line (�g S.3D), therefore bistability can occur at the
membrane segment level (variant MS.IV).

The single cell phase plane is shown in �g S.4D. In this model PIN concentrations change not only due to exo-
and endocytosis, but also due to production and decay of PINs. It is noteworthy that decay of PINs occurs only for
cytosolic but not for membrane bound PINs. As a result, although the cytosolic PIN pool has a �xed equilibrium
size, the total amount of PINs that a cell contains is not �xed, but varies with the amount that is present on the
membrane segments. As a consequence, the PIN pool in this model is e�ectively unlimiting, as can be seen from
the additional bipolar equilibrium at the single cell level. Hence, the model falls into single cell category SC.IV.

S.5.2.3 Newell et al. (2007)

For their combined concentration- and physical force-based model, Newell et al. [2007] used the PIN and auxin
equations �rst described by Jönsson et al. [2006] for the 1D cell �le (linear feedback, linear auxin transport) and
translated these into continuous equations. However, they did not study the model with a QSS assumption for
the PIN cycling and did not assume that all the PINs reside on the membrane as done by Jönsson et al. [2006].
The auxin equilibrium line is given by eq S.3 and the PIN equilibrium line is given by eq Conc.1.b. As a result, the
model is not bistable at the membrane segment level (variant MS.I, �g S.3A) and not polar at the single cell level
(variant SC.I, �g S.4A). However, due to the limiting PIN pool and up-the-gradient PIN polarisation, this model
is still able to self-organise at the tissue level, similar to the Jönsson et al. [2006] model with linear feedback and
non-saturated auxin transport.

S.5.2.4 Sahlin et al. (2009)

Sahlin et al. [2009] developed a concentration-based model for phyllotaxis. They include apolar expression of
AUX1, which cannot be included in our framework, because we do not explicitly model the cell wall. Auxin
transport is saturated for high auxin concentrations, hence the auxin equilibrium line is given by eq S.4. The PIN
pool is limiting, and several feedback functions have been used. The most simple feedback function is linear which,
combined with the limiting PIN pool gives the PIN equilibrium line in eq Conc.1.b. Due to the combination of the
non-linear auxin equilibrium line and the non-linear PIN equilibrium line, the model is bistable at the membrane
segment level (variant MS.IV). At the single cell level, polarity occurs (variant SC.II).

S.5.3 Joined concentration- and �ux-based model

Bayer et al. 2009 Bayer et al. [2009] incorporated both up-the-gradient and with-the-�ux PIN polarisation into
their model. Cells in the model apply one of these two mechanisms, deciding which one based on their auxin level.
The auxin equation is the same as used in their previous model [Smith et al., 2006], which is described in the
main text. The authors assume a limiting PIN pool at the single cell level and saturated transport of auxin (with
co-operativity 2).

In the up-the-gradient feedback regime the model is identical to the [Smith et al., 2006] model. It thus falls
into category MS.III at the membrane segment and shows bistable behaviour (�g S.3C). At the single cell level,
the model is polar (variant SC.II, �g S.4B).

In the with-the-�ux regime, the authors apply the same shape of feedback function, but substitute auxin
concentration with a new variable ��ux history� that depends on the net e�ux (similar to eq Flux.3.b):

P =
Ptotb

F∑
n b

Fi
(S.37)
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in which b is a base parameter that the authors set to 2 or 3 and the sum is taken over the �uxes over all
membrane segments. The resulting PIN equilibrium line has a superlinear saturating shape that can intersect three
times with the auxin equilibrium line given by eq S.4 (variant MS.III, �g S.3C). Hence, also in the with the �ux
regime, the model supports membrane bistability, and cell polarity (variant SC.II, �g S.4B).

Ptot is calculated dynamically, as in the model by [Smith et al., 2006], however, since all the PINs are assumed
to be on the membrane, these models do not have the issue described for the model by Merks et al. [2007], namely
that the PIN pool is e�ectively unlimited.

S.5.4 Mechanistic models

Heisler et al. 2010 In the model by Heisler et al. [2010], PIN localisation is determined by wall stress which
in turn is dependent on auxin concentrations within neighbouring cells. Active transport of auxin is saturated,
therefore the auxin dynamics are determined by equation S.2 and the corresponding auxin equilibrium line is given
by equation S.4. As in their previous model [Jönsson et al., 2006], the authors assume that PIN dynamics are at
all times in equilibrium and that all PINs reside on the membrane. They write the following dependency of PINs
on the membrane stresses experienced by a membrane segment:

P =
Ptotk2s

n

1 +
∑
k2sni

(S.38)

in which Ptot is the total amount of PINs in a cell, s is the stress experienced by a single membrane segment,
k2 is the level by which PINs depend on the stress and n is the co-operativity with which this happens. The sum
is taken over all the membrane segments belonging to one cell. For a single membrane segment, we can write:

P =
Ptotk2s

n

1 + k2sn + k2hn
(S.39)

In which h represents the stresses experiences by the other membrane segments that are not in focus and thus
assumed to be constant. The stress negatively depends on wall elasticity as follows:

s =
F

A0(1 +
E(A)
E(Ai)

)
(S.40)

F is the isotropic force on each wall, A0 is the cross section of a cell and Ai is the auxin content of the cell
to which the membrane segments belongs and is thus assumed to be constant. E(A) is the wall elasticity which
is a function of auxin in the neighbouring cell:

E = Emin +
(Emax − Emin)km3

A+ km3
(S.41)

Emin is the minimal and Emax the maximal wall elasticity. E decreases with auxin. k3 is a saturation
constant and m is the co-operativity with which elasticity depends on auxin. The full PIN equilibrium line is
obtained by substituting S.40 and S.41 into S.39 Because of its length and complexity we refrain from giving it
explicitly. However, for the parameters used by the authors, it can be shown to describe a sublinear, saturating,
function (similar to eq Conc.3.a). However, considering that the auxin equilibrium line is also a non-linear line,
this should theoretically allow for three intersection points between the equilibrium lines and thus the model falls
into membrane segment category MS.IV (�g S.3D). In line with this and because of the limiting PIN pool, we
expect polarity at the single cell level (variant SC.II, �g S.4B).

Wabnik et al. 2010 Wabnik et al. [2010] developed a PAT model in which auxin in the cell wall, by binding to
a receptor, inhibits endocytosis of PINs from the nearest membrane. In order to study this model, we extended
our framework to include the cell wall. In our membrane segment model, A is the concentration of auxin in the
neighbouring cell. For this model, we use A for the concentration of auxin in the cell wall adjoining the membrane
segment of interest. The dynamics are the same, the cell wall receives auxin by active and passive transport over
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the membrane segment of interest and it loses auxin by in�ux. Hence, we can use the same equation that we used
for auxin in the neighbouring cells for saturated e�ux (equation S.2 and corresponding equilibrium line S.4).

Similar to Merks et al. [2007], the authors model the cellular PIN pool dynamically, in this case, however,
feedback is implemented through the endocytosis rate koff . The cytosolic PIN pool is given by:

dPc
dt

= ppin − dpinPc +
∑
n

kpinPi −
∑
n

konPc (S.42)

In which the sums are taken over all membrane segments belonging to one cell.
The equation for PINs on the membrane segment is:

dP

dt
= konPc − koffP (S.43)

For the formation of complexes (C) between auxin and receptor in the cell wall, we use, as in the original
publication, a QSS assumption. Thus allows us to write

C =
2rTA

2kd +
∑
nAi

(S.44)

In which rT is the total amount of receptors in the cell wall, kd is a saturation constant and the sum is taken
over all segments of the cell wall.

For the membrane segment level, since we assume auxin concentrations to be constant in all compartments
other than the cell wall segment of interest, we can rewrite eq S.44 as:

C =
2rTA

2kd + h+A
(S.45)

In which h now represents the auxin concentrations in other cell wall compartments. The endocytosis rate of
PINs now depends on the amount of complex as such:

koff = koffb +
kofff
1 + C

(S.46)

The PIN equilibrium line that is obtained by substituting equation S.46 and S.45 into S.43 is a saturating,
sublinear function. Hence, it can intersect more than once with the non-linear auxin equilibrium line and there is
bistability at the membrane segment level (variant MS.IV, �g S.3A).

For the single cell level, as in Merks et al. [2007], the PIN pool in the Wabnik et al. [2010] model increases
with the amount of PINs that are on the membrane. Therefore, it is e�ectively unlimiting. There is, however, still
a slight e�ect of P0 on P1 and vice versa, therefore the PIN equilibrium lines are not completely horizontal and
vertical and the model belongs to category SC.IV.

To study the tissue behaviour, we extended the framework to include cell walls. We found that the model is
able to self-organise after a perturbation is provided to one of the cells. The resulting PIN polarisation is similar
to with-the-�ux models, where the PINs point from the source to the sink in a cell �le, and all point in the same
direction in a ring of cells. In order to obtain this behaviour, auxin di�usion in the cell wall must be su�ciently low,
to allow for the formation of an auxin gradient. Therefore, it appears that the model's self-organising behaviour
relies on across-cell wall polarity as well as cell polarity.
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