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INTRODUCTION
In the mouse embryo, the first hematopoietic progenitors, found in
the yolk sac (YS) starting at 7 days post-coitus (dpc), rapidly
provide the embryo with erythro-myeloid cells. The first
hematopoietic stem cells (HSCs) defined by their ability to display
long-term reconstitution (LTR) activity in conventional adult
irradiated mice, have been first identified after 10.5 dpc (precisely
after the 34- to 35-somite stage), in the embryonic structure
comprising the aorta, gonads and mesonephros (AGM) (Müller et
al., 1994; Medvinsky and Dzierzak, 1996). These HSCs are
detected in the fetal liver (FL) at later stages [11 dpc to 42 somites
(S)] (Müller et al., 1994; Sánchez et al., 1996).

At earlier developmental stages (from 9 dpc, corresponding to
15-20S), multipotent hematopoietic progenitors, defined by single
cell assays in vitro, are detected in the para-aortic splanchnopleura
(P-Sp), an intra-embryonic structure that later evolves into the
AGM region (Godin et al., 1995; Godin et al., 1999). These
multipotent progenitors reach their maximum numbers in the AGM
at the 35S stage. These progenitors, of intra-embryonic origin
(Cumano et al., 1996; Cumano et al., 2001), were phenotypically
characterized by the expression of high levels of Kit, medium
levels of CD41, low to undetectable expression of CD45 and a
combination of markers also present in endothelial cells, such as
CD31, CD34 and AA4.1. Moreover, these progenitors, isolated
from the P-Sp/AGM at 10 dpc (30-35S), are capable of LTR
activity when transferred into natural killer (NK)-deficient
Rag2c–/– mice (Bertrand et al., 2005).

In contrast to the AGM, where hematopoietic progenitors are
generated in situ, the FL relies on the colonization by exogenous
progenitors to initiate hematopoiesis. The onset of FL colonization
has been staged at 10 dpc, precisely at the 28-32S stages
(Houssaint, 1981). The colonizing cells detected at this stage are
considered as erythromyeloid cells from the YS, because, as
mentioned previously, AGM-derived HSCs endowed with LTR
activity in conventional recipient, are only detected in the FL after
11 dpc.

Experimental data suggest that the multipotent hematopoietic
progenitors detected in the P-Sp/AGM prior to AGM-HSC
production might contribute to definitive hematopoiesis in the
adult: in vivo experiments, performed to trace the onset of HSC
development, used the inducible Cre/lox system controlled by
Runx1 or VE-Cadherin regulatory sequences to induce Cre
recombinase, leading to a persisting expression of -galactosidase
(-gal) (Samokhvalov et al., 2007; Zovein et al., 2008). Induction
starting at 9.5 dpc and during the next few hours, resulted in -gal
expression in virtually all adult HSCs. Importantly, induction
performed before 9.5 dpc resulted in less than 10% of -gal
expressing adult Lin–Sca-1+Kit+ (LSK) cells. This observation
indicates that all adult HSC progenitors derive from 9.5-10 dpc
progenitors expressing high levels of Runx1 (or VE-Cadherin) and
raises the issue of its relationship to multipotent hematopoietic
progenitors found in the P-Sp at this stage. These data suggest that,
before the appearance of the first HSC in the embryo, the
multipotent progenitors detected at 9-9.5 dpc can contribute to the
definitive hematopoiesis in the adult.

We thus tested the possibility that these multipotent progenitors
also present a LTR ability that is restricted to Rag2c–/– recipients,
like P-Sp/AGM cells at 10 dpc, and that these progenitors further
evolve into HSCs.

We show that the first progenitors endowed with LTR activity in
NK-deficient mice, called here immature HSCs (imHSCs), are
detected in the P-Sp as soon as 9 dpc. However, their transfer into
irradiated recipients results in a hematopoietic chimerism lower
than that of HSCs. This low hematopoietic chimerism neither
results from an inability to home in the bone marrow nor from an
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SUMMARY
Hematopoietic stem cells (HSCs), which are defined by their capacity to reconstitute adult conventional mice, are first found in the
dorsal aorta after 10.5 days post coitus (dpc) and in the fetal liver at 11 dpc. However, lympho-myeloid hematopoietic progenitors
are detected in the dorsal aorta from 9 dpc, raising the issue of their role in establishing adult hematopoiesis. Here, we show that
these progenitors are endowed with long-term reconstitution capacity, but only engraft natural killer (NK)-deficient Rag2c–/– mice.
This novel population, called here immature HSCs, evolves in culture with thrombopoietin and stromal cells, into HSCs, defined by
acquisition of CD45 and MHC-1 expression and by the capacity to reconstitute NK-competent mice. This evolution occurs during
ontogeny, as early colonization of fetal liver by immature HSCs precedes that of HSCs. Moreover, organ culture experiments show
that immature HSCs acquire, in this environment, the features of HSCs.
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inadequate response to the proliferative signals from the bone
marrow environment, but rather from the low frequency of cells
that efficiently integrate the HSC compartment. Using a culture in
the presence to thrombopoietin (TPO), we demonstrate that
imHSCs from 10 dpc P-Sp/AGM are capable of evolving into
HSCs, as defined by phenotype and by the ability to reconstitute
hematopoiesis of NK-competent mice. This effect results, in part,
from the inhibition of host NK cell activity.

Our results also bring in a new kinetics of FL development. We
provide evidence that FL colonization by YS-derived
hematopoietic cells occurs as soon as 9 dpc (20S) and that
multipotent progenitors/imHSCs colonize the FL starting at 10 dpc
(30S), shortly after being generated in the P-Sp/AGM. We further
show, using organ culture of 10 dpc FL rudiment, that imHSCs
give rise to HSCs.

Taken together, the data presented here define a novel stage in
HSC development, the imHSC stage, which is characterized by
phenotype, by multipotent hematopoietic potential and by the
capacity to reconstitute hematopoiesis in NK-deficient mice.
Shortly after their emergence, they reach the FL through circulation
where the maturation events that drive the acquisition of HSC
properties occur.

MATERIALS AND METHODS
Dissection of embryonic structures
The two C57BL/6 congenic lines bearing the Ly5.2 and Ly5.1 alleles of the
pan-hematopoietic marker CD45 and their F1 progeny were used in this
study. Two strains of immunodeficient mice, Rag2–/– (Shinkai et al., 1992)
and Rag2c–/– (Colucci et al., 1999), bearing the Ly5.2 or Ly5.1 alleles,
respectively, were used as recipients in the reconstitution experiments.

The day of vaginal plug observation was designated as day 0.5. Each
embryo was staged by somite counting or by development of the limb
buds. Dissections of 9-11 dpc P-Sp/AGM and FL were carried out as
previously described (Godin et al., 1999). The staging terminology used
throughout this study was: P-Sp, 9-9.5 dpc, 15-30S; P-Sp/AGM, 10 dpc,
30-35S; AGM, over 10.5 dpc, 35S.

Culture conditions
imHSC culture
One hundred to 450 CD31+Kit+CD45–/lowMac-1–/low cells purified from the
P-Sp/AGM were cultured for 7 days on an OP9 monolayer in 96-well
plates in OptiMEM (Invitrogen), 10% fetal calf serum, 100 U/ml penicillin,
100 g/ml streptomycin, 5�10–5 M 2-mercaptoethanol without cytokine
or supplemented with TPO (20 ng/ml), Ang-3 (200 ng/ml) (R&D
Systems), IL3 (supernatant of a cell line transfected with the cDNA
encoding IL3, a kind gift from F. Melchers, Basel, Switzerland) or Kit
ligand. Cells were re-fed after 4 days with fresh medium. At the end of the
culture, cells were re-suspended by gentle pipetting.

Organ culture
Whole FLs were individually transferred onto polycarbonate filters (0.8
m; Millipore) floating on culture medium (OptiMEM, 10% fetal calf
serum, 100U/ml penicillin, 100 g/ml streptomycin, 5�10–5 M 2-
mercaptoethanol) in wells of six-well plates and cultured for 3 days.
Single-cell suspensions were then obtained from five pooled explants by
passage through a 26-gauge needle. P-Sp explants were similarly
maintained in organ culture, except that they were placed directly in the
culture medium instead of on top of a filter.

B lymphoid culture
Cells from individual FL were cultured for 14 days on OP9 stromal cells
in OptiMEM, 10% fetal calf serum, 100 U/ml penicillin, 100 g/ml
streptomycin, 5�10–5 M 2-mercaptoethanol supplemented with IL7, Kit
ligand and Flt3 ligand, provided by the supernatant of a stably transfected
cell line (from F. Melchers). Under these conditions, myeloid
differentiation also occurs.

Flow cytometry analysis and cell sorting
Analyses were performed in a FACS Canto II running with the FacsDiva
software (Becton Dickinson). Dead cells were excluded in all analysis
using propidium iodide. The following antibodies, from BD Pharmingen
except when mentioned otherwise, were used: anti-CD31-PE, anti-Kit-
APC, anti-CD45-FITC, anti-Mac-1-FITC, anti-CD45.1-FITC, anti-
CD45.2-FITC, anti-CD19-PE-Cy7, anti-Gr1-APC, anti-CD4-PE-Cy7
(eBioscience), anti-CD8-APC, anti-Sca-1-FITC, anti-Kit-APC-Alexa Fluor
750, anti-CD150-PE (Biolegend), anti-CD48-APC (eBioscience), anti-
MHC-1-bioti and streptavidin-PE-Cy7. Lin– cells were stained with a
biotinylated Lin+ antibody cocktail (anti-CD4, anti-CD8, anti-NK1.1, anti-
CD11c, anti-B220, anti-CD19, anti-Gr1 and anti-Ter119) followed by
streptavidin-PE-Cy5. Intracellular Ki67 expression was analyzed using
anti-Ki67 FITC (BD Pharmingen) after use the Foxp3 Staining Set
(eBioscience). Cell sorting was performed in a MoFlo cell sorter running
with the Summit software (Cytomation, Ft Collins, CO, USA).

Reconstitution experiments
Cells from F1 embryos (C57BL/6 CD45.1xCD45.2) were injected
intravenously in the retro-orbital sinus or directly in the left femur of
sublethally irradiated (600-800 rad, Cesium source) Rag2c–/– recipient
mice. Reconstitution of sublethally irradiated Rag2–/– or lethally irradiated
C57BL/6 (Cesium source, 6 and 9.5 Gy, respectively) recipient was
similarly performed. C57BL/6 recipients also received 105 total bone
marrow (BM) cells. In long-term reconstitution assays, donor-derived
contribution was followed in peripheral blood cells, and after 5 to 6
months, the recipient mice were sacrificed and the BM, spleen and thymus
were analyzed by flow cytometry. Mice were considered reconstituted
when the % donor-derived granulocytes in BM was at least 0.5.

Gene expression analysis
Total RNA was isolated using the RNeasy Micro Kit (Qiagen). cDNA was
prepared from total RNA using avian myeloblastosis virus reverse
transcriptase (RT) under conditions recommended by the manufacturer
(Invitrogen).

A quantitative real-time PCR (RT-PCR) was then performed on cDNAs
samples to evaluate the mRNA levels of Mpl and Hprt. All samples were
analyzed in triplicate using TaqMan gene expression assays (Applied
Biosystems). Hprt was used as an endogenous control. Thermal cycler
conditions were 50°C for 2 minutes, 95°C for 10 minutes, and 45 cycles of
95°C for 0.15 minutes and 60°C for 1 minute. Data were analyzed with the
Sequence Detection System software version 1.6.3 (Applied Biosystems).

RESULTS
Onset of immature HSC activity in the dorsal
aorta
Previous experiments established that HSCs, defined by LTR
activity in conventional irradiated mice, are detected in the AGM,
after 10.5 dpc (34-35S) (Müller et al., 1994; Medvinsky and
Dzierzak, 1996). However, we previously observed (Bertrand et al.,
2005) that the P-Sp/AGM isolated prior to this stage contains
multipotent hematopoietic progenitors displaying LTR activity in
Rag2c–/– but not Rag2–/– or conventional recipients. These
hematopoietic progenitors are designated throughout this report as
imHSCs, in contrast to HSCs, which are able to reconstitute
hematopoiesis of recipient mice displaying NK activity.

We first determined in a reconstitution assay the stage of
appearance of imHSCs in the P-Sp, the embryonic territory that
later develops into the AGM. The LTR potential of cells isolated
from 15-20S and 20-25S P-Sp was analyzed by intra-femoral
transplantation into Rag2c–/– mice. At 9-9.5 dpc, the P-Sp contains
a limited number of multipotent progenitors comprising most of the
Kit+CD31+ subset (Bertrand et al., 2005). We quantified Kit+

CD31+ cells at the three stages analyzed (supplementary material
Fig. S1) and injected an equivalent number of multipotent
progenitors from 9-9.5 dpc P-Sp and 11 dpc AGM. Three out of

RESEARCH ARTICLE Development 139 (19)

D
E
V
E
LO

P
M
E
N
T



seven and four out of nine Rag2c–/– recipients injected with 9 (15-
20S) or 9.5 dpc (20-25S) P-Sp, respectively, showed long-term
multilineage hematopoietic reconstitution. The myeloid chimerism
in the BM ranged from 0.9-6.2% in host reconstituted with 9-9.5
dpc P-Sp cells and 5-53% when AGM cells from 11 dpc (>45S)
embryos were used for transplantation (Fig. 1A). Fig. 1B shows
myeloid and lymphoid reconstitution in the BM of Rag2c–/– mice
that received P-Sp and AGM cells. All positive mice also displayed
donor-derived B lineage (CD19+) cells in the BM, T lymphocytes
in the spleen and BM, and myeloid cells in the blood 12 weeks

after post-transplantation (Fig. 1C). The injection of an equivalent
number of multipotent progenitors derived from 9-9.5 dpc P-Sp
(15-25S) resulted in a chimerism significantly lower than that
obtained from 11 dpc AGM (Fig. 1A).

We next determined whether imHSCs (30-35S P-Sp/AGM) and
HSCs (45S AGM) could equally integrate the BM stem cell pool
and proliferate after transplantation. We found a significantly
higher frequency of donor LSK when mice were injected with 45S
than with 30-35S P-Sp/AGM multipotent progenitors
(supplementary material Fig. S2A), although they exhibited a
similar frequency of cells in cycle, as shown by Ki67 staining
(supplementary material Fig. S2B). As a control, we determined
the profile of Ki67 expression in freshly isolated cells. imHSCs
(30-35S P-Sp/AGM) and HSCs (45S AGM) showed a similar
frequency to Ki67+ cells, which was consistently higher than that
of BM HSC frequency (supplementary material Fig. S3A).

These results establish that imHSCs appear in the P-Sp at 9
dpc (15-20S), therefore at the same stage when multipotent
progenitors are first detected. After transplantation, imHSCs
(<35S P-Sp/AGM) are capable of long-term multilineage
reconstitution, although they are less efficient than HSCs (after
45S AGM) at reconstituting the hematopoietic compartment of
adult BM.

Immature HSCs adopt a HSC phenotype and LTR
activity in NK-competent recipients
HSCs appear in the AGM one and a half days later in development
than do imHSCs. To test the possibility that imHSCs can give rise
to HSCs, we defined culture conditions that allow the conversion
of imHSCs into HSCs.

FL HSCs are defined as LSKCD150+CD48– (Kiel et al., 2005;
Kim et al., 2006) (Fig. 2A, upper panel). By contrast, 20-35S P-
Sp/AGM multipotent progenitors, identified by their
CD31+Kit+CD45–/lowMac-1–/low phenotype (Bertrand et al., 2005),
express undetectable levels of CD150 while most cells are CD48–

(Fig. 2A, middle panel). We cultured 100 imHSCs
(CD31+Kit+CD45–/lowMac-1–/low) from 30-35S P-Sp/AGM in the
presence of OP9 stromal cells and various cytokine combinations.
Whereas freshly isolated 20-35S Kit+ cells have low frequency of
Sca-1+ cells (supplementary material Fig. S4A), a well-defined
compartment of CD45+Kit+Sca-1+ cells was detected after culture
(Fig. 2A, lower panel, supplementary material Fig. S4A,C; Fig.
S5A). The highest yield of cells with the LSK CD150+ phenotype
(Fig. 2A, lower panel) was obtained when thrombopoietin (TPO)
was added to OP9 cells for 7 days. ImHSCs express similar levels

3523RESEARCH ARTICLEFetal liver maturation of HSCs

Fig. 1. imHSC emergence in the P-Sp. (A)CD45.1+ cells derived from
9 dpc (15-20S) P-Sp (12 ee/recipient), 9.5 dpc (20-25S) P-Sp (10
ee/recipient) or 11dpc (45S) AGM (3 ee/recipient) were injected in the
femur of CD45.2+ Rag2c–/– recipients. Engraftment was analyzed 5-6
months after transplantation. Chimerism was expressed as the
frequency of donor derived (CD45.1+) myeloid cells (Gr-1+) in the host
BM. Data cumulate three and two independent experiments for P-Sp
and AGM, respectively. (B)Flow cytometry analysis of donor-derived
(CD45.1) B cells (top panels) and myeloid (middle panels) cells in the
BM of Rag2c–/– mice 5-6 months after transfer of 15-20S P-Sp (left
profiles) and 45S AGM (right profiles). T cell chimerism in the spleen is
shown in the bottom panels. (C)Flow cytometry analysis of B cells
(upper panels) and myeloid cells (lower panels) in the blood of the two
animals shown in B, 12 weeks after transplantation of 15-20S P-Sp (left
profiles) and 45S AGM (right profiles).
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of the TPO receptor Mpl as adult LSK (supplementary material
Fig. S5B); in the absence of TPO (supplementary material Fig.
S5A, middle panels), no Kit+Sca-1+CD48–CD150+ cells were
detected. With TPO and OP9 stroma, there was a 15-fold
expansion of LSK (supplementary material Fig. S4C), over to the
total input cells after 5 days and a 40-fold expansion after 7 days.
Intermediate levels of expansion and maturation were obtained
with Ang-1, IL3, Kit ligand or combinations of these cytokines.

The production of cells with a LSK CD150+ phenotype upon
TPO culture might result from the maturation of imHSCs and/or
from the expansion of the first few HSCs present in the 34-35S
AGM (Müller et al., 1994; Medvinsky and Dzierzak, 1996). We
therefore assessed LSK CD150+ cell production from either 22-32S
or 33-37S P-Sp/AGM sorted cells. Fig. 2B shows that similar
numbers and frequency of LSK CD48–CD150+ progenitors were
obtained at both stages. Moreover, CD31+KitlowCD45+

hematopoietic cells, mostly myeloid progenitors, did not acquire
the LSK CD150+ phenotype during culture, indicating that only
multipotent progenitors can do so (Fig. 2B). We also analyzed the
ability of single CD31+Kit+CD45low/– P-Sp/AGM cells to give rise
to LSK CD150+ cells. The frequency of clones producing LSK
CD150+ cells (around 10% of LSK CD150 progenitors) obtained
was comparable at the 22-32S or 33-37S stages (Fig. 3A). This
result confirmed at the single cell level the similarity of potential
displayed by multipotent progenitors at both stages. Interestingly,
among these clones, a few could yield up to 100 LSK CD150+ cells
(Fig. 3A, lower panel).

As in vitro maturation of imHSCs might result from cytokine or
stroma-driven inductive signals, we investigated whether this
maturation steps occurs in situ. To that end, we implemented P-Sp
organ culture and assessed the expression CD150 at day 3 and 5.
Fig. 3B (top panel) shows that, after organ culture, 15-22S P-Sp
cells acquire the expression of Sca-1 and CD150. Moreover, such
analysis performed at different 9-10 dpc sub-stages (15-22S; 28-
32S; 34-36S) showed that the phenotype evolution is similar at the
different stages (Fig. 3B, lower panel). We also show MHC-1
expression in these cultures (see below).

We next characterized the reconstitution potential of imHSC-
derived cells. We injected 30-35S imHSCs or the progeny of an
equivalent numbers of progenitors obtained after culture with TPO
and stromal cells into Rag2–/– or into conventional (C57BL/6)
recipient mice. No hematopoietic repopulation was obtained with
CD31+Kit+CD45–/lowMac-1–/low cells freshly isolated from 30-35S
P-Sp/AGM (none positive out of six mice). When the same
population was cultured with OP9 and TPO for 7 days, 100%
(three positive mice out of three) of transplanted mice were
reconstituted and displayed a BM myeloid chimerism ranging from
0.6 to 3.8%. Contrary to imHSCs, their progeny have acquired,
upon culture, the ability to reconstitute hematopoiesis for more than
6 months into either Rag2–/– or in wild-type C57BL/6 recipient
mice (Fig. 3C; see also supplementary material Fig. S6),
demonstrating the conversion of imHSCs to HSCs.

To further define the phenotype of the cells that exhibit HSC
properties in vivo, we injected LSKCD48– and LSK–CD48+ sorted
after culture of imHSCs with TPO and stromal cells (Fig. 3C). All
populations containing LSK cells displayed LTR activity. As
expected, the transplantation of LSKCD48– cells resulted in 100%
positive recipient mice (11/11 mice) and a mean of 2.1% donor
myeloid cells. Surprisingly, five out of six mice were also
reconstituted with the LSK–CD48+ population (mean chimerism:
1.3%). This result could suggest that the HSC phenotype is not
completely established at the end of the culture.

Altogether, these data show the emergence of cells with
phenotypic and functional properties similar to HSCs, in cultures
seeded with imHSCs.

Immature HSCs acquire, after culture, an
inhibitory phenotype for NK cells
The expression of MHC class I (MHC-1) molecules is acquired in
embryonic cells after 10.5 dpc (Jaffe et al., 1991). The absence of
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Fig. 2. imHSCs acquire a mature phenotype after culture with
TPO and stromal cells. (A)(Top panel) Lin–Kit+Sca-1+ profile of 14.5
dpc FL cells (left profile). The middle profile shows CD48 expression in
LSK cells. The expression CD150 in LSK CD48– FL cells appears in the
right profile. (Middle panel) CD150 and CD48 expression on
CD31+Kit+CD45-/lowMac-1–/low cells from 30-35S P-Sp/AGM. (Bottom
panel) Profile of Lin– cells derived from imHSCs cultured on OP9 stroma
with TPO. Lin–Kit+Sca-1+ profile (left) of imHSCs after 7 days in culture.
CD48 and CD150 expression is shown in the middle and right profiles,
respectively. (B)Numbers of LSK cells recovered from 100 sorted P-
Sp/AGM cells after culture on OP9 stroma with TPO.
CD31+Kit+CD45–/lowMac-1–/low (blue) and CD31+Kit+CD45+/–Mac-1–/low

(orange) cells were sorted from 22-32S P-Sp (n4) and
CD31+Kit+CD45–/lowMac-1–/low (blue) cells from 33-37S AGM (n2).
Thirty wells for each population were analyzed.
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MHC-1 expression on hematopoietic progenitors isolated before
35S could activate NK cells from recipient mice, leading to their
elimination. The differential engraftment capacity of imHSCs could
thus be explained by the absence of NK cell activity in Rag2c–/–

compared to Rag2–/– or wild-type mice.
We analyzed MHC-1 expression on P-Sp cells before the 32S

stage, on 30-35S P-Sp/AGM cells and on 45S AGM cells. MHC-
1 expression was virtually undetectable in P-Sp cells below the 32S
stage (Fig. 4A) and in 30-35S P-Sp/AGM multipotent progenitors
(CD31+Kit+ CD45–Mac-1–), whereas in 45S AGM, 40% of

CD31+Kit+ (CD45/Mac-1+) cells were MHC-1 positive
(supplementary material Fig. S7A). The expression of MHC-1 and
CD45 thus occurs in hematopoietic progenitors between the 30S
and the 45S stages (supplementary material Fig. S7). We next
followed the evolution of MHC-1 upon TPO culture (Fig. 4A).
After culture with TPO, 99% of LSK cells generated from P-Sp
cells below the 32S stage now expressed MHC-1 (Fig. 4A).

To obtain a functional link between MHC-1 expression and the
capacity to repopulate the hematopoietic system of NK+ mice, we
injected Rag2–/– mice with MHC-1-positive and -negative cells

3525RESEARCH ARTICLEFetal liver maturation of HSCs

Fig. 3. imHSCs can evolve into HSCs in vitro and in organ culture. (A)Single cell analysis. (Top panel) Frequency of single CD31+Kit+ CD45–/low

P-Sp/AGM cells capable of giving rise to LSK CD150+ cells. The progeny of 300 single cells was analyzed for each developmental stage (22-32S,
n4; 33-37S, n2). (Bottom panels) Three representative profiles of the progeny of single CD31+Kit+ CD45–/low cells from 22-32S P-Sp that gave rise
to LSK cells (left profiles) containing CD150+ cells (right profiles). (B)Organ culture analysis. (Top panels) After 5 days in organ culture, 15-22S P-Sp
gave rise to CD150+ cells (upper profiles). MHC-1 is expressed by LSK CD48– and Lin+ cells produced by 15-22S P-Sp maintained for 5 days in organ
culture, while its expression is lower in CD45– cells (lower profiles). (Bottom panel) A similar percentage of CD150+ cells within LSK cells is obtained
after organ culture of 15-22S P-Sp, 30-35S P-Sp/AGM and 34-36S AGM. (C)LTR activity. CD45.2+ Rag2–/– recipient mice were injected with either
200 sorted (CD31+Kit+CD45.1–/lowMac-1–/low cells) 30-35S P-Sp/AGM cells or with their progeny after culture on OP9 stroma with TPO. At day 7 of
culture, cells were either injected directly (total culture) or stained and sorted as LSKCD48– or CD48+ cells. Five to 6 months after transplantation,
the reconstitution level obtained with the three samples of cultured cells was significantly higher (total culture, P0.0013; LSKCD48–, P0.004;
LSKCD48+, P0.003), compared with fresh cells. Data cumulate two independent experiments. The reconstitution level obtained when total culture
is transplanted is similar in Rag2–/– and C57BL/6 recipients (P0.401).
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from 45S AGM, the first stage of development where both
populations co-exist in the same organ (Fig. 4A; supplementary
material Fig. S7). None of the mice injected with twice as many
MHC-1– as MHC-1+ cells showed hematopoietic chimerism,
whereas there was no significant difference when the long-term

chimerism of total and MHC-1+ AGM cells was compared
(P0.055) (Fig. 4B).

However, three out of seven mice reconstituted with sorted
MHC-1+ cells showed chimerism levels below 0.5%. We
considered the possibility that the antibody recognizing H-2Db used
to mark MHC-1+ cells may interfere with the reconstitution
capacity of labeled cells. To test this possibility, the same numbers
of total 45S AGM cells were incubated with either anti-H-2Db or
anti-Kit as a control, prior to injection into lethally irradiated wild-
type mice. None of the three mice injected with AGM cells
incubated with anti-H2Db antibody were reconstituted, in contrast
to two out of three mice injected with cells incubated with anti-Kit
(supplementary material Fig. S8). This result indicates that the
presence of anti-H2Db antibody on AGM cells impairs their
reconstitution capacity. Consequently, the reconstitution frequency
obtained with MHC-1+ cells is largely underestimated. Particularly
significant was the consistent inability of H2Db-negative cells to
engraft recipient mice, even when double numbers of H2Db–

compared with H2Db+ cells were transplanted (supplementary
material Fig. S8).

These results implicate MHC-1 expression that occurs
concomitantly with CD45 upregulation, as a major event in the
transition from imHSCs to HSCs. The acquisition of an inhibitory
phenotype for NK cells explains the capacity of cultured imHSCs
to repopulate Rag2–/– and wild-type recipients.

Immature HSCs acquire HSC properties in the FL
FL hematopoiesis relies on the colonization by hematopoietic
progenitors, a process previously shown to be initiated at 10 dpc
(28-32S) (Houssaint, 1981). HSCs were first detected in the FL at
11 dpc (42S), shortly after they are produced in the AGM. We
tested whether imHSCs, which may rapidly circulate and colonize
the FL, can give rise to HSCs in situ.

To define precisely the stage of FL colonization, we analyzed the
differentiation potential of hematopoietic progenitors recovered
from 20-38S FL, through culture on OP9 stroma with cytokines
(Fig. 5A). Although restricted myeloid progenitors could be
identified from 9 dpc (20S), CD19+ B-lineage cells were detected
after the 30S stage (Fig. 5B). This kinetic analysis shows that the
first FL colonization occurs 1 day earlier than previously thought.
The FL receives a first wave of erythro-myeloid restricted
progenitors from 9 dpc, before the colonization by imHSCs. The
second wave of FL colonization, which occurs at 10 dpc (from the
32S-stage), is performed by imHSCs, shortly after they emerge in
the P-Sp/AGM and long before the detection of HSCs.

Similar to P-Sp/AGM cells (Fig. 4A; supplementary material
Fig. S4A, Fig. S7A), 30-35S fetal liver hematopoietic progenitors
did not express sca-1 or MHC-1 (Fig. 6A; supplementary material
Fig. S4B, Fig. S7B). One day later (45S), 25% of
Kit+CD31+CD45+ FL cells expressed MHC-1 (Fig. 6A;
supplementary material Fig. S7B). A 4-day organ culture of 30-35S
FL resulted in 98% of MHC-1 expression in LSK cells (Fig. 6A).
To confirm the presence of imHSCs in the FL, we transplanted FL
cells from 10 dpc embryos (30-35S) into Rag2c–/– recipient mice
(Fig. 6B). Five out of seven mice displayed long-term
reconstitution and showed donor-derived myeloid cells. The
absence of HSCs in the FL at this stage was confirmed by the lack
of LTR activity in Rag2–/– recipients (0/3) (Fig. 6B). We isolated
FL at the 30-35S stages, performed a 3-day organ culture and
injected the cells obtained into Rag2–/– mice. In contrast to freshly
isolated FL cells, cells derived from 30-35S FL after organ culture
displayed LTR activity in 4/4 of Rag2–/– recipient mice (Fig. 6B).

RESEARCH ARTICLE Development 139 (19)

Fig. 4. MHC-1 expression is required for the engraftment of HSCs
in NK competent mice. (A)Flow cytometry analysis of MHC-1
expression (H-2Db) in P-Sp/AGM cells. Top profiles, Kit+CD45low/–/
Mac-1low cells from P-Sp/AGM below 32S; middle profiles,
Kit+CD45low/–/Mac-1low cells from 45S AGM; bottom profiles, the LSK
progeny of Kit+CD45low/–/Mac-1low cells from P-Sp/AGM below 32S
after 7 days in culture on OP9 stroma with TPO. See supplementary
material Fig. S7A. (B)Chimerism in sublethally irradiated Rag2–/– mice
injected with total 45S AGM cells, with Kit+CD31+MHC-1+ or with
double the number of Kit+CD31+MHC-1– cells. The chimerism level,
shown as the frequency of Gr-1+ donor (CD45.1) cells in the BM of
recipient mice 6 months after transplantation, was not statistically
different when reconstitution was achieved with Kit+CD31+MHC-1+ or
total AGM cells (P0.055). By contrast, no reconstitution was obtained
using Kit+CD31+MHC-1– cells.
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These data demonstrate that after 3 days in the FL environment, the
imHSCs that colonized the FL after the 30S stage evolved into
HSCs. The conversion of imHSCs to HSCs thus occurs in situ.

DISCUSSION
A better characterization of the events that precede the detection of
the first HSC in the embryo is crucial for the understanding of the
maturation steps leading to the development of adult type HSCs.

We focused on the potential and the outcome of multipotent
hematopoietic progenitors that are present in the P-Sp/AGM before
10.5 dpc, as hematopoietic activity at this stage remains poorly
characterized. The appearance of these multipotent progenitors
precedes by nearly 2 days the detection of the first HSC defined by
its ability to perform long-term multilineage reconstitution of
irradiated adult recipients. HSCs have first been identified in the

10.5 dpc AGM, after the 34-35S-stage, and slightly later in the FL
(Müller et al., 1994; Sánchez et al., 1996; Medvinsky and Dzierzak,
1998). However, hematopoietic activity starts in the P-Sp at 9 dpc
(after the 15S stage) with the emergence of clonally defined
multipotent progenitors (Godin et al., 1995; Yokota et al., 2006).
When specifically tested for their reconstitution activity, 9-9.5 dpc
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Fig. 5. Colonization of FL by imHSCs and myeloid progenitors.
(A)Scheme of cultures of total cells isolated from FL at different stages,
in B lymphoid and myeloid conditions. B and myeloid cells were
identified as CD19+ and Mac-1+ cells, respectively. (B)Frequency of FL
positive for B lymphoid (top) or myeloid (bottom) cell production. Flow
cytometry profiles on the right show the presence of B lymphoid cells in
culture derived from a 30S FL, compared with a 29S FL (top panels).
Myeloid cells are present in cultures derived from FL after the 19S stage
(bottom panels). Fig. 6. imHSCs from 10 dpc FL evolve into HSCs after organ

culture. (A)MHC-1 expression (H-2Db) by FL cells. (Top profile) 32-35S
FL. (Middle profile) 45S FL. (Bottom profile) Progeny of 32-35S FL cells
after 4 days in organ culture. See supplementary material Fig. S7B.
(B)The experimental protocol (top panel). 30-35S FL were injected
directly into CD45.2+ Rag2c–/– and Rag2–/– recipients, or after a 3-day
organ culture into Rag2–/– recipient mice. See supplementary material
Fig. S5. (Bottom panel) Engraftment (% Gr-1+ cells in the BM) 5-6
months after transplantation in mice that received freshly isolated cells
(left and middle) or cells obtained from organ culture. Data cumulate
two independent experiments.
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hematopoietic progenitors were found to be unable to reconstitute
conventional recipients.

Here, we tested the possibility that 9-9.5 dpc multipotent
progenitors constitute the progenitors of HSCs. Our phenotypic and
functional analyses led to the identification of a population that lays
immediately upstream of HSCs in the hierarchical progression
from mesoderm to HSCs during ontogeny. This population,
referred to as imHSCs, is detected in the P-Sp from 9 dpc, at the
same stage when multipotent progenitors, defined in vitro, were
previously identified (Godin et al., 1995). Attempts to find imHSCs
in other locations before the establishment of circulation, which
would unambiguously assign their origin, were unsuccessful. We
therefore concentrated our study on the P-Sp/AGM. It is possible
that imHSCs are also present and/or generated in other sites [YS,
placenta or the umbilical and omphalomesenteric (or vitelline)
arteries].

Immature HSCs are defined by their ability to reconstitute in the
long-term the hematopoiesis of Rag2c–/– recipient mice together
with the absence of LTR activity in either Rag2–/– or conventional
mice. More importantly, these cells that also differ from HSCs by
their phenotype, can progress, in monolayer or in organ cultures,
to a stage when they now show the functional and phenotypic
properties of HSCs. Indeed, our results demonstrate that sorted
CD31+Kit+CD45– imHSCs cultured on OP9 stromal cell line in the
presence of TPO can give rise to HSCs defined by (1) an adult
HSC phenotype (Kiel et al., 2005), namely LSKCD150+CD48–;
and (2) a LTR activity in Rag2–/– or conventional (C57BL/6)
recipient mice. Upon culture with TPO, HSCs that display a LTR
activity are recovered from both the LSKCD48– and Lin–CD48+

populations. The phenotype of the cells isolated from culture that
generate long-term chimerism is identical to that obtained with
sorted freshly isolated 14 dpc FL cells. The LSKCD48– population,
which is derived from the culture with TPO, is composed of
CD150+ and CD150– populations, both of which display LTR
activity in Rag2–/– recipient mice. It has been documented that FL
and BM HSCs share an LSKCD150+CD48– phenotype. However,
it was recently shown that HSCs are also present within the
CD150– population (Weksberg et al., 2008; Kent et al., 2009).

Two lines of evidence indicate that imHSCs from the P-Sp
below the 32S stage and HSCs from 33-37S AGM are highly
similar, although they differ in the type of recipient required to
reveal their LTR ability: (1) single CD31+ Kit+CD45– cells from
both stages gave rise to similar numbers and frequencies of
CD45+MHC-1+ cells and of CD150+ cells; (2) at both stages, P-Sp
or AGM explants maintained in organ culture displayed a similar
phenotypic evolution characterized by the progressive acquisition
of Sca-1, CD45 and MHC-1 expression. Although hematopoietic
cells derived from organ culture were not tested here for their
reconstitution capacity, they are likely to behave in vivo as HSCs.
This conclusion is strengthened by the fact that 36-39S AGM cells
maintained in organ culture gave rise to LTR-HSCs (Medvinsky
and Dzierzak, 1996).

Using various experimental set-ups, others authors have
attempted to characterize intermediate steps in HSC development.
Ema et al. (Matsumoto et al., 2009) identified pre-HSCs in an
embryonic stem cell (ES) differentiation assay combined with an
inducible HOXB4 enforced expression. These ES derived
progenitors display the same phenotype as the imHSCs described
here, namely CD41+Kit+CD45–, and are also unable to engraft
recipient mice displaying NK activity.

Medvinsky’s group used organ cultures of re-aggregated AGM
to reveal the presence of VE-Cadherin+ CD45+ or CD45– cells after

11 dpc (45S) that they qualify as ‘pre-HSC type II’ (Taoudi et al.,
2008; Rybtsov et al., 2011). These cells, which mature during the
organ culture, are responsible for the increased HSC number
recovered from the culture. Our study refers to a developmental
stage that precedes by 2 days the appearance of VE-
cadherin+CD45+ pre-HSC type II, which express MHC-1
molecules. The maturation steps described by Taoudi et al., which
are subsequent to the ones described here, might further confer
robust engraftment capacity to imHSCs. Recently, although
focusing on earlier development stages, these authors showed that
VE-cadherin+CD45– cells sorted from 10.5 dpc embryo (36-39S
stage), which poorly reconstitute conventional recipients, are able
to efficiently reconstitute these recipients when they are maintained
for 4 days in a 3D-reaggregation culture with OP9 cells (Rybtsov
et al., 2011). The 11 dpc ‘pre-HSC type II’ are considered as
deriving from VE-cadherin+CD45– cells, termed ‘pre-HSC type I’,
through maturation steps that occur during the 3D-reaggregation
culture. Using similar approaches (culture with TPO or P-Sp/AGM
organ culture) at an earlier stage, we identify an earliest maturation
stage, and further define the acquisition of MHC-1 expression as
an important step in this process.

As stated above, HSCs may be distinguished from imHSCs by
the ability to long-term reconstitute hematopoiesis in Rag2–/– mice.
This distinct in vivo behavior results in part from the difference in
the expression of MHC-1, an inhibitory ligand of NK activation.
From our results, it appears that the inhibitory phenotype of NK
activation is acquired during the transition to HSCs. Yoder et al.
previously evidenced that CD34+Kit+ cells from 9 dpc P-Sp or YS
could display LTR activity when transferred into the fetal liver of
myelo-ablated newborn mice (Yoder et al., 1997). As NK activity
is not developed in newborns (Dussault and Miller, 1995), the
reconstituting cells described in this study probably correspond to
imHSCs.

Although both imHSCs and HSCs are capable of long-term
reconstitution when engrafted into sublethally irradiated Rag2c–/–

mice, the hematopoietic chimerism obtained with P-Sp/AGM-
derived imHSCs is lower than the level achieved by HSCs. In the
same way, HSCs derived from imHSCs during the culture with
TPO or the organ culture of FL resulted in a low hematopoietic
chimerism in Rag2–/– mice. This difference in hematopoietic
chimerism does not result from an impaired homing to the BM nor
from a decreased proliferation capacity. One possible explanation
would be that maturation events, other than acquisition of MHC-1
(and CD45 and Sca-1), are required. Nevertheless, the few imHSCs
that successfully integrated the recipient bone marrow
compartment behave as HSCs as they maintain, in the long term,
their contribution to hematopoiesis.

We also demonstrate here that imHSCs readily contribute to
further hematopoietic development, as we detected the presence of
imHSCs in the FL as soon as the 30S stage, 1 day earlier than the
FL colonization by HSCs (Müller et al., 1994; Sánchez et al.,
1996). These imHSCs are able to give rise to HSCs in the FL. The
establishment of the HSC pool in the FL may thus result from both
in situ maturation of imHSCs and further contribution of AGM-
derived HSCs at later stages. FL colonization by imHSCs occurs at
the same stage when Houssaint et al. timed FL colonization by YS-
derived erythro-myeloid progenitors (Houssaint, 1981). However,
in these experiments, hematopoietic cells were identified in the
liver rudiment after culture using histological and morphological
techniques that did not allow the characterization of hematopoietic
lineages. Our present results suggest that the hematopoietic cells
they detected were derived from imHSCs. This lead us to re-
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investigate the timing of FL colonization by YS-derived cells,
defined by their inability to give rise to lymphoid progeny
(Cumano et al., 1996; Cumano et al., 2001). Our kinetic analysis
shows that the first FL colonization, seeded by YS-derived
progenitors, occurs 1 day earlier than previously thought, as
progenitors restricted to the erythro-myeloid lineage were detected
in the FL from 9 dpc (20S).

The FL is the main site that produces TPO (Cardier and Dempsey,
1998), a cytokine involved in the amplification and quiescence of
HSCs (Kimura et al., 1998; Qian et al., 2007; Yoshihara et al., 2007).
The production of TPO in the FL begins at around 10.5 dpc at the
same stage when we detected imHSCs in the FL (Petit-Cocault et al.,
2007) and at that stage imHSCs express similar levels of Mpl than
BM HSCs, suggesting a role for TPO in imHSC development.
Indeed, a function of TPO in the maintenance/amplification of
imHSCs is suggested by the non-exhaustion of HSCs after 7 days of
culture. A pending issue is whether TPO also plays a direct role in
the transition from imHSC to HSC. It has been shown that HSCs
from the FL of Mpl–/– mice have a impaired self-renewal ability
(Petit-Cocault et al., 2007). Moreover, FL colonization by HSCs is
delayed in Mpl–/– embryos, leading to the absence of LTR activity at
11 dpc. Taking into account the data presented here, the absence of
HSCs in Mpl–/– FL at 11 dpc might result from a defective
development of imHSCs. However, HSCs could be recovered from
Mpl–/– FL (Qian et al., 2007) at 12 dpc, indicating that other
components of microenvironment can compensate for the function
of TPO, during HSC maturation.

Our data functionally define for the first time the existence of
imHSCs, in the P-Sp/AGM, that lie immediately upstream of

HSCs during development (Fig. 7). Moreover, we redefine the
kinetics of FL colonization as comprising a first wave involving
erythro-myeloid progenitors from the YS followed by a second
wave composed of imHSCs from P-Sp/AGM, which are able to
give rise in situ to HSCs (Fig. 7). This latter population is also
found in the AGM and could correspond to a third wave of FL
colonization.

This revised sequence of events in developmental hematopoiesis
has consequences in the interpretation of previous observations
regarding early FL hematopoiesis. It is also relevant to studies
aimed at identifying and elucidating the functions of factors that
regulate the maturation of imHSCs into HSCs and further
expansion of these cells.
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Fig. 7. Schematic representation of HSC development. Erythromyeloid progenitors generated in the YS between 7 and 9.5 dpc (Palis et al.,
1999; Lux et al., 2008) colonize the FL starting at the 20S stage. imHSCs produced in the P-Sp/AGM starting at 9 dpc, develop into HSC detected in
the AGM at 10.5 dpc. Rapidly after their generation, imHSCs colonize the FL at 30S and give rise in situ to HSCs. AGM-derived HSCs may also
contribute to the HSC pool present in the FL at 11 dpc.
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Fig. S1. Estimated number of multipotent progenitors transplanted into Rag2gc-/- recipients. CD31+ Kit+ multipotent 
progenitors were quantified by flow cytometry (top panel). To inject similar number of progenitors at the three stages 
analyzed (lower panel), the recipients were transplanted with 12 P-Sp per mouse at 9 dpc (15-20S), 10 P-Sp per mouse at 
9.5 dpc (20-25S) or 3 AGM per mouse at 11 dpc (45S).

Fig. S2. Frequency of LSK cells in cycle after reconstitution. Sublethally irradiated Rag2gc-/- recipients were 
intravenously transplanted with cells isolated from 30-35S P-Sp/AGM (4 e.e.) or 45S AGM (2 e.e.). Donor-derived LSK 
cells in the BM were analyzed using the intracellular Ki67/DAPI staining 3 and 10 weeks after transplantation. The 
frequency of cells expressing high levels of Ki67/DAPI is shown.



Fig. S3. Proliferative activity of AGM and FL cells. (A) Flow cytometry profiles of KI67 expression in 
CD31+Kit+CD45–/low imHSC from 30-35S P-Sp/AGM (top panel) and in CD31+Kit+ CD45low/+ HSC from 40-45S AGM 
(middle panel). (Lower panel) KI67 expression in LSK cells from adult BM. (B) Flow cytometry profiles of KI67 
expression in CD31+Kit+CD45+ cells from 30-35S FL (top panel), from 40-45S FL (lower panel). (C) Staining of 40-45S 
FL cells with isotype controls.



Fig. S4. Flow cytometry profile of imHSC from the P-Sp/AGM, freshly isolated or after culture. (A) ImHSC from 
20-30S P-Sp or from 30-35S P-Sp/AGM do not overtly express Sca-1 (upper panel). After culture with TPO on OP9 
stromal cells, the expression of Sca-1 is progressively acquired (middle panel). LSK cells derived from the culture of Kit+ 
CD45–/low Mac-1–/low imHSC (30-35S P-Sp/AGM) express CD45 and Mac-1 (lower panel). (B) Similar to imHSC from the 
30-35S P-Sp/AGM, imHSC from the 30-35S FL do not express Sca-1. (C) Number of LSK (grey bars) and LSK CD48–

CD150+ (black bars) per 100 CD31+Kit+CD45– sorted P-Sp/AGM at days 2, 3 4 and 5 of culture with OP9 stroma and 
TPO.



Fig. S5. TPO promotes in vitro maturation of 30-35S P-Sp/AGM multipotent progenitors. (A) Freshly isolated 
CD31+Kit+ cells from 30-35S P-Sp/AGM initially lack the expression of CD45 and Sca-1 (top panel). After culture on 
OP9 stroma, in the absence of TPO, these 30-35S P-Sp/AGM cells give rise to a limited number of CD45+Sca-1+ cells 
(middle panel), whereas when TPO is added to the culture medium, a well-defined population of CD45+Sca-1+ cells 
appears (lower panel). (B) Sorted 30-35S Kit+CD31+ P-Sp/AGM cells and adult bone marrow LSK were subjected to 
Q-RT-PCR for the detection of Mpl and HPRT mRNA (the receptor of TPO). Results are expressed as arbitrary units (ratio 
of Mpl to HPRT).



Fig. S6. Comparison of total and myeloid chimerism levels in C57BL/6 and Rag2-/- recipients. This figure relates 
to Fig. 3C. Analysis of the chimerism level in Rag2-/- and C57BL/6 recipients 6 months after engraftment of total cells 
recovered from 30-35S P-Sp/AGM cells cultured on OP9 stroma with TPO. The total chimerism level in the BM of Rag2-/- 
recipients often reaches levels close to 90%, owing to the 100% donor-derived contribution to the lymphoid compartment, 
when it reaches about 10% in similarly injected C57BL/6 recipients (left panel). The corresponding myeloid chimerism in 
the two types of recipients (right panel) is similar (P=0.4148) and ranges on average from 2% to 4%.

Fig. S7. Acquisition of MHC class I correlates with CD45 expression. This figure relates to Figs 4 and 6. (A) CD45 
against MHC class I (H2Db) profile (middle panels) of Kit+ progenitors from 30-35S P-Sp/AGM (top panel) and 45S 
AGM (bottom panel). Within the hematopoietic progenitor compartment, MHC class I expression is restricted to CD45+ 
cells (right panels). At earlier stages, Kit+ cells express low levels of CD45, and MHC class I is virtually undetectable 
(Fig. 4A). (B) CD45 against MHC class I (H2Db) profile (middle panels) of Kit+ progenitors from 30-35S (top panel) and 



Fig. S8. Incubation of AGM with Anti-H2Db antibody interferes with reconstitution capacity. CD45.2+ recipient mice 
were injected with 3 e.e. AGM cells from 45S embryos. Prior to injection, cells were incubated with anti-Kit or anti-H2Db 
antibodies. Results show percentage donor-derived cells in the blood 24 weeks after transfer.
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