
1017

Summary
Definitive hematopoietic stem cells (HSCs) lie at the foundation
of the adult hematopoietic system and provide an organism
throughout its life with all blood cell types. Several tissues
demonstrate hematopoietic activity at early stages of
embryonic development, but which tissue is the primary source
of these important cells and what are the early embryonic
ancestors of definitive HSCs? Here, we review recent advances
in the field of HSC research that have shed light on such
questions, while setting them into a historical context, and
discuss key issues currently circulating in this field.
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Introduction
The ontogeny of the vertebrate hematopoietic system is
characterized by two waves: embryonic hematopoiesis, which
generates transitory hematopoietic cell populations, such as
primitive erythrocytes and some myeloid cells; and permanent,
definitive hematopoiesis, which originates later in development
from definitive hematopoietic stem cells (dHSC) and which gives
rise to all the mature blood (erythroid, myeloid and lymphoid)
lineages in the adult organism.

It was Francoise Dieterlen-Lievre in 1975 (Dieterlen-Lievre,
1975), who showed, using quail chick chimeric embryos, that the
adult hematopoietic system originates inside the embryo proper:
‘haemopoietic stem cells of the definitive blood cell series originate
from a source other than the yolk-sac, and that this source must be
intra-embryonic’ (Dieterlen-Lievre, 1975). The use of the term
‘definitive’ in this context is clear, meaning ‘fully formed and
developed’. Thus, although from the mid 1990s the term
‘definitive’ has also been used to refer to any hematopoietic
progenitor cells emerging during embryogenesis or during
embryonic stem (ES) cell differentiation that can produce myeloid
and adult-type enucleated erythroid cells, historically and more
accurately, the term ‘definitive HSC’ (dHSC; see Glossary, Box 1)
refers to a stem cell that gives rise to the true adult hematopoietic
system. The term ‘definitive HSC’ is specific to developmental
hematopoiesis because it refers to a stage in HSC development
when an HSC acquires the ability to provide long-term
hematopoiesis upon transplantation to wild-type irradiated adult
recipients (see Box 2).

Investigating the developmental events that lead to the formation
of a functioning hematopoietic system in an adult organism has
been a challenging pursuit for several reasons: (1) in contrast to

solid tissues, the cells of the hematopoietic system are scattered
throughout the organism, and multiple sites of hematopoietic
activity exist in the embryo, thus obscuring its anatomical
boundaries; (2) dHSCs in the early embryo are very rare: there is
approximately one dHSC per hematopoietic organ in the E11.5
mouse embryo prior to the onset of fetal liver hematopoiesis
(Kumaravelu et al., 2002); (3) the embryo contains an unknown
number of pre-dHSCs (see Glossary, Box 1), which contribute to
the growing dHSC pool; and finally, (4) no markers are known to
be exclusively expressed on dHSCs in the embryo – markers such
as c-kit, CD34, Sca-1, Mac1, VE-cadherin and CD45, are shared
with other cell types (North et al., 2002; Sanchez et al., 1996;
Taoudi et al., 2005).

It has also been a challenge to derive dHSCs from ES cells ex
vivo, an important goal for regenerative medicine. In order to
achieve this aim, the events that lead to the development of the first
definitive HSC during embryogenesis need to be identified.
Although various transplantation and ex vivo maturation assays
have been developed (see Box 2) and some progress has been
made, the identification of pre-dHSCs in the mouse embryo and
tracking of the origin of dHSCs to the earliest embryonic stages of
vertebrate development remain challenging tasks.

Hematopoiesis research utilizes several vertebrate model
organisms, including mice, zebrafish and chick, each of which has
its own advantages. For example, the external development of
avian and amphibian embryos has enabled important information
to be obtained on the spatial origin of hematopoiesis through in
vivo grafting, and zebrafish studies have facilitated the real-time
imaging of hematopoietic development. In this review, we discuss
recent advances in our understanding of the development of the
definitive hematopoietic system (focusing predominantly on mouse
research but also considering findings from other model species),
which include the identification of a common progenitor for
hematopoietic and endothelial cells, called the hemangioblast (see
Glossary, Box 1), and new insights into the relationship between
the physical forces of circulation and the genetic mechanisms of
hematopoiesis. We also highlight existing controversies and
discussions in the field. Given this focus, we do not discuss ES cell
differentiation and certain aspects of hematopoietic development in
non-mammalian vertebrates. We refer readers to other reviews on
these topics (Bertrand and Traver, 2009; Cerdan and Bhatia, 2010;
Chen and Zon, 2009; Ciau-Uitz et al., 2010a; Cumano and Godin,
2007; Dzierzak and Speck, 2008; Gering and Patient, 2008;
Martinez-Agosto et al., 2007; Murry and Keller, 2008; Zon and
Paik, 2010).

Hematopoiesis in the embryo: an overview
Between E7.0 and E7.5 of mouse development, the extra-embryonic
mesoderm ingresses through the posterior primitive streak and
undergoes hematopoietic differentiation in the yolk sac (see
Glossary, Box 1) (Silver and Palis, 1997). Although hematopoietic
cells in the yolk sac were described in the late 19th century, it was
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only with the development of in vitro assays that active
hematopoiesis within the yolk sac was demonstrated experimentally
(Moore and Metcalf, 1970). In these experiments, the yolk sac was
shown to harbor in vitro clonogenic myeloid progenitors (called
CFU-Cs, for colony forming units-culture) and, importantly, adult-
type dHSCs and CFU-S (for colony forming units-splenic) (see
Glossary, Box 1). However, a more stringent assay, in which
irradiated recipient mice were used to prevent the regeneration of
endogenous splenic colonies, showed that the yolk sac lacks CFU-
S prior to E9.5 (Medvinsky et al., 1993) and subsequent studies
showed lack of dHSCs prior to E11.5 (Medvinsky and Dzierzak,
1996; Muller et al., 1994). Thus, paradoxically, yolk sac
hematopoiesis occurs in the absence of dHSCs. Further studies
identified the presence of CFU-S in the aorta-gonad-mesonephros
(AGM) region of the mouse embryo (see Glossary, Box 1),
beginning at E9.5, in consistently higher numbers than in the yolk
sac (Medvinsky et al., 1993). Also, lymphoid precursors appear
inside the embryo earlier than they do in the yolk sac (Godin et al.,
1993) although this conclusion has recently been challenged
(Yoshimoto et al., 2011). Finally, the AGM region has been shown
to be a powerful source of dHSC activity (Muller et al., 1994;
Medvinsky and Dzierzak, 1996). These findings suggested that
adult mammalian hematopoiesis has an intra-embryonic origin, in
agreement with earlier observations made in avian embryos
(Cormier and Dieterlen-Lievre, 1988; Dieterlen-Lievre, 1975), but
they did not fully exclude the possibility that the yolk sac
contributes to the adult hematopoietic system as embryonic
ancestors of dHSCs were not detectable owing to the lack of
appropriate assays. The identification of additional embryonic
hematopoietic sites that harbor dHSCs has further complicated the
picture of hematopoietic development (Fig. 1A,B) (Cumano and
Godin, 2007; Dzierzak and Speck, 2008), and the exact role of the
various embryonic HSC niches in the generation of the adult
hematopoietic system in the mouse remains a debatable issue. As
such, Fig. 1 takes into account conflicting views on this subject.

As mentioned above, studies of the development of the adult
hematopoietic system are hampered by several factors. In the
absence of unique markers, quantitative limiting dilution analysis,
which is based on the transplantation of aliquots that contain very
few dHSCs, has become an important tool that enables the
anatomical description of dHSC development (Szilvassy et al.,
1990). At the pre-liver stage of development, the E11.5 AGM
region, placenta and yolk sac each contain approximately one
dHSC and subsequent dHSC production occurs via maturation of
pre-HSCs (Gekas et al., 2005; Kumaravelu et al., 2002).
Colonization of the fetal liver by dHSCs at E12.5 coincides with
their appearance in the embryonic circulation. Further expansion
of dHSCs in the fetal liver probably occurs through proliferation
and is mediated by such molecules as angiopoietin-like factors and
Sox17 transcription factor (Kim et al., 2007; Zhang et al., 2006).
1 integrins are also essential for fetal liver colonization by dHSCs.
1 integrin-null HSCs fail to colonize the mouse liver and instead
accumulate in the circulation (Hirsch et al., 1996; Potocnik et al.,
2000). By contrast, 4 integrin–/– mouse embryos develop normal
dHSCs both in the AGM region and in the yolk sac, and these
dHSCs do colonize the liver although with reduced efficiency
(Gribi et al., 2006). However, during fetal/neonatal stages, 4
integrin-null dHSCs progressively lose their capacity to complete
differentiation (Arroyo et al., 1996; Arroyo et al., 1999).

Although involvement of the fetal liver and bone marrow in
hematopoiesis varies between different vertebrate species, the
initial sites of hematopoietic activity, such as the yolk sac and the
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Box 1. Glossary
Aorta-gonad-mesonephros (AGM) region. An embryonic tissue
originating from the para-aortic splanchnopleura (P-Sp) and
consisting of the dorsal aorta and urogenital ridges (UGR). It is
involved in generating dHSCs prior to the onset of hematopoiesis
in the fetal liver.
Blast colonies. Colonies of ES-cell- or embryo-derived cells of
mesodermal origin (hemangioblasts) that can differentiate into
hematopoietic, endothelial and smooth muscle cells.
Blood island(s). An isolated area of hematopoietic differentiation
in the early yolk sac prior to formation of the vascular network.
CFU-C, colony-forming units-culture. Progenitor cells that can be
stimulated in vitro to generate a colony of hematopoietic cells,
which cannot self-renew, although some can be replated a limited
number of times. CFU-Cs are classified according to the
composition of the colonies they generate.
CFU-S, colony forming units-splenic. Immature progenitor cells
that can form morphologically distinguishable colonies of myeloid
cells in spleens of irradiated animals following transplantation.
Some have a limited self-renewal capacity determined by secondary
transplantation.
Definitive hematopoietic stem cell (dHSC). Rare cells in the
embryo that can give rise to all lineages of an adult hematopoietic
system. They are defined by their ability to reconstitute the
hematopoietic system of irradiated wild-type animals on
transplantation (see Box 2).
Dorsal aorta. A major arterial vessel in the embryo that is part of
the AGM region.
Erythromyeloid progenitors (EMPs). Progenitor cells capable of
producing erythrocytes and granulocytes/macrophages but not B-
or T-lymphocytes.
Hemangioblast. A cell that can differentiate into both endothelial
and hematopoietic lineages.
Hematogenic endothelial cell. An endothelial cell that can
differentiate into a hematopoietic cell.
High proliferation potential forming cell (HPP-CFC). Myeloid
progenitors with high proliferative potential that form large (≥5
mm) diameter colonies.
Multipotent progenitors (MPP). Progenitor cells that give rise
both to lymphoid and erythromyeloid lineages but that cannot self-
renew.
OP9 culture system. A culture technique that uses OP9 stromal
cells derived from newborn mouse calvaria that can facilitate the
efficient differentiation of embryonic cells into hematopoietic and
endothelial lineages.
Para-aortic splanchnopleura (P-Sp). A caudal part of the E8.0
mouse embryo that contains the dorsal aorta, omphalomesenteric
artery, gut and splanchnopleural lining of these tissues. Part of this
later forms the AGM region.
Pre-definitive hematopoietic stem cell (pre-dHSC). A cell of the
HSC lineage in the embryo that has hematopoietic identity that
cannot yet repopulate wild-type adult irradiated recipients. Pre-
dHSCs develop into dHSCs by acquiring characteristics of adult
bone marrow HSCs (such as the capacity to self-renew, homing
receptors, etc.).
Rag2c–/– mice. A severely immunocompromised mouse mutant
strain that lacks B, T and NK cells. They are used to detect some low
level long-term repopulating cells that cannot engraft wild-type
recipients.
Urogenital ridges (UGR). A part of the AGM region, which
harbors the embryonic kidney rudiments and the genital ridges.
Yolk sac. An extra-embryonic organ, consisting of extra-embryonic
endoderm and mesoderm, in which the first visible hematopoietic
differentiation occurs. It is the source of large primitive nucleated
erythrocytes that express embryonic hemoglobins and some early
myeloid cells.
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AGM region, are largely conserved. Given this multiplicity of
hematopoietic sites and a variety of hematopoietic progenitors in
the embryo, as well as the highly migratory nature of hematopoietic
cells, can the origin of dHSCs be pinned down?

Embryonic and adult hematopoietic hierarchies:
their relationship during development
A major puzzle in defining the embryonic origin of the mouse adult
hematopoietic system comes from the observation that during
embryogenesis members of the hematopoietic hierarchy appear in a
reverse sequence compared with that of the adult hematopoietic
hierarchy (Fig. 2). How does the production of differentiated
hematopoietic cells and CFU-Cs occur in the absence of dHSCs?
Two models that account for this sequence reversal can be proposed.

Model 1 suggests that the mouse embryo generates embryonic
and adult (definitive) hematopoietic systems independently (Fig.
3A). The embryonic system emerges first, serves the short term
needs of the developing embryo and exists transiently. The
definitive (adult) hematopoietic system emerges independently
through the specification of dHSCs, which ensure life-long
hematopoiesis. Model 2 suggests a common origin for the
embryonic and adult hematopoietic hierarchies (Fig. 3B). This
model implies the existence of a common hematopoietic ancestor
cell, which first generates a ‘wave’ of embryonic hematopoiesis
and later produces dHSCs. This common hematopoietic ancestor
is not detectable in standard transplantation assays until later when
dHSC specification occurs.

The appearance of CFU-Cs prior to the specification of
dHSCs fits both models (Fig. 3). In both models, dHSCs mature
from pre-dHSCs by acquiring certain essential stem cell

characteristics. Interestingly, the progressive enhancement of
hematopoietic potential during both mouse and zebrafish
development is observed at the progenitor level: the first wave
of primitive erythrocytes is followed by the sequential
appearance of more diverse progenitor waves (Palis et al., 1999;
Bertrand et al., 2008; Chen and Zon, 2009). Thus, two
alternative pathways might underlie the later appearance of
dHSCs: (1) the first progenitors and dHSCs are not linearly
linked and develop in independent hierarchies (Model 1); and (2)
progenitors gradually develop ‘stemness’ and become dHSCs
(Model 2). In this review, we avoid using the term ‘definitive
progenitors’, nowadays often applied to any multipotent
clonogenic progenitor in the embryo, owing to uncertainty as to
which hierarchy (embryonic/transitory or definitive/adult) they
belong.

How do these two models relate to the tissue organization of
hematopoiesis in the embryo (Fig. 3)? Model 1 is typically
associated with the concept of a dual origin of hematopoiesis and
is currently broadly accepted. Specifically, the yolk sac and the
AGM region (and perhaps placenta) are considered to represent the
sites of embryonic and definitive hematopoiesis, respectively.
Observations from non-mammalian vertebrates (avian, amphibian
and zebrafish models) support this view (Ciau-Uitz et al., 2000;
Dieterlen-Lievre, 1975; Dzierzak and Medvinsky, 2008). Model 2
is usually associated with the idea that the entire (embryonic and
adult) hematopoiesis in the animal originates exclusively from the
yolk sac, with the AGM region functioning as an intermediate
‘educational’ site for developing HSCs prior to their colonization
of the liver (Samokhvalov et al., 2007).

Box 2. Functional analysis of HSC development
A key characteristic of adult bone marrow hematopoietic stem cells (HSCs) is their
capacity to engraft and provide a long-term supply of all types of blood cells to adult
irradiated wild-type recipients upon intravenous injection. Whole-body irradiation is
used to ablate hematopoietic cells of a host in order to clear the HSC niches to accept
transplanted exogenous HSCs. A highly purified population of HSCs shows a
remarkably high efficiency of long-term multilineage engraftment (>3.5 months) when
individual cells were transplanted (Kiel et al., 2005).

Although somewhat artificial, the long-term repopulation assay employs the natural
abilities of adult HSCs to home to bone marrow niches, to self-renew and to
differentiate into all myeloid and lymphoid lineages. As such, the long-term
multilineage engraftment remains a key in vivo functional test for the detection and
characterization of HSCs. The absence of either of the above HSC properties results in
the lack of long-term hematopoietic repopulation. Other hematopoietic progenitor cells
can only repopulate an irradiated host for up to 6 weeks owing to their inability to self-
renew.

Definitive (d)HSCs that possess a full set of adult HSC properties emerge only at a
certain stage of development. The direct transplantation of even large numbers of
embryonic cells prior to E10.0 into adult wild-type irradiated recipients does not
produce long-term hematopoietic repopulation (Muller et al., 1994), shown by red
blocking bar in the accompanying figure. Lack of engraftment means the absence of
dHSCs, although their precursor pre-dHSCs must exist in the embryo.

As shown in the Box figure, other functional assays have been devised to detect pre-
dHSCs that allow cells to mature either in vitro or in vivo. This figure shows how the
hematopoietic potential of immature cells that precede dHSC specification, isolated
from different sources or tissues (left), can be revealed by their transplantation into the
embryo and into newborn recipients, which leads to their contribution to the
hematopoietic system of the adult host. This is probably because embryonic and
newborn microenvironments ensure the maturation of embryonic cells into dHSCs,
which can then function in the adult bone marrow. Beginning from late E10-11, dHSCs
mature in the embryo and hematopoietic tissues can successfully repopulate wild-type
adult irradiated recipients.

Inner cell mass
ES cells

E8.5-9.5
yolk sac

E9.5 yolk sac,
AGM region

Blastocyst

E8.5-14.5

Newborn

E11.5 yolk sac,
AGM region

Adult

D
E
V
E
LO

P
M
E
N
T



1020

Which biological features of the AGM region make it the prime
candidate for being the site of the origin of the adult hematopoietic
system? We discuss these features further below.

The AGM region: an embryonic site of HSC activity
Patterning and hematopoietic programming of the AGM
region
The formation of the AGM region follows gastrulation and has
been best described in non-mammalian vertebrates such as
zebrafish and Xenopus laevis. In the amphibian embryo, the dorsal
aorta and the ventral blood island (see Glossary, Box 1), which are
analogous to the yolk sac, originate from different blastomeres,
thus having distinct spatial origin (Ciau-Uitz et al., 2000). Shortly

after gastrulation, laterally located mesodermal stripes (termed
dorsolateral plate, DLP, in amphibians and posterior lateral
mesoderm, PLM, in zebrafish) migrate towards the midline beneath
the notochord and form the dorsal aorta/hematopoietic cells,
cardinal veins and nephric ducts (see Fig. 4) (Fouquet et al., 1997;
Gering et al., 1998). In the mouse embryo, genetic labeling has
shown that hematopoietic clusters (discussed in more detail below)
and the endothelium of the dorsal aorta originate from the lateral
mesoderm (Zovein et al., 2010).

There are three key stages to the adult hematopoietic program in
the AGM region: (1) DLP/PLM specification; (2) migration of
cells from the DLP to the midline and the formation of the dorsal
aorta; and (3) arterial specification and emergence of adult
hematopoietic cells. The specification of DLP-derived cells into
endothelial lineage cells, marked by Flk1 and Fli1, and into
hematopoietic lineage, marked by Scl, Gata2 and Lmo2, occurs
prior to the morphogenetic movement of DLPs to the midline
(Dooley et al., 2005; Gering et al., 1998). Promiscuous endothelial-
hematopoietic gene expression in the DLP is thought to indicate the
presence of hemangioblasts. As shown in Xenopus, both expression
of Scl and Gata2 in DLPs and medial migration of Flk1+ DLP cells
is regulated by Vegf (Ciau-Uitz et al., 2010b; Cleaver and Krieg,
1998), which itself is under control of Tel1 (ETV6) transcription
factor (Ciau-Uitz et al., 2010b).

Once the cells of the DLP reach the midline, some of them
express important hematopoietic transcription factors, such as
Runx1. Whereas midline angioblast coalescence occurs in
zebrafish embryos even when arterial and adult hematopoietic
programs are suppressed, the subsequent morphogenesis of the
aorta is intimately linked to arterial and adult hematopoietic
development (Burns et al., 2005; Gering and Patient, 2005; Lawson
et al., 2001). In zebrafish embryos, activation of both the arterial
and adult hematopoietic programs is under the control of a
signaling cascade that involves Hedgehog, Vegf and Notch. In this
context, the Hairy-related transcription factor Hey2 acts
downstream of Vegf and, unexpectedly, upstream of Notch
(Rowlinson and Gering, 2010). Bmp4 is essential only for the
hematopoietic program but not for arterial specification (Wilkinson
et al., 2009). In the mouse, Bmp4 and Shh have been reported to
expand dHSC numbers in the AGM region (Durand et al., 2007;
Peeters et al., 2009).

AGM region: a source of HSCs
The pivotal role of the AGM region in dHSC formation (Muller et
al., 1994) became evident once it was shown to have the
autonomous capacity to generate dHSCs (Medvinsky and
Dzierzak, 1996). Explants of mouse E10.5 and E11.5 AGMs can
initiate and expand dHSCs, respectively (Kumaravelu et al., 2002).
In the presence of growth factors, including interleukin 3,
endogenous dHSCs can undergo a 150-fold expansion in explanted
AGMs, approximating the process in the fetal liver (Robin et al.,
2006; Taoudi et al., 2008). To date, attempts to initiate or to expand
dHSCs from other early hematopoietic tissues have not been
successful (de Bruijn et al., 2000b; Ottersbach and Dzierzak, 2005).

Prior to the establishment of the circulation, cultured explants of
mouse E8.0 para-aortic splanchnopleura (P-Sp; see Glossary, Box
1) can develop in vitro multilineage progenitors, but yolk sac
hematopoietic potential is limited to erythromyeloid lineages
(Cumano et al., 1996), as is also seen in human embryo yolk sacs
(Tavian et al., 2001). Cultured mouse E8.0 P-Sp explants can
generate long-term lymphomyeloid cells, which can repopulate
Rag2c–/– immunocompromised recipients (see Glossary, Box 1
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C  Multisite hematopoietic development
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Fig. 1. Continuity in embryonic hematopoietic development.
(A)A schematic of an E7.5 mouse embryo (anterior to the left),
showing extraembryonic hematopoietic sites (yolk sac, chorion,
allantois), which are marked by Runx1 expression (pink). In the body,
Runx1 expression begins soon after E8.0 in the posterior region within
the para-aortic splanchnopleura (P-Sp), in the dorsal aorta (not shown).
The liver rudiment starts developing by the end of E9. (B)A schematic
of an E11.5 mouse embryo (anterior uppermost), showing tissues that
develop into embryonic hematopoietic stem cell (HSC) niches: the
chorion contributes to the placenta; the allantois to the umbilical cord
and partly to the placenta; the P-Sp develops into the aorta-gonad-
mesonephros (AGM) region. The yolk sac expands and encompasses
the embryo. (C)A model of multisite hematopoietic development,
showing hematopoietic progenitors and definitive (d)HSCs from the
sites shown in B colonizing the liver rudiment and each other (as shown
by the circular arrow). Disagreement exists about which of these sites is
the genuine source of dHSCs and the adult hematopoietic system.
After expansion in the fetal liver, dHSCs colonize the bone marrow,
spleen and thymus. In adulthood, the thymus and spleen are colonized
by bone marrow progenitors (not shown).
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and Box 2); yolk sac explants can generate only short-term myeloid
engrafting cells in this assay (Cumano et al., 2001). Although P-
Sp-derived repopulation is low level and the lineage relationship
with high-level repopulating dHSCs remains to be elucidated,
cumulative evidence suggests that the P-Sp/AGM region is a
primary source of dHSCs in the embryo.

Transplantations of mouse E11.5 dorsal aorta and urogenital
ridges (UGRs, see Glossary Box 1) into adult wild-type irradiated
recipients have shown that dHSCs localize almost exclusively to
the dorsal aorta (de Bruijn et al., 2000b; Taoudi and Medvinsky,
2007), which correlates with a lack of ‘intra-aortic’ clusters in
cardinal veins. However, by E12.5, dHSCs are present in UGRs (de
Bruijn et al., 2000b), and E11.5 UGR explants can also generate
dHSCs and CFU-S, either from precursors that immigrate from the
dorsal aorta or that form de novo (de Bruijn et al., 2000a; de Bruijn
et al., 2000b). These data indicate that UGRs are integral functional
parts of the AGM region.

Dorsoventral polarization of dHSC development
Intra-aortic cell clusters, which are found in various species,
express hematopoietic and endothelial markers and are usually
attached to the ventral floor of the dorsal aorta (Jaffredo et al.,
1998; Medvinsky et al., 1996; Smith and Glomski, 1982; Tavian et
al., 1996; Yokomizo and Dzierzak, 2010). They are thought to
derive from the endothelium as a result of the initiation of the
hematopoietic program (see Fig. 5). In Xenopus and zebrafish, the
endothelial floor and underlying mesenchyme of the newly formed
dorsal aorta express key markers of hematopoietic specification:
Scl, Runx1, Gata-2, cMyb and Ikaros (Ciau-Uitz et al., 2000;
Gering and Patient, 2005). Runx1 shows a similar expression
pattern in mammals (Azcoitia et al., 2005; North et al., 1999).
Ventrally expressed Bmp4 in sub-aortic mesenchyme (Durand et
al., 2007; Marshall et al., 2000; Wilkinson et al., 2009) and Shh in
the developing gut might be responsible for dHSC specification in
the floor of the dorsal aorta (Peeters et al., 2009). Although Hh is
required for the initiation of the hematopoietic program, it later
activates a non-hematogenic program in the roof of the zebrafish
dorsal aorta (Wilkinson et al., 2009). Such opposite effects of
hedgehog signaling on hematopoietic development are probably
stage- and concentration-dependent. In addition, the distinct origin
of the roof and floor of the dorsal aorta (from somitic and lateral
mesoderm, respectively), as shown in avian embryos, is likely to
contribute to dorsoventral asymmetry in HSC development
(Pardanaud et al., 1996). The short-term HSC activity of the AGM
region (Muller et al., 1994; Kumaravelu et al., 2002) might be
explained by a gradual replacement of the ventral hematogenic
endothelium with a non-hematogenic somite-derived endothelial
lining (Pouget et al., 2006). Although mouse aortic floor and roof
are equally enriched with CFU-Cs, only floor explants support the
expansion of CFU-Cs (Taoudi and Medvinsky, 2007). Meanwhile,
dHSCs are localized mainly to, and can be expanded ex vivo by,
the aortic floor. In addition to hematopoietic budding inside the
aortic lumen, the sub-endothelial migration of hematopoietic cells
has also been observed (Jaffredo et al., 1998). In zebrafish, it has
been recently shown that multipotent hematopoietic progenitors
(MPP)/HSCs (see Glossary, Box 1) bud from the aortic floor and
migrate ventrally, entering the circulation through the cardinal vein
(Bertrand et al., 2010a; Kissa and Herbomel, 2010; Lam et al.,
2010) (Fig. 4). Whether interstitial ventrolateral migration towards
cardinal veins also occurs in the mouse embryo remains unclear.

Runx1 and Notch: key regulators of AGM hematopoiesis
The transcription factor Runx1 is a key regulator of dHSC
development in various species (Burns et al., 2005; Kalev-Zylinska
et al., 2002; Swiers et al., 2010). Although yolk sac erythropoiesis
in Runx1-null mouse embryos is almost normal, the embryos lack
clonogenic progenitors and dHSCs and die by E12.5 (Okuda et al.,
1996; Yokomizo et al., 2008). Runx1 is expressed preferentially in
hematopoietic clusters, in some endothelial cells and in the
mesenchyme that underlies the endothelium, marking potential
candidate progenitors of the developing HSC lineage (North et al.,
1999). Runx1 is expressed in AGM dHSCs as shown by
transplantation (North et al., 2002; Nottingham et al., 2007). The
lack of intra-aortic clusters in Runx1–/– embryos led to a key idea
in this field: that Runx1 regulates endothelial-hematopoietic
transition in the dorsal aorta (Fig. 4B) (North et al., 1999;
Yokomizo et al., 2001). Indeed, Runx1 deficiency prevents the
differentiation of hematopoietic cells from ES cell-derived
hematogenic endothelium (Lancrin et al., 2009). Inhibition of
Runx1 by morpholino in zebrafish blocks endothelial-
hematopoietic transition in the dorsal aorta and results in the
apoptosis of cells ‘attempting’ to undergo this process (Kissa and
Herbomel, 2010). The role of Runx1 in the generation of mouse
dHSCs from aortic endothelial cells is likely to be similar (Chen et
al., 2009). Interestingly, hematopoietic activity in the mouse
Runx1–/– AGM region can partly be rescued by overexpression of
Runx1, suggesting that AGM hematopoiesis originates locally and
is yolk sac independent (Goyama et al., 2004).
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Fig. 2. Appearance of hematopoietic progenitors and HSCs in the
mouse embryo. (A)(Upper) Schematics of developing mouse embryos
at stages E8.0, E10.0 and E11.0, showing sites of hematopoiesis: the
yolk sac and embryonic liver (the placenta, also such a site, is not
shown). (Lower) Time points at which hematopoietic progenitors
appear. Early E8.0 embryos contain CFU-Cs that can be detected in
vitro, but not CFU-S or dHSCs. CFU-S are first detectable by late E9-
early E10. The first dHSC is reliably detected only by E11.0. Asterisk
indicates that on very rare occasions HSCs can be detected. (B)The
sequence in which hematopoietic progenitors and dHSCs appear
during development at the time points shown in A. This sequence is
opposite to that in the adult, in which CFU-C and CFU-S progenitors
derive from dHSCs (as denoted by the lower arrow). CFU-C, colony-
forming units culture; CFU-S, colony-forming units splenic; dHSC,
definitive hematopoietic stem cell.
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Notch signaling is also essential for dHSC development, as
shown by the lack of contribution of Notch1–/– ES cells to the adult
hematopoietic system of chimeric [wild type::Notch1–/–] mice
(Hadland et al., 2004) and by the failure of Notch1–/– E9.5 yolk sac
and P-Sp cells injected into newborn recipients to contribute to
adult hematopoiesis (Kumano et al., 2003). In contrast to Runx1–/–

mutants, Notch1–/– embryos develop normal numbers of CFU-Cs
in the yolk sac and very few in the body of the embryo (Hadland
et al., 2004; Kumano et al., 2003). Suppression of Notch signaling
in zebrafish also inhibits hematopoiesis in the AGM, but not in the
yolk sac or posterior blood island (Bertrand et al., 2010b). Thus,
Notch1 might be a specific developmental regulator of the true
definitive hematopoietic hierarchy. Indeed, in the mouse E10.5
dorsal aorta, Notch1, as well as the Notch ligands Jag1 and Jag2
and its targets Hes1, Hrp1 (Hdgfl1 – Mouse Genome Informatics)
and Hrp2 (Hdgfrp2 – Mouse Genome Informatics), are
preferentially expressed in the ventral floor and in intra-aortic
clusters (Robert-Moreno et al., 2005; Robert-Moreno et al., 2008).
Notch1 directly regulates Gata2 (Robert-Moreno et al., 2005;
Robert-Moreno et al., 2008), a key factor of HSC development,
which in turn is involved in the regulation of Runx1 (Nottingham
et al., 2007). Enforced expression of both Gata2 and Runx1 can

partly rescue AGM hematopoiesis in Notch1 and Jagged 1 mutants
(Nakagawa et al., 2006; Robert-Moreno et al., 2008), again
suggesting an independent origin of AGM hematopoiesis in the
mouse.

In addition to the absence of intra-aortic clusters, Runx1 and
Notch mouse mutants exhibit interesting morphological changes in
the AGM region. Runx1 deficiency causes abnormally excessive
crowding of Runx1-null mesenchymal cells beneath the dorsal
aorta (North et al., 1999). It is not clear whether this is because
aortic hematogenic endothelial cells (see Glossary, Box 1) undergo
mesenchymal instead of hematopoietic differentiation in the
absence of Runx1, or whether the formation of hematogenic
endothelium from the underlying mesenchyme is blocked, resulting
in the accumulation of mesenchymal cells. Notch regulates
multiple aspects of endothelial biology, including the specification
of arterial and venous endothelium (Phng and Gerhardt, 2009). In
the absence of the common Notch signaling transducer
recombination signal-binding protein 1 for j-kappa (RBPJ; also
known as Rbpj or RBPjk) or of Jagged 1, stratification of the
mouse aortic endothelium occurs, which might reflect a block in
endothelial-hematopoietic transition (Robert-Moreno et al., 2005;
Robert-Moreno et al., 2008). By contrast, deletion of Chicken
ovalbumin upstream promoter transcription factor II (CoupTFII),
an orphan receptor that suppresses Notch signaling, results in
‘arteriorization’ of the venous endothelium and emergence of
hematopoietic clusters in cardinal veins (You et al., 2005),
suggesting that arterial and HSC programs are intimately linked.
Accordingly, in the aorta of Tel1 Xenopus morphants, the arterial
program is silenced concurrently with the suppression of the HSC
program (Ciau-Uitz et al., 2010b).

Interestingly, AGM hematopoiesis is sensitive to changes in
dosage of some genes. A haploid dose of both Runx1 and Gata2
reduces production of dHSCs in the AGM region (Cai et al., 2000;
Ling et al., 2004). Meanwhile, Runx1 haploinsufficiency results in
an early appearance of dHSCs in the YS (Cai et al., 2000).
Mechanisms underlying such spatial and temporal rearrangements
in HSC development within the embryo are not clear, but may hold
a clue to how dHSCs are specified in the embryo.

Although numerous data indicate that AGM hematopoiesis is
self-autonomous and intrinsically regulated, other tissues are also
involved in hematopoiesis, as we discuss below.

Early embryonic hematopoiesis outside the AGM
region
Placenta: a source or reservoir?
Although it has been known that the fetal placenta harbors dHSCs
(Dancis et al., 1977; Dancis et al., 1968), the possibility that the
placenta is colonized by HSCs from the fetal liver obscured the
significance of this finding. The chorionic portion of the mouse
placenta expresses Runx1 from an early stage of development (Fig.
1A), and when isolated prior to fusion with the allantois can
generate hematopoietic cells in culture (Zeigler et al., 2006). E8.0-
9.0 mouse placenta contains many hematopoietic progenitors,
including replatable HPP-CFC (see Glossary, Box 1) (Alvarez-
Silva et al., 2003). As shown by transplantation, dHSCs appear in
the placenta concomitantly with the AGM region by E10.5-11.0
(Gekas et al., 2005; Ottersbach and Dzierzak, 2005). In parallel
with AGM activity, the placenta rapidly develops a substantial
dHSC pool (13-50 dHSC by E12.5), which declines by E15.5,
suggesting that dHSCs translocate to the liver (Gekas et al., 2005;
Ottersbach and Dzierzak, 2005). The human placenta is also a
niche for dHSCs (Robin et al., 2009).
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Fig. 3. Models of the relationship between embryonic and adult
hematopoietic hierarchies in mouse development. (A)In Model 1,
the embryonic and definitive (adult) hematopoietic hierarchies are two
separate systems in which the embryonic hematopoietic hierarchy is a
transitory cell population that emerges early during development and
the definitive hematopoietic hierarchy emerges independently during
later development from separately specified dHSCs, which develop
from pre-dHSCs. (B)In Model 2, one hematopoietic system develops.
Both embryonic and definitive hematopoietic hierarchies originate from
a common hematopoietic founder cell. The embryonic hierarchy is an
early transitory ‘branch’ of the hematopoietic system and the definitive
hematopoietic hierarchy emerges later from dHSCs, which mature from
an earlier intermediate hematopoietic cell (pre-dHSC). In both models,
hematopoietic progenitors emerge prior to dHSC specification (in
opposite orientation to the adult hematopoietic hierarchy, as outlined in
Fig. 2). Neither model implies a single tissue is the origin of
hematopoiesis. In principle, more than one tissue might contribute to
embryonic and/or definitive hematopoietic hierarchies. dHSCs,
definitive hematopoietic stem cell.
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In the placenta of the Ncx1-null mouse (Ncx1 encodes a sodium-
calcium exchanger membrane; also known as Slc8a1 – Mouse
Genome Informatics) an active circulatory system is absent owing
to heart beat failure. However, hematopoietic cell clusters similar
to intra-aortic clusters still form, and it was proposed that the
placenta generates dHSCs autonomously (Rhodes et al., 2008).
Ncx1–/– placentas can generate lymphoid cells, however, attempts
to confirm autonomous generation of dHSCs in explant cultures of
the wild-type placenta have been unsuccessful (Robin et al., 2006).
Whether the placenta initiates dHSC development or only supports
maturation of exogenous dHSCs requires further investigation.

Umbilical cord: what is its dHSC power?
The mammalian umbilical cord largely derives from the allantois,
which, after gastrulation invades the exocoelomic cavity, reaches the
ectoplacental cone and forms the chorio-allantoic fusion which
contributes into placenta (Downs, 2002). Although the avian
allantois is hematopoietically active (Caprioli et al., 1998), whether
the mouse allantois is has been questioned (Downs et al., 1998).
However, Runx1 was detected in the mouse allantois prior to fusion
with the ectoplacental cone (Fig. 1A) and its hematopoietic potential
was unveiled in culture (Corbel et al., 2007; Zeigler et al., 2006).

The mouse umbilical vessels develop Runx1-positive cell
clusters similar to those observed in the dorsal aorta
(Liakhovitskaia et al., 2009; North et al., 1999), and at E10.5
contain rare dHSC at frequencies comparable with the AGM region
at this stage (~1 dHSC per 30 embryos) (de Bruijn et al., 2000b).

As explant cultures of the umbilical cord fail to generate dHSC, the
contribution of the allantois/umbilical cord to adult hematopoiesis
remains unknown.

dHSC generation: does the yolk sac have an active role?
E9.0-10.0 yolk sac cells can mature into dHSCs in newborn
animals and can subsequently provide long-term contribution to
adult hematopoiesis (Yoder et al., 1997a; Yoder et al., 1997b).
Similar results have been achieved by the transplantation of E9.0
yolk sac cells into the embryo in utero (Toles et al., 1989). These
cells are more numerous in the yolk sac than in the body and are
CD34+cKit+ (Yoder et al., 1997a). CD34+cKit+ cells purified from
the E10.5 AGM region can develop in culture into cells that can
repopulate adult Rag2c–/– at low levels (Bertrandet et al., 2005).
What is the origin of these cells: the P-Sp or the yolk sac? The
answer to this is not clear as these cells are not functionally
detectable in younger E8.0 embryos. Earlier reports indicated that
E8.0 yolk sac cells when injected transplacentally can mature and
contribute to adult hematopoiesis (Weissman et al., 1977).
However, the primary origin of these cells (yolk sac or P-Sp)
remains unclear. An attempt to determine the contribution of the
yolk sac to adult hematopoiesis has been made using induced
genetic labeling of Runx1+ cells (Samokhvalov et al., 2007).
However, owing to the unclear duration of labeling, the presence
of Runx1-expressing cells outside of the yolk sac and the very low
contribution of labeled cells to adult hematopoiesis, it is difficult to
draw firm conclusions from this study.
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Fig. 4. Zebrafish hematopoiesis occurs in four
sequential waves. (A)A 14 hours post fertilization (hpf)
zebrafish embryo viewed from above (left) and in cross-
section view (right), showing lateral stripes of posterior lateral
mesoderm (PLM) that will form the dorsal aorta, cardinal
vein, blood cells and the pronephros and its ducts after its
migration towards the midline. The curved arrows show the
two PLM stripes migrating to the midline. (B) An 18 hpf
zebrafish embryo viewed from the side with dorsal
uppermost (Left) and in cross-section view (right). At this
stage, the wave of myeloid (pu.1+/Scl+) precursors, which
originate in the anterior lateral mesoderm, migrate laterally
across the yolk sac and mature into macrophages and
granulocytes (see wave 1, W1). The migration of the PLM
stripes towards the midline (as denoted by two black
converging arrows in B, right) result in the differentiation of
embryonic erythroid cells (denoted in pale orange shading)
underneath the dorsal aortic angioblast cord (shown in pink)
in wave 2 (W2). (C)A 26 hpf zebrafish embryo with cross-
section view shown on the right. At this stage,
erythromyeloid progenitors appear that lack lymphoid
differentiation potential in the caudal hematopoietic tissue
(also called posterior blood island and caudal vein plexus).
These progenitors colonize the pronephros but not the
thymus (wave 3, W3). W3 is followed by the emergence of
MPP/HSCs from the floor of the dorsal aorta (wave 4, W4).
MPP and HSC formation occurs through a process called
endothelial-hematopoietic transition: the elongated
endothelial cell (marked in green) starts expressing Runx1, c-
Myb, CD41, bends and becomes round. It then migrates
through the mesenchymal layer and enters the cardinal vein
(thin curved arrow). Through the circulation, HSCs colonize
organs of adult hematopoietic activity (pronephros and
thymus), shown by straight bold arrows. The direction of
circulation is shown by thin arrows within vessels. HSC,
hematopoietic stem cell; MPP, multipotent progenitor.
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Although the pre-circulatory E8.0 mouse yolk sac is restricted to
generating short-lived myeloid progeny (Cumano et al., 2001), by
E11.5 it contains true multilineage dHSCs. Furthermore, by E12.5,
when the expansion of dHSCs in the AGM has significantly
diminished, the yolk sac acquires the capacity to expand dHSCs in
culture (Kumaravelu et al., 2002). Although it is possible that the
E12.5 yolk sac microenvironment becomes competent to expand
dHSCs of exogenous origins, the initiation of dHSCs de novo by
the yolk sac cannot be ruled out. dHSCs in heterozygous Runx1+/–

embryos develop prematurely in the yolk sac by E10.5, indicating
that this location, in principle, is not prohibitive for dHSC
development (Cai et al., 2000).

Different sites of hematopoietic activity in the embryo are linked
by the circulation, but is the role of the circulation in hematopoiesis
only to facilitate cell trafficking? We discuss this further below.

Circulation: its role in early hematopoietic
development
The effects of disrupted circulation on hematopoiesis
By the early E8.0 (approximately four somite pairs) stage of mouse
development, the yolk sac vasculature connects to the embryo body
and the heart starts beating. Because the primitive vascular system
is not sufficiently developed and is densely packed with
erythrocytes, massive movement of yolk sac erythroid cells into the
body of the embryo is observed only by E10.0 (McGrath et al.,
2003).

The role of the circulation in developing embryos has been
studied in Ncx1 mutants, which fail to initiate heart beating and die
by E10.0 (Lux et al., 2008). Ncx1-null embryos develop normal
numbers of erythrocytes and CFU-Cs in the yolk sac, but their
body lacks these progenitors, indicating that AGM hematopoietic
activity depends on colonization by yolk sac cells. Similar results
were obtained with Rac1 mutant embryos, in which cell migration
is impaired (Ghiaur et al., 2008). Although the yolk sacs of these
mutants develop normal numbers of CFU-Cs, intra-aortic clusters
do not form and hematopoiesis in the liver rudiment is dramatically
reduced (Ghiaur et al., 2008). These data indicate that the yolk sac
has a role in the emergence of intra-embryonic hematopoiesis. It is
clear that yolk sac-derived hematopoietic cells populate the body
of the embryo, but to what degree does AGM hematopoiesis
depend on this? Recently, a novel factor came into play that shed
light on this issue.

Shear stress and NO signaling in AGM hematopoiesis
Physical pressure created by blood flow in the vasculature has a
profound effect on endothelial cell physiology and gene expression
(Lehoux and Tedgui, 2003). Pulsating blood flow generated by the
beating heart causes various physical effects on the endothelial
lining. Of these, shear stress, which is generated by frictional force,
has attracted particular attention. Endothelial cells can sense blood
flow via mechanoreceptors and transduce these signals to the
nucleus, to cause transcriptional and phenotypic changes (Garin
and Berk, 2006). Nitric oxide (NO) signaling plays an important
role in Vegf-induced angiogenesis (Ziche et al., 1997). Shear stress
elevates NO signaling in endothelial cells (Niranjan et al., 1995);
NO signaling is also involved in regulating hematopoiesis in the
adult hematopoietic system (Krasnov et al., 2008; Michurina et al.,
2004). The apparent relationship between vascular endothelium
and hematopoiesis within the AGM region led to the proposal that
biomechanical forces created by blood flow may induce the
generation of hematopoietic cells from aortic endothelium via the
activation of NO signaling (Adamo et al., 2009; North et al., 2009).

Indeed, under conditions that recreate shear stress in vitro, both
ES cells and AGM-derived cells upregulate Runx1 and cMyb
transcription factors and increase the production of CFU-Cs
(Adamo et al., 2009). These effects can be suppressed by L-NAME,
an inhibitor of NO signaling, but not by the inactive D-NAME
stereoisomer. In vivo administration of L-NAME, but not of D-
NAME, results in the absence of intra-aortic clusters and in a
marked decrease of CFU-C, CFU-S and dHSC production in the
AGM region of treated mouse embryos (Adamo et al., 2009; North
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Fig. 5. Possible mechanisms of intra-aortic cluster formation.
(A)A dissected E11.5 mouse AGM region, showing the dorsal aorta
(Ao) and urogenital ridges (UGR). (B)Transverse section of E11.5 AGM
region, showing the Ao and an intra-aortic cluster that is triple-positive
for Pecam-1, CD45 and c-kit (magnified in the insert). Note the
indentation (arrow), which suggests that active invagination of the
endothelial layer is associated with cluster formation. Asterisk indicates
intra-aortic cluster. CV, caudal vein. (C)A schematic cross-section of the
ventral floor of a mouse Ao showing four possible origins of dHSCs.
(a)An endothelial precursor gives rise to endothelial cells (blue), some
of which become hematogenic and give rise to the definitive
hematopoietic stem cells (dHSCs, pink) and more differentiated
hematopoietic cells. A Pre-dHSC intermediate (purple) between the
hematogenic endothelial cell and dHSC is shown integrated into the
endothelial layer. (b)A hemangioblast (purple) gives rise separately to
the dHSC and to non-hematopoietic (structural) endothelial cells. A pre-
HSC intermediate may be integrated into the endothelial lining but in
fact is not an endothelial cell. (c)Sub-endothelial pre-dHSC of non-
endothelial origin matures into a dHSC. It is a fully hematopoietically
committed cell and, in contrast to hemangioblasts, pre-HSCs do not
generate endothelial cells. (d)A migrant pre-dHSC of non-endothelial
origin arrives through circulation and integrates into the endothelial
lining.
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et al., 2009). Together with in vitro analyses, these experiments
identified the NO pathway as a mediator of shear stress induction
of intra-embryonic hematopoiesis in vivo. Analysis of the zebrafish
mutant ‘silent-heart’ has also revealed that in the absence of blood
flow, the number of Runx1+ and CD41+ cells in the embryonic
dorsal aorta is significantly reduced (Murayama et al., 2006; North
et al., 2009). This phenotype was rescued using S-nitroso-N-
acetylpenicillamine (SNAP), the NO donor, providing evidence
that shear stress acts through NO signaling to induce the formation
of blood in the dorsal aorta. Further analysis using knockout mice
indicated that NO synthase 3 (Nos3) plays a key role in inducing
hematopoietic development in the AGM region (North et al.,
2009). Thus, hematopoietic deficiency within the body of Ncx1–/–

embryos is partly attributable to the lack of shear stress created by
a heartbeat.

These experiments dissociated the roles of the yolk sac and the
AGM region in the establishment of intra-embryonic
hematopoiesis. They show that although hematopoietic progenitors
generated in the yolk sac colonize the AGM region, hematopoiesis
can also be independently induced in the AGM region by blood
flow within the body. What is known about the cells that give rise
to dHSCs in the embryo proper?

Cellular origins of the hematopoietic system
Concept of the hemangioblast
Similarities in the development of endothelial and hematopoietic
lineages have long been observed by researchers in this field. We
are not aware of any genes expressed in the endothelium that are
not also expressed in a developing hematopoietic lineage. By
contrast, hematopoietic cells express a number of lineage-specific
markers that are absent from the endothelium.

Hemangioblast or hematogenic endothelial cell?
Since the late 19th century, anatomical studies of the yolk sac in
different species have suggested that blood islands are clonal
structures. In histological sections, early blood islands appear as
tight groups of undifferentiated cells that soon form an inner
erythroid cluster surrounded by an outer endothelial lining. This
morphology led to the hypothesis that bi-potent hemangioblasts
might exist that give rise to both hematopoietic and endothelial
cells (Maximow, 1909; Sabin, 1920). By E8.0, mouse blood islands
undergo extensive remodeling resulting in the formation of an
endothelial network filled with blood. However, on whole-mount
preparations, it was noticed that the area of blood formation is a
single belt-like structure that encircles the yolk sac (Ferkowicz and
Yoder, 2005) (Fig. 6A). Rare endothelial cells do not
compartmentalize this area into multiple individual blood islands,
and it is only on sagittal sections that this belt-like structure looks
like two ‘classical’ blood islands (Ueno and Weissman, 2006). This
basic fact was overlooked for many years perhaps because the idea
of the clonal origin of blood islands provides a good platform for
explaining commonalities between the hematopoietic and
endothelial programs. Classical images of discrete multiple blood
islands existing in the avian yolk sac (Minko et al., 2003) also
contributed to this misperception.

Although the clonal origin of the large non-compartmentalized
blood island encircling the yolk sac is no longer a relevant issue,
this does not negate the idea of the existence of a hemangioblast.
Initially, such bi-potential cells were not identified: early avian yolk
sac cells could produce in vitro either hematopoietic or endothelial,
but not mixed, colonies (Eichmann et al., 1997); and orthotopic
transplantations in mouse embryos revealed that hematopoietic and

endothelial cells originate in different regions adjacent to the
primitive streak (Kinder et al., 1999). It was an in vitro ES cell
blast-colony assay that identified the hemangioblast (Choi et al.,
1998; Keller, 2005; Kennedy et al., 2007). Equivalent cells have
also been identified within the posterior primitive streak of the
mouse embryo, which also give rise to smooth muscle cells (Huber
et al., 2004), indicating that these cells are tri- rather than bi-potent.
Interestingly, by the time the yolk sac is colonized by
hemangioblasts, they have segregated into endothelial and
hematopoietic lineages (Fig. 6B). Thus, the old idea of the
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Fig. 6. Development of yolk sac hematopoiesis. (A)(Left) A
schematic of a whole-mount preparation of an E7.5 mouse embryo,
showing that hematopoietic (CD41+) cells in the yolk sac (YS, red) are
organized into a single belt-like structure that encircles the extra-
embryonic portion of the embryo. Flk1+ mesodermal and endothelial
cells (blue) progress into the YS with delay. (Right) A schematic of a
sagittal section through this embryo, which shows how isolated ‘blood
islands’ are an artifact created by sectioning in this plane and that
blood islands are not ensheathed in an endothelial covering by the late
headfold stage (E8.0). (B)(Left) A schematic of a sagittal section
through an E7.5 mouse embryo, showing that the segregation of the
hematopoietic and endothelial lineages from the Bry+Flk+

hemangioblast occurs prior to the migration of hematopoietic cells to
the YS (see magnified inset). The hemangioblast also generates vascular
smooth muscle cells. The allantois, shown here, was not analyzed in the
original paper (Huber et al., 2004). Al, allantois; Am, amnion; Ch,
chorion; EP, embryo proper.
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hemangioblast based on yolk sac blood island morphology has
undergone a transformation and its location has shifted from the
yolk sac to the embryo proper. Using a single-cell labeling
technique, hemangioblasts have also been reported in developing
zebrafish (Vogeli et al., 2006).

Given that the hemangioblast has been localized to the
gastrulating posterior mesoderm (Huber et al., 2004), could it be that
these cells are not just specialized tri-potential endothelial/
hematopoietic/smooth muscle precursor cells but mesodermal cells
with a broader differentiation potential? Some limitations of
differentiation capacity of posterior mesoderm are known, for
example, it does not form cardiomyocytes (Kattman et al., 2006).
However, the full potential of these cells needs further investigation,
either by developing an in vitro clonal assay broadly supporting
various mesodermal lineages or by tracking their fates in vivo.

Concept of hematogenic endothelium
Based on morphological observations of intra-aortic clusters, the
idea has been proposed that hematopoietic cells differentiate from
the endothelial lining of the dorsal aorta (reviewed by Dieterlen-
Lievre et al., 2006). In ovo labeling of the chick dorsal aorta gave
early indications that hematopoietic cells emerge from the aortic
endothelium (Jaffredo et al., 1998). In other early experiments, ES
cell-derived and embryo-derived endothelial VE-cad+CD45– cells
and hematopoietic VE-cad–CD45+ cells were sorted and
functionally tested in vitro using an OP9 co-culture system (see
Glossary, Box 1) (Nishikawa et al., 1998a; Nishikawa et al.,
1998b). These studies showed that the efficiency with which
myeloid and lymphoid cells could be generated from the
endothelial fraction was much higher than it was from the
hematopoietic fraction itself. A small fraction of hematogenic
endothelial cells could also generate clonally both hematopoietic
and endothelial cells. Hematopoietic differentiation from
endothelial cells has also been tracked in live cultures (Eilken et
al., 2009). In this study, endothelial colonies were derived clonally
from mouse ES cells and their endothelial identity verified using
immunophenotypic and morphological criteria. Shortly after the
formation of the endothelial colony, some cells began to express
CD41, an early marker of embryonic hematopoietic progenitor
cells (Corbel and Salaun, 2002; Emambokus and Frampton, 2003;
Ferkowicz et al., 2003; Mikkola et al., 2003), and then proliferated
and formed CD41+CD45+ hematopoietic cells. Interestingly, some
colonies did not entirely transform into hematopoietic cells and
maintained an endothelial component, suggesting that the
hematogenic endothelium can also contribute to the structural
endothelium (Fig. 7).

The differentiation of hematopoietic cells from a hematogenic
endothelium has been recently supported by the findings of two
studies, in which the conversion of aortic endothelial cells into

hematopoietic cells was demonstrated by live imaging in zebrafish
embryos (Bertrand et al., 2010a; Kissa and Herbomel, 2010). A
similar conclusion was also reached by another study from live
imaging of slices of the mouse AGM region (Boisset et al., 2010).

As such, the concept of the hemangioblast and the hematogenic
endothelium have both received experimental confirmation, and a
recent report has reconciled these two pathways by proposing that
the Flk1+ hemangioblast first generates the hematogenic
endothelium (Scl-dependent stage), which then produces
hematopoietic cells (Runx1-dependent stage) (Fig. 7) (Lancrin et
al., 2009).

What are the mechanisms that regulate the balance between
endothelial and hematopoietic differentiation? It has been shown
that HoxA3 expression in the early embryonic endothelium of the
dorsal aorta restrains hematopoietic differentiation by suppressing
key hematopoietic factors, including Runx1 and by maintaining the
expression of endothelial-specific genes (Iacovino et al., 2011).
Expression of Runx1 erases the endothelial program set by HoxA3
and induces hematopoietic differentiation. Accordingly, HoxA3-
null mouse embryos show premature and increased formation of
Runx1+ cells in the dorsal aorta.

Endothelial origin of the adult hematopoietic system
Although endothelial cells in the mouse embryo are capable of
generating cells of the hematopoietic lineage, do they generate
the first dHSCs that give rise to the entire adult hematopoietic
system?

Lineage tracing of endothelial progeny
Although dHSCs in the E11.5 AGM region have been shown to
localize to the luminal surface of the dorsal aorta (de Bruijn et al.,
2002), AGM dHSCs co-express both endothelial (VE-cadherin)
and hematopoietic (CD45) markers (North et al., 2002; Taoudi et
al., 2005) and, therefore, are not endothelial cells. Indeed, AGM
VE-cad+CD45+ cells, which are enriched for hematopoietic
progenitors and HSCs, lack endothelial potential (Taoudi et al.,
2005). Over time, dHSCs progressively lose VE-cadherin
expression; it completely disappears in bone marrow dHSCs while
remaining present on some fetal liver dHSCs (Kim et al., 2005;
Taoudi et al., 2005). A similar transient population of mixed
endothelial-hematopoietic identity has also been described in the
zebrafish (Bertrand et al., 2010a). These data suggest, but do not
prove, that dHSCs in the mouse originate from the embryonic
endothelium.

To clarify this issue, the progeny of VE-cad+ cells were
tracked by two research groups by either constitutive or induced
VE-cadherin-specific Cre-mediated labeling during early mouse
development (Chen et al., 2009; Zovein et al., 2008). In both
cases, most adult blood cells were labeled, owing to
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Flk1+VE-cad+Tie2+

CD41–CD45–

Hematogenic
endothelium

Hematopoietic cells

Structural endothelium

CD41+CD45– CD45+Scl Runx1

HoxA3

Fig. 7. The hemangioblast to hematogenic endothelium
lineage pathway. A schematic showing how a
hemangioblast transits through the hematogenic
endothelium stage prior to generating hematopoietic cells.
Hematogenic endothelium can generate both hematopoietic
cells and structural endothelium. A blast colony-forming
assay enables this developmental pathway to be replicated ex
vivo. Useful markers for the identification of these stages are
indicated. The formation of the hematogenic endothelium is
Scl-dependent and that of hematopoietic cells is Runx1-
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and maintains the endothelial characteristics of cells.
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recombination either in the embryonic endothelium or in early
dHSCs, which also express VE-cadherin. The first group
proposed that this labeling pattern occurred because VE-cadherin
is not transcribed in hematopoietic cells, but is a carry over of
the protein produced in endothelial precursors (Zovein et al.,
2008), a conclusion which in our view requires further
confirmation. The other group showed that selective Cre-
mediated deletion of Runx1 in VE-cad+ cells results in the
ablation of clonogenic progenitors, intra-aortic clusters and
HSCs, characteristic of Runx1 knockout embryos (Chen et al.,
2009). By contrast, in Vav-Cre deletor mice, in which Runx1
was specifically ablated in the hematopoietic lineage, CFU-Cs
and dHSCs were still present, indicating that Runx1 deficiency
blocks the endothelial-hematopoietic transition but does not
affect downstream events. Further support for this conclusion
should come from an examination of whether the Vav-Cre
induces recombination in the entire HSC lineage, including the
VE-cad+CD45+ population, which contains both pre-dHSCs and
dHSCs.

Live-imaging using transgenic reporter Flk1, cMyb, CD41 and
Runx1 zebrafish embryos has also enabled MPP/HSCs that are
undergoing the specific process of endothelial-hematopoietic
transition, to be directly visualized together with their migration
to their definitive locations in the kidney and thymus (Bertrand
et al., 2010a; Kissa and Herbomel, 2010; Lam et al., 2010). The
exiting of cells from the endothelium is so significant that it
reduces the diameter of the dorsal aorta (Kissa and Herbomel,
2010).

Identification of pre-dHSCs
How do dHSCs appear at the luminal surface of the dorsal aorta
(de Bruijn et al., 2002)? Several scenarios can be considered, some
of which imply that the HSC lineage only temporarily integrates
with the endothelial layer (Fig. 5).

The AGM explant culture system has enabled dHSC
development to be replicated in vivo (de Bruijn et al., 2000b;
Medvinsky and Dzierzak, 1996) and has proven to be useful for the
analysis of genetic mutations and growth factors in HSC

development (Cai et al., 2000; Ling et al., 2004; Peeters et al.,
2009; Robin et al., 2006). However, attempts to use the competent
AGM environment to mature exogenous cells into dHSCs by
injection into explants have as yet been unsuccessful (A.M. and E.
Dzierzak, unpublished), which has precluded an accurate analysis
of the roles of individual cell populations in dHSC development.

More recently, a dissociation-reaggregation technique has
enabled this hurdle to be overcome (Sheridan et al., 2009; Taoudi
et al., 2008). It has been known from classical embryological
studies that dissociated embryonic rudiments after aggregation can
partly reinstate spatial organization and specific cellular
interactions (Grobstein, 1953; Gyevai et al., 1978). This appeared
to be true also for three-dimensional organoids reaggregated from
dissociated cells of the AGM region (Taoudi et al., 2008). This
study showed that over four days of culture, E11.5 AGM
reaggregates can expand the number of dHSCs by 150-fold. Two
lines of evidence indicate that the AGM reaggregate culture
replicates the maturation process occurring in the embryo. First, the
expansion of dHSCs occurs only during the last 48 hours of
culture. Secondly, label-retaining analysis shows that, in contrast
to actively proliferating CFU-Cs, most dHSCs by the end of culture
undergo no more than four or five cell divisions. These
observations rule out the possibility that all 150 HSCs form
through amplification of a sole pre-existing dHSC, and infer
maturation from pre-dHSCs.

The incorporation of the dissociation/reaggregation step prior to
culture enables cells of interest to be replaced with their GFP-
labeled equivalents, an approach that has revealed that nearly all
dHSCs generated in AGM reaggregates originate from the VE-
cad+CD45+ pre-dHSCs (Taoudi et al., 2005). As the VE-
cad+CD45+ immunophenotype is common to both pre-dHSCs and
dHSCs, more specific cell markers need to be identified to
physically separate these two cell types in the AGM region. Most
VE-cad+CD45+ cells are organized in large intra-aortic clusters
(Fig. 5), but some are also present in small clusters and as
individual cells. Owing to their specific morphology, it is tempting
to think that large clusters represent sites of dHSC maturation,
although there is no direct evidence for this.
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Fig. 8. Developmental pathway leading to dHSC
specification. (A)The numbers of definitive
hematopoietic stem cells (dHSCs) that can be found in
various hematopoietic sites in the E10.0, E11.0 and
E12.0 mouse embryo. dHSC emergence (as highlighted
by the gray shading) is gradual, implying that dHSCs are
recruited from more immature pre-dHSCs. Quantitative
data for dHSC numbers are derived from previously
published studies (Gekas et al., 2005; Kumaravelu et al.,
2002; Ottersbach and Dzierzak, 2005). Asterisk
indicates that on very rare occasions dHSCs can be
detected. (B)A schematized pathway of dHSC
specification; events are less certain prior to dHSC
specification. Dotted lines represent presumptive
transitions from one stage of lineage progression to
another. (For phenotypic identity of individual stages,
see Table S1 in the supplementary material.) (1) A pre-
dHSC isolated from E9.0 and E10.0 embryos identified
by transplantation into newborn recipients (Yoder et al.,
1997a; Yoder et al., 1997b); (2) a pre-dHSC that
matures into dHSCs within the AGM microenvironment
as shown in vitro (Taoudi et al., 2008); (3-5) dHSCs that
undergo some changes in their phenotype during
development. Abbreviations: YS, yolk sac. D
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Similar to dHSCs in the AGM region, pre-dHSCs already
express the CD45 hematopoietic marker and therefore cannot be
considered to be endothelial. Furthermore, in E9.5 embryos, cells
capable of maturing into dHSC upon injection into newborn
recipients are CD41 and VE-cadherin positive (Ferkowicz et al.,
2003; Fraser et al., 2002). Since CD41 marks megakaryocytes and
all hematopoietic progenitors in the early embryo (Bertrand et al.,
2005; Corbel and Salaun, 2002; Ferkowicz et al., 2003; Mikkola et
al., 2003), these cells cannot be considered to be endothelial either.
Although some CD41 cells express VE-cadherin, they lack
endothelial potential (Hashimoto et al., 2007; Li et al., 2005). The
role of VE-cadherin in pre-dHSCs might be in facilitating
interactions with endothelial cells and mediating essential signaling
(Carmeliet et al., 1999). Thus, although dHSCs could originate
from the embryonic endothelium, the divergence of dHSC and
endothelial lineages probably occurs prior to E9.5 (Fig. 5C). It has
also been proposed that dHSCs originate from CD45low/neg cells
that localize to sub-endothelial areas from which they transit via
the endothelial lining of the dorsal aorta into the circulation prior
to colonization of the liver (Fig. 5C) (Bertrand et al., 2005).

Embryonic pathway to dHSC specification
In the absence of uniquely specific markers, the verification of the
pathway that leads to the specification of dHSCs in the mouse can
only be achieved using functional transplantation assays. Although
dHSCs can function in an adult bone marrow microenvironment
and can be tested by transplantations into adult recipients, their
upstream ancestry must mature first in the embryo to become a
dHSC. In utero and in ‘newborn’ transplantation assays have been
developed to achieve this (Fig. 8).

Despite the current gaps in our knowledge, it is now possible to
predict the embryonic pathway that leads to the specification of
dHSCs. In our opinion the HSC lineage pathway begins from the
point when either CD41 or CD45 hematopoietic markers are
upregulated. At early stages of development, the HSC lineage is
represented by pre-dHSCs, which have not yet acquired adult-
repopulating capacity. Later, the capacity to engraft adult irradiated
recipients develops and marks the emergence of dHSCs.

Conclusions
Research in avian and amphibian embryos has revealed the presence
of two independent transient (embryonic) and permanent (definitive)
hematopoietic lineage hierarchies, and current data indicate that this
is likely to also be the case for the mammalian embryo. The distinct
genetic regulation of intrabody (AGM) and yolk sac hematopoiesis,
as revealed in Notch1 and Ncx1 mutant studies, also supports this
idea. Many data indicate that dHSCs arise locally from the P-
Sp/AGM region; however, certain unanswered questions mean that
final consensus on this issue has yet to be reached. For example, do
the inductive interactions that lead to the step-wise maturation of
HSCs require the ancestors of HSCs to migrate between tissues?
This major issue requires further experimental analysis.

In early embryogenesis, hematopoietic cells originate from the
hematogenic embryonic endothelium, which in turn arises from the
hemangioblast. Although direct visualization provides convincing
evidence for the endothelial origin of MPP/HSCs in zebrafish, in
our view the origin of HSCs in the mouse is less certain, mainly
owing to the expression of hematopoietic (CD41 and CD45)
markers in early pre-dHSCs.

Unless some specific markers are found, it is going to be
extremely difficult to track the origin of dHSCs from the pre-
gastrulation mouse embryo. Studies aiming to recapitulate in vitro

their development from early embryonic stages might provide
important insights into this issue. For this, the identification of cells
and growth factors involved in this process in vivo would be
essential. Further development of Cre-based cell-tracking systems
in vivo and the enhancement of visualization techniques might
provide further insight into HSC development in the mouse.
Studies of HSC development in non-mammalian vertebrates will
also benefit from developing additional experimental approaches,
such as a functional HSC self-renewal assay.

Apart from an academic interest, studies of the origin of dHSCs
in the embryo have important practical implications. In the absence
of enforced gene expression, the in vitro differentiation of ES cells
into dHSCs remains a highly challenging task; this is a crucial
obstacle to the application of pluripotent cell technology for clinical
use. Development of in vitro systems that recapitulate cues from in
vivo dHSC development might aid this task.
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Table S1. Markers expressed in pre-HSCs and HSCs
HSC source

Marker

Newborn
repopulating cell

at E9.5
(population 1*)

Pre-dHSC
AGM at E11.5

(population 2*)

dHSC
AGM at E11.5-12.5

(population 3*)

dHSC
placenta at

E12.5
(population 3*)

dHSC
fetal liver at E13.5-14.5

(population 4*)

dHSC
adult bone marrow at
≥10 weeks (population

5*)
Lin† – [1] – [2]
Mac1 +/– [3] + [4] – [5]
CD48 – [6] – [6] – [7] – [8]
CD150 – [6] – [6] + [7] + [8]
CD201 + [9] + [10]
CD34 + [11] + [3, 6] + [6, 12] +/– [3, 12] – [13-15]
cKit + [11] + [3, 16] + [12] + [3, 4, 12] + [17]
Sca1 +/– [16, 18] + [19] + [1, 4] + [2]
Flk1 (Kdr) +/– [16] – [16] – [14]
Flt3 + [1] – [20, 21]
CD41 + [22] +/– [6] +/– [6] –/low [7, 22] –/low [8, 22]
CD31+ + [23] + [16, 24] + [16, 23] + [23, 25]
VE-Cadherin + [26] + [27] + [16, 28] +/– [16, 28, 29] – [28, 29]
CD45 – [26] + [27] + [16, 28] + [9, 16, 28] + [9, 16]
ESAM + [30] + [31]
*As defined in Fig. 8B.
†Lin, lineage markers for adult bone marrow: CD3, CD4, CD8, B220, Mac1, Gr1, Ter119.
AGM, aorta-gonad-mesonephros region; dHSC, definitive hematopoietic stem cell; HSC, hematopoietic stem cell.
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