Development 138, 2379-2388 (2011) doi:10.1242/dev.058982 © 2011. Published by The Company of Biologists Ltd

BRANCHLESS TRICHOMES links cell shape and cell cycle control in Arabidopsis trichomes

Remmy Kasili^{1,*,†}, Cho-Chun Huang^{2,†,‡}, Jason D. Walker^{1,§}, L. Alice Simmons¹, Jing Zhou^{1,¶}, Chris Faulk¹, Martin Hülskamp² and John C. Larkin^{1,**}

SUMMARY

Endoreplication, also called endoreduplication, is a modified cell cycle in which DNA is repeatedly replicated without subsequent cell division. Endoreplication is often associated with increased cell size and specialized cell shapes, but the mechanism coordinating DNA content with shape and size remains obscure. Here we identify the product of the BRANCHLESS TRICHOMES (BLT) gene, a protein of hitherto unknown function that has been conserved throughout angiosperm evolution, as a link in coordinating cell shape and nuclear DNA content in endoreplicated Arabidopsis trichomes. Loss-of-function mutations in BLT were found to enhance the multicellular trichome phenotype of mutants in the SIAMESE (SIM) gene, which encodes a repressor of endoreplication. Epistasis and overexpression experiments revealed that BLT encodes a key regulator of trichome branching. Additional experiments showed that BLT interacts both genetically and physically with STICHEL, another key regulator of trichome branching. Although blt mutants have normal trichome DNA content, overexpression of BLT results in an additional round of endoreplication, and blt mutants uncouple DNA content from morphogenesis in mutants with increased trichome branching, further emphasizing its role in linking cell shape and endoreplication.

KEY WORDS: Arabidopsis, Cell cycle, Endoreduplication, Endoreplication, Trichome

INTRODUCTION

The acquisition of plant form requires the development of multiple cell types from meristematic cells to form the tissues and organs that make up the mature plant. These diverse cell types must not only be arranged in the correct spatial pattern but also take the correct shape. Indeed, much of plant growth involves the directionally controlled expansion of cells, as opposed to cell proliferation. The cytoskeleton plays an important role in determining plant cell shape by influencing the pattern in which cell wall materials are deposited in expanding cells (Smith and Oppenheimer, 2005; Szymanski, 2009). Cell expansion is achieved by the cell wall yielding to turgor pressure from within, the resultant breakage and reformation of bonds between cell wall components and the controlled deposition of new wall materials (Szymanski and Cosgrove, 2009). The determinants of the polarity of cell expansion remain unclear, although recent work has implicated interactions between Rho family GTPases and cytoskeletal components (Yang, 2008; Szymanski, 2009).

Cell differentiation is also often accompanied by alterations in the cell cycle. These modifications range from simple arrest of the cell cycle in the differentiating cell to patterns of stereotyped cell divisions, as are seen in stomatal and root development (Verkest et al., 2005b; Abrash and Bergmann, 2009). One type of altered cell cycle that is commonly seen in large or metabolically active differentiated cells is endoreplication, also known as endoreduplication (Vlieghe et al., 2007). This modified cell cycle involves repeated replication of nuclear DNA without subsequent cell division. The DNA content of endoreplicated cells is typically correlated with cell size (Melaragno et al., 1993; Hülskamp et al., 1994). Although we are beginning to understand the alterations in the plant cell cycle that result in endoreplication (Vlieghe et al., 2007), essentially nothing is known of the mechanisms that coordinate DNA content and cell size in an endoreplicated cell.

Arabidopsis trichomes (shoot epidermal hairs) are large specialized single cells that project from the epidermis of leaves, petioles, sepals and stems. Trichomes have a unique branched cellular architecture; on leaves, they typically have three or four branches (Schellmann and Hülskamp, 2005). Arabidopsis trichomes are well established as a system for studying cell fate determination, cell morphogenesis and endoreplication (Larkin et al., 2007; Pesch and Hülskamp, 2009; Szymanski, 2009). The initiation of trichome development on Arabidopsis leaves is promoted by a transcription factor complex consisting of the bHLH transcription factors GL3 and EGL3, the Myb transcription factors GL1 and MYB23 and the WD-repeat protein TTG. Selection of trichome precursor cells depends on cell-to-cell movement of both the positive regulator TTG and the negative transcriptional regulator TRY and related proteins (Bouver et al., 2008). One of the earliest events in trichome development is the initiation of endoreplication, and the developing trichome typically undergoes three to four rounds of DNA replication without division during its development (Hülskamp et al., 1994). The developing trichome cell then expands from the plane of the epidermis and typically undergoes two to three branching events, resulting in a total of three to four branches in the mature trichome (Szymanski, 2009).

¹Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803-1715, USA. ²Botanical Institute, University of Cologne, Gyrhofstrasse 15, 50931 Cologne, Germany,

^{*}Present address: National Institute of Child Health and Human Development, Bethesda, MD 20892, USA

[†]These authors contributed equally to this work

[‡]Present address: Department of Forest Genetics, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, S-90183 Umeå, Sweden

[§]Present address: Department of Pathobiological Sciences, LSU School of Veterinary Medicine, Louisiana State University, Baton Rouge, LA 70803, USA

[¶]Present address: LSU School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA

^{**}Author for correspondence (jlarkin@lsu.edu)

The final phase of expansion is driven by enlargement of the trichome vacuole, and development concludes with maturation of the thick cellulose cell wall.

Mutations in a number of genes are known to affect endoreplication levels in trichomes (for a review, see Larkin et al., 2007). These include cell cycle components that affect the G1/S transition and DNA replication such as *RBR* (Desvoyes et al., 2006) and *CDC6* (Castellano et al., 2004), and transcriptional regulators of trichome cell fate, such as *GL3* and *TRY* (Hülskamp et al., 1994). In general, mutations in genes that increase or decrease the number of rounds of endoreplication increase or decrease, respectively, trichome cell size and the number of branches. Because both of these classes of genes encode proteins involved in nuclear processes, they presumably influence cell size and branch initiation indirectly. However, essentially nothing is known of the mechanism that coordinates endoreplication with cell size and shape.

Mutations affecting trichome branching and cell shape that do not affect endoreplication are also known (Schellmann and Hülskamp, 2005), and these presumably include factors that function primarily in branch initiation and expansion. The mechanism for polarizing branch initiation sites is not understood, but recent work has focused on two proteins. Recessive loss-offunction mutations in STICHEL (STI), which encodes a protein with sequence similarity to eubacterial DNA polymerase III γ subunits (Ilgenfritz et al., 2003), and BRANCHLESS TRICHOMES (BLT), which encodes a protein with no similarity to proteins of known function, both result in trichomes that are completely unbranched. Recently, both of these proteins were localized to newly initiated trichome branch points (Marks et al., 2009), indicating that STI and BLT are excellent candidates for proteins that determine branch sites. Mutations in STI appear to have no effect on endoreplication (Ilgenfritz et al., 2003), and the effect of BLT on endoreplication has not been investigated previously.

The recessive *siamese* (*sim*) mutation results in multicellular trichomes in place of the unicellular trichomes of wild-type plants (Walker et al., 2000). The *SIM* gene encodes a cyclin-dependent kinase inhibitor that is a regulator of endoreplication onset during trichome cell differentiation (Churchman et al., 2006). Here, we report the isolation of a *blt* mutation based on its genetic enhancement of the *sim* multicellular trichome phenotype, and show that *BLT*, a major regulator of trichome branch initiation, also regulates endoreplication levels. In addition to its effects on the cell cycle, we show that BLT protein interacts directly with STI in the regulation of branching. This work suggests that *BLT*, a key regulator of trichome cell shape, also plays a role in integrating endoreplication levels with cell shape.

MATERIALS AND METHODS

Plant material and growth conditions

Plants were grown as previously described (Larkin et al., 1999). The loss-of-function *blt* insertion line SAIL_632_G06.V1 (Columbia ecotype) was obtained from the Arabidopsis Biological Resource Center. The origin of the *sim-1* allele used for mutagenesis has been described previously (Churchman et al., 2006). The *try-JC* allele has also been described previously (Larkin et al., 1999; Schellmann et al., 2002); in the work of Schellman et al. (Schellman et al., 2002), which describes the molecular defect, it is mislabeled as the *try-5C* allele. The *nok-122* and *kak-2* alleles (Hülskamp et al., 1994; Folkers et al., 1997) and the *GL2pro:GL3* line (Kirik et al., 2001) have been described previously. The *rfi* allele (Perazza et al., 1999) was obtained from Jean-Marc Bonneville. The *gl3-sst* allele (Esch et al., 2003) was obtained from M. David Marks. The ethyl methane sulfonate (EMS)-induced *sti-AS* allele was obtained from Alan Sessions

(University of California, Berkeley). All alleles were either generated in Col-0, or were backcrossed three times to Col-0 before selfing to obtain homozygotes. Putative double mutants were confirmed by complementation, by crossing to wild-type plants and recovering the two parental mutant phenotypes in a segregating F2, or by sequencing.

Isolation of the blt-3 allele

As described previously (Kasili et al., 2010), homozygous seeds of *sim-1* were mutagenized with EMS and collected as 37 pools of 300 M₁ plants (a total of 11,100 M₁ plants) and ~2000 M₂ plants per pool were screened for *sim* phenotypic modifiers. Plants exhibiting increased multicellularity and clustering of trichomes were selfed. These putative modifiers were then backcrossed three times to the *sim-1* mutant, and plants having the enhanced *sim* phenotype were selected for further work. The presumed double mutants were crossed to Col-0 wild type and the F1 selfed to isolate the modifier as a single mutant. Plants with reduced trichome branching but no multicellular trichomes or trichome clusters were observed in this segregating population. This phenotype segregated as a recessive monogenic trait, and when the new mutant was crossed to either the *sim-1* or *sim-2* alleles it reconstructed the enhanced multicellularity of the original isolate, confirming that this mutant was the *sim* modifier of interest.

Genetic mapping and identification of BLT as the genetic modifier

Using bulked segregant analysis (Lukowitz et al., 2000), the reduced trichome branching phenotype of the modifier was mapped to a region on chromosome I. Genomic DNA from 971 plants from an F2 population of a cross between the mutant (in Col-0) and Landsberg *erecta* (*Ler*) was genotyped by PCR with molecular markers generated using the Cereon database of the Columbia and *Ler* polymorphisms at TAIR (http://www.arabidopsis.org/browse/Cereon/index.jsp). Two restriction enzyme-cleavable PCR-amplifiable markers, F13O11-4 and F1N19-7, were used to localize the mutation within a region of ~70 kb on two overlapping BAC clones, F1N19 and F13O11. Sequencing genes within this region revealed a G-to-A point mutation in the gene *AT1G64690*. This gene is known as *BRANCHLESS TRICHOMES*, and loss-of-function *blt* mutations reduce trichome branching (Marks et al., 2009). The EMS-induced allele described here was designated *blt-3* in accordance with the naming of previously published alleles.

For molecular complementation, the genomic coding sequence of *AT1G64690*, together with 1447 bp of upstream sequence and 1228 bp of downstream sequence, was PCR amplified from the BAC clone FIN19 using primers ENS1CF (5'-CACCTGTGACAGACTTGCTCCTAC-3') and ENS1CR2 (5'-CAGCCACATAAGGACCCGAC-3'). This fragment was cloned into the Gateway pENTR vector following the manufacturer's protocol (Invitrogen, Carlsbad, CA, USA). Error-free entry clones were confirmed by sequence analysis before attL recombination into the Gateway destination vector pMDC100, a plant binary transformation vector, to create pMDC100/ENS1C-3.5, which was then used for transformation of homozygous *blt-3* plants.

Phylogenetic analysis of BLT-related gene families

Predicted protein sequences for BLT, At1G50660, At5g22310, At3g11590 and At3g20350 were obtained from TAIR (http://www.arabidopsis.org) and used in NCBI BLAST searches with the TBLASTN option. The most similar predicted protein sequence to each of the five query sequences in the genomes of Arabidopsis lyrata (L.) O'Kane & Al-Shehbaz, Vitis vinifera (L.), Ricinus communis (L.) and Populus trichocarpa (Torr. & A.Gray) and Sorghum bicolor (L.) Moench was retained for analysis. Including the five query sequences, this resulted in 24 protein sequences, predicted from the following GenBank accession numbers: A. thaliana BLT, NM_105144; A. lyrata BLT, XM_002887821; R. communis BLT, XM 002518874; P. trichocarpa BLT, XM 002297906; V. vinifera BLT, XM_002272534; S. bicolor BLT, XM_002467436; At1G50660, NM_103948; At5g22310, NM_122136; At3g11590, NM_101041; At3g20350, NM 112926; A. lyrata-2, XM 002891541; A. lyrata-3, XM_002874015; A. lyrata-4, XM_002882692; R. communis-2, XM_002532506; R. communis-3, XM_002523807; R. communis-4, XM 002530473; P. trichocarpa-2, XM 002316730; P. trichocarpa-3, XM 002328072; P. trichocarpa-4, XM 002309373; V. vinifera-2

DEVELOPMENT

XM_002280300; *V. vinifera-*3, XM_002275870; *S. bicolor-*2, XM_002448513; *S. bicolor-*3, XM_002441284; and *S. bicolor-*4, XM_002447617.

Alignment of these 24 predicted protein sequences was performed using Mega4 (MEGA Software) using the ClustalW algorithm with default parameters (multiple alignment gap opening penalty=10; gap extension penalty=0.2; Gonnet matrix, residue-specific penalties, on; hydrophilic penalties, on; gap separation distance=4; end gap separation, off; use negative matrix, off; delay divergent cut-off %=30). The phylogeny was built in Mega4 using neighbor joining with 1000 bootstrap iterations. The resulting tree was arbitrarily rooted between the BLT subfamily and all other paralogs. For the alignment used to produce this tree, see Fig. S3 in the supplementary data,

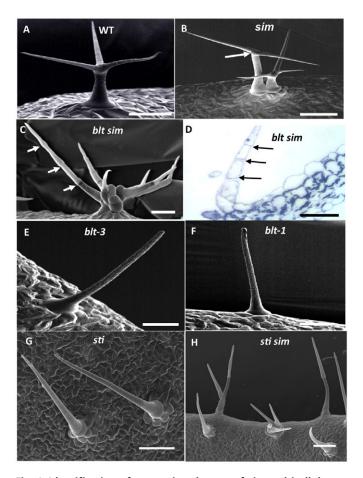
Generation of transgenic lines

Microscopy

The in situ DNA content of trichomes was measured as described (Walker et al., 2000), and the DNA values were normalized to reported wild-type epidermal cell nuclei values (Melaragno et al., 1993). Statistical analysis was performed using SigmaStat (Systat Software, San Jose, CA, USA). Flow cytometry was performed as described (Verkest et al., 2005a).

Trichomes were examined using scanning electron microscopy (SEM) as previously described (Larkin et al., 1999). Trichome branches were counted on all trichomes on the adaxial side of the first or second leaf from at least ten plants of each genotype.

Yeast two-hybrid and bimolecular fluorescence complementation protein-protein interaction assays


Entry clones containing full-length cDNA of *BLT* or *STI* or a cDNA fragment of *STI* (encoding the N-terminal 454 amino acids) were transferred to the Gateway-compatible yeast two-hybrid vectors pAS-attR and pACT-attR by LR recombination following the manufacturer's protocol (Invitrogen) and used to transform yeast strain AH109. Assays for α -galactosidase activity resulting from expression of the GAL4-responsive *MEL1* gene present in the AH109 host strain were conducted as described in the Clontech Yeast Protocols Handbook (PR973283, July 2009). Six transformed colonies were analyzed per genotype. Results are reported in milliunits (mU) of α -galactosidase activity is defined as the amount of enzyme that hydrolyzes 1 μ mole p-nitrophenyl- α -D-galactoside to p-nitrophenol and D-galactose in 1 minute at 30°C in acetate buffer (pH 4.5) (Aho et al., 1997).

For bimolecular fluorescence complementation (BiFC), entry clones of full-length *BLT* and *STI* were fused with the C-terminal and N-terminal split fragments of YFP, respectively, in the BiFC pBatTL vectors (Uhrig et al., 2007) by Gateway recombination, and were introduced into onion cells by biolistic bombardment.

RESULTS

Identification of *blt* as a genetic enhancer of the *sim* multicellular trichome phenotype

siamese-1 (sim-1) is a loss-of-function mutation that results in multicellular trichomes that occur in clusters (Fig. 1A,B; Table 1). SIM encodes a CDK inhibitor that binds to CYCD-CDK

Fig. 1. Identification of a genetic enhancer of *sim* **multicellular trichomes.** (**A-C,E-H**) Scanning electron micrographs (SEMs) of (A) wild-type (WT, Col-0), (B) sim-1, (C) blt-3 sim-1 double-mutant, (E) blt-3, (F) blt-1, (G) sti-AS and (H) sti-AS sim double-mutant Arabidopsis trichomes. Arrows indicate representative cell junctions. (**D**) Transverse section of a blt-3 sim-1 double-mutant trichome stained with Toluidine Blue. Arrows indicate individual cells. Scale bars: 50 μm in A,D,H; 100 μm in B,E-G.

complexes and regulates endoreplication onset in *Arabidopsis* (Churchman et al., 2006; Peres et al., 2007). In a search for genetic modifiers of the *sim* mutant trichome phenotype, we identified a recessive mutation that greatly enhanced the multicellularity of the *sim* mutant trichome phenotype in double mutants (Fig. 1C,D; Table 1). When separated from *sim*, the single mutant of this

Table 1. *blt* increases the multicellularity of *sim* mutant trichomes

Genotype	No. of nuclei per trichome*	Total trichomes [†]
Col-0	1.0±0.0	50
blt-3	1.0±0.0	47
sim-1	2.2±1.2	64
blt-3 sim-1	9.8±3.3	40
sti	1.0±0.0	50
sti sim	1.2±0.5	50

The numbers of nuclei per trichome in *sim-1* versus *blt-3 sim-1* are significantly different (*P*<0.001, Mann-Whitney rank sum test).

[†]The total number of trichomes for which nuclei were counted on first or second leaves. At least ten leaves were examined per genotype.

^{*}The number of nuclei per trichome was counted under a fluorescence microscope (trichomes were stained with DAPI). Data are mean \pm s.d.

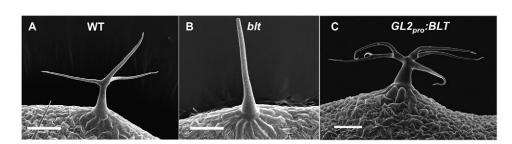


Fig. 2. *BLT* overexpression increases branching. SEMs of trichomes of (**A**) Col-0 wild-type, (**B**) blt-3 and (**C**) $GL2_{pro}$:BLT in Col-0. Scale bars: 100 μ m.

modifier produces predominantly unbranched trichomes on leaves (Fig. 1E). Root growth, plant size, growth rate, floral structure and general appearance of these single mutants were identical to those of wild type, and the number of trichomes on single-mutant leaves was indistinguishable from that of wild-type leaves, indicating that the mutant phenotype is primarily or exclusively limited to post-initiation trichome development.

The unbranched trichome mutation was mapped, and sequencing of candidate genes revealed a point mutation in the gene AT1G64690, which has been named BRANCHLESS TRICHOMES (BLT) (Marks et al., 2009). The genetic modifier responsible for enhancing the sim phenotype was shown to be allelic to blt by the following criteria. First, the trichome mutant identified here produced unbranched trichomes that were phenotypically identical to those of the blt-1 reference allele (Fig. 1F), and the two mutations failed to complement. The phenotype of our unbranched trichome allele was also completely rescued by a genomic DNA fragment containing BLT (see Fig. S1 in the supplementary material). Finally, when the *blt-1* reference allele was combined with either of two sim alleles, it produced an enhancement of the sim multicellular trichome phenotype identical to that seen with our initial blt allele (see Fig. S2 in the supplementary material). These results indicate that the gene responsible for the genetic enhancement of cell division in *sim* mutants observed in our screen was BLT, a gene with no known role in the cell cycle.

In accordance with the naming of *blt* alleles in previous work (Marks et al., 2009), we refer to the point-mutant allele generated in our screen as *blt-3*. This allele contains a G-to-A mutation in *AT1G64690* that changes the amino acid tryptophan (TGG) to a stop codon (TGA) at codon 64, eliminating more than 70% of the predicted protein. Thus, *blt-3* is likely to be a null allele. The *blt-3* allele was used for the studies described below unless otherwise indicated.

Loss-of-function mutations in another gene, *STI*, result in unbranched trichomes very similar in phenotype to those of the *blt* mutants (Fig. 1G) (Ilgenfritz et al., 2003). Double-mutant *sti sim* plants, however, did not exhibit an increase in the number of cells per trichome relative to *sim* trichomes (Fig. 1H; Table 1). Thus, the

dramatic enhancement of the *sim* multicellular trichome phenotype seen in *sim blt* double mutants (Fig. 1C,D; Table 1) represents a unique link between trichome branching and the cell cycle.

BLT represents an ancient plant protein lineage of unknown function

The 273 amino acid product of BLT predicted by conceptual translation does not closely resemble any protein of known function, although sequences similar to BLT are found in most, if not all, angiosperm genomes (see Fig. S3 in the supplementary material). Additionally, four other Arabidopsis genes (AT3G20350, AT1G50660, AT5G22310 and AT5G22310), all of unknown function, encode proteins that share the predicted amino acid sequence REERVQMKL (residues 161-169 of BLT), as well as other limited similarity with BLT. There is a clear and strongly supported monophyletic clade of BLT-related genes in all of the angiosperm species examined, indicating that the BLT clade originated before the last common ancestor of monocots and dicots (see Fig. S4 in the supplementary material). This suggests that BLT encodes an ancient conserved function, which is represented in the Arabidopsis genome only by BLT itself. Sequences with similarity to BLT also occur in Physcomitrella patens (Hedw.) Bruch & Schimp, but the sequences are from partial cDNAs and it is not possible to determine whether they represent BLT orthologs or paralogs.

BLT is a key positive regulator of trichome branching

BLT was initially identified among a number of genes in a transcriptomics study of trichome development (Marks et al., 2009). To further investigate the role of BLT in trichome branching, transgenic lines expressing BLT from the GL2 promoter, $GL2_{pro}$, were created. In leaves, this strong promoter drives expression predominantly in developing trichomes. Numerous transgenic lines were obtained, and most independent $GL2_{pro}$:BLT lines showed increased trichome branching (Fig. 2); counts of trichome branch points from three representative lines are shown in Table 2. Thus, when expressed from a strong trichome promoter, BLT expression actively promotes trichome branching.

Table 2. Plants overexpressing BLT have increased branching

			No	o. of branch poi	nts*			
Genotype	0	1	2	3	4	5	6	No. of trichomes [†]
Col-0	0.0	0.0	73.9	26.1	0.0	0.0	0.0	119
blt-3	87.3	12.7	0.0	0.0	0.0	0.0	0.0	106
GL2 _{pro} :BLT line 1	0.0	0.0	25.9	30.2	29.3	12.9	1.7	116
GL2 _{pro} :BLT line 2	0.0	0.0	32.3	36.5	23.9	7.3	0.0	96
GL2 _{pro} :BLT line 3	0.0	1.1	30.1	43.0	22.6	3.2	0.0	93

Based on a Kruskal-Wallis one-way ANOVA on ranks and an all pairwise multiple comparison test (Dunn's Test), branch counts of all $GL2_{pro}$: BLT lines differ significantly (P<0.05) from both Col-0 and blt-3, and branch counts of Col-0 and blt-3 differ significantly from each other (P<0.05).

^{*}Shown in the percentage of total trichomes having the indicated number of branch points (one branch point indicates a trichome with two branches). Counts were made on first or second leaves of each genotype.

[†]Total number of trichomes on which branches were counted.

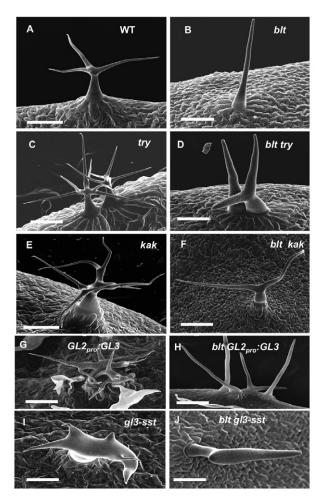


Fig. 3. *blt* is epistatic to mutations that increase trichome branching. SEMs of (A) Col-0, (B) *blt-3*, (C) *try-JC*, (D) *blt-3 try-JC*, (E) *kak-2*, (F) *blt-3 kak*, (G) *GL2*_{pro}:*GL3*, (H) *blt-3 GL2*_{pro}:*GL3*, (I) *gl3-sst* and (J) *blt-3 gl3-sst Arabidopsis* trichomes. Scale bars: 100 μ m.

The necessity for *BLT* function in trichome branching was also addressed by constructing double mutants between *blt* and *triptychon* (*try*), *noeck* (*nok*), *kaktus* (*kak*), *rastafari* (*rfi*), the *GL3*

gain-of-function allele glabra3-shapeshifter (gl3-sst) and the GL3 overexpression construct *GL2_{pro}: GL3*. Each of these latter mutants and constructs produces substantial numbers of trichomes with more than four branch points (i.e. at least five branches) (Folkers et al., 1997; Perraza et al., 1999; Esch et al., 2003). In the double mutants, the blt mutation greatly reduced trichome branching relative to the second mutation on its own, and very few trichomes had more than one branch point (Fig. 3; Table 3). Both blt alleles that we examined produced at least a few trichomes with one branch point (Table 3). Thus, *blt* is essentially epistatic to *try*, *nok*, kak and rfi. In double mutants, blt mutation also restricted the branching potential resulting from the gl3-sst gain-of-function allele or the artificially engineered GL3 gain-of-function resulting from expression from the GL2 promoter (Fig. 3), although owing to the complex branching pattern and trichome clustering that occur in these GL3 gain-of-function situations it was difficult to quantitate the degree of trichome branching.

It should be noted that the sole existing *rfi* allele, as used here, contains a C-to-T point mutation in the *GL3* gene that converts codon 116 from GCC (Ala) to GTC (Val). This *rfi* allele maps close to *gl3* on chromosome five. Thus, *rfi* might be another *gl3* gain-of-function mutation.

BLT couples cellular morphogenesis and endoreplication in trichomes

In many, but not all, cases, a positive correlation exists between the average number of trichome branches associated with a particular genotype and the degree of endoreplication of trichome nuclear DNA (Hülskamp et al., 1994; Larkin et al., 2007). One mutant that does not show such a correlation is sti; trichomes of sti mutant plants have little branching, but have a nuclear DNA content similar to that of wild type (Ilgenfritz et al., 2003). Similarly, we found that blt mutation had no effect on trichome nuclear DNA content (Fig. 4A) or on the nuclear DNA content of leaf cells (Fig. 4B). These results indicate that, like STI, BLT function is not required for endoreplication. However, three GL2_{pro}:BLT overexpression lines all showed a significant increase in DNA content relative to wild-type or blt mutant trichomes (Fig. 4C). This result suggested that BLT function is necessary to couple trichome branching to the degree of endoreplication. To test this hypothesis, we examined the nuclear DNA content of blt gl3-sst and blt try double mutants in comparison to the respective single mutants, gl3-

Table 3. Loss of BLT function limits branching potential in double mutants

				No. of brar	nch points*				
Genotype	0	1	2	3	4	5	6	7	No. of trichomes [†]
Col-0	0.0	0.0	93.4	6.6	0.0	0.0	0.0	0.0	244
blt-3	82.9	17.1	0.0	0.0	0.0	0.0	0.0	0.0	258
try-JC	0.0	0.0	1.3	11.5	36.5	36.2	12.2	2.3	304
bĺt-3 try-JC	55.7	37.8	6.5	0.0	0.0	0.0	0.0	0.0	246
kak-2	0.0	0.0	0.6	14.5	33.0	35.8	11.7	4.3	324
blt-3 kak-2	16.9	83.1	0.0	0.0	0.0	0.0	0.0	0.0	242
nok	0.0	1.5	26.1	50.7	20.1	1.5	0.0	0.0	134
blt nok	34.3	65.1	0.6	0.0	0.0	0.0	0.0	0.0	169
rfi	0.0	0.0	0.4	21.3	36.8	31.6	7.6	2.2	225
blt-3 rfi	56.4	43.3	0.3	0.0	0.0	0.0	0.0	0.0	307
gl3-1	63.2	33.5	3.2	0.0	0.0	0.0	0.0	0.0	151
blt-3 gl3-1	97.7	2.3	0.0	0.0	0.0	0.0	0.0	0.0	299

For each comparison of a single trichome branching mutant with its double mutant with blt-3, as well as for the comparison of Col-0 with blt-3, the median number of branch points per trichome differed significantly (P<0.001) based on a Mann-Whitney rank sum test.

^{*}Shown is the percentage of trichomes having the indicated number of branch points (one branch point indicates a trichome with two branches). Counts were made on ten first or second leaves per genotype.

[†]Total number of trichomes on which branches were counted.

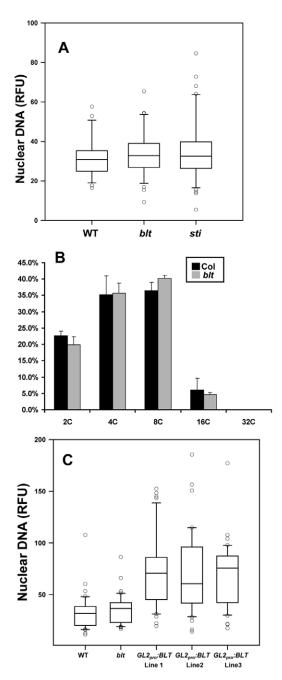


Fig. 4. BLT overexpression increases nuclear DNA content. (A) In situ measurements of trichome nuclear DNA content of blt-3 and sti-AS loss-of-function mutants. Relative fluorescence units (RFU) have been normalized to approximately correspond to haploid genome equivalents (C values). None of the pairwise comparisons among these three genotypes is significant [P>0.05, Kruskal-Wallis one-way ANOVA on ranks and an all pairwise multiple comparison test (Dunn's test)]. (B) Nuclear DNA content of 21-day-old wild-type (Col) and blt Arabidopsis leaves, as determined by flow cytometry. The percentage of nuclei in each ploidy class is indicated. Error bars indicate s.d. (C) In situ measurements of trichome nuclear DNA content of GL2_{pro}:BLT overexpression lines. All three GL2_{pro}:BLT lines differ significantly from wild type and blt (P<0.05, Kruskal-Wallis one-way ANOVA on ranks and Dunn's test). Data in A and C are presented as box plots, in which the box encompasses the 25th through to the 75th percentile of the data, the line within the box is the median (50th percentile), and the error bars represent the 5th (lower bar) and the 95th (upper bar) percentiles.

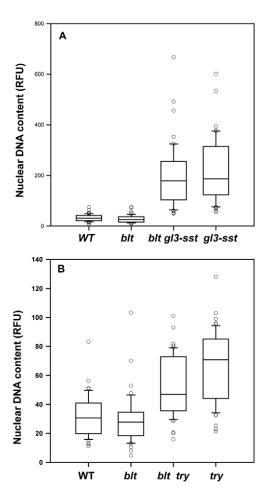


Fig. 5. Loss of *BLT* function uncouples DNA content from morphogenesis in increased branching mutants. (A) Comparison of *gl3-sst* and *blt-3 gl3-sst* DNA contents. Based on a Kruskal-Wallis one-way ANOVA on ranks and Dunn's test, all pairwise comparisons differ significantly (*P*<0.05), except for *gl3-sst* versus *blt-3 gl3-sst* and for wild type versus *blt*. (B) Comparison of *try* and *blt-3 try*. In a Kruskal-Wallis one-way ANOVA on ranks and Dunn's test, all pairwise comparisons differ significantly (*P*<0.05), except for *try-JC* versus *blt try-JC* and for wild type versus *blt*. Box plot data are presented as described in Fig. 4. RFU are normalized to approximately correspond to haploid genome equivalents (C values).

sst and try, both of which result in increased branching and nuclear DNA content on their own. Both double mutants exhibited an elevated DNA content that was not significantly different from that of the corresponding single mutant (Fig. 5A,B), even though blt substantially restricts branching in the double mutants (Fig. 3D,J; Table 3). This was particularly striking for the gl3-sst allele. Although it was difficult to accurately count the number of branches on trichomes of plants homozygous for this gl3 gain-offunction allele owing to highly variable branch expansion and trichome shape, it was clear that gl3-sst single mutants have an increased number of branch points per trichome, and trichomes having greater than four branch points were common (Fig. 3I) (Esch et al., 2003). In spite of an obvious and dramatic reduction of branching in blt gl3-sst trichomes (Fig. 3J), these trichomes had a median DNA content that was more than fourfold higher than that of wild type and indistinguishable from that of gl3-sst singlemutant trichomes (Fig. 4A).

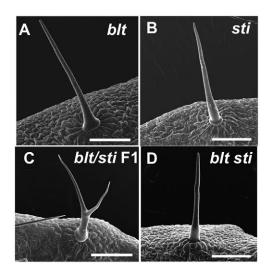


Fig. 6. Partial intergenic non-complementation between *blt* and *sti*. SEMs of (**A**) *blt-3*, (**B**) *sti-AS*, (**C**) *blt-3/+ sti-AS/+* F1 and (**D**) *blt-3 sti-AS* homozygous double-mutant *Arabidopsis* trichomes. Scale bars: 100 µm.

In a separate experiment, we found that, whereas individual *sim* nuclei had a mean DNA content of 12.4±7.3 relative fluorescence units (RFU), individual *blt sim* nuclei had a mean DNA content of 3.1±3.3 RFU. The DNA content of *blt sim* nuclei was significantly different from that of both *sim* and *blt* [*P*<0.05, Kruskal-Wallis one-way ANOVA on ranks and an all pairwise multiple comparison test (Dunn's test)]. When these data were combined with the number of nuclei per trichome initiation site for each genotype (Table 1), the total nuclear DNA content per trichome initiation site was similar in the two genotypes (27.2 RFU for *sim* and 30.4 for *blt sim*). Thus, in the *blt sim* double-mutant combination, *blt* increases mitotic divisions above the degree of division seen in the *sim* single mutant, without affecting the number of cycles of DNA replication.

We also considered the hypothesis that, although *blt* mutations do not affect the level of endoreplication reached by mature trichomes, they might prolong a juvenile developmental stage permissive for division, in which case we might see an alteration in the timing of endoreplication in early stages of *blt* trichome development. It is difficult to obtain accurate in situ DNA content values from early trichome developmental stages owing to the high background and close spacing of cells. Therefore, as a proxy for

endoreplication in early trichome development stages, we used the widest cross-sectional area of stage one and stage two trichome nuclei, i.e. the nuclei of trichomes that are less than twice as tall as they are wide, prior to the initiation of branching in wild-type trichomes (Szymanski et al., 1998). The nuclei of surrounding protodermal cells, which were still dividing, were also examined. Because the nuclei of these cells appear to be essentially spherical, this cross-sectional area should be indicative of cell volume (Walker et al., 2000). No difference was found between wild-type and *blt* nuclei for early-stage developing trichomes or dividing protodermal cells (see Table S1 in the supplementary material), indicating that there is no obvious alteration in the timing of endoreplication in the early development of *blt* trichomes.

BLT interacts both genetically and physically with **STI**, another positive regulator of trichome branching

Mutations in only two genes, *blt* and *sti*, result in trichomes that are unbranched but otherwise develop normally. As noted by Marks et al. (Marks et al., 2009), *blt sti* double mutants resemble the two parental mutants, a result that is consistent with the two gene products acting in the same pathway. However, in constructing this double mutant, we noticed that 25-30% of the trichomes on F1 plants heterozygous for both *blt* and *sti* had only a single branch point (i.e. were two-branched; Fig. 6; Table 4), a phenotype that is almost never seen in the Col-0 wild-type background in which both mutations were derived, and is rare (less than 3%) in F1 heterozygotes between either *blt* or *sti* and wild type. Thus, *blt* and *sti* exhibit substantial intergenic non-complementation.

Intergenic non-complementation is often observed in cases in which two protein products act as part of the same complex (Huffaker et al., 1987). We tested the hypothesis that the BLT and STI proteins interact using two methods. Yeast two-hybrid experiments demonstrated a clear interaction between the N-terminal 472 amino acids of STI and full-length BLT (Fig. 7A-D; Table 5). Interaction between STI and BLT was confirmed by in planta bimolecular fluorescence complementation (BiFC) experiments in which full-length *STI* and *BLT* coding regions were respectively fused to the N-terminal and C-terminal split domains of YFP and co-bombarded into onion cells, which resulted in YFP fluorescence indicative of close association of the two test proteins (Fig. 7E,F).

We also investigated the localization of BLT and STI fluorescent protein fusions in developing trichomes of *sti* and *blt* mutants, respectively, using transient expression of *YFP* fusions introduced into developing trichomes via biolistic bombardment of developing

Table 4. Genetic interaction between blt and sti for trichome branching phenotype

		No	o. of branch poi	nts*		
Genotype	0	1	2	3	4	No. of trichomes [†]
Col-0	0.0	0.0	78.0	12.8	0.2	392
olt-3	90.7	9.3	0.0	0.0	0.0	236
ti-AS	99.7	0.3	0.0	0.0	0.0	292
ol-0 $ imes$ blt -3 F1 (heterozygote)	0.0	2.7	97.3	0.0	0.0	480
ol-0 \times <i>sti-AS</i> F1 (heterozygote)	0.0	2.8	96.8	0.4	0.0	497
t-3 $ imes$ sti-AS F1 (heterozygote)	0.0	31.3	68.7	0.0	0.0	399
t-3 sti-AS	100.0	0.0	0.0	0.0	0.0	368

Based on a Kruskal-Wallis one-way ANOVA on ranks and an all pairwise multiple comparison test (Dunn's test), branch counts of blt-3 \times sti-AS F1 trichomes differed significantly (P<0.05) from both Col-0 \times sti-AS F1 trichomes and Col-0 \times sti-AS F1 trichomes and Col-0 \times sti-AS F1 trichomes did not differ significantly.

^{*}Shown is the percentage of trichomes having the indicated number of branch points (one branch point indicates a trichome with two branches). Counts were made on ten first or second leaves per genotype.

[†]Total number of trichomes on which branches were counted.

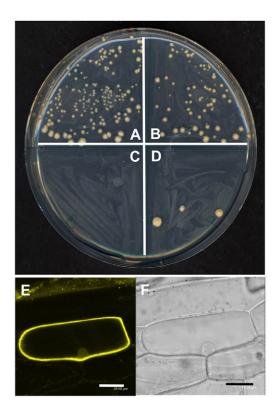


Fig. 7. Interaction between BLT and STI in yeast two-hybrid and BiFC assays. (A-D) Yeast two-hybrid interaction of BLT with a domain of STI that comprises the N-terminal 454 amino acids. Yeast strain AH109 cells co-expressing bait and prey plasmids were allowed to grow on -Trp/-Leu plates and then on -Trp/-Leu/-His+3AT to test for proteinprotein interaction. (A) pBD-STI N-term/pAD-BLT, (B) pBD-SNF1/pAD-SNF4 (positive control), (C) pBD-STI N-term/pAD-GUS (negative control) and (D) pBD-GUS/pAD-BLT (negative control). (E) Confocal image of interaction between BLT and STICHEL (STI) using BiFC. BLT and STI fused with the Cterminal and N-terminal split fragments of YFP, respectively, were cobombarded into onion cells. The YFP fluorescence (yellow) from the BiFC complex serves as an indicator of the interaction between BLT and STI proteins. When both fusion clones were co-bombarded, 20-30 YFPpositive cells were observed in each of four independent experiments. No YFP-positive cells were observed when either fusion was bombarded individually, or in bombardments with empty vector. (F) Phase-contrast image of the cell shown in E. Scale bars: 50 μm.

leaves (Fig. 8). In all *sti* early-stage trichomes expressing YFP:BLT, YFP fluorescence was localized apically, similar to the YFP:BLT localization seen in wild type (Fig. 8A,B). Twelve of fifteen *blt* cells expressing STI:YFP also exhibited the apical localization observed for STI:YFP in wild type (Fig. 8C,D), whereas three cells exhibited

a more lateral localization of the fluorescent signal not seen in wildtype controls. No trichomes in either experiment showed detectable nuclear-localized fluorescence.

DISCUSSION

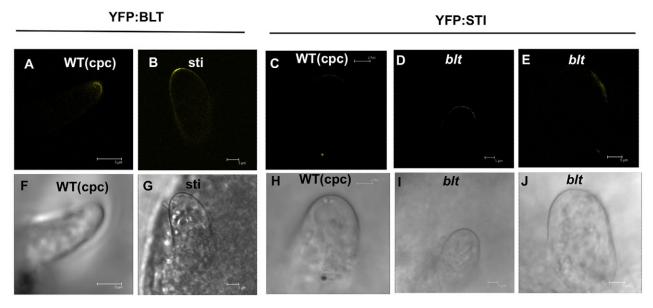
In most genotypes, the degree of endoreplication is highly correlated with trichome branching (Hülskamp et al., 1994; Larkin et al., 2007), but the mechanism that maintains this correlation is unknown. The cell polarity mechanism involved in trichome branch initiation is likewise poorly understood. Here, we have found that the product of the *BLT* gene, previously known as a regulator of trichome branch initiation (Marks et al., 2009), can also influence the cell cycle in developing trichomes. This suggests that BLT is a component of the mechanism that coordinates branch initiation and the endoreplication cell cycle in developing trichomes.

The BLT gene is unique in the Arabidopsis genome, with the most closely related *Arabidopsis* genes clearly being paralogs (see Fig. S3 in the supplementary material). Both monocots and dicots have BLT homologs (see Fig. S3 in the supplementary material), indicating that the function of the gene product has been conserved throughout angiosperm evolution, although neither BLT nor its paralogs resemble any genes of known function. Marks et al. predicted that the BLT protein sequence has a high probability of adopting a coiled-coil structure throughout much of its length (Marks et al., 2009). Based on data collated at the Genevestigator website (Hruz et al., 2008), BLT is widely expressed in Arabidopsis, with the highest levels seen in testa, the root hair zone and petals. The transcriptional pathways that control mucilage formation in the testa and root epidermal fate share transcription factors with the trichome cell fate pathway. However, we detected no defects in mucilage formation or root hair development in blt mutants (our unpublished observations).

Overexpression of *BLT* resulted in the initiation of supernumerary branches (Fig. 2; Table 2). In double-mutant combinations with increased trichome branching mutants, a *blt* mutation severely restricted branching and was essentially epistatic to the increased branching mutant in each case (Fig. 3; Table 3). Thus, *BLT* function is essential for branching, and, when overexpressed in wild type, *BLT* is sufficient to promote branch initiation, properties that are expected of a major regulator of branch initiation. These results significantly strengthen the evidence indicating that *BLT* plays a key role in trichome branch initiation.

Perhaps most significantly, the work presented here indicates that BLT forms a protein complex with STI, another protein directly involved in branch initiation. Four lines of evidence support this conclusion. First, F1 heterozygotes resulting from crosses between *blt* and *sti* show a degree of intergenic noncomplementation for branching, producing significant numbers of two-branched trichomes (trichomes with a single branch point; Fig. 6C), whereas the wild type and either individual mutant

Table 5. Yeast two-hybrid screen for interaction of BLT with STICHEL


			m	M 3AT			
Bait	Prey	0	3	5	10	α -galactosidase †	n
STI-N term	BLT	+	+	+	+	1.7±0.3	6
STI-N term	GFP*	+	_	_	_	0.1±0.1	6
GFP*	BLT	-	_	_	_	0±0	6

A t-test indicated that the α -galactosidase activity resulting from the STI-N term/BLT combination differed significantly from that of the STI-N term/GFP negative control combination (P<1 \times 10⁻⁶).

^{+,} Positive interaction; –, no interaction. 3AT, 3-amino-1,2,4-triazole.

^{*,} Negative control.

[†]Milliunits of α-galactosidase activity ml⁻¹ cell⁻¹. α-galactosidase activity results from expression of the GAL4-responsive *MEL1* reporter present in the AH109 host strain. Six independent colonies of each genotype were assayed for α-galactosidase activity.

Fig. 8. Localization of YFP:BLT in *sti* and of STI:YFP in *blt* by transient expression in biolistically transformed developing trichomes. (A-J) To reduce the total number of bombardments needed, *cpc* mutant plants, which have an increased number of trichomes on leaves, were used as the wild-type control. Preliminary experiments demonstrated that *CPC* and *cpc* plants exhibit an identical apical localization of YFP:BLT and STI:YFP. YFP fluorescence (A-E) and bright-field (F-J) images are shown for each of the developing trichomes. Scale bars: 5 μm.

heterozygote produce predominately three-branched trichomes (trichomes with two branch points) and very few two-branched trichomes (Table 4). Such intergenic non-complementation is often observed between components of a protein complex; examples include yeast (Huffaker et al., 1988) and Drosophila (Hays et al., 1989) α - and β -tubulin, components of a yeast G-protein signaling cascade (Akada et al., 1996), and the trichome cell fate transcription complex in *Arabidopsis* (Larkin et al., 1999). Second, full-length BLT interacted strongly with the N-terminal domain of STI in a yeast two-hybrid assay (Fig. 7A; Table 5), although interaction between BLT and full-length STI was at best weak (our unpublished observations). Third, full-length BLT and full-length STI interact in BiFC assays in living onion epidermal cells (Fig. 7E). Finally, Marks et al. have shown that biologically functional fluorescent protein fusions of both BLT and STI co-localize in developing trichome branch tips (Marks et al., 2009).

Taken together with the gain-of-function and loss-of-function phenotypes of blt and sti, these results make a strong case for a protein complex that contains both BLT and STI functioning as a key polarity determinant in trichome branch initiation. As with BLT, little functional information for the STI protein can be inferred from its protein sequence. STI has sequence similarity to eubacterial DNA polymerase III γ-subunits (Ilgenfritz et al., 2003), but given that sti mutants have no effect on DNA replication and that it appears to be localized in the cytoplasm, at the branch tips, the significance of this similarity is unclear. Nonetheless, the identification of a protein complex involved in branch initiation opens up new avenues to an understanding of cell shape using the trichome model. The primary role of BLT would thus seem to be at the branch initiation sites in a complex with STI. Not only do the proteins interact, but the effects on trichome branch initiation of manipulating BLT or STI function are identical: loss-of-function mutations in either gene virtually eliminate branching, whereas overexpression of either gene results in increased branching. By contrast, only manipulation of BLT function affects endoreplication: BLT overexpression

increases trichome nuclear DNA content (Fig. 4C), whereas *STI* overexpression has no effect on DNA content (Ilgenfritz et al., 2003).

Our data suggest that, in addition to its role in promoting branch formation, BLT functions in a signaling mechanism that originates at the branch tips and maintains homeostasis between the number of branches and nuclear DNA content. Given that blt loss-of-function mutants do not exhibit reduced endoreplication, BLT is presumably not directly necessary for endoreplication, but functions to increase endoreplication to 'catch up' if branching increases faster than DNA content. Excess free BLT that is not localized to branch points does not appear to be the signaling molecule as nuclear BLT has not been detected, and YFP:BLT is not detectably mislocalized in developing sti mutant trichomes (Fig. 8). We also found that, although blt mutations increase cell division in combination with *sim* (Fig. 1C,D; Table 1), *blt sim* mutant trichome initiation sites have the same total DNA content for all nuclei as *sim* trichome initiation sites, indicating again that *blt* loss-of-function has no effect on the number of rounds of DNA replication. Thus, BLT must also have a minor second function in suppressing mitosis in trichomes that is revealed only when the primary mitosis-suppressing function is compromised by a sim mutation.

A candidate nuclear target of such a signaling pathway linking branching and endoreplication is Chromatin assembly factor-1 (CAF-1), which is involved in the replication-dependent deposition of histones H3 and H4 onto DNA (Groth et al., 2007). Mutations in CAF-1 subunits result in trichomes with increased branching but normal endoreplication (Exner et al., 2006). Mutations in *sti* are epistatic to mutations affecting two different CAF-1 subunits, and CAF-1 function is necessary for the extra endoreplication cycles that result from *kak* mutations (Exner et al., 2008). CAF-1 thus resembles BLT in having a primary role in trichome branching and a more cryptic role in endoreplication. Several cell fate transcription factors affect the degree of endoreplication when mutated or overexpressed (Larkin et al., 2007), and these constitute other possible nuclear targets of such a pathway.

The results presented here provide insight into the coordination of cell shape and DNA content in an endoreplicating cell, as well as advancing our understanding of a protein complex that is involved in specifying cell shape. It has previously been speculated that trichome branching mechanisms were derived from the cell division machinery (Schnittger and Hülskamp, 2002). Although our results do not directly support this idea, the work presented here opens new avenues for investigating the relationship between cell shape, cell differentiation and the cell cycle.

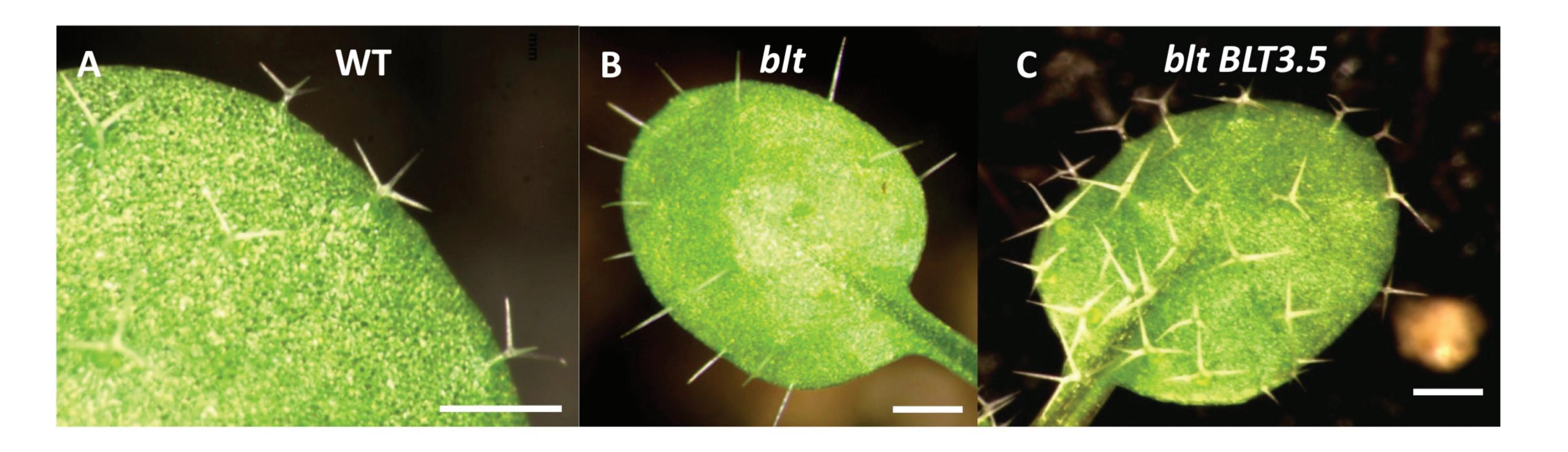
Acknowledgements

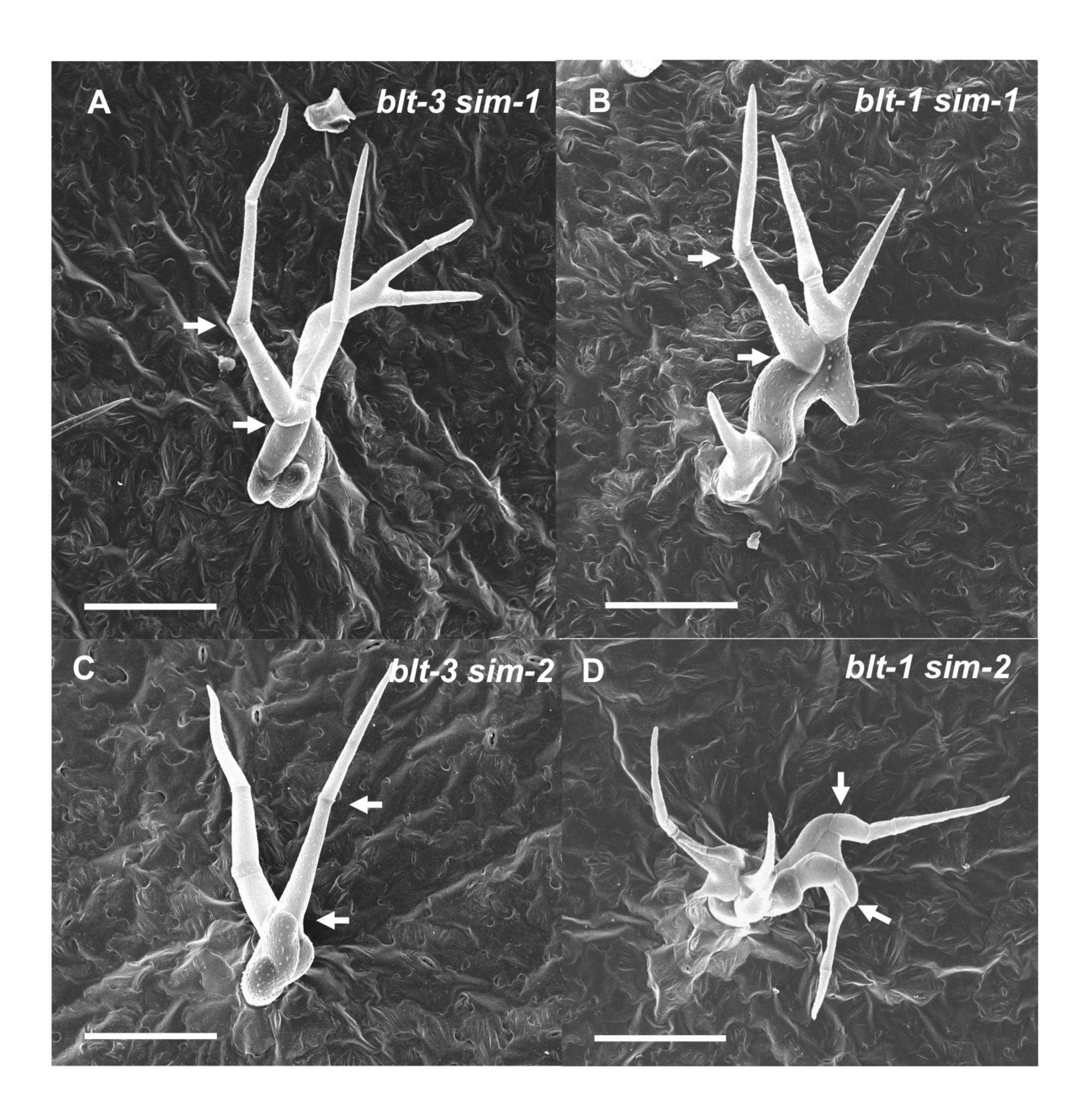
We thank Dr Arp Schnittger and Dr Alan Wolfe and the Advanced Genetics students at Loyola University Health System in Fall 2008 for critical comments and useful discussions; Lieven De Veylder for the flow cytometry data in Fig. 4B; Jean-Marc Bonneville, M. David Marks and Alan Sessions for the gift of seed stocks; and TAIR and the Arabidopsis Biological Resource Center for database information, seeds and DNA stocks. Funding for this work was provided by an NSF grant (IOS 0744566) to J.C.L. and a DFG grant (SPP 1111) to M.H. C.-C.H. was supported by the International Graduate School.

Competing interests statement

The authors declare no competing financial interests.

Supplementary material


Supplementary material for this article is available at http://dev.biologists.org/lookup/suppl/doi:10.1242/dev.058982/-/DC1


References

- Abrash, E. B. and Bergmann, D. C. (2009). Asymmetric cell divisions: a view from plant development. Dev. Cell 16, 783-796.
- Aho, S., Arffman, A., Pummi, T. and Uitto, J. (1997). A novel reporter gene MEL1 for the yeast two-hybrid system. Anal. Biochem. 253, 270-272.
- Akada, R., Kallal, L., Johnson, D. I. and Kurjan, J. (1996). Genetic relationships between the G-protein βγ complex, Ste5p, Ste20p, and Cdc42p: investigation of effector roles in the yeast pheromone response pathway. Genetics 143, 103-117.
- Bouyer, D., Geier, F., Kragler, F., Schnittger, A., Pesch, M., Wester, K., Balkunde, R., Timmer, J., Fleck, C. and Hülskamp, M. (2008). Two-dimensional patterning by a trapping/depletion mechanism: the role of TTG1 and GL3 in Arabidopsis trichome formation. *PLoS Biol.* **6**, e141.
- Castellano, M. M., Boniotti, M. B., Caro, E., Schnittger, A. and Guitierrez, C. (2004). DNA replication licensing affects cell proliferation or endoreplication in a cell type-specific manner. *Plant Cell* 16, 2380-2393.
- Churchman, M. L., Brown, M. L., Kato, N., Kirik, V., Hülskamp, M., Inze, D., De Veylder, L., Walker, J. D., Zheng, Z., Oppenheimer, D. G. et al. (2006).
 SIAMESE, a plant-specific cell cycle regulator, controls endoreplication onset in Arabidopsis thaliana. *Plant Cell* 18, 3145-3157.
- Clough, S. J. and Bent, A. F. (1998). Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16, 735-743.
- Desvoyes, B., Ramirez-Parra, E., Xie, Q., Chua, N. H. and Gutierrez, C. (2006).
 Cell type-specific role of the retinoblastoma/E2F pathway during Arabidopsis leaf development. *Plant Physiol.* 140, 67-80.
- Esch, J. J., Chen, M., Sanders, M., Hillestad, M., Ndkium, S., Idelkope, B., Neizer, J. and Marks, M. D. (2003). A contradictory GLABRA3 allele helps define gene interactions controlling trichome development in Arabidopsis. *Development* 130, 5885-5894
- Exner, V., Taranto, P., Schonrock, N., Gruissem, W. and Hennig, L. (2006). Chromatin assembly factor CAF-1 is required for cellular differentiation during plant development. *Development* 133, 4163-4172.
- Exner, V., Gruissem, W. and Hennig, L. (2008). Control of trichome branching by chromatin assembly factor-1. BMC Plant Biol. 8, 54.
- Folkers, U., Berger, J. and Hülskamp, M. (1997). Cell morphogenesis of trichomes in Arabidopsis: differential control of primary and secondary branching by branch initiation regulators and cell growth. *Development* 124, 3779-3786.
- Groth, A., Rocha, W., Verreault, A. and Almouzni, G. (2007). Chromatin challenges during DNA replication and repair. Cell 128, 721-733.
- Hays, T. S., Deuring, R., Robertson, B., Prout, M. and Fuller, M. T. (1989). Interacting proteins identified by genetic interactions: a missense mutation in alpha-tubulin fails to complement alleles of the testis-specific beta-tubulin gene of Drosophila melanogaster. Mol. Cell. Biol. 9, 875-884.
- Hruz, T., Laule, O., Szabo, G., Wessendorp, F., Bleuler, S., Oertle, L., Widmayer, P., Gruissem, W. and Zimmermann, P. (2008). Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv. Bioinformatics 2008. 420747.
- **Huffaker, T. C., Hoyt, M. A. and Botstein, D.** (1987). Genetic analysis of the yeast cytoskeleton. *Annu. Rev. Genet.* **21**, 259-284.

Huffaker, T. C., Thomas, J. H. and Botstein, D. (1988). Diverse effects of betatubulin mutations on microtubule formation and function. J. Cell Biol. 106, 1997-2010

- **Hülskamp, M., Miséra, S. and Jürgens, G.** (1994). Genetic dissection of trichome cell development in Arabidopsis. *Cell* **76**, 555-566.
- Ilgenfritz, H., Bouyer, D., Schnittger, A., Mathur, J., Kirik, V., Schwab, B., Chua, N. H., Jurgens, G. and Hülskamp, M. (2003). The Arabidopsis STICHEL gene is a regulator of trichome branch number and encodes a novel protein. *Plant Physiol.* 131, 643-655.
- Kasili, R., Walker, J. D., Simmons, L. A., Zhou, J., De Veylder, L. and Larkin, J. C. (2010). SIAMESE cooperates with the CDH1-like protein CCS52A1 to establish endoreplication in Arabidopsis thaliana trichomes. *Genetics* 185, 257-268.
- Kirik, V., Schnittger, A., Radchuk, V., Adler, K., Hülskamp, M. and Baumlein, H. (2001). Ectopic expression of the Arabidopsis AtMYB23 gene induces differentiation of trichome cells. *Dev. Biol.* 235, 366-377.
- Larkin, J., Walker, J., Bolognesi-Winfield, A., Gray, J. and Walker, A. (1999).
 Allele-specific interactions between ttg and gl1 during trichome development in Arabidopsis thaliana. Genetics 151, 1591-1604.
- Larkin, J. C., Brown, M. L. and Churchman, M. L. (2007). Insights into the endocycle from trichome development. In *Cell Cycle Control and Plant Development* (ed. D. Inzé), pp. 249-268. Oxford: Blackwell.
- **Lukowitz, W., Gillmor, C. S. and Scheible, W. R.** (2000). Positional cloning in Arabidopsis. Why it feels good to have a genome initiative working for you. *Plant Physiol.* **123**, 795-805.
- Marks, M. D., Wenger, J. P., Gilding, E., Jilk, R. and Dixon, R. A. (2009).
 Transcriptome analysis of Arabidopsis wild-type and gl3-sst sim trichomes identifies four additional genes required for trichome development. *Mol. Plant* 2, 803-822.
- Melaragno, J., Mehrota, B. and Coleman, A. (1993). Relationship between endoploidy and cell size in epidermal tissue of Arabidopsis. *Plant Cell* 5, 1661-1668.
- Perazza, D., Herzog, M., Hülskamp, M., Brown, S., Dorne, A. M. and Bonneville, J. M. (1999). Trichome cell growth in Arabidopsis thaliana can be derepressed by mutations in at least five genes. *Genetics* 152, 461-476.
- Peres, A., Churchman, M. L., Hariharan, S., Himanen, K., Verkest, A.,
 Vandepoele, K., Magyar, Z., Hatzfeld, Y., Van Der Schueren, E., Beemster, G.
 T. et al. (2007). Novel plant-specific cyclin-dependent kinase inhibitors induced by biotic and abiotic stresses. J. Biol. Chem. 282, 25588-25596.
- Pesch, M. and Hülskamp, M. (2009). One, two, three...models for trichome patterning in Arabidopsis? Curr. Opin. Plant Biol. 12, 587-592.
- **Schellmann, S. and Hülskamp, M.** (2005). Epidermal differentiation: trichomes in Arabidopsis as a model system. *Int. J. Dev. Biol.* **49**, 579-584.
- Schellmann, S., Schnittger, A., Kirik, V., Wada, T., Okada, K., Beermann, A., Thumfahrt, J., Jurgens, G. and Hülskamp, M. (2002). TRIPTYCHON and CAPRICE mediate lateral inhibition during trichome and root hair patterning in Arabidopsis. *EMBO J.* 21, 5036-5046.
- Schnittger, A. and Hülskamp, M. (2002). Trichome morphogenesis: a cell-cycle perspective. *Philos. Trans. R. Soc. Lond. B* 357, 823-826.
- Smith, L. G. and Oppenheimer, D. G. (2005). Spatial control of cell expansion by the plant cytoskeleton. Annu. Rev. Cell Dev. Biol. 21, 271-295.
- Szymanski, D. B. (2009). Plant cells taking shape: new insights into cytoplasmic control. Curr. Opin. Plant Biol. 12, 735-744.
- Szymanski, D. B. and Cosgrove, D. J. (2009). Dynamic coordination of cytoskeletal and cell wall systems during plant cell morphogenesis. *Curr. Biol.* 19, R800-R811.
- Szymanski, D. B., Jilk, R. A., Pollock, S. M. and Marks, M. D. (1998). Control of GL2 expression in Arabidopsis leaves and trichomes. Development 125, 1161-1171.
- Uhrig, J. F., Mutondo, M., Zimmermann, I., Deeks, M. J., Machesky, L. M., Thomas, P., Uhrig, S., Rambke, C., Hussey, P. J. and Hülskamp, M. (2007). The role of Arabidopsis SCAR genes in ARP2-ARP3-dependent cell morphogenesis. Development 134, 967-977.
- Verkest, A., Manes, C. L., Vercruysse, S., Maes, S., Van Der Schueren, E., Beeckman, T., Genschik, P., Kuiper, M., Inze, D. and De Veylder, L. (2005a). The cyclin-dependent kinase inhibitor KRP2 controls the onset of the endoreduplication cycle during Arabidopsis leaf development through inhibition of mitotic CDKA;1 kinase complexes. Plant Cell 17, 1723-1736.
- Verkest, A., Weinl, C., Inze, D., De Veylder, L. and Schnittger, A. (2005b). Switching the cell cycle. Kip-related proteins in plant cell cycle control. *Plant Physiol.* **139**, 1099-1106.
- Vlieghe, K., Inzé, D. and De Veylder, L. (2007). Physiological relevance and molecular control of the endocycle in plants. In Cell Cycle Control and Plant Development (ed. D. Inzé), pp. 227-248. Oxford: Blackwell.
- Walker, J. D., Oppenheimer, D. G., Concienne, J. and Larkin, J. C. (2000).
 SIAMESE, a gene controlling the endoreduplication cell cycle in Arabidopsis thaliana trichomes. *Development* 127, 3931-3940.
- Weigel, D. and Glazebrook, J. (2002). Arabidopsis: A Laboratory Manual. Woodbury, NY: Cold Spring Harbor Laboratory Press.
- Weinl, C., Marquardt, S., Kuijt, S. J., Nowack, M. K., Jakoby, M. J., Hülskamp, M. and Schnittger, A. (2005). Novel functions of plant cyclin-dependent kinase inhibitors, ICK1/KRP1, can act non-cell-autonomously and inhibit entry into mitosis. Plant Cell 17, 1704-1722.
- Yang, Z. (2008). Cell polarity signaling in Arabidopsis. Annu. Rev. Cell Dev. Biol. 24, 551-575.

Supplemental data file: CLUSTAL W (1.8) multiple sequence alignment of 24 BLT-related predicted protein sequences.

A-thaliana-BLT A-lyrata-BLT R-communis-BLT S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660 A-lyrata-2 At5g22310 A-lyrata-3 A-lyrata-4 At3g11590 P-trichocarpa-3 P-trichocarpa-4	MKVTGKPYSTATLPAFES-DKNLFSHGPDLRAIQRATTVTKRRARNPS-L MKVTGKPYSTATLPAFES-DKNLFSHGPDLRAIQRATTVTKRRARNPS-L MEQRKKGCKIRKRGGSSSSS-SSLARR-NRFKRAIFAGKR ME-RKRGCKIRKRGGSSSSS-SSLARR-NRFKRAIFAGKR MPRQNQS-VENLLLLGKIRKRGCSSPTSSTSSILREGYRFKRAIVVGKR MPRQNQS-VENLLLLGKIRKRGCSSPTSSTSSILREGYRFKRAIVVGKR MEAKSREQQQCKIRKRGNSSSS-SSLVKK-YRFKRAILVGKR MPRQKGS-ATMEELLPGKIRKRVCSSSASSSSSIIQN-YRFKRAILVGKR
At3g20350	MKFTGKSNLTATLPATVPNIRDIHRRRARKPS-F
P-trichocarpa-2	
R-communis-2	MKITGRPHSTPTFPGNTITCSR-APQNPQPHPDLKPHHRLRKTARTPV
R-communis-3	MESKSREHCKIRKRGNSSSSS-SSIVQR-YRFKRAILVGKR
R-communis-4 S-bicolor-2	MPRQNQSRASVEELLPGKIRKRGCSSSASSSSSIIQN-YRFKRAILVGNR MSSRNRSAAAASCAAPAAAPSLRTPRRLKRRPVKSP
S-bicolor-3	MARPRRSSPVAMTRSPARAHGRAAATP-RQASPSS-
S-bicolor-4	MPRWDSEDGGAADEAAAAVAVRLANKIRKRRAVSSS
V-vinifera-2	MKITATTELPTTIPAILSSRARNASPDSDLISKRSSRKPPRRKARTPAGG
V-vinifera-3	MPRQNHGIQGLIPGKIRKRGCSSSSS-TSSVLQK-YRFKRAILVGKR
A-thaliana-BLT A-lyrata-BLT	
R-communis-BLT	
S-bicolor-BLT	
S-bicolor-BLT P-trichocarpa-BLT	
S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT	
S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660	TRQRRSGPSGGRRSRPETPLLKWKVEDRNKERSGVVEDDDYEDDNH
S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660 A-lyrata-2	${\tt TRQRRSVASGGRRSRPETPLLKWKVEDRNKERSGVVEDDDYEDVGCSNNN}$
S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660 A-lyrata-2 At5g22310	TRQRRSVASGGRRSRPETPLLKWKVEDRNKERSGVVEDDDYEDVGCSNNN AAQDDGGSGTPVKSITAAKTPVLLSFSPENLPIDHHQL
S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660 A-lyrata-2 At5g22310 A-lyrata-3	TRQRRSVASGGRRSRPETPLLKWKVEDRNKERSGVVEDDDYEDVGCSNNN AAQDDGGSGTPVKSITAAKTPVLLSFSPENLPIDHHQL VAQDDGGGGGGGGTPVKSITAAKTPVLLSFSPENLPIDHHQL
S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660 A-lyrata-2 At5g22310 A-lyrata-3 A-lyrata-4	TRQRRSVASGGRRSRPETPLLKWKVEDRNKERSGVVEDDDYEDVGCSNNN AAQDDGGSGTPVKSITAAKTPVLLSFSPENLPIDHHQL VAQDDGGGGGGGTPVKSITAAKTPVLLSFSPENLPIDHHQL GGSTTPVPTWRLMGRSPSPRASGALHAAS-PSSHCGSKTGKVS
S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660 A-lyrata-2 At5g22310 A-lyrata-3 A-lyrata-4 At3g11590	TRQRRSVASGGRRSRPETPLLKWKVEDRNKERSGVVEDDDYEDVGCSNNN AAQDDGGSGTPVKSITAAKTPVLLSFSPENLPIDHHQL VAQDDGGGGGGSGTPVKSITAAKTPVLLSFSPENLPIDHHQL GGSTTPVPTWRLMGRSPSPRASGALHAAS-PSSHCGSKTGKVS GGSTTPVPTWRLMGRSPSPRASGALHAAASPSSHCGSKTGKVS
S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660 A-lyrata-2 At5g22310 A-lyrata-3 A-lyrata-4 At3g11590 P-trichocarpa-3	TRQRRSVASGGRRSRPETPLLKWKVEDRNKERSGVVEDDDYEDVGCSNNN AAQDDGGSGTPVKSITAAKTPVLLSFSPENLPIDHHQL VAQDDGGGGGGSGTPVKSITAAKTPVLLSFSPENLPIDHHQL GGSTTPVPTWRLMGRSPSPRASGALHAAS-PSSHCGSKTGKVS GGSTTPVPTWRLMGRSPSPRASGALHAAASPSSHCGSKTGKVS GGSSTPVPIWMTSSKSPTL-AEPNAESTKCTPHQNGSKA
S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660 A-lyrata-2 At5g22310 A-lyrata-3 A-lyrata-4 At3g11590	TRQRRSVASGGRRSRPETPLLKWKVEDRNKERSGVVEDDDYEDVGCSNNN AAQDDGGSGTPVKSITAAKTPVLLSFSPENLPIDHHQL VAQDDGGGGGGGTPVKSITAAKTPVLLSFSPENLPIDHHQL GGSTTPVPTWRLMGRSPSPRASGALHAAS-PSSHCGSKTGKVS GGSTTPVPTWRLMGRSPSPRASGALHAAASPSSHCGSKTGKVS GGSSTPVPIWMTSSKSPTL-AEPNAESTKCTPHQNGSKA GGSSTPVPTWKLMG-KRTPSS-TLRALESSPKSLNGKAKQ
S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660 A-lyrata-2 At5g22310 A-lyrata-3 A-lyrata-4 At3g11590 P-trichocarpa-3 P-trichocarpa-4	TRQRRSVASGGRRSRPETPLLKWKVEDRNKERSGVVEDDDYEDVGCSNNN AAQDDGGSGTPVKSITAAKTPVLLSFSPENLPIDHHQL VAQDDGGGGGGSGTPVKSITAAKTPVLLSFSPENLPIDHHQL GGSTTPVPTWRLMGRSPSPRASGALHAAS-PSSHCGSKTGKVS GGSTTPVPTWRLMGRSPSPRASGALHAAASPSSHCGSKTGKVS GGSSTPVPIWMTSSKSPTL-AEPNAESTKCTPHQNGSKA
S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660 A-lyrata-2 At5g22310 A-lyrata-3 A-lyrata-4 At3g11590 P-trichocarpa-3 P-trichocarpa-4 At3g20350	TRQRRSVASGGRRSRPETPLLKWKVEDRNKERSGVVEDDDYEDVGCSNNN AAQDDGGSGTPVKSITAAKTPVLLSFSPENLPIDHHQL VAQDDGGGGGGGTPVKSITAAKTPVLLSFSPENLPIDHHQL GGSTTPVPTWRLMGRSPSPRASGALHAAS-PSSHCGSKTGKVS GGSTTPVPTWRLMGRSPSPRASGALHAAASPSSHCGSKTGKVS GGSSTPVPIWMTSSKSPTL-AEPNAESTKCTPHQNGSKA GGSSTPVPTWKLMG-KRTPSS-TLRALESSPKSLNGKAKQ
S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660 A-lyrata-2 At5g22310 A-lyrata-3 A-lyrata-4 At3g11590 P-trichocarpa-3 P-trichocarpa-4 At3g20350 P-trichocarpa-2	TRQRRSVASGGRRSRPETPLLKWKVEDRNKERSGVVEDDDYEDVGCSNNN AAQDDGGSGTPVKSITAAKTPVLLSFSPENLPIDHHQL VAQDDGGGGGGGGTPVKSITAAKTPVLLSFSPENLPIDHHQL GGSTTPVPTWRLMGRSPSPRASGALHAAS-PSSHCGSKTGKVS GGSTTPVPTWRLMGRSPSPRASGALHAAS-PSSHCGSKTGKVS GGSSTPVPIWMTSSKSPTL-AEPNAESTKCTPHQNGSKA GGSSTPVPTWKLMG-KRTPSS-TLRALESSPKSLNGKAKQ TRQRRSGVSVRRLSRPETPQLKSKVEDQNIERCGGVEDGDNEDDRRRRSRSRTRTRPDTPFLKWKIDNNNNNNDKGVQVHRHDDDDDGDV GGSTTPVPTWKTSTKSPTL-SMPNAESTKCPPSQSGGKT
S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660 A-lyrata-2 At5g22310 A-lyrata-3 A-lyrata-4 At3g11590 P-trichocarpa-3 P-trichocarpa-4 At3g20350 P-trichocarpa-2 R-communis-2 R-communis-3 R-communis-4	TRQRRSVASGGRRSRPETPLLKWKVEDRNKERSGVVEDDDYEDVGCSNNN AAQDDGGSGTPVKSITAAKTPVLLSFSPENLPIDHHQL VAQDDGGGGGGSGTPVKSITAAKTPVLLSFSPENLPIDHHQL GGSTTPVPTWRLMGRSPSPRASGALHAAS-PSSHCGSKTGKVS GGSTTPVPTWRLMGRSPSPRASGALHAAS-PSSHCGSKTGKVS GGSSTPVPIWMTSSKSPTL-AEPNAESTKCTPHQNGSKA GGSSTPVPTWKLMG-KRTPSS-TLRALESSPKSLNGKAKQ TRQRRSGVSVRRLSRPETPQLKSKVEDQNIERCGGVEDGDNEDD
S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660 A-lyrata-2 At5g22310 A-lyrata-3 A-lyrata-4 At3g11590 P-trichocarpa-3 P-trichocarpa-4 At3g20350 P-trichocarpa-2 R-communis-2 R-communis-3 R-communis-4 S-bicolor-2	TRQRRSVASGGRRSRPETPLLKWKVEDRNKERSGVVEDDDYEDVGCSNNN AAQDDGGSGTPVKSITAAKTPVLLSFSPENLPIDHHQL VAQDDGGGGGGGGTPVKSITAAKTPVLLSFSPENLPIDHHQL GGSTTPVPTWRLMGRSPSPRASGALHAAS-PSSHCGSKTGKVS GGSTTPVPTWRLMGRSPSPRASGALHAAASPSSHCGSKTGKVS GGSSTPVPIWMTSSKSPTL-AEPNAESTKCTPHQNGSKA GGSSTPVPTWKLMG-KRTPSS-TLRALESSPKSLNGKAKQ TRQRRSGVSVRRLSRPETPQLKSKVEDQNIERCGGVEDGDNEDDRRRSRSRTRTRPDTPFLKWKIDNNNNNNDKGVQVHRHDDDDDGDV GGSTTPVPTWKTSTKSPTL-SMPNAESTKCPPSQSGGKT GGSTTPVPTWRLMGTTRTPSS-ALRARDSPKYAASQNGGIVKGKLMLQQQAGAPGGGRRSGPATPLLKWDVGGGGRGEGRKGAGAADEA
S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660 A-lyrata-2 At5g22310 A-lyrata-3 A-lyrata-4 At3g11590 P-trichocarpa-3 P-trichocarpa-4 At3g20350 P-trichocarpa-2 R-communis-2 R-communis-3 R-communis-4 S-bicolor-2 S-bicolor-3	TRQRRSVASGGRRSRPETPLLKWKVEDRNKERSGVVEDDDYEDVGCSNNN AAQDDGGSGTPVKSITAAKTPVLLSFSPENLPIDHHQL VAQDDGGGGGGGGTPVKSITAAKTPVLLSFSPENLPIDHHQL GGSTTPVPTWRLMGRSPSPRASGALHAAS-PSSHCGSKTGKVS GGSTTPVPTWRLMGRSPSPRASGALHAAASPSSHCGSKTGKVS GGSSTPVPIWMTSSKSPTL-AEPNAESTKCTPHQNGSKA GGSSTPVPIWKLMG-KRTPSS-TLRALESSPKSLNGKAKQ TRQRRSGVSVRRLSRPETPQLKSKVEDQNIERCGGVEDGDNEDDRRRSRSRTRTRPDTPFLKWKIDNNNNNNDKGVQVHRHDDDDGDV GGSTTPVPTWKTSTKSPTL-SMPNAESTKCPPSQSGGKT GGSTTPVPTWRLMGTTRTPSS-ALRARDSPKYAASQNGGIVKGKLMLQQQAGAPGGGRRSGPATPLLKWDVGGGGRGEGRKGAGAADEARHPRRGRRLLRVQSPSLASSSARRAPAPAPAHAPPPATPP
S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660 A-lyrata-2 At5g22310 A-lyrata-3 A-lyrata-4 At3g11590 P-trichocarpa-3 P-trichocarpa-4 At3g20350 P-trichocarpa-2 R-communis-2 R-communis-2 R-communis-3 R-communis-4 S-bicolor-2 S-bicolor-3 S-bicolor-4	TRQRRSVASGRRSRPETPLLKWKVEDRNKERSGVVEDDDYEDVGCSNNN AAQDDGGSGTPVKSITAAKTPVLLSFSPENLPIDHHQL VAQDDGGGGGGGGTPVKSITAAKTPVLLSFSPENLPIDHHQL GGSTTPVPTWRLMGRSPSPRASGALHAAS-PSSHCGSKTGKVS GGSTTPVPTWRLMGRSPSPRASGALHAAASPSSHCGSKTGKVS GGSTTPVPTWRLMGRSPSPRASGALHAAASPSSHCGSKTGKVS GGSSTPVPIWMTSSKSPTL-AEPNAESTKCTPHQNGSKA GGSSTPVPTWKLMG-KRTPSS-TLRALESSPKSLNGKAKQ TRQRRSGVSVRRLSRPETPQLKSKVEDQNIERCGGVEDGDNEDDRRRSRSRTRTRPDTPFLKWKIDNNNNNNDKGVQVHRHDDDDGDV GGSTTPVPTWKTSTKSPTL-SMPNAESTKCPPSQSGGKT GGSTTPVPTWRLMGTTRTPSS-ALRARDSPKYAASQNGGIVKGKLMLQQQAGAPGGGRRSGPATPLLKWDVGGGGRGEGRKGAGAADEARHPRRGRRLLRVQSPSLASSSARRAPAPAPAHAPPPATPP GGSDPAAGRRLRSRRPAVLLPRRTTSAGGDMSESSRSR
S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660 A-lyrata-2 At5g22310 A-lyrata-3 A-lyrata-4 At3g11590 P-trichocarpa-3 P-trichocarpa-4 At3g20350 P-trichocarpa-2 R-communis-2 R-communis-3 R-communis-4 S-bicolor-2 S-bicolor-3	TRQRRSVASGGRRSRPETPLLKWKVEDRNKERSGVVEDDDYEDVGCSNNN AAQDDGGSGTPVKSITAAKTPVLLSFSPENLPIDHHQL VAQDDGGGGGGGGTPVKSITAAKTPVLLSFSPENLPIDHHQL GGSTTPVPTWRLMGRSPSPRASGALHAAS-PSSHCGSKTGKVS GGSTTPVPTWRLMGRSPSPRASGALHAAASPSSHCGSKTGKVS GGSSTPVPIWMTSSKSPTL-AEPNAESTKCTPHQNGSKA GGSSTPVPTWKLMG-KRTPSS-TLRALESSPKSLNGKAKQ TRQRRSGVSVRRLSRPETPQLKSKVEDQNIERCGGVEDGDNEDDRRRSRSRTRTRPDTPFLKWKIDNNNNNNDKGVQVHRHDDDDGDV GGSTTPVPTWKTSTKSPTL-SMPNAESTKCPPSQSGGKT GGSTTPVPTWRLMGTTRTPSS-ALRARDSPKYAASQNGGIVKGKLMLQQQAGAPGGGRRSGPATPLLKWDVGGGGRGEGRKGAGAADEARHPRRGRRLLRVQSPSLASSSARRAPAPAPAHAPPPATPP

A-thaliana-BLT A-lyrata-BLT R-communis-BLT S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660 A-lyrata-2 At5g22310 A-lyrata-3 A-lyrata-4 At3g11590 P-trichocarpa-3 P-trichocarpa-4 At3g20350 P-trichocarpa-2 R-communis-2 R-communis-2 R-communis-3 R-communis-4 S-bicolor-2 S-bicolor-3 S-bicolor-4 V-vinifera-2 V-vinifera-3	QVARSETTRRKDR-RKIARPVSVRKLAAGLWRLQVPDASSSGG QVARSETTRRKDR-RKISRPVSVRKLAAGLWRLQVPDASSSGG QKSCVSARKLAATLWEINDDADPPVNSDKDCLRSKKPSRYRAKKST QKSSVSARKLAATLWEINDDADPPVDSNKDCLRSKKPSRHRSKKST APAPVSARKLAATLWEINDDADPPVDSNKDCLRSKKPSRHRSKKST APAPVSARKLAATLWEMNEMPSPRVVEAAVPMIRKSRKERIAPLPP-PRS APAPVSARKLAATLWEMNEMPSPRVVEEAAPMIRKSRKERIAPLPP-PRS KEVSVSARKLAATLWEINGIPSPRVKKDLEDKNEVRSREK QQAPVSARKLAATLWEMNEMPSPQMKEEI-VEERRLRKEGRGRERRDCNKMRCQER-SRSVRPDTVRKLAAGVWRLRVPDAVSSGG VEEKLDSGGRKGRRFFSSRAVSARKLAAGLWRLQLP-ETVVSAGHG KEASVSARKLAATLWEINKIPSPKNLELAGDTKELRSGEK QAAPVSARKLAATLWEINKIPSPKNLELAGDTKELRSGEK QAAPVSARKLAATLWELNEMPSPKMKEVVGSEERRLRREGKGRERAGAARGDAARAR-ETKAREVSVRRLAAGVWRLRPPEAVAGGG
A-thaliana-BLT A-lyrata-BLT R-communis-BLT S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660 A-lyrata-2 At5g22310 A-lyrata-3 A-lyrata-4 At3g11590 P-trichocarpa-3 P-trichocarpa-4 At3g20350 P-trichocarpa-2 R-communis-2 R-communis-3 R-communis-4 S-bicolor-2 S-bicolor-3 S-bicolor-4 V-vinifera-2 V-vinifera-3	ERKGKEGLGFQGNGGYMGVPYLYHHSDKPSGGQSNKIRQNERKGKDGLGFQGAGYMGVPYLYHHSDKPSGGQSNKIRQN EFSSIDFPPRSSDPISRLSSERIDLCDDMIRRRSTNPQKLNPIEYKI- EFSSIDFPPKSSDPISRLTSERIDLREDLVRRPGNHQKLHLIEHKT- SVHSGSLPPHLSDPSHSPVSERMERSGTGSRQRRASSTVQKLRLGDCNVG SVHSGSLPPHLSDPSHSPVSERMERSGTGSRQRRASSTVQKLRLGDCNVGVARLPHLSDPSYTPFSERMERSRGHSHRRRTSVVTKTLQLTDYHLG PVHSGSLPPHLSDPSHSPVSERIDRSGTGSCHRRTSSISQKLRLMDQSIGDKRSKDRLRFQETAGPAGNLGPLFYYHHHDDKHSGFQSNNSRNKERRRSRDRLGFQPGAGHADISFLPYHSGKTNGFEVKDPLQSVARFPHLSDPSYTPISEKMDRSGTGS-RRSSSISQRLRLTDYNVGGESRVRVGVEHIPRHLQVQLLKQNTSGHHQSLKNEVSS
A-thaliana-BLT A-lyrata-BLT R-communis-BLT S-bicolor-BLT	MKDMKMQSSPETMMTRIPTPDPHSTGVREDAMDSVCKPWKLYEMKDMKMQSSSETMMTRIPTPDPHNTGVREDAMDTVCKPWKLYEMEEVKVMMMINGVENTRNESFPLEPITTTTCPTWKLYE

P-trichocarpa-BLT	MEEVKVMMMSS-LHHSMNESSPODPITTTTCTSWKLYE
V-vinifera-BLT	MEKMMMMMIRS-PENPSNETISEEPITATTCPSWKLYE
At1G50660	PSTIATTKNGFLCKLEPSMPFPHSAMEGATKWDPVCLDTMEEVHQ
A-lyrata-2	PSTIATTKNGFLCKLEPSMPFPHSAMEGATKWDPVCLDTMDEVHQ
At5g22310	IGANSVKTRFKNVSDGLTTSKELVKVL
A-lyrata-3	IVTNSLKTRLKNVSEGLTTSKELVKVL
A-lyrata-4	ARDPISNGSFMDIETRSRVETPTGSTVGVKTRLKDCSNALTTSKELLKII
At3q11590	ARDPINSGSFMDIETRSRVETPTGSTVGVKTRLKDCSNALTTSKELLKII
P-trichocarpa-3	GLDSVGNSSLMEIESHPKGRSRTIGIKTCLKDVSNGLTTSKELLKVL
P-trichocarpa-4	AFDSVSNASLMEIETRSQAQTPSGSTVGVKPRLKDVSNALTTSKELLKII
At3q20350	HSRFLCKHEPSVPFPHCAMEGATKWDPICLDTRDDVHQ
P-trichocarpa-2	MEGATKWNPVCLERSDELQQ
R-communis-2	PSSVSDMKNRFFCKVEPSFQFSNTAMEGATKWDPVCLETIDEVRQ
R-communis-3	DSVDNASFMEMETHTKGKNRRECNLGIRTRLKDVSNGLTASKELLKVL
R-communis-4	AFDAISNASLLEIETSSRAQTPSGSTVGAKTRLKDVSNALTTSKELLKII
S-bicolor-2	PISVLERKSGELHKVQLHATSAMLPVTTMEKATKWEPGDIKGMESHDAYL
S-bicolor-3	RTGTKPLGNAIIREVGPYSPSPRIEMEVATKWDRPCLNTSGGADYDF
S-bicolor-4	SADMMSTGSAMEIGTFSQDDVSRCPDKTVNLQDLQNSLIASKELVKVL
V-vinifera-2	PHSMHHHKSGFLCRLEPSFQFSNSAMEGATKWNPVCSKTSDEVRQ
V-vinifera-3	VMDSFSSASLMEIEIRSRGQTPSGSTVGVRTRLKDVSNALTTSKELLKII
A-thaliana-BLT	NPYYCSSQSQQHQHQR
A-lyrata-BLT	NPYYCSSLSQQHQHQR

A-thaliana-BLT	NPYYCSSQSQQHQHQR
A-lyrata-BLT	NPYYCSSLSQQHQHQR
R-communis-BLT	NPFYNSHNTKQHQHLQHSQTNKHLPLSARK
S-bicolor-BLT	NPHYAPHDNTHLSSCCSPSASCQARNRRDPEPPMIIAPDDYEEVEE
P-trichocarpa-BLT	NPFYNSQHNIQHQHQQHCQSNKHLHHLPLSARK
V-vinifera-BLT	NPFYYSQHQQQQQQQQHHHYHHRHHQHQQQKQTRNKHHHRLQLPLSARK
At1G50660	IYSNMKRIDQQVNAVSLVSSLEAELEEAHARIEDLESEKRSHKKK
A-lyrata-2	IYSNMKRIDQQVNAVSLVSSLEAELEEAHARIEDLESEKRSHKKK
At5g22310	KRIGELGDDHKTASNRLISALLCELDRARSSLKHLMSELDEE
A-lyrata-3	KRIGELGDDHKTASNRLISALLCELDRARSSLKHLTSEFDAE
A-lyrata-4	NRMWGQ-DDRPSSSMSLVSALHSELERARLQVNQLIHEHKPENND
At3g11590	NRMWGQ-DDRPSSSMSLVSALHSELERARLQVNQLIHEHKPENND
P-trichocarpa-3	NHVCGL-EEKHSSGLSLVSALRIELDRACISVNQLIREQRSNRSE
P-trichocarpa-4	NRVWGN-EDRPSSSLSLISALHAELERARLQVNHFIQEQCSDQNE
At3g20350	IYTNVKWNNQQVNDVSLASSIELKLQEARACIKDLESEKRSQKKK
P-trichocarpa-2	SHSQLKCLDQQVSAVSVVSALEAELEQARARIQELEIERQSSKKK
R-communis-2	IYSQMKRLDHQVSAVSMVSALEAELEQARARIQELEAERRTSKKK
R-communis-3	NRIWGL-DEQHSSTMALVSALRVELDRARVQVDRVIKDQQSNRNE
R-communis-4	NRVWGN-EDRPSSSMSLISALHAELERARLQVNHLIQEQRSDQNE
S-bicolor-2	IASQLNLLNEQQ-DTAYVANLQMELQQARDRISELETERRSAKKK
S-bicolor-3	CDRHAAAADGEISALKEELMQAHNRIHELEAESRSAKKK
S-bicolor-4	AHIWGP-GELNPSSVSLISALRSELDVARSHVRKLIKEQKSDSYE
V-vinifera-2	LYGQMKQFDQQVSAVSVVSALEAELAQARARIDELEAERRSSKKK
V-vinifera-3	SRIWGH-EDOPSSSMSLISALHAELERARLHINOLIOEORSDOSE

A-thaliana-BLT
A-lyrata-BLT
R-communis-BLT
S-bicolor-BLT
P-trichocarpa-BLT
V-vinifera-BLT
At1G50660
A-lyrata-2

-KAFIWDLNFIKVFMES-ELGKAQDEIKELKAELDYERKARRAELMIKK
-KAFIWDLNFIKIFMES-ELGKAQDEIQELKAELDYERKARRAELMNKR
IAASFWDLTFLRPIMET-ELDFARAQIIELKAELEYERKARKKGETMNKR
VDDQGYGYGYGYGAMSS-ELELCVARIRDLRAELEFERRMRRKAEALSEA
IAASFWDLTFFRPIMDT-ELDFARAQILDLKAELEYERKARKKLETMSKR
IAASFWDLTFFRPIMDS-ELDIARAQIIELKAELEFERKARKKVESMNKR
LEQFLRKVSEERAAWRSREHEKVRAIIDDMKTDMNREKKTRQRLEIVNHK
LEQFLRKVSEERAAWRSREHEKVRAIIDDMKTDMNREKKTRQRLEIVNHK

At5g22310 -----EEEK-----RRLIESLQEEAMVERKLRRRTEKMNRR -----DEEK-----RRLIERLQEEAVVERKLRQRTEKMNRR A-lyrata-3 A-lyrata-4 ISYLMKRFAEEKAAWKSNEQEVVEAAIESVAGELEVERKLRRRFESLNKK At3q11590 ISYLMKRFAEEKAVWKSNEQEVVEAAIESVAGELEVERKLRRRFESLNKK P-trichocarpa-3 IEYLVKHFEEEKAAWKSKERDRIRSAIACIAEELEIERKLRROTERLNKK P-trichocarpa-4 INYLMKCFAEEKAAWKNKEQKVVEAAIESIAGELDVEKKLRRRFESLNKK At3g20350 LEQFLKKVSEERAAWRSREHEKVRAIIDDMKADMNQEKKTRQRLEIVNSK P-trichocarpa-2 **VEHFLKKVSEERAAWRSREHEKIRASFSDIKADLSHERKNRRSLEIVNSK** R-communis-2 MEHFLKKVSEERVAWRSREHEKIRAFIDDIKGDLSRERKNRQRLEIVNSK R-communis-3 IEYLVKHFEEEKAAWKGKERDRIRNAIACVSEELEVEKKLRRQTERLNKK R-communis-4 INYLLKCFAEEKASWKNKEOKVVEAAIESIAGELEVEKKLRRRFESLNKK S-bicolor-2 LDHLFKKLAEEKAAWRNREHEKVRAILEDMKADLDHEKKNRRRLEMINLK S-bicolor-3 LDHLVKNLAEEKASWRSREHDKVRSILDAVKGDLNRERKNRQRAEVMNSK S-bicolor-4 IEGLKKQLTEEMESWKVKQKEKVANALQFIVSELDTEKKSRKRAEKTNKK V-vinifera-2 LEHFLKKVSEERASWRRREHEKIRAIIDDVKTDLNRERKNRQRIELINSK V-vinifera-3 INYLMKCFAEEKAAWKSKEOOVIEAAIESIAGELEVERKLRRRFESLNKK

A-thaliana-BLT A-lyrata-BLT R-communis-BLT S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660 A-lyrata-2 At5q22310 A-lyrata-3 A-lyrata-4 At3q11590 P-trichocarpa-3 P-trichocarpa-4 At3q20350 P-trichocarpa-2 R-communis-2 R-communis-3 R-communis-4 S-bicolor-2 S-bicolor-3 S-bicolor-4 V-vinifera-2

LAKDVEE-----ERMAREAEEMQNKRLFKELSSEKSEMVRM LAKDVEE-----ERMARVAEEMQNKRLFKELSSEKSEMVRM LAKELAE----ERRGREALERVCEQLAKEISFDKAEIDRM LAAELAD-----ERRRGEAECR-----ALREEAERA LAKELAE----ERRGREALARVCEELAREISCDKEEIDHM LAKDLNE-----ERRGREAMERVCEVLAKEISSDKAEISWM LVNELADSKLAVKRYMODYEKERKARELIEEVCDELAKEIGEDKAEIEAL LVNELADSKLAVKRYMQDYEKERKARELIEEVCDELAKEIGEDKAEIEAL LGRELTEAKETERKMKEEMKREKRAKDVLEEVCDELTKGIGDDK-----LGRELAEAKETERKMKEEMEREKRAKDVLEEVCDELAKGIGDDK-----LGKELAETKSALMKAVKEIENEKRARVMVEKVCDELARDISEDKAEVEEL LGKELAETKSALMKAVKEIENEKRARVMVEKVCDELARDISEDKAEVEEL LGKELADTKESLSKAMKELETEKRAKEILEOVCDELARGIGDDRAEVEEM LGKELAETKASLLKAVKELESEKRARVVMOKVCDELARDIGDDKAEVEEL LVNELADSKLAVKRYMHDYOOERKARELIEEVCDELAKEIEEDKAEIEAL LVNDLANAKVSAKRYMQDCEKERKARELIEEVCDELAKEIGEDKAEVEAL LVNELADAKVSAKRFMODYEKERKARELIEEVCDELAKEIGODKAEVEAF LGLELADTKASLSOALKELESEKRAKEILEOVCDELARGIGODRAEVEEL LGKELAETKTSLMKAVKELENEKRTRVVMEOVCDELARDVDEDKAEVEEL LVNELKEAKMSAKOLLOEYDTERKARELTEEVCNELAREVEEDKAEIEAL $\verb|LMDEFSELKSLAKRYLQDYEKERKARELMEEVCDELAKEIADDKAEVEAL|$ LSIALANTEASLOAVTKELDRERKSKGRVEKICNELIRGIDEDKAEVOAL LVNELSDVKLSAKRFMQDYEKERKDREVLEEVCDELAKEIGDDKAEAESL LGRELAETKTSLIKAVKELECEKRAREIMEQVCDELTQDVGEDKDEVEEI

A-thaliana-BLT
A-lyrata-BLT
R-communis-BLT
S-bicolor-BLT
P-trichocarpa-BLT
V-vinifera-BLT
At1G50660
A-lyrata-2
At5g22310
A-lyrata-3
A-lyrata-4
At3g11590

V-vinifera-3

KR-----DLEEERQMHRLAEVLREERVQMKLMDARLFLEEKLSELEEA
KR-----DLEEERQMHRLAEVLREERVQMKLMDARLFLEEKLSELEEA
KR-----EIEEERRMLRMAEVLREERVQMKLAEAKILFEEKLLELRGT
LE-----GVEEERRMLRVAELWREERVQMKLADARAAVEEKLREIDDA
KR-----EIEEERKMLRMAEVLREERVQMKLAEARMLFEEKLLELGGT
KR-----EIEEERKMLRMAEVLREERVQMKLADAKFLLEEKLLELE-V
KRESMSLREEVDDERRMLQMAEVWREERVQMKLIDAKVALEERYSQMNKL
KRESMSLREEVDDERRMLQMAEVWREERVQMKLIDAKVALEERYSQMNKL
-----KEMEKEREMMHIADVLREERVQMKLTEAKFEFEDKYAAVERL
-----KEMEKEREMMHIADVLREERVQMKLTEAKFEFEDKCAAVERL
KRESFKVKEEVEKEREMLQLADALREERVQMKLSEAKHQLEEKNATVDKL

KKESAKVRDEVEKEREMLQLADVLREERVQMKLSEAKYHFEEKNAAVERL P-trichocarpa-3 KRESAKLCEEVEKEREMMQLADVLREERVHMKLSEAKYQLEEKNAAVDKL P-trichocarpa-4 At3q20350 KSESMNLREEVDDERRMLQMAEVWREERVQMKLIDAKVTLEEKYSQMNKL P-trichocarpa-2 KRESLKLREEVDEERRMLQMAEVWREERVQMKLVDAKVALEEKYSYMNNL R-communis-2 KRESMKLREEVDEERKMLOMAEVWREERVOMKLVDAKVALEAKYSOMNRL R-communis-3 KRESAKVKEEVEKEREMLQLADVLREERVQMKLSEARYHFEEKNAAVERL R-communis-4 KRESVKLCSEVEKEREMMQLADVLREERVQMKLSEAKYLLEEKNAAVDKL S-bicolor-2 KQDSLRLREEVDEERKMLQMAEVWREERVQMKLVDAKLTLDAKYTQLSKL S-bicolor-3 KKESMKIRDEVEEERKMLQMAEVWREERVQMKLVDAKLTLDSKYSQLSEL S-bicolor-4 KRETEKAQEELQKEREMLQLADEWREQRVQMKLLEARLQFEEKNAAVNQL V-vinifera-2 KRESMKLRDEMEEERKMLQMAEVWREERVQMKLVAAKVALEEKYAQMNKV V-vinifera-3 KRESAKVREEAEKEREILQLADVLREERAQSKISEAKYQFEEKNAVVEKL

A-thaliana-BLT NROGE-----A-lyrata-BLT NRQGE-----R-communis-BLT QHSTEPDESSTLKMEQEQEQEKYKN-----S-bicolor-BLT VAQLHAATTTAAAAAASVSDINK-----P-trichocarpa-BLT TTQTELHHNSASRMEQKYQEDKE-----V-vinifera-BLT TKQTQVERPSS-KMEHKNQEDNG-----At1G50660 VGDLESFLRSRD-IVTDVKEVREAELLRETAASVN-IQEIKEFTYVPANP A-lyrata-2 VGDLESFLRSRD-IVTDVKEVREAELLRETAASVN-IOEIKEFTYEPANP At5q22310 KKELRRVLDGE-----EGKGSS-----EIRRILE-----KVELRRVLDGE-----EGKGSS-----EIRRILE-----A-lyrata-3 A-lyrata-4 RNOLOTYLKAKRCKE---KTREPPOTOLONEETGDYLN--HHIGFGS-YN At3q11590 RNQLQTYLKAKRCKE---KTREPPQTQLHNEEAGDYLN--HHISFGS-YN P-trichocarpa-3 RNELETYLREKVGEK---DGDGSP-NYDRIKELEAYLEEIQFGSCQQAER P-trichocarpa-4 QNQLEAFLGTKRTKE---KGRSSS-NYMNDEEIAAYLSKNRFVSHQSEIN At3q20350 VGDMEAFLSSR--NTTGVKEVRVAELLRETAASVDNIOEIKEFTYEPAKP P-trichocarpa-2 VADLEVFLRSRS-ATQGLKEMKEAESVIQAAASVH-IQDIKEFTYEPPNQ R-communis-2 VADLETFLRSRT-ATPDLKEMREAESLVOAAASVD-FODVKEFTYEPPNP R-communis-3 RHELEAYLOEKVVSKENGDGNGSP-NYERIKEPEAYLNRIRDDSCORIER R-communis-4 RSQLEAFLGPKRTKE---KGRGS--YHMKDEEIAAYLNKTRSVSHQNEVN S-bicolor-2 QQDVEAFIAACSTANADITAVEEAENIIQAIKSVR--AQDAEFRYEPPVA S-bicolor-3 OANLESFLSFHRGSSVDKETVRDGERLREAISSMK--LHGKEFSYKPPPP S-bicolor-4 RDELOAYLDTRKEOEPLNDPMOLSHASENGAPPADVVPD------V-vinifera-2 MADIAAFLRSKG-ANPDVKEMKEVESLCEAAAAVN-IODVKEFTYVPPNP V-vinifera-3 KNELEVFMRSKKAKE---KGRGSL-KHDNFSEIAAYLSRTHFGTLQNEEN

A-thaliana-BLT A-lyrata-BLT R-communis-BLT ----OOGHKTIPVIAIASKAATNLSGK _____ S-bicolor-BLT -----AEISTPFKAAAILSSK P-trichocarpa-BLT -----RGITTASAPAAISCG-V-vinifera-BLT At1G50660 -DDIYAVFEEMNLGE-AHDREMEKSVAYSPISHDSKVHTVSLDANMMNKK A-lyrata-2 -DDIYAVFEEMNIGE-AHDREMEKSVAYSPTSHGSKIHTVSPDANLMNKK At5g22310 ----VIDGSGSDDD--EESDLKSIELNMESGSKWG-----A-lyrata-3 ----IIDGSGSDDE--EESDLKSIELNMESGSKWG-----A-lyrata-4 IEDGE--VENG--NEED-SGESDLHSIELNID--NKSYKWP-----At3q11590 IEDGE--VENG--NEEG-SGESDLHSIELNID--NKSYKWP-----P-trichocarpa-3 EENKGGATGNGEVHDGDDSADSDLHSIELNMDNNSKSYKWCYASE---D EEDGE--VDDGVICEEG-SAESDLHSIELNMDNNNKSYKWTTYPSGTPRD P-trichocarpa-4 At3q20350 -DDILMLFEQMNMGE-NQDRESEQYVAYSPVSHASKAHTVSPDVNLINK-P-trichocarpa-2 -DDIFSIFEDVNFGE-TNDRESEPCIAYSPANHGAKIYTVSPEVDVINKD

R-communis-2 R-communis-3 R-communis-4 S-bicolor-2 S-bicolor-3 S-bicolor-4 V-vinifera-2 V-vinifera-3	-DDIFSVFEEVNCGE-PNEREIEPCVAYSPASHASKIHTVSPEINVINKN EENEE-EVENGEVHDGDDSADSDLHSIELNMDNNSKSYKWSYACDGIALD EDDGEVEDGVECEED-SAESDLHSIELNMDNINKSYKWT-CPSGTPRD SEDIFSIFEELRPSEEPVIKEIEPCYKNSSAKCESEIQEVSPMTDIFLEK SEDIFAVFEELRQREDISEKEIGQCNGDTPMSHATKIHTVSPETDIFLEKRNGGNCSEDGASEGSDIHSIELNVDGINRTYTWSYTPSSKGRQ -DDIFSILEEVNFGE-PNEREIEACAAYSPASHASKIHTVSPEINMVKKD EDDGEVEDALDCEED-SAESDLHSIELNMDNNNKSYKWTSSRVSRD
A-thaliana-BLT A-lyrata-BLT R-communis-BLT S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660 A-lyrata-2 At5g22310 A-lyrata-3 A-lyrata-4 At3g11590 P-trichocarpa-3 P-trichocarpa-4 At3g20350 P-trichocarpa-2 R-communis-2 R-communis-3 R-communis-4 S-bicolor-2 S-bicolor-3 S-bicolor-4 V-vinifera-2 V-vinifera-3	
A-thaliana-BLT A-lyrata-BLT R-communis-BLT S-bicolor-BLT P-trichocarpa-BLT V-vinifera-BLT At1G50660 A-lyrata-2 At5g22310 A-lyrata-3 A-lyrata-4 At3g11590 P-trichocarpa-3 P-trichocarpa-4 At3g20350 P-trichocarpa-2 R-communis-2 R-communis-3 R-communis-4 S-bicolor-2	NHRHSNASSGGTESLGKVWDDTMTPTTEISEVCSIPRRSSKKVSSIAKLW HHRDSNASSGGTESLGKVWDETMTPTTEISEVCSIPRRSSKKVSSIAKLW HHRNSNVSMNGTEYEKTLLREIKEVCSVPRRQSKKLPSMAKLW NCRESNVSGSATEWEENACDETPITDISELCSMPRRQ-LKASSITRFW NHRDSNVSGSGTEWEENACDETSITEITELCSVPIRQYKKVSSIAKLW ICDGSISWKSRNGFEYMENEKLKDDLADAYLTNMNQPKKKESAISKLW

S-bicolor-3 S-bicolor-4	FCGGNGASASETDWEEDNCENCRSNSGICSTTGENHRKGSSFARLW
V-vinifera-2 V-vinifera-3	FRQDSNASGSGTDWEENADEETPITEISEVRSVPMKQLKKGSSISRLW
v-vinitera-3	
A-thaliana-BLT A-lyrata-BLT R-communis-BLT	
S-bicolor-BLT P-trichocarpa-BLT	
V-vinifera-BLT At1G50660	RSTGASNGDRDSNYKVISMEGMNGGRVSNGRKSSAGMVSPDRVSSKGGFS RSSGASNGDRDSNYKVISMEGMNGGRVSNGRKSSAGMVSPDRVSSKGGFS
A-lyrata-2 At5g22310 A-lyrata-3	RSSGASNGDRDSN1RV1SMEGMNGGRVSNGRRSSAGMVSPDRVSSRGGFSERDE ERDEERDE
A-lyrata-4 At3g11590	SGDGGLDWGRSI
P-trichocarpa-3 P-trichocarpa-4	ARPDMPDQERVA
At3g20350 P-trichocarpa-2	SSLEGMNG-RVSNARKSTVEMVSPETGSNKGGFN RSLDGLNS-RLSNGRKSNAGIMSPDKVSGESGIS
R-communis-2 R-communis-3	RSGEISNAFDRERLS
R-communis-4 S-bicolor-2 S-bicolor-3	TGDG-IDWEGFT KSSRPKNSEICKKDAVETVNA-RSSNVRLSVGTYSTVESGIQEIGLS
S-bicolor-4 V-vinifera-2	RSSNGDGRRKTGSDLLNG-RLSSSRMPNAALS-PDLKNSEVCQVKSCPNNGENYKIISVVEGMNG-RLSNGRISSAGIMSPDRGSGKGGLS
V-vinifera-3	SRDG-LDWGRFY
A-thaliana-BLT	ARRRCEN-PQIKRG-INPFPRVMRAIRSKSE
A-lyrata-BLT	ARRSCEN-PQIKRG-INPFPRVMRAIRSKSE
R-communis-BLT	QR-RASPEPEN-PHIKRG-IKGFVEFPRVVRAIGSKSR
S-bicolor-BLT	PHRREPGGGEN-PHIRRG-IKGFVEFPKAVRLRGPREERV
P-trichocarpa-BLT	QRSRASPEPEN-PHIKRG-IKGFVEFPRVIRAIGSKNR
V-vinifera-BLT	QR-RASPETEN-PHIKRG-IKGFVEFPRVVRAIGSRSR
At1G50660 A-lyrata-2	PMMDLVGQWNSSPESANHPHVNRGGMKGCIEWPRGAQKSSLKSK PMMDLVGQWNSSPESANHPHVNRGGMKGCIEWPRGAQKNSLKSK
A-191404-2 At5g22310	SLKTLRDYIVSNVRCIGPSS
A-lyrata-3	SLKTLRDYIVSNVRCVGPSS
A-lyrata-4	EVEPKGYLDETQAYKPNKASSKDHHLVSGSRLSNFRG
At3q11590	DVEPKGYIDETQAYKPNKASSKDHHILSGSRLSNFRG
P-trichocarpa-3	ELGFNSQAQGYEDEIRKYRSVRTLKDHILSGPKRSPIRNFASPTRLWG
P-trichocarpa-4	GLERQGQGKVYGDEMHGHQSVKGLRDYLLSGSRLDSPRGYASPMRQAG
At3g20350	-TLDLVGQWSSSPDSAN-ANLNRGGRKGCIEWPRGAHKNSLKTK
P-trichocarpa-2	-PPDLVGQWSS-PDSVN-PHMTRG-MKGCIDWPRG-HKNSLKAK
R-communis-2	-P-DLTGQWSS-PDSGN-PHITRG-MKGCIEWPRGAQKNSLKAK
R-communis-3	ELDLHSQDEDEISCYRSVKSLRDHIVSGSRRQPIQNFASPT
R-communis-4	ELERHLQGKGYVDDMHGYQSVKGLRDYLLSGSRIDSTRGCASPTRQVG
S-bicolor-2	PPSVEQWSS-PDSMN-IQFNRG-FKGCIEYPRTSQKHSLKAK
S-bicolor-3	SPSVGDWSPDLLN-PRVVRA-MKGGVEWPQGTQKRTQKSK
S-bicolor-4	LDHDEERYLAIKNLREQMLAGSGFIMSQGRED
V-vinifera-2 V-vinifera-3	-PPDLAGQWSS-PDSGN-PHVNRG-MKGCIEWPRGAQKNSLKAK ELEKEAQGKGYGDEMQRYKSVKGLRDQILAGSRIGSARVFASPTRQWG

A thaliana DIM	WINDOW DOOMS OF THE POWER DOOR OF TOOL DO
A-thaliana-BLT	KWGSKLECQKVQLKILLRQKTTPRCTPLLSSPPP-
A-lyrata-BLT	KWGSKLECQKVQLKILLRQKTTPRCTPLLSSPPPP
R-communis-BLT	HWGTKLECQKAQLRILLRQKSPIRSNNLIIS
S-bicolor-BLT	DLVSNLECQRAQLRVLMRHRSPAAGMGLIDAPENL
P-trichocarpa-BLT	HWGTKLECQKAQLRILLKQKSPIRSNNLIIS
V-vinifera-BLT	HLGTKLECQKAQLRILLKQKNPIRSNSLIMS
At1G50660	LIEARIESQKVQLKHVLKQRI
A-lyrata-2	LIEARIESQKVQLKHVLKQKI
At5g22310	SEQWNHRNLPSSEFV
A-lyrata-3	SEQWNHRNLPSSEFV
A-lyrata-4	GSVSKSRLSDASKGENQNARKSRW
At3g11590	GSVSKSRLSDASKGENQNARKSRW
P-trichocarpa-3	QSLPFQESGSVVSDGSPVIQGNNLKPRIAGT-GGNCRTSTSSRH
P-trichocarpa-4	QLRSSLDPSNLAQERPPVIPGNVSKSRLSEA-KAEGMNLRKSKW
At3g20350	LIEAQIESQKVQLKHVLEHKI
P-trichocarpa-2	LLEARMESQRVQLRHVLKQKI
R-communis-2	LMEARMESQKVQLRHVLKQKI
R-communis-3	
R-communis-4	Q-RPSRDPSNAAQERPPTVPGNASKSRLSEV-RGDSLSARKSKW
S-bicolor-2	LMEARMESQKVQLRQVLKQKI
S-bicolor-3	LINARTNGRKVQLRQALEQKI
S-bicolor-4	AEREYCGL
V-vinifera-2	LLEARMESQKIQLRQVLKQKI
V-vinifera-3	QAWPSRDPSSAAQERPATAQGSGLKSRLVET-KGEGQTTRRSKR

A-thaliana-BLT A-lyrata-BLT R-communis-BLT S-bicolor-BLT VV P-trichocarpa-BLT --V-vinifera-BLT At1G50660 A-lyrata-2 At5g22310 A-lyrata-3 --A-lyrata-4 --At3g11590 --P-trichocarpa-3 --P-trichocarpa-4 At3g20350 __ P-trichocarpa-2 --R-communis-2 --R-communis-3 R-communis-4 S-bicolor-2 S-bicolor-3 --S-bicolor-4 __ V-vinifera-2 --V-vinifera-3 --

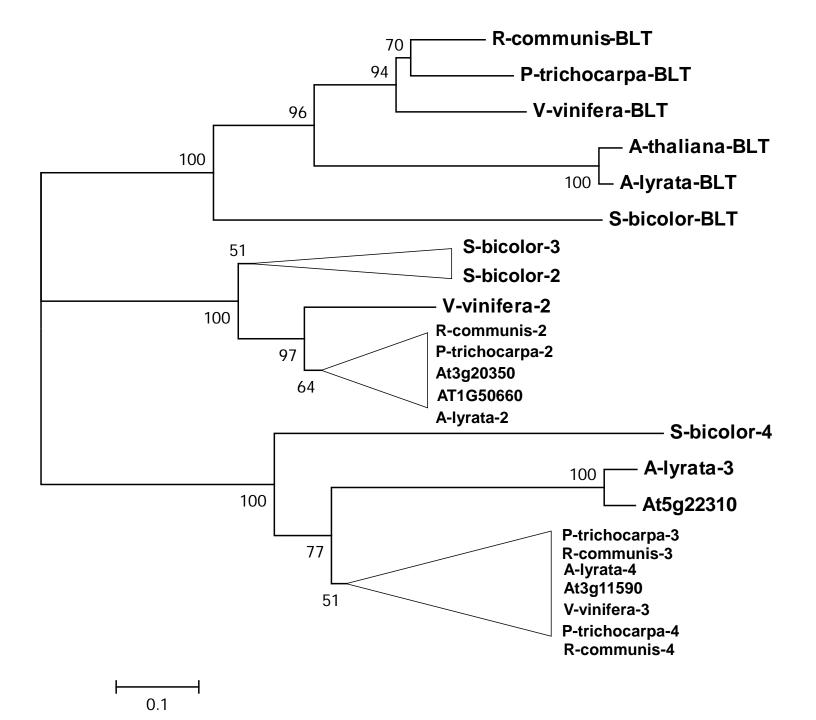


Table S1. Nuclear size of developing wild-type and blt mutant trichome and pavement cell nuclei

Genotype	Cell type	Cross-sectional area (µm²)*	Estimated volume (μm³)†
Col-0	Developing trichome	45.8±10.3 (12)	233.0
blt-3	Developing trichome	44.5±12.0 (10)	223.3
Col-0	Developing protoderm	15.0±2.2 (8)	43.7
blt-3	Developing protoderm	14.8±2.6 (11)	42.8

Cross-sectional areas of DAPI-stained developing trichome and pavement cell nuclei were determined using images captured and analyzed using Slidebook software (Intelligent Imaging Innovations, Denver, CO, USA). Based on a Kruskal-Wallis one-way ANOVA on ranks and an all pairwise multiple comparison test (Dunn's test), all pairwise comparisons differ significantly (P<0.05), except Col-0 developing trichome nuclear size versus blt-3 nuclear size and Col-0 developing protoderm nuclear size versus blt-3 nuclear size.

*Mean±s.d. (n).

*Volume estimated from cross-sectional area assuming that the nuclei are spherical.