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INTRODUCTION
A common mechanism of generating cellular diversity in
developing organisms is oriented asymmetric cell division, in
which cell fate is determined through heterogeneous intracellular
endowment, as opposed to the extracellular position-dependent
cues of the induction mechanism. In order for daughter cells to
inherit distinct intracellular determinants, precursor cells must
establish and maintain polarized intracellular domains such that
cellular division generates unique daughter cells (Betschinger and
Knoblich, 2004; Cuenca et al., 2003; Grill et al., 2001). The
physical mechanisms responsible for the formation of intracellular
spatial domains remain poorly understood. Cytoplasmic gradients
established in embryogenesis have conventionally been explained
by hypothetical generation/degradation mechanisms (Crick, 1970;
Gregor et al., 2007; Tostevin and Howard, 2008). However, recent
reports suggest that multiple cytoplasmic proteins are enriched to
opposite ends of the C. elegans zygote by related mechanisms in
which generation and degradation do not play a role (Daniels et al.,
2009; Tenlen et al., 2008). The germline determinant PIE-1 is
enriched in the posterior cytoplasm, whereas the somatic cell-fate
determinant MEX-5 is enriched in the anterior cytoplasm of the
early embryo. In both cases, it has been shown that the enriched
proteins appear to be diffuse throughout the zygote, that
compartmentalization does not play a role, and that the bulk
diffusion rates of each protein are decreased in the respective
regions of enrichment. Despite the high similarity of MEX-5 and
PIE-1 enrichments, two fundamentally different models of
polarized protein segregation have been proposed (Daniels et al.,
2009; Tenlen et al., 2008). Here, we reconcile these two models

based on experimental findings from both groups, and present
additional data supporting MEX-5 enrichment by differential
diffusion.

Recently, we reported that the PIE-1 posterior enrichment is
maintained by a binary cycling of PIE-1 between two forms with
unequal diffusion coefficients. Briefly, the forward reaction (fast r
slow) occurs heterogeneously in the posterior of the zygote,
whereas the reverse reaction (slow r fast) occurs homogeneously
in the cytoplasm (Daniels et al., 2009). This model predicts a stable
concentration gradient enriched in the vicinity of the heterogeneous
posterior reaction surface and is consistent with the unusual
diffusion behavior measured by fluorescence recovery after
photobleaching (FRAP) and fluorescence correlation spectroscopy
(FCS) of PIE-1 in vivo. The model predicts gradients in both the
bulk diffusion rate and the ratio of fast to slow protein across the
anterior-posterior (A/P) axis of the zygote, with the slowly
diffusing PIE-1 making up a higher proportion of the diffusing
protein in the posterior germplasm (Daniels et al., 2009). Live-cell
fluorescence microscopy data strongly suggested the presence of at
least two distinct species of PIE-1 in relative ratios that were
consistent with theoretical predictions of the model.

It has recently been shown that MEX-5 asymmetry requires
PAR-4- and PAR-1-dependent phosphorylation, which causes an
increase in the bulk diffusion rate of MEX-5 in the posterior (i.e.
the depleted side) of the zygote (Tenlen et al., 2008). The proposed
speculative ‘actomyosin binding model’ for MEX-5 enrichment
suggests that protein enrichment is mediated via an asymmetrically
distributed network of microfilaments, to which MEX-5 can bind.
Tenlen et al. (Tenlen et al., 2008) speculated that the binding of
MEX-5 might be modulated by posteriorly localized PAR-1, which
presumably decreases the binding affinity between MEX-5 and
actomyosin in the posterior, resulting in an increase in the effective
diffusion rate of MEX-5. However, this model appears to be
inconsistent with published data that show that phosphorylated
MEX-5 [MEX-5(pS458)] becomes enriched in the anterior of the
zygote, where bulk diffusion rates are in fact decreased (Tenlen et
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SUMMARY
Specification of germline and somatic cell lineages in C. elegans originates in the polarized single-cell zygote. Several cell-fate
determinants are partitioned unequally along the anterior-posterior axis of the zygote, ensuring the daughter cells a unique
inheritance upon asymmetric cell division. Recent studies have revealed that partitioning of the germline determinant PIE-1 and
the somatic determinant MEX-5 involve protein redistribution accompanied by spatiotemporal changes in protein diffusion rates.
Here, we characterize the dynamics of MEX-5 in the zygote and propose a novel reaction/diffusion model to explain both its
anterior enrichment and its remarkable intracellular dynamics without requiring asymmetrically distributed binding sites. We
propose that asymmetric cortically localized PAR proteins mediate the anterior enrichment of MEX-5 by reversibly changing its
diffusion rate at spatially distinct points in the embryo, thus generating a stable concentration gradient along the anterior-
posterior axis of the cell. This work extends the scope of reaction/diffusion models to include not only germline morphogens, but
also somatic determinants.
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al., 2008). Specifically, it is unclear why phosphorylated MEX-5,
with its presumed low binding affinity, would become enriched in
a region with a high density of putative binding sites. It is also
unclear why phosphorylated MEX-5, with an increased rate of
diffusion, would be enriched in a region of the zygote that exhibits
an overall decreased rate of diffusion. Furthermore, it is not
understood why PAR-1 must be properly localized to the posterior
cortex of the zygote for proper enrichment of MEX-5 in the
anterior cytoplasm.

Using a combination of live-cell imaging and mathematical
modeling, we investigate the intracellular dynamics of MEX-5 and
propose a differential-diffusion model for the asymmetric
enrichment of MEX-5 in the C. elegans early embryo that is
consistent with all available data.

MATERIALS AND METHODS
C. elegans
The MEX-5::GFP Caenorhabditis elegans strain used in this study
(JH1448; axEx1125[pKR2.04 + pRF4 + mex-5::GFP]; mex-5 in the
pKR1.42 pie-1 vector) was generously provided by Geraldine Seydoux
(Johns Hopkins University, Baltimore, USA) and cultured as described
previously (Brenner, 1974; Daniels et al., 2006), except that it was
maintained at 25°C. Expression patterns were consistent with those
described previously (Cuenca et al., 2003).

Quantitative live-cell fluorescence microscopy
For imaging of embryos (except FCS, see below), worms were dissected
and imaged in egg salts (118 mM NaCl, 121 mM KCl, in water) and their
embryos were transferred to 3% (w/v) agarose pads (Invitrogen, Carlsbad,
CA, USA) that were then sealed by capillary action beneath glass
coverslips (VWR, West Chester, PA, USA). We collected fluorescent
images of individual embryos with an LSM 510 META scanning confocal
microscope with a Plan Apochromat 100� 1.4 NA DIC oil-immersion lens
(Zeiss, Germany), using 1.2 scan zoom and 512�512 resolution. The
microscope was controlled using Zeiss LSM acquisition software (version
4.2). GFP was excited at 488 nm using the argon laser. Fluorescence
intensity was quantified using Zeiss LSM Image Examiner software. All
embryos were monitored until at least the 8-cell stage to ensure viability.
The imaging acquisition temperature was maintained at 25°C using an ASI
400 stage warmer (Nevtek, Burnsville, VA, USA), except for FCS which
was performed at room temperature. Figures were assembled in Adobe
Illustrator with only linear adjustments to intensity.

Fluorescence recovery after photobleaching (FRAP)
We photobleached various regions of interest (ROIs) within individual
embryos at pronuclear meeting (avoiding subcellular organelles, such as
visible P granules, centrosomes and pronuclei) and monitored the subsequent
fluorescence recovery within the photobleached region. All photobleaching
was carried out using a Zeiss LSM 510 META with Plan Apochromat 100�
1.4 NA DIC oil-immersion objective, 100% laser power at 488 nm, with 70
iterations and 5.12 s pixel time in each ROI. The microscope was controlled
using the Zeiss LSM acquisition software (version 4.2). Images of
photobleached embryos were acquired immediately prior to, and
continuously after, photobleaching using the image acquisition settings and
laser output power described in the above section. Our specified ROIs for
FRAP analysis were 4.5 m diameter circles.

Fluorescence correlation spectroscopy (FCS)
We performed FCS as previously described (Daniels et al., 2009). Embryos
were dissected in egg salts and transferred to WPI FD35 coverglass-bottom
culture dish (World Precision Instruments, Sarasota, FL, USA) containing
egg salts. Measurements were collected using the 488 nm argon laser line
and a C-Apochromat 40�/1.2 NA W Corr water-immersion objective
mounted on an LSM 510 Confocor 3 microscope equipped with Avalanche
photodiodes (Carl Zeiss, Germany). For each embryo, we collected five
sequential measurements (10 seconds each) from anterior and posterior
positions selected using an image captured immediately before

measurement and positioned with the scanning mirrors. We chose positions
in the cytoplasm away from the pronuclei and the cell cortex. The confocal
volume was calibrated using freely diffusing Rhodamine Green
succinimidyl ester (Invitrogen) and the data were collected and analyzed
with the LSM 510/Confocor software (version 4.2). Our system parameters
were determined to be V (confocal volume)0.17 fl, S (structural
parameter)5.53 and xy (beam radius)=0.17335591.

The autocorrelation data presented were fitted using models of multiple
freely diffusible components with Zeiss Confocor 4.2 software for time-
lags between 16 s and 183.5 mseconds. Owing to the fact that MEX-5 is
known to associate with granules that exhibit irregular size and shape,
autocorrelation was ignored at longer time-lags in order to reduce the
heterogeneity expected for this slowly diffusing species. The first scan of
each set of five scans was omitted from the analysis owing to bleaching of
immobile elements evident in the photon counts.

FEM analysis
Multi-dimensional solutions to the partial differential equations governing
the model described here were obtained using COMSOL v3.5a
Multiphysics (FEMLAB) software (Reddy, 1993; Sun et al., 2009).
Embryos were simulated using an oval shape with major and minor axes
of 50 m and 30 m, respectively. The embryonic center was defined as
the origin, with the anterior half of the embryo defined where x<0 and the
posterior defined where x>0. To converge on a solution to the governing
equations, the concentration of the rapidly diffusing species, A, was set to
equal unity at the apex of the anterior division (x–25 m) (see Appendix
S1 in the supplementary material).

Statistics
The number of embryos examined for each experiment is indicated in the
figure captions. Calculation of mean and s.e.m. and statistical analyses
were performed using Excel (Microsoft, Redmond, WA, USA) and plotted
using Prism (GraphPad Software, San Diego, CA, USA). F-tests were
conducted to determine whether FCS data were best represented by single-
or multi-component models. Two-tailed unpaired t-tests were conducted to
determine significance in photobleaching data.

RESULTS
MEX-5 exists as multiple diffusional species in the
early C. elegans embryo
In order to characterize the diffusion of MEX-5::GFP in the early
embryo, we used various live-cell fluorescence microscopy
methods. We used fluorescent recovery after photobleaching
(FRAP) to probe the diffusion behavior of MEX-5::GFP within the
zygote and fitted the resulting curves to simple one- and two-
component recovery models. We photobleached 4.5 m diameter
circular regions of interest in the cytoplasm of embryos expressing
MEX-5::GFP with minimal bleaching times (Fig. 1A). Although
short bleaching times yield relatively shallow bleach depths, they
avoid artifacts in FRAP that can arise when molecules exchange
between the region of interest and the bulk cytoplasm during the
photobleaching period. Analytical one-component FRAP yielded
best-fit recovery half-times of 3.3 and 2.1 seconds in the anterior
and posterior, respectively (Fig. 1B,C), which is consistent with
previous findings that recovery takes place more slowly in the
anterior than posterior of the cell (Tenlen et al., 2008). Because the
effective viscosity is symmetric (Daniels et al., 2006; Tenlen et al.,
2008), these differences in recovery are not due to a global
difference in cytoplasm between anterior and posterior regions.
This single-component recovery model predicted immobile
fractions of 8% and 4% within the anterior and posterior,
respectively. However, we found that the recovery half-times and
immobile fractions depended on the time spans used for data fitting
(data not shown), which suggests that one-component recovery
does not accurately describe these FRAP experiments.
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To further probe the behavior of diffusing MEX-5::GFP, we
performed FCS analysis and fitted the resulting autocorrelation
curves to one-, two- and three-component diffusion models. As
expected, autocorrelation in the anterior region of the embryo
decayed more slowly than on the posterior side, indicating slower
bulk diffusion of MEX-5::GFP in the enriched anterior region of
the embryo (Fig. 2A). F-distribution analysis strongly suggested
the presence of multiple components throughout the cytoplasm of
the embryo (P<0.0001 in both regions, F-test), as is expected for
significant deviations from fits in underspecified models. FCS
theoretical diffusion curves predicted that the diffusion coefficients
of species of MEX-5::GFP were 17.5±3.8 and 0.6±0.4 m2/second
in the anterior cytoplasm and 15.6±4.3 and 0.7±0.3 m2/second in
the posterior cytoplasm (Fig. 2B,C). The ratios of slow to fast
protein concentration were determined to be 2.0±0.1 and 0.9±0.1
in the anterior and posterior, respectively. The higher relative
abundance of slowly diffusing protein in the anterior explains the
overall slower bulk diffusion rates measured by FRAP. In each
region, we also detected the presence of a component diffusing
extremely slowly (0.07±0.01 m2/second), presumably as a result
of the previously observed association of MEX-5::GFP with slow-

moving granules (Tenlen et al., 2008). Based on our previous work,
the presence of multiple protein species with substantially different
diffusion coefficients in a system that exhibits a gradient in both
bulk diffusion rates and fractional composition suggests a
differential-diffusion model for MEX-5 enrichment (Daniels et al.,
2009; Lipkow and Odde, 2008).

We next asked how well multi-component fitting of our
experimental FRAP curves agrees with our FCS experiments.
Fitting the curves to two-component recovery predicts species of
MEX-5 with recovery half-times of 15.2 and 1.7 seconds in the
anterior cytoplasm, and 16.1 and 1.1 seconds in the posterior
cytoplasm (Fig. 1C). Thus, the recovery half-times of the two
MEX-5 species in two-component FRAP differ by approximately
an order of magnitude in both regions. Using a general equation for
FRAP recovery (Soumpasis, 1983), we estimate the diffusion
coefficients of the species of MEX-5 to be 0.3 and 2.6 m2/second
and 0.3 and 4.1 m2/second in the anterior and posterior,
respectively. Not surprisingly, these numbers underestimate the
diffusion coefficients determined from FCS (more severely for the
faster species) owing to the fact that significant diffusion takes
place during the photobleaching step. Multi-component FRAP also
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Fig. 1. Bulk dynamics of MEX-5::GFP in the C. elegans early
embryo. (A)Circular regions of interests (ROIs, arrow), 4.5m in
diameter, were photobleached in either the anterior or posterior
cytoplasm. (B) Fluorescence recovery curves were fitted to both one-
and two-component diffusion curves for both anterior and posterior
fluorescence recovery after photobleaching (FRAP). One-component
recovery reveals overall asymmetry in the bulk diffusion rates of MEX-
5::GFP. Improved data fitting by a multi-component model suggests the
presence of multiple species of MEX-5::GFP, the diffusion coefficients of
which differ by approximately an order of magnitude. (C)Theoretical
diffusion curves can be broken down into individual components and
reveal an asymmetry in the ratio of fast to slow MEX-5::GFP, with a
higher ratio in the posterior cytoplasm. C. elegans zygotes are ~50m
in length. s, seconds.

Fig. 2. Fluorescence correlation spectroscopy (FCS) of MEX-5::GFP
in the C. elegans early embryo. (A)Normalized autocorrelation
curves of FCS fluctuation data show differences between anterior and
posterior diffusion of MEX-5::GFP. Statistical tests indicate the presence
of multiple species of MEX-5::GFP in the cytoplasm (P<0.0001 for one-
component model, F-test). (B,C)FCS theoretical diffusion curves predict
species of MEX-5::GFP in the anterior cytoplasm with diffusion
coefficients of 17.5±3.8 and 0.6±0.4m2/second, and species of MEX-
5::GFP in the posterior cytoplasm with diffusion coefficients of
15.6±4.3 and 0.7±0.3m2/second. A third, slower component with a
predicted diffusion coefficient of just 0.07±0.01m2/second was also
detected in both regions, suggesting an association with slow-moving
granules. The ratio of slow to fast protein in the cytoplasm was
determined to be 2.0±0.1 and 0.9±0.1 in the anterior and posterior,
respectively. The slower bulk effective diffusion of MEX-5 in the anterior
cytoplasm as measured by FRAP is presumably due to a higher
proportion of slowly diffusing protein.
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predicted relative ratios of the amount of slow to fast species of
~1:1 and ~2:3 in the anterior and posterior, respectively, consistent
with the findings from FCS that the anterior cytoplasm contains a
higher proportion of slowly diffusing MEX-5.

Differential-diffusion model
In order to understand the mechanism by which MEX-5, a freely
diffusing molecule, could be maintained in a gradient over large
length scales and long time scales in C. elegans embryos, we sought
to develop the simplest theoretical model possible that is consistent
with all available data based on the differential-diffusion concept
developed in our previous work (Daniels et al., 2009), recently
published molecular evidence (Tenlen et al., 2008), and experimental
data presented here. As a preliminary naïve model, we can begin by
assuming that the enrichment of MEX-5 exists in both a rapidly
diffusing form (M) and a slowly diffusing form (M*) in the early
embryo, as suggested by our experimental results. MEX-5 is
converted heterogeneously from a slow to a fast form on a surface
within the depleted side (posterior), presumably by phosphorylation
by PAR-1, and is subsequently reverted to its slow form
heterogeneously on a surface within the enriched side (anterior) of
the embryo (Fig. 3A). After pronuclear meeting, the bulk levels of
protein in the anterior and posterior cytoplasm remain constant for
~10 minutes (Tenlen et al., 2008), suggesting that the system evolves
to a steady state. For a simplified one-dimensional system along the
A/P axis of the zygote, this model predicts linear, constant-flux
concentration profiles of each species across the zygote, which sum
to a linear total concentration profile for MEX-5 (Fig. 3C).

This basic model correctly predicts an overall enrichment of MEX-
5 in the anterior cytoplasm, but does not correctly predict the anterior
enrichment of phospho-MEX-5 recently described (Tenlen et al.,
2008). However, this discrepancy is easily remedied by including a
third species of MEX-5 in our model (Fig. 3B). Specifically, rapidly
diffusing, phosphorylated MEX-5, A, is converted heterogeneously to
a slowly diffusing form of MEX-5, B, in the anterior, presumably by
the PAR complex. This nascent species (B) is then dephosphorylated
homogeneously, consistent with the presence of a uniformly
distributed phosphatase in the cytoplasm. This unphosphorylated
form, C, is then reverted back to A heterogeneously in the posterior
by PAR-1 phosphorylation. Previous FRAP experiments have shown
that the bulk diffusion rates of MEX-5 remain low in the mutant
(S458A) that cannot be phosphorylated by PAR-1 (Tenlen et al.,
2008). Previous FRAP experiments have shown that the bulk
diffusion rates of MEX-5 remain low in the mutant (S458A) that
cannot be phosphorylated by PAR-1 (Tenlen et al., 2008), suggesting
that the diffusion coefficient of C must be low. Notably, the analytical
solution of this system accurately predicts anterior enrichment of
MEX-5 and phospho-MEX-5 (Fig. 3D) whether the diffusion
coefficient of C is approximately equal to A or B. Moreover, this
three-component differential-diffusion model with unique diffusion
coefficients also allows for non-linear one-dimensional concentration
profiles, as we observed experimentally (Fig. 4A,B). Thus, we
propose a three-component, two-surface model to explain the anterior
cytoplasmic enrichment of MEX-5, which predicts a steady-state one-
dimensional overall concentration profile of:
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where L is the length of the embryo along the spatial coordinate x,
A0, B0 and C0 are constants representing the relative concentrations
of each species at the anterior surface (x0), DA, DB and DC are the
diffusion coefficients of A, B and C, respectively, and kB is the
modified rate constant for the cytoplasmic B r C reaction.

It is worth noting that this system can be considered as diffusion
limited, which is why the rate constants for the C r A and A r B
reactions do not appear in the final equation; their values are
implicit. For example, the rate constant for the A r B reaction, kA,
is found by considering the reaction rate at the anterior surface:

and thus:

In this way, tuning of boundary concentrations is equivalent to
tuning reaction constants. Furthermore, owing to the fact that the
surface rate constants are also a function of the (unknown) surface
concentration of catalyst, we are unable to obtain estimates of the
physiological rate constants of these reactions. Similarly, the
homogeneous rate constant kB is also assumed to be a function of
the cytoplasmic concentration of phosphatase, which is also
unknown (see Appendix S1 in the supplementary material).

,rB = kA A0 = − DB
dB
dx x=0

.kA = −
DB

A0

dB
dx x=0
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Fig. 3. Differential-diffusion models for MEX-5 enrichment. The
differential-diffusion model proposed for MEX-5 enrichment involves
two heterogeneous surface reactions. In the simple two-component
case (A), one-dimensional analytical solutions yield linear concentration
profiles for each species (C). We propose a three-component model
that is consistent with all available data (B). Rapidly diffusing,
phosphorylated MEX-5, A, is converted to a form with a decreased
diffusion coefficient, B, by an anteriorly localized component
(presumably the PAR complex, which consists of PAR-3, PAR-6 and PKC-
3). This species is dephosphorylated homogeneously in the cytoplasm
to generate an unphosphorylated species of MEX-5, C. Species C can
then be rephosphorylated by posteriorly localized PAR-1 to regain its
identity as A and complete the reaction cycle. This model qualitatively
predicts the anterior enrichment of both MEX-5 and phosphorylated
MEX-5 (phospho-MEX) (D). a.u., arbitrary units.
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We tested the ability of our model to correctly predict the
observed concentration profile of MEX-5::GFP using intensity
profiles obtained from fluorescence microscopy during mitosis. For
the one-dimensional case, we assumed steady-state conditions, with
the equal and opposite surface fluxes due to the reactions A r B
and C r A at the anterior and posterior surfaces, respectively. In
this time-invariant case, the concentration profiles of each species
exist as stable gradients throughout the embryo. The analytical
solution for the total concentration gradient predicted by this model
was then fitted to experimental fluorescence intensity data and the
fractional protein composition from FCS and was found to be well
represented by our model (Fig. 4A,B). It should be noted that
although PAR-1 is generally considered a posterior cortical protein,
it is not strictly localized to the posterior cortex but is in fact also
present in the cytoplasm (Guo and Kemphues, 1995). Since PAR-
1 is assumed to act as the catalyst for the heterogeneous reaction,
this discrepancy will have the effect of ‘spreading’ the posterior
reaction, resulting in the ‘plateau’ in fluorescence observed in the
posterior cytoplasm, which is unaccounted for in the model.

Computational pseudo-three-dimensional model
In the above one-dimensional model, the forced flux at the
reaction surfaces was assumed to be constant. However, in an
actual embryo the reactant concentration may vary with position
along the reaction surface, and therefore the rate of reaction
might be expected to vary with position as well. In order to
account for these geometric effects in our differential-diffusion
model, we computationally modeled the system using COMSOL
software (see Materials and methods and Appendix S1 in the
supplementary material). Assuming that the zygote is axi-
symmetrical about its long axis, we modeled the system as the

central two-dimensional cross-section, the results of which will
be independent of the angle of the cross-sectional plane. Based
on light microscopy measurements, we approximated the zygote
as an oval with major and minor axis lengths of 50 m and 30
m, respectively, centered about the origin with the anterior at
x<0 and the posterior at x>0, and assigned diffusion coefficients
to each species consistent with those obtained from FCS. We
allowed the surface reactions to follow first-order kinetics: A r

B proceeds at a rate of kA[A] on the system surface for x<0, and
C r A proceeds at a rate of kC[C] on the system surface for x>0,
with the B r C reaction taking place homogeneously (see
Appendix S1 in the supplementary material). In all cases, species
that are not involved in surface reactions are not allowed to
diffuse through surfaces and are assigned zero flux values at
boundaries: B is not allowed to diffuse through the system
boundary at the posterior, and C is not allowed to diffuse through
the system boundary at the anterior. As an arbitrary basis for
calculation, we chose to set the value of A at the anterior pole of
the embryo as A01 (arbitrary units). At steady state, we find that
the two-dimensional system accurately predicts overall
enrichment of MEX-5 in the anterior cytoplasm (Fig. 4),
illustrating that the differential-diffusion model is applicable to
three-dimensional systems and that various patterns may be
attained by this robust differential-diffusion mechanism.

DISCUSSION
Here, we propose a differential-diffusion model to explain the
enrichment of MEX-5 in the C. elegans early embryo, as an
alternative to the actomyosin binding model presented previously
(Tenlen et al., 2008). The actomyosin binding model might have
been inspired by the immobile fractions that were apparent in the
recovery of MEX-5::GFP in their FRAP experiments, on average
constituting 27% and 39% in the anterior and posterior,
respectively (Tenlen et al., 2008). However, our FRAP
measurements of MEX-5::GFP show substantially greater recovery,
with immobile fractions ranging only as high as 8%, depending on
the fitting model. Indeed, fitting the data to multi-component
recovery yields an immobile fraction of 0%. We suspect that an
experimental artifact is responsible for the reported apparent
immobile fractions (Tenlen et al., 2008), considering that the
authors also found a significant immobile fraction of 68% for free
GFP in the embryos, which would be expected to be freely mobile.
We found an immobile fraction of 0% for GFP alone (our
unpublished data).

The enrichment of proteins (i.e. PIE-1, POS-1) in the posterior
cytoplasm cannot be explained by the binding of proteins to an
anteriorly localized actomyosin network. Assuming that the
actomyosin network does in fact play a role in the enrichment of
PIE-1 and MEX-5, a simple way to reconcile these two models
would involve localized modulation of the binding of each of these
proteins to a uniform cytoskeletal network. Physically, this is
equivalent to changing the heterogeneous reactions from ‘fast r
slow’ to ‘low-affinity binding r high-affinity binding’ forms of the
proteins. The affinity of bound proteins may then be reversed by
interaction with a homogeneous component, which would be
expected to follow first-order reversion, and the resultant analytical
profiles should be equivalent. The low-affinity (unbound) form of
each protein will have a large diffusion coefficient, whereas the high-
affinity (bound) form of the protein will have a small diffusion
coefficient. The key distinction in this case is that this model does
not require asymmetric binding sites, in contrast to the actomyosin
binding model (Tenlen et al., 2008). As such, the role of PAR-1
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Fig. 4. Experimental and theoretical concentration profiles.
Theoretical concentration profiles for MEX-5 obtained through one-
dimensional analytical mathematical modeling and pseudo-three-
dimensional computational modeling (axi-symmetric two-dimensional
ovoid geometry with major and minor axis lengths of 50m and
30m, respectively) are compared with experimental fluorescence
intensity profiles. A typical micrograph of a MEX-5::GFP embryo in the
maintenance phase of polarization (A) and the corresponding
fluorescence intensity profile across the A/P axis (dashed line), which
agrees well with one-dimensional analytical predictions (B), as well as
with computational pseudo-three-dimensional modeling (C,D).
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might be to decrease the binding affinity of MEX-5 to a putative
component, and the previously unassigned role of PAR-4 might be
to increase this binding affinity or to stabilize the complex.

It has been shown that ectopically localized par-1 mutants
(b274, e2012, it60) with kinase activity are not able to correctly
segregate MEX-5 to the anterior (Tenlen et al., 2008). Because
these par-1 mutants are able to phosphorylate MEX-5 at S458 yet
are partitioning defective, it has been suggested that par-1 might
have some additional role in the process distinct from S458
phosphorylation (Tenlen et al., 2008). The results of our model
provide an explanation for this finding. The mislocalization of
active PAR-1 from the posterior cortex to the bulk cytoplasm will
result in conversion of MEX-5 from the slow to the fast form in the
anterior cytoplasm, greatly reducing gross A/P asymmetry.
Furthermore, it might also be possible that PAR-1 can act directly
on species B as well as C, thus causing an even more severe
abrogation of MEX-5 enrichment in embryos containing
mislocalized PAR-1. Therefore, it is not surprising that we see no
sign of MEX-5 enrichment in par-1(b274) embryos, despite the
fact that MEX-5 is still phosphorylated by PAR-1. Physically, PAR-
1 may have the ability to phosphorylate MEX-5 at multiple sites
(distinct from S458). This variation of our model, in which species
B is allowed to attain a positive flux at the posterior surface (xL),
predicts an overall concentration profile of:

in wild-type embryos, where  is the effective flux of species B at
xL. This prediction is very similar to that of our general model in
wild-type embryos (see Appendix S1 in the supplementary
material), but may more thoroughly explain the complete loss of
MEX-5 enrichment in the par-1(b274) mutants.

Importantly, the MEX-5 enrichment model presented here may
also represent an alternative model to the current PIE-1 enrichment
model (Daniels et al., 2009). For example, our previous speculation
that the diffusion coefficient might be decreased by binding a
nucleic acid may be broadened to include cytoskeletal components
as well. Furthermore, it might be that the role of MEX-5/6 in PIE-
1 enrichment is to mediate the conversion between slowly and
rapidly diffusing forms of PIE-1, or even a hypothetical conversion
between putative unequally phosphorylated ‘heavy’ forms of PIE-
1, similar to those of MEX-5 proposed here (species B and C).

We demonstrate that a differential-diffusion model is consistent
with all available data for MEX-5 enrichment and might in fact be
the only thoroughly consistent model to date. As such, we extend
the scope of these reaction/diffusion models to include not only
germline morphogens, but also somatic determinants. Considering
that this trend is emerging as a primary mechanism of protein
enrichment in the nematode C. elegans and given its intimate link
to the highly conserved PAR proteins, we anticipate that similar
reaction/diffusion mechanisms operate within a variety of
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metazoan cell types. Interestingly, it was recently reported that in
the syncytial blastoderm of Drosophila melanogaster, an
asymmetrically localized cortical receptor complex (Toll) mediates
the asymmetric localization of the transcription factor Dorsal by
altering, through phosphorylation, its ability to form a complex
(DeLotto et al., 2007; Kanodia et al., 2009; Shvartsman et al.,
2008). In this case, Dorsal is unable to enter nuclei when associated
with its binding partner (Cactus), but gains the ability to enter
nuclei once dissociation of its complex is triggered by the ventrally
localized, activated Toll receptor. Thus, the cortical signal drives
differential cytoplasmic gradients of free Dorsal and the Dorsal-
Cactus complex, resulting in elevated levels of Dorsal in ventral
nuclei. However, in contrast to our model, the enrichment of Dorsal
is not due to a change in its diffusion coefficient resulting from
phosphorylation, but rather to a change in its ability to shuttle into
nuclei (which constitute a significant fraction of the accessible
volume of Dorsal). Alternatively, nuclear Dorsal may be thought
of as part of a ‘Dorsal-nuclear’ complex with an effective diffusion
coefficient of zero, in which case the dissociation of the Dorsal-
Cactus complex actually leads to a decrease in the rate of diffusion
of Dorsal. Consequently, in this system, Dorsal becomes enriched
in the vicinity of the phosphorylating signal, in contrast to the
situation in the C. elegans early embryo, in which MEX-5 is
depleted in the vicinity of the phosphorylating signal. Therefore, it
appears that unique variations on the class of reaction/diffusion
mechanism presented here might operate within a variety of
metazoan cell types.
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SUPPLEMENTAL MATERIAL 

Derivation of 1D analytical concentration profiles 

Steady-state post-enrichment, 1D model 

The steady-state equations of change for diffusing species A, B, and C are: 

          (1) 

         (2) 

         (3) 

 

The boundary conditions are: 

          (4) 

          (5) 

           (6) 

           (7) 

          (8) 

where J is the flux.  These conditions state that the flux from the reaction surfaces are diffusion-

limited (hence they do not contain rate constants and do not depend on reactant concentration) 

and constant at steady-state.  As a basis of calculation, we allow the surface reaction of B, B(0), 

to reach an arbitrary constant value of B0 at steady-state, which will ultimately depend on system 

parameters such as the reaction rate constants and total amount of protein present in the embryo 

(see below). 
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Solving for A: 

            

  

0AmxA             (9)  

where A0 is the concentration of A at x=0. We see that A is linear, and the flux of A is constant 

over all x from 0 to L. 

          

 

Solving for B: 

            

With steady flux at x=0 and zero flux at x=L, we expect the concentration of B to achieve an 

arbitrary steady value we will denote by the constant B0, such that 

        (10) 

We see that the flux of B is 
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so the flux of B at 0 is 

      

and the flux of B at L is 
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Solving for C: 

       

        

 

       

We can solve for c1 by considering the zero flux condition at x=0: 

           

B

B
BB

B

B

B

B

BBB D

Lk
DkB

D

Lk

D

Lk

DkBJ
2

02

2

00
tanh

cosh

sinh



B

B

B

B

B

B

B

B

D

Lk

L

x

D

Lk

B
D

k
B

D

k

x

C
2

2

02

2

cosh

1cosh

















 





12

2

0

cosh

1sinh

c

D

Lk

L

x

D

Lk

kD
D

B

x

C

B

B

B

B

BB
C



















 





212

2

0

cosh

1cosh

cxc

D

Lk

L

x

D

Lk

D

D
BC

B

B

B

B

C

B 

















 











0
0

0
x

C
DJ CC 






 4

        

         

Plugging in for c1, we obtain 

    

The flux of C is 

     

Similarly to the case for B, with a steady flux of C at x=L, we expect the concentration of C to 

attain a steady value at x=0 that we will denote C0, such that 
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Plugging in for c2, we obtain 
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       (11) 

The flux of C is 

   

So the flux at x=0 is 

    

And the flux at x=L is 
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and opposite of the flux of A at x=0.  Likewise, the flux of C at x=L must be equal and opposite 

to the flux of A at x=L.  Hence, 
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Hence, 
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A0, which determines the relative concentration of A in the system, is left as a tunable parameter. 

 

The total concentration can then be calculated by 
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In order to test the ability of our model to correctly predict the overall concentration 

gradient, we measured fluorescence intensity along the A/P axis of embryos expressing MEX-

5::GFP (with background fluorescence subtracted) and used data from the central 40um of the 

A/P axis (L), and used values for the diffusion coefficients (DA, DB, DC) measured with FCS.  

Species intensity (A0, B0, C0) and reaction (kB) parameters were tuned to minimize squared error.  

Diffusion coefficients for slow system components (B and C) were constants equal to 0.4 µm2/s 

and 1.0 µm2/s, respectively, while the diffusion coefficient for the fast species (A) was constant 

and equal to 15 µm2/s (all of which are within experimental error of our FCS measurements).  As 
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a basis for calculation, the total intensity at the anterior pole (x=0µm) was normalized to Total(0) 

= 5 (a.u.). 

The rate constants used in our modeling are modified such that ][Pkkk Iphysccytoplasmi   and 

M

tot
Iphyssurface K

E
kkk   (assuming first order surface reactions), where kphys is the physiological rate 

constant, 
S

S
kI

][
  is an (unknown) constant relating fluorescence intensity (S) to cytoplasmic 

concentration ([S]), [P] is the (unknown) concentration of the putative cytoplasmic phosphatase, 

Etot is the (unknown) total surface concentration of enzyme on the reaction surface, KM is the 

Michaelis constant, and kphys is the physiological rate constant.  The modified rate constants 

estimated from the modeling were kA=0.065 µm/s, kB = 0.0025 s-1, and kC = 0.2 µm/s, and the 

concentration parameters (a.u.) were estimated to be A0 = 1, B0 = 2.1, C0 = 1.9.   

 

FEMLAB 

Multi-dimensional solutions to the partial differential equations were found using the 

finite element method (FEM) via COMSOL 3.5a (FEMLAB) software.  FEM analysis is a useful 

tool for calculating solutions to complicated systems of equations over complex geometries 

including intricate biological problems (Reddy, 1993; Sun et al., 2009). Briefly, the finite 

element method calculates the solution to complicated systems by breaking the geometry of a 

given system into subdomains, or finite elements.  Solutions to each finite element are calculated 

by approximating solutions to the partial differential equations over that element as a linear sum 

of algebraic polynomials where the undetermined coefficients of these polynomials are valued 

according to the governing partial differential equations.  The finite elements themselves are not 

fixed throughout solving the governing system of equations but may change to reduce the error 
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in approximation over a given element and maintain continuity of the solution over all elements 

(Reddy, 1993). 

 Here, we used a simple oval geometry (major and minor axes of 50µm and 30µm, 

respectively) centered about the origin, consisting of two spatially identical and opposite reactive 

surfaces, the anterior and posterior, to represent the dividing embryo.  The A to B reactions were 

allowed to occur only on the anterior surface, the B to C reaction again occurred everywhere 

within the cytoplasmic region and the C to A reaction was allowed to occur only on the posterior 

surface.  All reactions rates used to calculate the multi-dimensional solutions were first order.  

Diffusion coefficients for slow system components (B and C) were constants equal to 0.4 µm2/s 

and 1.0 µm2/s, respectively, while the diffusion coefficient for the fast species (A) was constant 

and equal to 15 µm2/s (all of which are within experimental error of our FCS measurements).  As 

a basis for calculation, the concentration of A at the anterior pole (far left anterior node) was 

considered a known quantity and set equal to 1 (a.u.).  The modified rate constants (see above) 

used in the modeling were kA=0.02 µm/s, kB = 0.001 s-1 and kC = 0.5 µm/s.  
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Analytical concentration profiles with reactive species B 

The governing equations are identical to those for the non-reacting B species, however the zero-

flux boundary condition at x= L must be allowed to take some finite value, β. Thus, the general 

equation for species B becomes 
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
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
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
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
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
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
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and 
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
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
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
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
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We allow the flux of B to attain some finite value, β, at steady-state such that 
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
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where β is a constant.  Thus, the flux of B is given by 
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
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
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
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
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

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We can use the explicit expression for B to solve for C by integration 
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k
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
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The flux of C at x=0 is specified to equal 0 such that 
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Finally, we specify that C attains a constant value, C0, at x=0: 
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and thus 
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Therefore, the flux of C is given by 
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As expected, the flux of C at x=0 is 
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Similarly, the flux of C at x=L is 
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We can verify that the flux of B at x=0 equals the sum of the flux of C at x=L and the flux of B at 
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Finally, the flux of A at x=0 must be equal and opposite to the flux of B at x=0, such that 
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And the concentration profile of A is given by 
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The (constant) flux of A is given by
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The total concentration profile is then given by 
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