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Intrinsic anti-inflammatory properties in the serum of two species
of deep-diving seal
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ABSTRACT
Weddell and elephant seals are deep-diving mammals, which rely on
lung collapse to limit nitrogen absorption and prevent decompression
injury. Repeated collapse and re-expansion exposes the lungs to
multiple stressors, including ischemia–reperfusion, alveolar shear
stress and inflammation. There is no evidence, however, that diving
damages pulmonary function in these species. To investigate
potential protective strategies in deep-diving seals, we examined
the inflammatory response of seal whole blood exposed to
lipopolysaccharide (LPS), a potent endotoxin. Interleukin-6 (IL6)
cytokine production elicited by LPS exposure was 50 to 500 times
lower in blood of healthy northern elephant seals and Weddell seals
compared with that of healthy human blood. In contrast to the ∼6×
increased production of IL6 protein from LPS-exposed Weddell seal
whole blood, isolated Weddell seal peripheral blood mononuclear
cells, under standard cell culture conditions using medium
supplemented with fetal bovine serum (FBS), produced a robust
LPS response (∼300×). Induction of Il6 mRNA expression as well as
production of IL6, IL8, IL10, KC-like and TNFα were reduced by
substituting FBS with an equivalent amount of autologous seal
serum. Weddell seal serum also attenuated the inflammatory
response of RAW 267.4 mouse macrophage cells exposed to LPS.
Cortisol level and the addition of serum lipids did not impact the
cytokine response in cultured cells. These data suggest that seal
serum possesses anti-inflammatory properties, which may protect
deep divers from naturally occurring inflammatory challenges such as
dive-induced hypoxia–reoxygenation and lung collapse.
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INTRODUCTION
Marine mammals such as pinnipeds (seals and sea lions) are highly
specialized predators that pursue and capture prey while breath-
holding. During these dives they draw down their body oxygen
stores, resulting in generalized hypoxemia and local tissue

hypoperfusion and hypoxia (Guppy et al., 1986; McDonald and
Ponganis, 2013; Meir et al., 2009). They have evolved a highly
compliant, collapsible lung that accommodates the tremendous
pressure changes that occur during deep dives. Further, lung
collapse may prevent tissue nitrogen accumulation, narcosis and
decompression injury (Falke et al., 1985; Kooyman et al., 1971;
McDonald and Ponganis, 2012; Ridgway and Howard, 1979).
Remarkably, deep-diving marine mammals tolerate this hypoxia,
pressure-induced lung collapse, and ischemia–reperfusion (IR)
events without apparent harm. Although the physiology and
behavior of deep divers have been explored for decades (Butler
and Jones, 1997; Costa and Sinervo, 2004; Kooyman et al., 1981;
Ponganis et al., 2011), only recently have we begun to examine
biochemical mechanisms of cell-level protection in these
unique animals.

In contrast, humans typically suffer lung injury after IR (Cheng
et al., 2006) and after cyclical collapse and re-expansion of alveoli
(atelectrauma) (Leite et al., 2012; Lohser and Slinger, 2015). Rapid
re-expansion of a previously collapsed human lung can also produce
pulmonary oedema, a phenomenon that is, in part, mediated by
inflammatory cytokines (Suzuki et al., 1992). Remarkably, despite
repeated trips to depths that induce lung collapse and re-expansion,
diving seals do not display evidence of significant lung injury
(Kooyman and Ponganis, 1998). This may in part be due to having a
pulmonary surfactant with low surface activity (Miller et al., 2006a)
that acts as an anti-adhesive surfactant promoting alveolar opening
upon lung re-expansion (Foot et al., 2006; Gutierrez et al., 2015;
Miller et al., 2006b; Spragg et al., 2004). However, the mechanisms
that protect against tissue injury and/or cytokine production
following atelectrauma and IR remain to be investigated. Further,
it is not known whether marine mammals avoid decompression
sickness or whether they have some mechanism to tolerate bubble
formation (Hooker et al., 2012). Hyperbaric injury leads to
cytokine-mediated inflammation in animal models (Bigley et al.,
2008; Ersson et al., 1998;Wang et al., 2015). Recent studies suggest
that marine mammals are likely to experience some level of
decompression sickness and thus one might expect some
mechanism for tolerating associated bubble formation and
mediating downstream effects. A reduced inflammatory response
might provide such a protective mechanism.

Species differ in their responses to inflammatory stimuli, a
phenomenon that may have arisen to facilitate survival in diverse
ecological niches (Okin and Medzhitov, 2012). Mice, for example,
have a blunted response to various types of inflammatory challenge
compared with humans (Warren et al., 2010). We therefore
hypothesized that the immune response is modified in deep-
diving seals to allow them to repeatedly transit to great depths
without invoking inflammatory injury to the lungs, or other cells
and tissues. We were particularly interested in responses of the
innate immune system, which presents a generalized, fast-actingReceived 6 February 2018; Accepted 4 May 2018
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response, rather than the adaptive immune system that confers long-
lasting, antigen-specific protection. To investigate the nature of the
innate immune response in diving seals, we measured responses to
lipopolysaccharide (LPS) in seal whole blood, seal monocytes and
seal serum. LPS, also termed endotoxin, is the principal component
of the outer membrane of gram-negative bacteria, and is a well-
established experimental challenge that induces a strong immune
response in vertebrates (reviewed in Rosenfeld and Shai, 2006). In
the present study, we found a significantly diminished ex vivo
cytokine response to LPS in seal whole blood compared with the
response in humans. Additional in vitro experiments using Weddell
seal monocytes and a mouse macrophage cell line suggest that the
differences in cytokine response to LPS in diving seals is derived
from a yet-to-be defined component of seal serum.

MATERIALS AND METHODS
Sample collection
Blood samples from Weddell seals [Leptonychotes weddellii
(Lesson 1826)] (n=20, 11 males, 9 females) were collected during
October–December 2015 and 2016 in Erebus Bay, Antarctica.
Adults and weaned pups were visually in good health, and a basic
blood panel (iStat 6+, Abaxis, Union City, CA,USA) confirmed that
blood parameters (e.g. glucose, hemoglobin concentration, blood
urea nitrogen) were within the normal ranges for this population
(Mellish et al., 2011). Venous blood was collected from sedated
adults (2 mg kg−1 ketamine, 0.1 mg kg−1 midazolam hydrochloride
IM induction; 0.5 mg kg−1 ketamine, 0.025 mg kg−1 midazolam IV
maintenance dosed as needed), and weaned pups restrained by
headbag, both according to previously published protocols (Mellish
et al., 2011). Samples were drawn into heparinized or EDTA-coated
vacutainers and kept chilled during transport to laboratory facilities
(45–90 min). Whole blood and isolated monocytes were processed
immediately, and exposed to LPS on-site in Antarctica. Serum, as
well as LPS-exposed cells and plasma were then stored at −80°C.
Human samples were collected from n=3 healthy volunteers

(2 males, 1 female) under Institutional Review Board authorization
(2018P000004), following informed consent. Northern elephant
seal [Mirounga angustirostris (Gill 1866)] blood samples were
collected from adult females (n=4, sampled 15 February 2017, late
in the lactation period) sedated with telezol (1 mg 100 kg−1 IM
induction, 0.5 mg IV maintenance dosed as needed; Hückstädt
et al., 2012) at Año Nuevo, CA, USA. Mouse (Mus musculus
domesticus) blood samples (n=12, all male) were obtained during
terminal procedures as part of another project. Weddell seal samples
were collected under National Marine Fisheries Service (NMFS; no.
19439) and Antarctic Conservation Act (no. 2016-005) scientific
permits. Elephant seals were handled under NMFS permit 19108. All
animal procedures were authorized under Massachusetts General
Hospital and the University of California Santa Cruz Institutional
Animal Care and Use Committees.

LPS ex vivo exposures and IL6 protein detection
Whole blood samples from all species were diluted in three parts
RPMI medium 1640 to prevent hemolysis (11835-030, Gibco,
Grand Island, NY, USA, containing 1% HEPES, 1% Na pyruvate,
1% non-essential amino acids and 1% penicillin/streptomycin), and
were maintained in a CO2 incubator for 4 h at 37°C with 1 to
1000 ng ml−1 LPS. Escherichia coli lipopolysaccharide (O55:B5)
was purchased from List Biologicals (Campbell, CA, USA), and
prepared in phosphate-buffered saline. Plasma was separated from
incubated samples by centrifugation at 4°C (3000 g), then snap-
frozen. Interleukin-6 (IL6), a sensitive indicator of acute innate

immune activation by LPS, was measured in the plasma of each
species with the most appropriate assay kit (Quantikine ELISA,
R&D Systems, Minneapolis, MN, USA, human D6050, mouse
M6000B, canine CA6000 for Weddell and elephant seals). Weddell
seal IL6 has a high (99%) amino acid sequence similarity with
another monachine seal (Hawaiian monk seal, Neomonachus
schauinslandi), and cytokines have been reported to be similar
among seals generally, including elephant seals (Khudyakov et al.,
2017), supporting comparisons between seal species using the same
Quantikine ELISA. Previous work has also validated cytokine
assays for elephant seals specifically (Peck et al., 2016), supporting
the use of cross-reactive commercial kits to study cytokines in seals.
To expand cytokine and chemokine detection to 13 substances in
Weddell seal plasma (n=8 adults, n=7 pups), we used a bead-
based, multiplex canine panel on the Bio-Plex 200 platform
(CCYTOMAG-90K, Millipore, Billerica, MA, USA), previously
documented to cross-react with pinnipeds (Levin et al., 2014).

Monocyte isolation and LPS in vitro exposures
Monocytes were isolated fromWeddell seal buffy coats by density-
dependent centrifugation through a column of Histopaque 1077
(30 min, 400 g at room temperature). The layer containing peripheral
blood mononuclear cells (PBMCs) was washed, then resuspended
and plated in serum-free medium (OptiMem, Gibco 31985070) and
placed in a 37°C CO2 incubator to allow the monocytes to adhere
(∼4 h). These plates were washed to remove non-adherent cells
(primarily lymphocytes), and the remaining adherent cells were
stimulated with increasing concentrations of LPS (1–1000 ng ml−1),
provided in DMEM (Gibco 11965118, 1% penicillin/streptomycin)
with 10% serum [fetal bovine serum, (FBS); 35-015-CV, Corning,
Manassas, VA, USA, <20 EU ml−1 endotoxin, not heat-inactivated]
for 12 h (n=6 adults and n=6 pups, each with 3 technical replicates
per dose, were initially used to determine the dose–response). Cell
cultures were routinely tested for mycoplasma.

We used several manipulations of the cell culture medium in
conjunction with LPS stimulation to evaluate the mechanisms of
anti-inflammatory action of seal serum. We first compared the
inflammatory response of Weddell seal monocytes cultured in
standard conditions (DMEM, 1% penicillin/streptomycin), with
commercially available serum (10% FBS) to medium supplemented
with the seal’s autologous serum (10% serum, n=8 additional
animals, 3 technical replicates in each dose×serum treatment).
To address the possibility that baseline differences in serum
cortisol between our wild population of Weddell seals and the
controlled conditions of cell culture medium could affect
responses, this experiment was repeated to supplement FBS
with 10–10,000 ng ml−1 hydrocortisone for 18–24 h prior to
stimulation with a single LPS dose (100 ng ml−1, n=11 seals×3
technical replicates per seal). These hydrocortisone doses were
selected to span and exceed the range of serum cortisol levels that
would exist in any marine mammals, and that have been reported in
Weddell seals (Barrell and Montgomery, 1989; Bartsh et al., 1992;
Liggins et al., 1979; Shero et al., 2015). Cells from all technical
replicates were harvested in lysis buffer or Trizol (see below) for
gene expression analyses, and a subset of samples from n=6 seals
(one supernatant sample from each serum condition treatment at 0,
1 and 100 ng ml−1 LPS exposures) was processed to measure
cytokine production using the canine multiplex assay.

Murine RAW cell validation experiments
To test the anti-inflammatory potential of Weddell seal serum
(WSS), we tested its effect, compared with FBS, on the LPS
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response of a mouse monocytic cell line (RAW 264.7 cells, tested
mycoplasma-free). Cells were grown overnight in six-well plates,
then washed in DMEM without serum and incubated for 6 h with
(1) regular medium (10% FBS) or (2) DMEM with 10% pooled,
decomplemented WSS. Cells were then stimulated with varying
concentrations of LPS (three technical replicates per dose×serum
treatment). A single batch of decomplementedWSSwas used in this
and all subsequent experiments, created by pooling archived serum
from free-ranging, healthy adult Weddell seals (n=16 males and
females, NMFS authorization no. 18662) and abolishing protein
complement activity by heat inactivation (56°C for 30 min).
To evaluate the potential for species differences in serum lipid

level to interfere with the action of LPS, we conducted a separate
experiment in RAW cells (three replicates per condition×dose)
using four serum conditions: (1) 10% FBS (0.37 mmol l−1

triglycerides), (2) 10% FBS with lipid supplementation
(0.43 mmol l−1), (3) 10% WSS (0.45 mmol l−1) and (4) 10%
delipidated WSS (0.32 mmol l−1). Lipids were added to FBS based
on cell culture conditions appropriate for Weddell seal primary cells
(2.5% Lipid Mix 1 L0288, Sigma-Aldrich, St Louis, MO, USA; our
unpublished observations; De Miranda et al., 2012), and lipids were
removed from WSS by reserving the bottom, lipid-depleted layer
after centrifugation at 13,000 g for 20 min (Fu et al., 2007).
Triglyceride levels were confirmed in the four conditions (ETGA-
200, Enzychrom, San Francisco, CA, USA).

Hyperlipidemic mouse model
To examine the possibility that high lipid levels could affect
inflammatory responses in vivo, we conducted an ex vivo LPS
exposure experiment in whole blood samples from control (n=4)
and hyperlipidemic mice (n=8). LDLR knock-out mice (lacking a
low-density lipoprotein receptor making them susceptible to
hypercholesterolemia, C57BL/6J background) were maintained on
either a regular diet (control mice, Prolab Isopro RMH 3000,
LabDiet, St Louis, MO, USA) or a high-fat diet (hyperlipidemic
mice, 40% lipid, Research Diets Inc., New Brunswick, NJ, USA).
After 20 weeks, blood samples were collected, then treated with
LPS as per the ex vivo exposure protocol described above.

Propidium iodide staining to detect cell viability
Viability of RAW cells cultured with FBS and WSS was examined
to confirm that any observed differences in inflammatory output
were not related simply to differences in cell survival. RAW cells
were prepared at a constant density in six-well plates, then incubated
with DMEM supplemented with either 10% FBS or 10% WSS for
6 h. The cells were then mechanically detached and stained with
propidium iodide (0.5 µg ml−1), a nuclear stain that is excluded by
viable cells. The proportion of propidium iodide negative cells (i.e.
viable cells) was recorded by flow cytometry. Flow cytometry was
performed using a FACS Aria III machine (BD Biosciences, San
Jose, CA, USA), and the results were analyzed using FlowJo
software (TreeStar, Ashland, OR, USA). In all cases, the gating
parameters were set to exclude doublets.

qPCR to detect IL6 and inflammatory gene expression
Total RNA was isolated from frozen, lysed monocytes using the
RNeasymini kit (74104, Qiagen,Germantown,MD,USA) according
to the manufacturer’s protocol, or Trizol with chloroform/isopropanol
extraction. cDNAwas produced from n=3 separate RNA preparations
for each condition (4368813, Applied Biosystems, Foster City, CA,
USA), and evaluated by real-time PCR. Weddell seal mRNA was
assayed with Fast SYBR® Green Master Mix (LifeTechnologies,

Carlsbad, CA, USA). Seal Il6 was amplified with: 5′-ACAAGTG-
CGAAGACAGCAAG and 5′-CCCTCATAGTTGGCCTGGAT
forward and reverse primers, respectively, and expression level was
normalized to a reference gene (β-actin: forward 5′-GGAAATCGT-
GCGTGACATCA, reverse 5′-CAGGAAGGAAGGCTGGAAGA)
for each sample using the ΔCT method. Gene expression in mouse
monocytes was quantified with a Taqman qPCR system, with target
genes normalized to 18S ribosomal RNA (Hs03003631_g1,
ThermoFisher, Waltham, MA, USA). Commercially available
primers for mouse cells are as follows: Il6 (Mm00446190_m1),
TNFα (Mm00443258_m1), Il-1β (Mm00434228_m1) and Il10
(Mm01288386_m1).

Statistical analyses
Two-way ANOVA with repeated measures and multiple test
correction was used to compare experimental treatments across
the LPS dose–response curve (response of whole blood to ex vivo
stimulation between species, inflammatory response of both seal
and mouse monocytes in FBS versus WSS, IL6 production in
normal versus hyperlipidemic mice). Sidak pairwise post hoc
comparisons were used to examine any interaction between factors
(across the dose–response curve) when global F-tests for the
interaction term in the two-way models were significant. An effect
of hydrocortisone treatment on a constant LPS exposure in seal
monocyte Il6 production was tested using a one-way ANOVAwith
repeated measures. Analyses were conducted in Prism 7 (GraphPad
Software, Inc., La Jolla, CA, USA). All tests were two-tailed. Data
are reported as means±s.d.

RESULTS
Reduced whole blood responses to ex vivo LPS exposure
in seals
In both species of deep-diving seal (Weddell and northern elephant
seals), the cytokine response of whole blood exposed to LPS ex vivo
was lower compared with that of human blood exposed to LPS
under the same conditions (Sidak post hoc P<0.0001 for both seals
versus human; Fig. 1A). Whereas IL6 protein content measured in
human plasma increased >1000× following LPS stimulation, it
increased only 10 and 100× in plasma from Weddell and elephant
seals, respectively. IL6 production between the two seal species did
not differ significantly (Sidak post hoc P=0.9936). IL6 production
in Weddell and elephant seal blood was relatively consistent across
all experimental LPS doses (with a plateau beyond 1 ng ml−1 LPS)
compared with that in humans, who demonstrate increasing IL6
production at each increase in LPS. Consistent with the scope of the
IL6 response in the ELISA, Weddell seal IL6 levels measured by
bead-based multiplex cytokine panel increased ∼6× from a baseline
of 2.5±5.9 pg ml−1 plasma when blood was stimulated with
100 ng ml−1 LPS (Fig. 1B). Of 13 cytokine and chemokines
quantified by the multiplex assay, only fivewere above the detection
limit in Weddell seal plasma (IL6, TNFα, IL10, IL18 and KC-like).
Pro-inflammatory cytokines IL6 (Fig. 1B) and TNFα, as well as
anti-inflammatory cytokine IL10, exhibited some degree of LPS
dose–response, whereas IL18 and KC-like (keratinocyte
chemoattractant) were detectable in all samples, but remained
constant across levels of LPS exposure (Fig. 2).

Isolated monocyte responses
In contrast to the limited ability of Weddell seal blood to generate
IL6 protein upon ex vivo LPS exposure (∼10× increase), mRNA
expression of Il6 increased robustly in isolated Weddell seal
monocytes. Under standard cell culture conditions, in vitro LPS
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treatment dose-dependently increased Il6 expression (>300× at
1000 ng ml−1 LPS; Fig. 3A). To tease apart the different cytokine
responses between the two experiments (isolated cells versus a
whole blood scenario), we exposed monocytes to LPS as before,
but added back autologous seal serum to the cell culture medium.
Replacement of FBS with autologous WSS conferred an anti-
inflammatory benefit by decreasing Il6 expression overall across
the LPS dose–response curve (F1,6=8.476, P=0.027; Fig. 3B).
There was no significant interaction between LPS dose and
experimental serum conditions in the two-way ANOVA
(F4,24=0.34, P=0.85), indicating that the response to LPS does
not differ with dose level.
The supernatant of isolated monocytes in these experiments

likewise displayed a globally reduced cytokine and chemokine
production in WSS compared with FBS (Fig. 4). Of the seven
chemokines/cytokines that were detected in monocyte culture
medium (supernatant) by the multiplex panel (Fig. 4A), IL6
(F1,5=13.77, P=0.014), IL8 (F1,5=463.8, P<0.0001), IL10
(F1,5=14.5, P=0.013), KC-like (F1,5=18.18, P=0.008) and TNFα
(F1,5=7.369, P=0.042) were significantly lower after LPS exposure
in WSS versus in FBS (Fig. 4B).

Mouse macrophage responses
We next tested whether seal serum confers anti-inflammatory
protection from LPS exposure in other systems. mRNA expression
of Il6 (F1,2=246.9, P=0.004), Tnfα (F1,2=292.2, P=0.003), IL1β
(F1,2=130.2, P=0.008) and Il10 (F1,2=385.4, P=0.003) was lower in
murine RAW cells exposed to LPS in the presence of WSS than in
cells exposed to LPS in the presence of FBS (Fig. 5). Neither FBS
nor WSS affected RAW cell viability (Fig. S1), suggesting that the
lower inflammatory readout from cells cultured in WSS was not
related to a difference in cell death.

Effect of high cortisol levels in seal serum
To test the possibility that naturally high circulating cortisol levels
are responsible for the anti-inflammatory effects of seal serum, we
exposed isolated seal monocytes to FBS medium supplemented
with hydrocortisone prior to LPS exposure (constant 100 ng ml−1

for each hydrocortisone treatment). There was no effect of
hydrocortisone (10–10,000 ng ml−1) on LPS-induced Il6 expression
in seal monocytes (Fig. S2), suggesting that cortisol did not mediate
or impact the effect of WSS.

Effect of high lipid levels in seal serum
Next, we considered the potential for lipid levels to influence LPS
exposure, either as an organismal protective strategy or a technical
artifact of LPS sequestration by native lipoproteins. We matched
lipid contents in WSS and FBS, then repeated the LPS exposure in
mouse monocytes. WSS consistently reduced Il6 and Il1β
expression in RAW cells stimulated with LPS. Delipidation did
not impair the anti-inflammatory capacity of WSS (Fig. 6). Further,
lipid supplementation did not enhance the anti-inflammatory
ability of FBS (Fig. 6). Finally, we investigated an alternative
in vivo hyperlipidemic model, by assaying LPS-induced IL6
protein production in whole blood of control versus obese LDLR
knockout mice (20 weeks on a high-fat diet). In contrast to WSS
and FBS experiments, where lipid supplementation (or depletion)
had no effect, mice fed a high-fat diet had a pro-inflammatory
response, with increased IL6 production compared with wild-type
mice (F2,20=14.45, P=0.0001; Fig. 7).
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DISCUSSION
In this study, we demonstrated that seals have a lower ex vivo
inflammatory response to LPS compared with humans, and that this
difference may, in part, be explained by a serum-derived factor. This
investigation took a unique, multi-species approach by combining
ex vivo responses to inflammatory challengewith controlled, in vitro
experiments in live cells to tease apart components of the response.

Relevance of LPS stimulation and observed responses
LPS is an agonist of toll-like receptor 4 (TLR4). TLRs are a type of
pattern recognition receptor (PRR) that help recognize molecules
broadly shared by pathogens but different from host molecules.
These receptors are an important part of the innate immune system
that has evolved to provide rapid recognition of and protection from
both pathogens and endogenous pro-inflammatory molecules
released by cell damage (Okin and Medzhitov, 2012). Upon
binding of LPS and TLR4 activation, a series of downstream cell
signaling events occur, which includes the production of cytokines,
notably IL6, which promotes fever and synthesis of acute phase
proteins. We chose to focus on IL6 as it is a rapid, sensitive marker
of acute inflammation, and has been used in large human clinical
trials as a surrogate for the inflammatory response to critical illness
(Brower et al., 2000), but has also been shown to play a critical

role in lung inflammation/injury in mice upon exposure to
environmental air pollutants (Yu et al., 2002). LPS is also known
to promote the secretion of other pro-inflammatory cytokines,
including IL1β and TNFα from human PBMCs (Eggesbø et al.,
1994), and TNFα, IL8 and KC-like from canine and pinniped
PBMCs (Levin et al., 2014). TNFα is potent chemoattractant for
neutrophils and also stimulates the acute phase response. IL8 is also
a neutrophil chemotactic factor. IL1β has fever-producing effects
and contributes to the pain associated with inflammation.
Importantly, TNFα and IL1β help regulate the development of
lung IR injury (Krishnadasan et al., 2003). In addition, LPS has also
been shown to promote the secretion of the anti-inflammatory
cytokine IL10 (Chanteux et al., 2007), which helps to downregulate
the expression of cytokines produced by T helper 1 cells and may
help protect against lung injury, in part by inhibiting TNFα and
IL1β (Shanley et al., 2000). Avariety of interleukins (including IL6)
have been explored to evaluate the health and disease status of
stranded marine mammals, as well as resolution of the immune
response during rehabilitation (reviewed by Levin, 2018).

The diving seal model system
There are many physiological features of diving seals that likely
contribute to a pro-inflammatory milieu. The unique ecological
niche exploited by deep divers exposes them to stressors that would
adversely affect terrestrial mammals. In addition to repeated episodes
of lung collapse and re-expansion owing to high hydrostatic pressure,
the tissues of diving seals experience profound hypoxia and IR events
resulting from breath-hold exercise, which could produce significant
injury in a non-adapted system. Seals also have consistently high
blood cholesterol levels, and transiently high triglycerides associated
with phases of nursing, weaning and adult foraging (Sakamoto et al.,
2009; Schumacher et al., 1992). Degree of adiposity has been
positively linked to circulating cytokine levels in elephant seals
(Peck et al., 2016). Yet, there is no evidence that seals suffer from
atherosclerosis or vascular disease, despite being hypercholestrolemic
by human standards. Indeed, seals have been proposed as models for
investigating naturally occurring protection against issues stemming
from IR and diet-induced obesity, namely oxidative stress
(Zenteno-Savín et al., 2002) and metabolic syndrome (Houser
et al., 2013). Teleologically, therefore, it would not be surprising
that diving mammals have evolved multiple strategies to mitigate
organ damage from the above stresses. While changes in surfactant
function and the structure of distal airways are likely adaptations for
diving in marine mammals (Foot et al., 2006), our data suggest that a
modified innate immune response is another.

The innate immune response is initiated rapidly by resident
populations of white blood cells, producing non-targeted effects such
as acute inflammation mediated by cytokines. This arm of the immune
system is expected to be the most responsive under hypoxic conditions
that mimic the low oxygen tension environments of wounds. Although
hypoxia limits adaptive immune cell functionality, it directly promotes
innate immune cell recruitment and activation (Sica et al., 2011).
Consequently, anti-inflammatory effects that target this immune arm
may be most relevant in protection against dive-induced tissue injury.

Although this experiment applied LPS/endotoxin ex vivo and
in vitro to stimulate and study immune responses under controlled
conditions, LPS exposure may also be biologically relevant for
Antarctic seals. Proteobacteria, the dominant phylum of gram-
negative bacteria in which LPS occurs, represent the major
component of skin microbiome (A.G.H., K.N.A., L.A.H., D.P.C.
and E.S.B., unpublished observations), and gram-negative rods
have been cultured from skin swabs in Weddell seals (Mellish
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et al., 2010), indicating their presence even in polar ecosystems.
Proteobacteria have also previously been identified in the fecal
microbiome (12.9% relative abundance) of this species (Banks
et al., 2014), suggesting that gram-negative bacteria are an
important part of their gut microbial community. A healthy gut
barrier prevents the translocation of live bacteria into the tissues
and circulation, a process that, if defective, would expose animals
to acute infectious and inflammatory challenge, and could produce

sepsis (Balzan et al., 2007; Schuijt et al., 2013). The integrity of
the gut barrier faces constant challenge from hypoxia–
reoxygenation across foraging bouts. Diving seals demonstrate
regional differences in organ perfusion (Zapol et al., 1979), with
visceral tissues of Weddell seals thought to remain consistently
vasoconstricted during long submergence (Davis et al., 1983;
Guppy et al., 1986), and experimental evidence in another
pinniped predicts that digestion is at least partially deferred to
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the surface period (Rosen et al., 2015). In addition to their
increased risk of bacterial translocation and exposure to bacterial
endotoxin, endogenous ligands of TLR4 (e.g. HSP70, HMGB1

proteins) may also be released in response to IR (Kaczorowski
et al., 2009). Consequently, studying the response to a TLR4
ligand in seals is likely to have pathophysiologic relevance.

Evidence for a serum-derived protective factor
Our data suggest that a seal serum-based factor mediates the cytokine
response to LPS stimulation, although we cannot completely rule out
a species-specific difference in immune cell responses as well. The
importance of seal serum in blunting the inflammatory response of
seal monocytes was clear. Il6 expression and induction of cytokines
from isolated cells was attenuated in the presence of WSS compared
with FBS. Although isolated seal monocytes responded to LPSwith a
clear increase in Il6mRNAproduction (∼300× under standard culture
conditions), it is noteworthy that the magnitude of this response was
muted in comparison to similar studies in isolated human monocytes
by our group (Hoeft et al., 2017). A previous study examining LPS-
induced cytokine production in isolated PBMCs also suggests that
harbor seals (Phoca vitulina), gray seals (Halichoerus grypus) and
harp seals (Pagophilus groenlandicus) have slightly reduced cell level
inflammatory responses compared with dogs (Canis familiaris) under
similar culture conditions, although between-species comparisons
were not explicitly made (Levin et al., 2014). Despite some
methodological differences between studies prohibiting quantitative
comparisons of LPS responses, it generally appears that magnitude of
change in pro-inflammatory cytokines/chemokines are lowest in
deep-diving Weddell seals among these five carnivores. It is possible
that diving mammals, including Weddell seals, additionally have
immune cell-level adaptations that reduce the effects of dive-related
challenges. For example, both elephant seal platelets and beluga
(Delphinapteurus leucas) immune cells respond differently from
human cells to increased hydrostatic pressure (Field and Tablin, 2012;
Thompson and Romano, 2015, 2016), and their responses to
inflammation may also differ. However, the human monocyte
response to acute LPS stimulation is on average ∼10× stronger than
the seal response (Hoeft et al., 2017), whereas the response in whole
blood is markedly increased (>100× higher in human versus seal). A
more pronounced difference between species response in vitro versus
ex vivo supports the idea that seal serum, and not a difference in
properties of immune cells themselves, is the primary anti-
inflammatory factor.

We identified and tested two elements of seal serum that are
expected to differ between species, and which may provide an anti-
inflammatory benefit. Weddell seals demonstrate extremely rapid
cortisol turnover rates and high total cortisol levels (Barrell and
Montgomery, 1989; Bartsh et al., 1992; Constable et al., 2006;
Shero et al., 2015), traits suggested to relate to protection from high-
pressure nervous syndrome (Liggins et al., 1979, 1993). Steroids
have been shown to have an anti-inflammatory effect by multiple
mechanisms, including inhibition of NF-κB (Ray and Prefontaine,
1994; Van Der Burg et al., 1997) and inhibition of cytokine gene
expression (Vanden Berghe et al., 2000). High-dose steroids are
commonly used as anti-inflammatory agents in human (Hench
et al., 1950) and veterinary medicine (Pedersen et al., 1976). It is
therefore possible that high circulating cortisol levels may have an
anti-inflammatory effect in seal serum. However, we found no
evidence that hydrocortisone pre-treatment (at biologically relevant
levels for Weddell seals) was immunosuppressive in monocytes.
This concurs with observations from fasting elephant seals (females
during molting and breeding) that report no link between circulating
cortisol and IL6 levels (Peck et al., 2016). We also considered that
the known hyperlipidemic baseline in seals may interfere with
inflammatory responses. For instance, both northern elephant seals
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(Tift et al., 2011) and Weddell seals (Schumacher et al., 1992) have
high levels of high-density lipoprotein (HDL) and HDL cholesterol
relative to humans. There is evidence that HDLbinds to and sequesters
LPS, preventing effective experimental stimulation of immune cells
(De Nardo et al., 2014). However, the facts that delipidating seal
serum did not change the anti-inflammatory effect of WSS on RAW
cells, that LPS responses in WSS-treated RAW cells approaches
the levels in FBS-treated cells at a moderately high dose of LPS
(100 ng ml−1), and that both Weddell seals and elephant seals have a
measurable ex vivo response to a low dose of LPS (1 ng ml−1) argue
against an effect mediated purely by LPS sequestration.
Our findings raise several intriguing questions that will require

further exploration. LPS requires the presence of other cofactors,
includingCD14,MD2 and lipopolysaccharide binding protein (LBP),
for optimal function (Lee et al., 2012). It is possible that one or more
of these protein cofactors is reduced in seals. Although we have
primarily focused on the TLR4 ligand LPS, it would be informative to
examine the effect of other TLR ligands to determinewhether there is
a general attenuation of the inflammatory response across multiple
ligands. The response to endogenous TLR ligands such as HMGB-1
(an endogenous TLR4 ligand)would be especially interesting to study
because TLR4 is implicated in the pathogenesis of IR injury in many
organs (Yang et al., 2017; Zhao et al., 2014).

Conclusions
The results presented here reveal a significantly attenuated
inflammatory response to the TLR4 ligand LPS in seal blood
compared with human blood, and support our hypothesis that deep-
diving seals respond to acute inflammatory stimuli differently from
humans. The data suggest the presence of a serum-borne factor that
blunts the inflammatory response to LPS in these deep divers.
Although high cortisol and lipid levels do not appear to account
for this relative anti-inflammatory effect, serum proteins may be
an attractive target for further investigation. There is evidence
that modulation of inflammation by serum proteins may be
responsible for the markedly different response to inflammation in
mice compared with humans (Lin et al., 2015). Uncovering the
identity of the factor(s) may help us understand more about seal
biology and potentially have translational implications for
reducing the sequelae of IR, particularly in the context of acute
lung injury and solid organ transplants.
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Fig. S1. Flow cytometry outputs for cell viability in mouse monocytes. RAW 
264.7 cells were incubated with medium containing 10%Fetal Bovine 
Serum (FBS) or 10% Weddell Seal Serum (WSS) for 6 h. Cell viability was 
determined by staining the cells with Propidium Iodide (PI) and performing 
flow cytometry. A representative histogram comparing cells incubated 
in FBS and WSS is shown, together with cell viability for three replicates 
(inset).
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Fig. S2. Il6 expression of isolated Weddell seal monocytes 
(n=11 seals) exposed to 100ng/mL LPS does not change with 
hydrocortisone supplementation (F=1.085, p=0.37).
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