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Effects of temperature and salinity on body fluid dynamics
and metabolism in the estuarine diamondback terrapin
(Malaclemys terrapin)
Amanda Southwood Williard1,*, Leigh Anne Harden2, T. Todd Jones3 and Stephen R. Midway4

ABSTRACT
The diamondback terrapin is the only temperate turtle species
that exclusively inhabits estuarine environments. Morphological,
behavioral and physiological features contribute to the terrapin’s
ability to regulate body fluid osmotic pressure in a euryhaline
environment. Low integument permeability combined with aquatic–
terrestrial shuttling behavior limits passive exchange of water and salts
with the environment, and terrapins regulate active uptake of salts via
alterations in drinking and feeding behavior. The lachrymal salt gland
facilitates excretion of excess sodium (Na+) and chloride (Cl−) ions
through active transport mechanisms. We investigated body fluid
dynamics, oxygen consumption (V̇O2

) and osmotic status of terrapins
exposed toanacute increase in salinity (12 to35 psu) at 10and 25°C to
gain insight into the relative importance of behavioral versus
physiological osmoregulatory adjustments over a range of seasonally
relevant temperatures. Linear mixed models were used to evaluate
the effects of experimental temperature, salinity and mass. Overall,
temperature effects were stronger than salinity effects. Terrapins
acclimated to 25°C had significantly lower blood osmolality and Na+,
and higher water turnover rates, daily water flux (DWF) and
V̇O2

compared with terrapins acclimated to 10°C. Salinity effects were
restricted to DWF, which significantly decreased in response to acute
exposure to 35 psu. Our results support the notion that behavioral
adjustments predominate in the osmoregulatory strategy of terrapins.

KEY WORDS: Osmoregulation, Energetics, Oxygen consumption,
Salt gland, Water balance, Reptile

INTRODUCTION
While many species of terrestrial, freshwater or marine vertebrates
take advantage of temporally available resources in estuaries, the
diversity of species that live entirely within the estuarine habitat is
low compared with that in more stable environments (Greenberg
and Maldonado, 2006). Among reptiles, a limited number of
crocodilian and snake species utilize brackish waters (Dunson,
1970, 1980; Grigg, 1981; Dunson and Mazzotti, 1989; Lillywhite
and Ellis, 1994; Leslie and Spotila, 2000), and several turtle species
occur in tidally influenced habitats (see Agha et al., 2018, for

review). Regulation of water and salt balance in a highly variable
environment is one of the primary physiological challenges facing
estuarine reptiles, and the distribution of reptiles in coastal
environments is constrained in large part by water salinity
(Dunson and Mazzotti, 1989; Brischoux et al., 2012). Marine and
estuarine reptiles generally regulate body fluid osmotic pressure
within the range observed for terrestrial vertebrates, although some
species are tolerant of higher body fluid ion concentrations and
osmolality (Dunson, 1984; Brischoux et al., 2013; Lewbart et al.,
2015). In highly variable hyperosmotic environments, these reptiles
maintain osmotic homeostasis using a combination of both evasive
strategies – to reduce passive exchange of water and salts between
the organism and environment (Robinson and Dunson, 1976;
Mazzotti and Dunson, 1989; Davenport and Magill, 1996) – and
compensatory (i.e. energy-requiring) strategies – to actively take up
or extrude salts (Schmidt-Nielsen and Fange, 1958; Dunson, 1970).

The diamondback terrapin (Malaclemys terrapin) is a semi-
aquatic, emydid turtle found exclusively in marshes, tidal creeks
and estuaries along the East and Gulf coasts of the USA (Hart and
Lee, 2006; Ernst and Lovich, 2009). Terrapins experience a broad
range of salinities (11–35 psu) in their coastal habitats (Dunson,
1970; Harden and Williard, 2012), and provide a good illustration
of how morphological, behavioral and physiological features
contribute to osmoregulation in estuarine environments. Body
fluid osmotic pressure of terrapins under natural conditions falls
within the range 300–350 mOsm, and is typically hyposmotic to the
surrounding aquatic environment (Harden et al., 2015). Passive
exchange of water and salts between terrapins and their environment
is minimized as a result of low integument permeability (Robinson
and Dunson, 1976). Furthermore, terrapins may engage in basking
or terrestrial shuttling behavior to regulate salt and water exchange
across the integument (Davenport and Magill, 1996). Davenport
and Magill (1996) noted that terrapins held in seawater tanks spent
more time on basking platforms if they were deprived of periodic
access to freshwater, even when air temperature was cooler than
water temperature. In natural habitats, it is common for terrapins to
bask or bury in the mud of the intertidal zone during low tide, which
could reflect thermoregulatory and/or osmoregulatory behavior
(Spivey, 1998; Harden et al., 2007; Harden and Williard, 2012).
Active uptake of water and salts may be controlled through
alterations in drinking and feeding behavior. Terrapins selectively
drink low salinity water (≤20 psu) or freshwater if given the
opportunity to do so (Cowan, 1981; Davenport and Macedo, 1990).
The terrapin’s typical invertebrate prey (Uca pugilator and Littorina
littorea) are isosmotic with the variable estuarine environment
(Dunson, 1985; Tucker et al., 1995; Whitelaw and Zajac, 2002),
so at higher salinities, prey consumption results in a large salt load
that could disrupt osmotic homeostasis. Laboratory studies have
illustrated that terrapin appetite is gradually suppressed duringReceived 25 February 2019; Accepted 2 May 2019
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prolonged exposure to seawater with no access to supplemental
freshwater (Davenport and Ward, 1993; Holliday et al., 2009).
While it is widely recognized that behavioral adjustments are an

integral component of the terrapin’s osmoregulatory strategy,
terrapins also exhibit a variety of physiological responses to
changes in environmental salinity. Reptiles are limited in their
capacity to modulate osmotic pressure via waste excretion because
their kidneys are not capable of generating hyperosmotic urine
(Dantzler, 2016). However, production and retention of the
nitrogenous waste product urea and other compatible osmolytes
may contribute to osmotic balance in estuarine chelonians, as
accumulation of these molecules increases body fluid osmotic
pressure and facilitates water retention during exposure to high
salinity or dehydration (Gilles-Baillien, 1970, 1973; Lee et al.,
2006). Terrapins may also regulate body fluid osmotic pressure
through the active extrusion of inorganic ions (e.g. Na+, Cl−) via a
lachrymal salt gland (Schmidt-Nielsen and Fange, 1958; Dunson,
1970). The terrapin salt gland is intermediate in secretory capacity
between those of marine and terrestrial reptile species (Dunson,
1970; Harden and Williard, 2018). Terrapins increase rates of ion
excretion through the salt gland in response to conditions associated
with prolonged or extreme salt accumulation (Dunson, 1970;
Robinson and Dunson, 1976; Cowan, 1981); however, the role of
the salt gland in addressing routine exposure to variable salinity has
not been well studied. Salt gland activation in response to a salinity
challenge incurs a metabolic cost, as active transport mechanisms
are employed (Bentley et al., 1967; Dunson and Dunson, 1975).
The relative importance of behavioral versus physiological

strategies for osmoregulation in terrapins could vary seasonally
with changes in resource availability and temperature. Terrapins
exhibit distinct seasonal patterns in behavior and habitat utilization,
which appear to be driven largely by variations in environmental
temperature (Yearicks et al., 1981; Harden and Williard, 2012). At
water temperatures (TW) of ≤20°C, terrapins enter a dormant state
characterized by mud burial, hypophagy and decreased metabolic
capacity (Southwood Williard and Harden, 2011; Harden and
Williard, 2012; Harden et al., 2015). Overwintering in the mud may
reduce passive exchange of water and salts across the integument
and a reduction in feeding decreases active uptake of salts from the
environment (Davenport and Magill, 1996); these behavioral
changes contribute to the terrapin’s ability to maintain osmotic
balance during a period when both metabolic capacity and resource
availability are low (Harden et al., 2015). During the warm weather
active season, terrapins may rely more heavily on active ion
extrusion via the salt glands, given the higher rates of passive and
active water and salt exchange with the environment and the need
for continual energy intake to support higher metabolic demands
(Baker et al., 2013; Harden et al., 2014). The decrease in metabolic
rate that accompanies a decrease in temperature may limit the ability
of terrapins to respond physiologically to salt ingestion or an
environmental salinity challenge (Baker et al., 2013; Southwood
Williard and Harden, 2011). Consequently, terrapins may rely more
heavily on energetically efficient behavioral strategies to regulate
water and salt exchange with the environment or simply tolerate
higher blood ion concentration and osmotic pressure (Brischoux
et al., 2013; Harden et al., 2015; Lewbart et al., 2015).
The primary goal of this study was to assess the role of behavioral

adjustments versus energy-requiring physiological adjustments in
the osmoregulatory strategy of terrapins across a range of seasonally
relevant temperatures. We documented body fluid dynamics and
metabolic rates of terrapins exposed to an acute increase in salinity
at 25 and 10°C. At both temperatures, terrapins were acclimated

over the course of 3 weeks to an environmental salinity that
approximated body fluid osmolality (12 psu), and then exposed to
full-strength seawater (35 psu) for 3–5 days to assess the response to
an increase in salinity at each temperature. The osmotic status of
terrapins was assessed by measuring plasma osmolality, inorganic
ions and organic osmolytes. The stable isotope deuterium (2H) was
used to assess total body water (%TBW), water turnover rate (WTR)
and daily water flux (DWF) as indicators of active and passive water
exchange with the environment. Oxygen consumption (VȮ2

) was
monitored as a measure of metabolic rate. We predicted that in order
to maintain osmotic homeostasis during acute exposure to high
salinity (35 psu), terrapins would exhibit (1) a decrease inWTR and
DWF reflective of behavioral adjustments (i.e. modulation of food
and water ingestion) to reduce water and salt exchange with the
environment and (2) an increase in VȮ2

reflective of activation of
energy-requiring physiological compensatory mechanisms, such as
ion excretion via the salt gland.

MATERIALS AND METHODS
Animal husbandry
Eleven M. terrapin (Schoepff 1793) (6 females, 5 males) were
captured by seine in tidal creeks adjacent to the Grice Marine
Laboratory in Charleston, SC, USA (32.7520°N, −79.8982°W) on
26–27 September 2013 (Table 1). TWat the capture sitewas 23°C and
salinity was 20 psu. Terrapins were transferred to the University of
North Carolina Wilmington Center for Marine Science (UNCW
CMS; 34.1419°N, −77.8678°W) on 27 September 2013, and
subsequently housed in outdoor, partially shaded, flow-through
tanks (107×107×56 cm, length×width×depth) with seawater
(mean±s.d. 35.6±1.4 psu) supplied from the Intracoastal Waterway
(ICW). TW in the outdoor holding tanks varied with natural variation
in air temperature and ICW TW (see below). Cinderblocks were
placed in the tanks to provide shelter and basking platforms for
terrapins. While housed in outdoor holding tanks, terrapins were
exposed to natural photoperiod and precipitation. On days when it did
not rain, freshwater was sprayed into the tanks for 15 min to offer
terrapins the opportunity to drink freshwater. Terrapins were fed 7%
of bodymass every other day on a diet of natural prey items (Uca spp.
and L. littorea) acclimated to holding tank salinity (Davenport and
Ward, 1993; Tucker et al., 1995). All terrapins maintained or gained
mass during the initial holding period of 2 weeks. This research was
authorized and conducted under North Carolina Wildlife Resource
Commission Permit #ES-00235, and UNCW Institutional Animal
Care and Use Permit #1112-015.

Table 1. Descriptive information for the 11 diamondback terrapins used
to investigate the effects of temperature and salinity onmetabolism and
osmotic status

Terrapin ID Sex Initial mass (g) SCL (cm)

25°C acclimated
BHP F 1002.8 18.0
CHV F 766.8 16.5
CHX F 1218.3 19.2
CIL M 291.2 12.2
CIM M 269.6 11.8

10°C acclimated
AHV F 770.4 16.5
CHW F 914.8 17
CIJ F 1078.8 18.6
CIN M 232.6 11.7
CIO M 359.1 13.8
CIP M 303.2 12.3

SCL, straight carapace length.
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Temperature and salinity treatments
Terrapins were transferred to an indoor, temperature-controlled,
recirculating water tank system for acclimation to treatment
conditions (details below). The system consisted of two oval
holding tanks (132×94×53 cm, length×width×depth) so that male
and female terrapins could be housed separately, as well as two
sump tanks (81×38 cm, diameter×depth) to house chiller and heater
units for temperature control. The tank system design resulted in
uniform TW and salinity in the two holding tanks. Water volume
for the entire system was approximately 835 l, and full water
change-outs occurred weekly. Water was recirculated through two
mechanical filters (Aquatic Ecosystems, Inc., Apopka, FL, USA)
to remove particulate matter. Water salinity was monitored with
a refractometer, and modified to necessary treatment conditions
by mixing freshwater with seawater supplied from the ICW.
Cinderblocks placed on the tank floor provided sheltering
opportunities for terrapins, but were submerged at a depth that
prevented terrapins from hauling themselves out of the water during
acclimation to treatment conditions. During acclimation to treatment
conditions, terrapins were offered a ration (7% of body mass) of
natural prey items acclimated to treatment salinity every other day,
and we documented whether the entire food ration was consumed.
Terrapins were not provided with supplemental freshwater.
Metabolic and osmotic status were assessed for four water

temperature–salinity treatments: warm temperature and low salinity
(25°C–12 psu), warm temperature and high salinity (25°C–35 psu),
cold temperature and low salinity (10°C–12 psu), and cold
temperature and high salinity (10°C–35 psu). Given the
limitations of the indoor tank system, we tested one temperature
treatment at a time, with 25°C tested first and 10°C tested second to
correspond with seasonal temperatures in the Carolinas.
On 17 October 2013, 5 terrapins (3 females, 2 males) were

transferred to the indoor tank system for acclimation to the
25°C–12 psu treatment. During the 2 weeks prior to this transfer,
the outdoor holding tank TW varied between 20.5 and 26.2°C
(23.2±2.3°C) with a salinity of 32–37 psu (35.8±1.0 psu). Response
variables indicative of osmotic status, body fluid dynamics and
VȮ2

were assessed after a 3 week acclimation to 25°C–12 psu, and
then the water salinity was increased to 35 psu. Response variables
were assessed again after 3–5 days of exposure to 25°C–35 psu, and
terrapins were transferred back to outdoor holding tanks upon
completion of the experiments (15 November 2013). The exposure
time of 3–5 days for the acute high salinity treatment was selected
based on previously published work that demonstrated the time
course for stabilization of blood variables (Gilles-Baillien, 1970).
On 17 November 2013, the remaining 6 terrapins (3 females,

3 males) were transferred to the indoor tank system for acclimation
to the 10°C–12 psu treatment. During the 2 weeks prior to this
transfer, the outdoor holding tank TW varied between 10.9 and
21.5°C (16.4±2.9°C) with a salinity of 32–39 psu (36.8±1.5). The
same response variables were assessed after a 3 week acclimation to
10°C–12 psu, and then the water salinity was increased to 35 psu.
Response variables were assessed again within 3–5 days of
exposure to 10°C–35 psu, and then terrapins were transferred
back to the outdoor holding tanks on 6 January 2014. All terrapins
were released at the site of capture in March 2014.

Osmotic status
Blood samples for determination of osmotic status and body
fluid dynamics were collected after 3 weeks acclimation to the
low salinity (25°C–12 psu and 10°C–12 psu) treatments, and after
a subsequent acute exposure of 3 days to the high salinity

(25°C–35 psu and 10°C–35 psu) treatments. Blood samples
(1–2 ml) were collected from the subcarapacial vein using a
heparinized vacuum tube and 23–25 G needle (Vacutainer, BD,
Franklin Lakes, NJ, USA). A sub-sample (70 μl) of whole blood
was taken for immediate analysis of Na+ (mmol l−1), Cl− (mmol l−1)
and glucose (mg dl−1) using an i-STAT Point of Care (POC)
handheld blood analyzer with 6+ cartridge (Abaxis Veterinary
Diagnostics, Union City, CA, USA; Harden et al., 2015). The
remainder of the blood was centrifuged at 2800 g to separate plasma
from blood cells. The plasma was transferred to 0.5 ml cryogenic
storage vials (Safe-Lock Tube, Eppendorf, Hamburg, Germany),
wrapped in Parafilm® (Pechiney Plastic Package, Inc., Chicago, IL,
USA), and stored in a −80°C freezer for subsequent analyses. A
sub-sample (10 μl) of plasma was used to measure osmolality
(mOsm) with a vapor pressure osmometer (Vapro model 5600,
Wescor Inc., Logan, UT, USA), and a second sub-sample (30 μl) of
plasma was used for determination of urea (mg dl−1) with a
commercially available reagent kit (Pointe Scientific Inc., Canton,
MI, USA) and standard spectrophotometric techniques (Lambda
25 UV/Vis, PerkinElmer, Waltham, MA, USA). Plasma urea
concentrations were measured and analyzed following the protocol
and equation detailed in Harden et al. (2015).

Body fluid dynamics
Changes in terrapin body fluid dynamics in response to an increase
in environmental salinity at different acclimation temperatures were
evaluated using the stable isotope deuterium (2H). Percentage TBW
(%TBW), WTR (ml day−1) and DWF (%TBW day−1) were
assessed after 3 weeks acclimation to the low salinity (25°C–12 psu
and 10°C–12 psu) treatments, and after a subsequent acute
exposure of 3 days to the high salinity (25°C–35 psu and
10°C–35 psu) treatments. A sub-sample of plasma collected for
assessment of osmotic status was reserved for determination of
background enrichment of 2H (Ebackground) in terrapin body water.
After the Ebackground sample was collected, terrapins were weighed
on a top-loading balance (Ohaus® Model SP40, 4000 g capacity,
0.01 g readability; Parsippany, NJ, USA). Dosage of 2H injectate
solution (82.6 atom%; Isotec, Inc., Miamisburg, OH, USA; verified
by Metabolic Solutions, Nashua, NH, USA) was calculated using
published equations (Speakman, 1997, eqn 12.1) and data on %
TBW for terrapins (Harden et al., 2014), with the goal of achieving a
desired initial enrichment (DIE) of ≥600 ppm above Ebackground.
The mass of the injectate syringe (1 ml) and needle (25 G) was
measured with a digital scale (Mettler Toledo Model AB 304-S/
FACT, 320 g capacity, 0.1 mg readability; Columbus, OH, USA)
prior to injecting the 2H dose into the coelomic cavity of the
terrapin. The empty injectate syringe and needlewereweighed again
after injection to determine the exact dose of 2H administered to
each terrapin. Terrapins were transferred to plastic bins and
maintained in room air (20–22°C) for 4–5 h to allow 2H to
equilibrate with body water (Harden et al., 2014). A second blood
sample was collected and processed in the manner described above
in order to assess 2H concentration in body fluids after the
equilibration period (Eequil), and terrapins were returned to indoor
acclimation tanks. A third blood sample (Efinal) was collected and
processed after approximately 2 days (1.80–1.93 days) for terrapins
acclimated to 25°C and 3 days (2.93–2.95 days) for terrapins
acclimated to 10°C. Terrapins were offered food rations once
between collection of Eequil and Efinal, but were not offered
supplemental drinking water.

Plasma samples were stored at −80°C for a maximum of
4 months prior to isotope analysis. An isotope ratio mass
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spectrometer (IRMS, Delta V Plus, Thermo Fisher Scientific,
Waltham, MA, USA) with gas bench interface (ThermoFinnigan
GasBench II, Thermo Fisher Scientific) was used to determine 2H
levels in plasma samples (see Harden et al., 2014, for details). Delta
values (o/oo) were obtained using Isodat software (Thermo Fisher
Scientific, s.d.<7o/oo). A calibration equation (y=5.0915x+4096.2,
R²=0.9988) generated from two standards (USGS W-64444 and
W-67400, −399.1o/oo and 1.25o/oo, respectively) and three dilutions
of 99.9 atom% 2H in Evian spring water (−75.14±5.2o/oo,
435.51±2.8o/oo, 1180.58±9.2

o/oo) was used to calculate corrected
delta values for terrapin plasma. Corrected delta values were
converted to ppm using the following equation:

ppm 2H ¼ 1,000,000

1þ ð1=f½ðd2H=1000Þ þ 1� � 0:00015576gÞ ; ð1Þ

where δ2H is per million 2H with respect to the Vienna Standard
Mean Ocean Water (VSMOW), and the constant 0.00015576 is the
2H/1H ratio of VSMOW.
The two-sample technique (Speakman, 1997) was used to estimate

the turnover rate of 2H (kd) during the time between Eequil and Efinal

sample collection, and the plateau method was used to estimate
isotope dilution space (Nd) for calculations of %TBW and WTR.
Daily water flux was estimated by multiplying %TBW by kd.

Oxygen consumption
We used closed-circuit respirometry to measure VȮ2

of terrapins
during exposure to each of the four temperature–salinity treatments.
Respirometry trials were coordinated with feeding schedule, such
that terrapins had been fasted for 40–48 h prior to the trial. For each
trial, an individual terrapin was placed in a 90 l circular tank filled
with water adjusted to the treatment temperature and salinity. Trials
were conducted in a cold room, and TW in the experiment tank was
controlled with submersible heaters for warm trials and by adjusting
room temperature for cold trials. Salinity of water in the experiment
tank was adjusted using Instant Ocean aquarium salt (Spectrum
Brands, Blacksburg, VA, USA). A partially submerged acrylic
domewith input and output air portals was placed on top of the tank.
Portals could be left open to allow the dome airspace to equilibrate
with room air, or connected to a series of tubes that closed the
system and recirculated air through the dome and Drierite and soda
lime cartridges using a pump (Gast Manufacturing, Benton Harbor,
MI, USA). Two dome sizes were used, depending on the size of the
terrapin; the volume of dome airspace, cartridges, tubing and
fittings was approximately 760 ml for the first dome and 2350 ml
for the second dome. The water surface comprised the bottom seal
for closed airspace within the dome; pressure changes within the
dome airspace were mitigated by changes in water level, as the water
within the submerged portion of the dome was in contact with
ambient air pressure through submerged vents in the acrylic dome.
Nitrogen dilution was used to calibrate the respirometry system.
Terrapins were transferred to the experiment tank and permitted

an acclimation period of 20–40 min with the dome secured in place
prior to the start of the trial. During the acclimation period, the input
portal was open to ambient air, but the output portal was connected
to the tubing system and pump. An initial air sample was drawn
from the dome after completion of the acclimation period and prior
to sealing the input portal of the dome system. The pump was turned
off immediately prior to sample collection, and sample collection
was timed to occur when the terrapin submerged after a breathing
episode. Air samples (40–50 ml) were drawn from the dome
through Drierite and soda lime cartridges connected to the output

portal using a syringe attached to a three-way stopcock. Samples
were subsequently transferred through the stopcock to an evacuated
500 ml respiratory bag (A. M. Bickford Inc., Wales Center, NY,
USA), and sealed for transfer to the oxygen analyzer (see below).
Following collection of the initial air sample, the input portal was
connected to the tubing system, and the pump was turned on to
recirculate air through the dome and ensure adequate air mixing
throughout the trial. Respirometry trial duration was selected based
on dome volume and estimates of metabolic rate from previously
published work (Bentley et al., 1967; Baker et al., 2013). Mean
(±s.d.) trial duration at 25°C was 30.7±5.7 min and mean trial
duration at 10°C was 121.7±17.3 min. Terrapins were monitored
continuously during trials, and the percentage time spent submerged
versus at the water surface in the dome was recorded. Percentage
time submerged served as a proxy for activity level during trials, as
increases in activity level are associated with decreases in dive
duration in turtles (Hays et al., 2000; Okuyama et al., 2012; Baker
et al., 2013). Given the limited space in the respirometry chamber,
terrapin activity during trials was limited to slow paddling or
walking along the tank bottom. A final air sample was collected at
the conclusion of the trial in the manner described for the initial
sample. The pump was turned off immediately prior to sample
collection, and sample collection was timed to occur when the
terrapin submerged after a breathing episode. Terrapins were
returned to indoor acclimation tanks upon completion of trials.

The percentage O2 in initial and final air samples was analyzed
with an Ametek S-3A Oxygen Analyzer (AEI Technologies,
Pittsburgh, PA, USA). Air samples were drawn from the
respiratory bag, through the three-way stopcock and into the
oxygen analyzer at a rate of 85 ml min−1. Only ½ to ¾ of the air
sample volume was used for analysis to ensure that pressure effects
were not generated in the analyzer. Data were acquired and recorded
from the analyzer at a frequency of 1 Hz using a universal interface
and ExpeData software (Sable Systems International, North Las
Vegas, NV, USA). The oxygen analyzer was calibrated daily using
the following gas mixtures: 100% N2, 5% O2, 18.5% O2 and
20.94% O2 (CalGas, Conyers, GA, USA). Calibration gases were
run through the oxygen analyzer in the same manner as described
for air samples from respirometry trials.

For calculation of V̇O2
, percentage O2 was converted to a

fractional concentration of O2, and Eqn 2, based on Lighton (2008),
was used to determine V̇O2

(ml h−1) during trials:

_VO2
¼ V ðF 00

i;O2
� F 00

e;O2
Þ

ð1� F 00
e;O2

Þ � T
; ð2Þ

where V is chamber volume, F 00
i;O2

is the fractional concentration of O2

in air scrubbed of CO2 and water vapor upon initiation of the trial,
F 00
e;O2

is the fractional concentration of oxygen in air scrubbed of CO2

andwater vapor at the end of the trial, andT is trial duration. Values for
V̇O2

are reported at standard temperature and pressure, dry (STPD).

Statistical analysis
We used linear mixed models to evaluate the effects of experimental
temperature, salinity and individual turtle mass on response
variables. Terrapins exhibit sexual dimorphism in mass; sex was
not included as a factor in our analysis given the likelihood for
covariance with mass. We fitted nine separate models for each of the
responses (Na+, Cl−, glucose, urea, osmolality, V̇O2

, %TBW, WTR,
DWF). All nine models had the same three predictors, with the
exception of V̇O2

, which had an additional predictor of percentage
submerged (i.e. time spent submerged during the respirometry trial)
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as a proxy for activity level (Hays et al., 2000; Okuyama et al., 2012;
Baker et al., 2013). For all models, we included a random effect for
subject (individual turtle), because of the potential for the correlated
information coming from the repeated use of turtles before and after
a treatment. We used the R package MCMCglmm (Hadfield, 2010),
which allowed us to fit linear mixed models that account for
correlated random effects while also including a Markov chain
Monte Carlo sampler so that posterior means for parameter
estimates and their associated credible intervals could be used for
parameter interpretation and comparison. Markov chain Monte
Carlo settings for all models included 70,000 iterations, 20,000
burn-in samples, and a thinning rate of 3, which resulted in a final
posterior sample of n=16,667 for each model. Model convergence
was evaluated with traceplots and density plots, in addition to
running each model three independent times to assess convergence
of chains among models. We examined 95% credible intervals of
posterior estimates: effects were considered significant if the 95%
credible intervals for the estimate excluded zero. Data used for
generating models are provided in Table S1.

RESULTS
Osmotic status
Plasma osmolality was significantly lower at 25°C versus 10°C, but
there was no significant effect of salinity or mass on this response
variable (Table 2). Plasma Na+ also was significantly lower at 25°C
than at 10°C, but therewas no significant effect of temperature onCl−

(Table 2). Neither plasma Na+ nor Cl− was affected significantly by
salinity or mass (Table 2). The two organic osmolytes that were
included in our study, glucose and urea, were not significantly
affected by temperature, salinity or mass (Table 2). Comparisons of
plasma osmolality, inorganic ions and organic osmolytes for each
temperature–salinity treatment are presented in Fig. 1.

Body fluid dynamics
There was no significant effect of temperature, salinity or mass on%
TBW (Table 2). Temperature had a significant effect on both WTR
and DWF (Table 2); these variables were positively correlated with
temperature. An increase in salinity resulted in a decrease in DWF
(Table 2). Therewas a significant, positive correlation betweenmass
and WTR (Table 2). A comparison of %TBW, WTR and DWF for
each temperature–salinity treatment is provided in Fig. 2.

Oxygen consumption
The VȮ2

response to an increase in salinity was not statistically
significant, but temperature had a strong, significant effect on
VȮ2

(Table 2, Fig. 3). For terrapins exposed to low salinity (12 psu),

the average VȮ2
at 25°C (68.9±34.8 ml h−1, mean±s.d.) was

10.9 times higher than the average VȮ2
at 10°C (6.3±4.4 ml h−1),

with a calculated Q10 of 4.9 over this temperature range. During
exposure to high salinity, the average VȮ2

at 25°C (76.6±36.4 ml h−1)
was 15.3 times higher than the average VȮ2

at 10°C (5.0±3.2 ml h−1),
with a calculated Q10 of 6.2 over this temperature range. Mass had a
significant effect on VȮ2

; larger terrapins had higher VȮ2
(Table 2).

The percentage time submerged during the respirometry trial did not
have a significant effect on VȮ2

[7.981e−4 (−0.199, 0.192); mean
(95% credible interval)]. Terrapins acclimated to 25°C spent an
average of 56.5±24.5% and 45.8±27.0% of trial time submerged at
12 psu and 35 psu, respectively. Terrapins acclimated to 10°C spent
an average of 77.9±15.1% and 74.9±12.4% of trial time submerged
at 12 psu and 35 psu, respectively.

DISCUSSION
Reptiles that inhabit estuarine environments with highly variable
salinity must regulate body fluid composition to maintain proper
physiological functioning. They do so through a combination of
energetically efficient behavioral strategies, and physiological
strategies that incur an energetic cost. The results of our study
indicate that terrapins do not rely heavily on energy-requiring
osmoregulatory adjustments when challenged with an acute
increase in environmental salinity across a broad range of
seasonally relevant temperatures. Rather, a reduction in active
rates of water and salt exchange with the environment, as indicated
by a decrease in DWF with exposure to high salinity, is sufficient to
defend osmotic homeostasis in the short term. In general,
temperature had a greater effect on osmotic status, body fluid
dynamics and VȮ2

than did salinity.

Osmotic status
The osmotic status of terrapins was not altered by an acute increase
in salinity at either temperature treatment. Maintenance of stable
levels of body water and blood osmolytes in the short term is
facilitated by the low rates of passive water and salt exchange over
the terrapin’s integument (Robinson and Dunson, 1976).
Additionally, terrapins may draw on their exceptionally large
extracellular water stores in interstitial fluids and hyposmotic urine
in the bladder to stabilize blood osmotic pressure and regulate cell
volume during periods of water deprivation or dehydration
(Thorson, 1968; Robinson and Dunson, 1976; Cowan, 1981).
Other studies have shown a decrease in urine volume and an
increase in urine osmotic pressure occurs when terrapins are
exposed to seawater (Bentley et al., 1967; Gilles-Baillien, 1970).
Water conservation strategies may be effective means to stabilize

Table 2. Results of linear mixed models to assess the effects of temperature, salinity and mass on blood variables indicative of osmotic status
(osmolality, Na+, Cl−, urea, glucose) and body fluid dynamics (%TBW, WTR, DWF), as well as oxygen consumption in diamondback terrapins

Response Intercept Temperature Salinity Mass

Osmolality 393.64 (366.84, 420.73) −1.54 (–2.74, –0.33)* 0.10 (–0.08, 0.28) –0.01 (–0.04, 0.01)
Sodium 171.44 (163.00, 179.66) –0.82 (–1.18, –0.45)* 0.00 (–0.12, 0.11) –0.01 (–0.01, 0.00)
Chloride 116.3 (103.8, 130.3) –0.21 (–0.78, 0.34) –0.09 (–0.32, 0.11) –0.01 (–0.02, 0.00)
Urea 47.86 (27.21, 68.00) 0.17 (–0.60, 0.93) 0.09 (–0.37, 0.61) –0.01 (–0.02, 0.01)
Glucose 59.05 (38.68, 77.35) –0.49 (–1.36, 0.31) 0.12 (–0.19, 0.45) 0.00 (–0.02, 0.02)
%TBW 66.87 (60.73, 73.10) 0.09 (–0.14, 0.33) 0.06 (–0.05, 0.18) 0.00 (–0.01, 0.01)
WTR –61.05 (–96.53, –24.21) 3.95 (2.68, 5.29)* –0.57 (–1.39, 0.19) 0.10 (0.07, 0.12)*
DWF 0.21 (–2.82, 3.12) 0.60 (0.49, 0.70)* –0.07 (–0.14, –0.00)* –0.00 (–0.00, 0.00)
V̇O2

−67.05(–108.70, −26.54)* 4.16 (2.51, 5.84)* 0.15 (–0.04, 0.33) 0.05 (0.01, 0.07)*

TBW, total body water; WTR, water turnover rate; DWF, daily water flux; V̇O2, oxygen consumption.
Model estimates are the posterior means and the values in parentheses are the 95% credible interval. Negative and positive values for 0.00 represent values that
were beyond significant figures. *Statistically significant.
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blood osmotic pressure during initial exposure to high salinity, but
prolonged exposure (i.e. months) results in a gradual increase in
plasma osmolality and Na+ concentration, and weight loss
indicative of dehydration (Cowan, 1974; Robinson and Dunson,
1976). Several other species of estuarine and marine reptiles also
exhibit weight loss in response to long-term exposure to seawater
(Dunson, 1970; Lillywhite and Ellis, 1994; Lillywhite et al., 2008).
These observations suggest that periodic access to freshwater or
lower salinity water is a critical component of water balance for
estuarine reptiles. Reptiles that inhabit fully marine environments,
such as sea turtles, marine iguanas and pelagic sea snakes, have a
greater capacity for ion excretion via the salt glands compared with
estuarine reptiles (Holmes andMcBean, 1964; Dunson, 1969, 1970;
Reina and Cooper, 2000; Reina et al., 2002), and can osmoregulate
effectively without access to freshwater.

Although we found no significant effect of acute salinity
exposure on osmotic variables, 10°C-acclimated terrapins had
significantly higher blood osmolality and Na+ concentrations
compared with 25°C-acclimated terrapins. Gilles-Baillien (1973)
documented an increase in blood osmolality of terrapins
overwintering in seawater in the laboratory, but this was due to an
increase in urea rather than inorganic ions. Use of urea as an
osmoeffector to maintain water balance during exposure to
desiccating conditions has been documented for other species of
turtles (Pelodiscus sinensis; Lee et al., 2006), and even anurans that
tolerate brackish water habitats (Rana cancrivora, Xenopus laevis,
Bufo viridis; Gordon et al., 1961; Balinsky, 1981). In contrast, we
found no significant effect of either temperature or salinity on urea.
Our results for temperature effects on osmotic status are more in line
with results obtained from overwintering terrapins under natural
conditions. Harden et al. (2015) found that overwintering terrapins
in North Carolina marshes exhibited an increase in blood osmolality
and Na+ with a decrease in carapace temperature. The gradual
increase in osmolality and Na+ over the course of prolonged cold
exposure may reflect progressive water loss or ion gain via passive
exchange with the environment. A decrease in active ion transport
mechanisms with a temperature-induced decrease in metabolic
capacity may also play a role (Baker et al., 2013; Southwood
Williard and Harden, 2011). Blood osmolality values for 10°C-
acclimated terrapins in our study (354–400 mOsm) were somewhat
higher than mean monthly values reported for terrapins
overwintering in the high marsh in coastal North Carolina (318–
345 mOsm). Terrapins in our study were maintained in water with
no haul-out platforms, so the discrepancy between studies may be
due in part to the inability of our captive terrapins to use aquatic–
terrestrial shuttling behavior to modulate water and salt exchange
with the environment. Under natural conditions, terrapins bury in
the mud of the subtidal or intertidal zones and are rarely found in
open water when temperatures drop below 20°C (Yearicks et al.,
1981; Butler, 2002; Harden and Williard, 2012). Overwintering in
terrestrial habitats may reduce passive exchange of water and salts
across the integument (Davenport and Magill, 1996).

Body fluid dynamics
We observed a significant decrease in DWF and a trend towards
decreased WTR in terrapins exposed to high salinity, indicative of a
decrease in ingestion of water and food (Harden et al., 2014).
Previous studies have demonstrated that terrapins readily consume
freshwater or brackish water (<20 psu), but will not drink water
at higher salinities (Bentley et al., 1967; Cowan, 1981; Davenport
and Macedo, 1990). Preference for low salinity drinking water is
a common characteristic of turtles (Dunson and Moll, 1980;
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Fig. 1. Osmotic status of terrapins during exposure to four
temperature–salinity treatments. (A) Results of linear mixed models
indicated that plasma osmolality was significantly lower in terrapins acclimated
to 25°C (n=6) versus 10°C (n=5), but salinity did not have a significant effect
on plasma osmolality. (B) Temperature had a significant effect on inorganic
ion concentration, with higher temperatures resulting in lower [Na+]; however,
there was no significant effect of temperature on [Cl−]. There was no significant
effect of salinity on [Na+] or [Cl−]. (C) Neither temperature nor salinity had a
significant effect on the concentration of the organic osmolytes urea and
glucose. Data are presented as means±s.d. Model estimates are presented
in Table 2.
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Davenport and Wong, 1986; Davenport and Macedo, 1990), snakes
(Lillywhite and Ellis, 1994; Lillywhite et al., 2008) and crocodilians
(Taplin et al., 1999) that utilize brackish water or estuarine habitats.
Discrimination in drinking water is an important behavioral
component of water balance and osmoregulation for terrapins and
other estuarine species, as the efficacy of salt glands in estuarine
reptiles is much lower than that of fully marine forms (Dunson,
1970). For example, the maximum Na+ secretion rate of sea turtle

salt glands (415–484 μmol 100 g−1 h−1) is 13–15 times higher than
that of the terrapin salt gland (31 μmol 100 g−1 h−1; Cowan, 1990;
Reina and Cooper, 2000; Reina et al., 2002). Green turtles (Chelonia
mydas) and leatherback turtles (Dermochelys coriacea) are capable of
drinking seawater and excreting excess ions via the salt gland to
effectively osmoregulate (Holmes and McBean, 1964; Marshall and
Cooper, 1988; Reina et al., 2002). In contrast, the terrapin uses
evasive behavioral strategies to reduce salt ingestion during seawater
exposure, tolerates progressive dehydration, and relies on periodic
access to freshwater to restore depleted body water stores (Bentley
et al., 1967; Dunson, 1970; Dunson and Mazzotti, 1989).

Appetite suppression has been documented for terrapins exposed
to seawater with no access to freshwater (Dunson, 1985; Davenport
and Ward, 1993; Holliday et al., 2009). Terrapins in our study were
offered food every other day during treatment exposure; we did not
record the exact amount of food eaten but noted whether or not the
entire ration was consumed. Terrapins acclimated to 25°C ate their
entire ration throughout exposure to 12 psu, but left food uneaten in
their tanks at 35 psu. Terrapins acclimated to 10°C did not eat their
entire food ration, either at 12 psu or at 35 psu. These observations,
in conjunction with the DWF results, show that reduced food intake
at high salinity may contribute to maintenance of osmotic balance,
particularly when supplemental sources of freshwater are not
available to offset salt intake, as was the case in our study. Appetite
suppression could result in a mismatch between energy supply and
demand, particularly at warmer temperatures; therefore, this evasive
strategy may not be sufficient to deal with osmotic stress over the
long term. Several investigators have noted that terrapins cannot
survive indefinitely without access to freshwater because of
progressive dehydration and weight loss (Dunson, 1985; Dunson
and Mazzotti, 1989; Davenport and Ward, 1993). Under natural
conditions, terrapins exhibit hypophagy in combination with mud
burial and reduced activity during winter dormancy. This suite of
behavioral changes contributes to the terrapin’s ability to maintain
osmotic balance during a period when both metabolic capacity and
resource availability are low (Harden et al., 2015). We found that
both WTR and DWF decreased with temperature, which likely
reflects a decrease in both passive water exchange across the
integument and ingestion of water and food. The decrease in water
turnover at lower temperature may also reflect lower metabolic and
respiratory rates.

Oxygen consumption
We predicted that acute exposure to high salinity would result in an
increase in energy expenditure as a result of salt gland activation or
other ion transport mechanisms to maintain osmotic balance;
however, when temperature, percentage time submerged and mass
were controlled for, we found no significant effect of salinity onVȮ2

.
While not statistically significant, the overall trends in the
VȮ2

response to salinity differed between temperature treatments
(Fig. 3). During acute exposure to high salinity, 25°C-acclimated
terrapins increased VȮ2

by an average of 12.8±8.2% and
10°C-acclimated terrapins decreased VȮ2

by an average of
10.9±28.1% (Fig. 3). Variation in the metabolic response to
salinity may indicate that temperature-induced differences in
metabolic capacity influence strategies used to maintain osmotic
balance during exposure to high salinities. The relatively low
sample size of our study may have hampered our ability to detect
statistically significant effects of salinity on VȮ2

, particularly given
the level of inter-individual variation observed.

Our results for the effect of salinity on VȮ2
are in agreement with

those of Holliday et al. (2009), who found no significant change in
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±s.d. Model estimates are presented in Table 2.
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metabolic rate, measured as CO2 production, of 26°C-acclimated
juvenile terrapins over a broad range of salinities (0–30 psu). These
investigators did note, however, that higher salinities resulted in
decreased growth rate of terrapins. It is possible that energy for
growth is reallocated to meet osmoregulatory needs when terrapins
are exposed to high salinities, and therefore the cost of
osmoregulation is not reflected by an increase in metabolic rate
(Holliday et al., 2009). Annual growth rates for adult terrapins are
exceptionally low (Ernst and Lovich, 2009); nevertheless, it is
feasible that energy to support osmoregulatory mechanisms is
reallocated from other physiological functions. In contrast with
juvenile and adult terrapins, the metabolic rate of hatchling terrapins
is significantly affected by salinity. Rowe (2018) found that peak
standard metabolic rate (SMR) of hatchling terrapins occurred at a
salinity of 8 psu, which is similar to the salinity for peak growth
rates (9 psu; Dunson, 1985); salinities greater than 8 psu resulted in
lower peak SMR for hatchlings. The osmoregulatory strategy of
hatchling terrapins is likely to differ substantially from that of
adults, given that early life stage terrapins primarily inhabit high
marsh vegetation and avoid open water (Muldoon and Burke, 2012;
Selman, 2018). Promotion of growth in a low osmotic stress
environment may be an important component of habitat selection in
younger terrapins, particularly given the inverse relationship
between rates of passive water efflux and body size in terrapins
(Dunson, 1985).
Terrapins in our study did not exhibit a significant increase in

VȮ2
with an acute increase in salinity; therefore, it is unlikely

that they rely heavily on energy-requiring mechanisms to secrete
accumulated salts as part of the initial response to a salinity
challenge. While water conservation measures and behavioral
adjustments to reduce water and salt exchange with the environment
are sufficient to maintain osmotic balance in the short term,
prolonged exposure to high salinity or progressive accumulation of
salts may trigger physiological mechanisms to actively regulate
blood ion concentrations (Bentley et al., 1967; Dunson, 1970;
Gilles-Baillien, 1973; Dunson and Dunson, 1975). Terrapins
acclimated to seawater for a period of weeks to months exhibit an
increase in the concentration of Na+ in salt gland secretions

(Dunson, 1970), salt gland Na+/K+-ATPase activity (Dunson and
Dunson, 1975) and VȮ2

(Bentley et al., 1967). Dunson and Dunson
(1975) noted that a marked activation of Na+/K+-ATPase does not
occur until blood Na+ concentration exceeds 200 mmol l−1, a level
not reached unless supplemental salt injections were given to
seawater-acclimated terrapins. The blood Na+ concentration of
terrapins in our study was well below this level in all temperature–
salinity treatments (145–169 mmol l−1), and Na+ concentrations in
wild terrapins under natural conditions typically do not exceed
200 mmol l−1 (Harden et al., 2015). The results from our study
illustrate that terrapins initially respond to a salinity challenge by
adjusting behavior to reduce water and salt exchange with the
environment, thereby delaying activation of energy-requiring
physiological mechanisms.

The exceedingly high levels of blood Na+ necessary to trigger an
increase in salt gland secretions in terrapins calls into question the
degree to which terrapins routinely rely on the salt gland for osmotic
homeostasis. Estuarine and marine snakes exhibit hypernatremia
under natural and laboratory conditions, and Brischoux et al. (2013)
hypothesized that tolerance of high blood Na+ concentrations in
reptiles would reduce energetic costs associated with active ion
transport in the salt gland. If this is the case, then the salt gland may
serve to prevent dangerously high levels of blood ions but not
contribute significantly to osmoregulation if energetically efficient
behavioral options are available. It is interesting to note that
terrapins show very little phenotypic flexibility in salt gland
morphology in response to seawater exposure or increases in blood
osmolality (Cowan, 1974; Dunson and Dunson, 1975). This is in
contrast to marine birds, sea turtles and estuarine crocodiles, which
exhibit increases in salt gland size and/or blood flow to the salt
gland in response to acclimation to seawater or salt loading
(Schmidt-Nielsen and Kim, 1964; Shuttleworth and Hildebrandt,
1999; Reina, 2000; Hildebrandt, 2001; Cramp et al., 2008). The lack
of phenotypic flexibility in the terrapin salt gland may indicate that
this structure is not as integral to osmotic balance in terrapins as it is
in other species.

Temperature had a strong effect on VȮ2
over the range 10–25°C.

Terrapins along the southeast coast of the USA typically enter
winter dormancy at temperatures below 20°C (Yearicks et al., 1981;
Butler, 2002; Harden and Williard, 2012), so the large Q10 values
(4.9–6.2) we observed likely reflect the decrease in activity and
feeding associated with seasonal downregulation of metabolism.
Baker et al. (2013) observed a much lower Q10 of 1.73 for VȮ2

of
hatchling terrapins in air over the range 10–20°C; however, these
investigators did not control for the effects of activity during trials
and reported high values of VȮ2

relative to other studies (Bentley
et al., 1967). In our study, the large difference in VȮ2

between 10°C-
and 25°C-acclimated terrapins also may reflect temperature-induced
differences in feeding behavior. We fasted terrapins for 40–48 h
prior to respirometry trials, based on previously published studies;
Davenport and Ward (1993) reported that maximum appetite in
terrapins occurs 48 h post-feeding, and VȮ2

of aquatic Chinese
stripe-necked turtles (Ocadia sinensis) fed shrimp and mealworms
was significantly higher than that of un-fed controls until ∼45 h
post-feeding (Pan et al., 2005). It is possible that the fasting period
chosen for our study was not sufficient to insure a post-absorptive
state in all respirometry trials, particularly given the variability in
feeding behavior at the different treatment temperatures.

Conclusions
An understanding of the balance of behavioral and physiological
adjustments in the osmoregulatory strategy of terrapins provides
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Fig. 3. Oxygen consumption measurements for terrapins in each of the
four temperature–salinity treatments. Results of linear mixed models
indicated that temperature had a significant effect on V̇O2

at the 95% credible
interval level, but there was no statistically significant effect of salinity on V̇O2.
Data are presented as means±s.d. Model estimates are presented in Table 2.
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insight into the evolutionary transition from freshwater to seawater
environments. Dunson and Mazzotti (1989) proposed that the
evolution of fully marine reptiles from freshwater ancestors
progressed through several transitional stages related to the capacity
for osmoregulation. Initial exploration of brackish environments was
facilitated by behavioral adjustments to avoid high salinities and
reduce passive and active exchange of water and salts with the
environment (Dunson and Mazzotti, 1989; Agha et al., 2018).
Extrarenal glands to facilitate salt excretion evolved in more
advanced forms, and subsequent specialization of salt glands to
accommodate higher rates of salt intake are evident in fully marine
species (Dunson, 1970). Evidence from our research and other
studies shows that terrapins represent an intermediate form in this
progression. Terrapins effectively maintain osmotic balance under
variable salinity conditions by using energetically efficient
behavioral adjustments and water conservation strategies. Although
terrapins possess lachrymal salt glands, they are still dependent on
periodic access to freshwater or low salinitywater in order tomaintain
osmotic balance and cannot survive in seawater indefinitely. This
aspect of terrapin biology makes them particularly vulnerable to
projected changes in coastal environments with climate change and
sea level rises (Agha et al., 2018). Terrapins are a species of
conservation concern (Hart and Lee, 2006), and additional studies to
assess the implications of their osmoregulatory strategy for habitat
utilization and resilience are warranted.
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