
REVIEW

Can variation among hypoxic environments explain why different
fish species use different hypoxic survival strategies?
Milica Mandic1,*,‡ and Matthew D. Regan2,*

ABSTRACT
In aquatic environments, hypoxia is a multi-dimensional stressor that
can vary in O2 level (partial pressure of O2 in water, PwO2

), rate of
induction and duration. Natural hypoxic environments can therefore
be very different from one another. For the many fish species that
have evolved to cope with these different hypoxic environments,
survival requires adjusting energy supply and demand pathways to
maintain energy balance. The literature describes innumerable ways
that fishes combine aerobic metabolism, anaerobic metabolism and
metabolic rate depression (MRD) to accomplish this, but it is unknown
whether the evolutionary paths leading to these different strategies
are determined primarily by species’ phylogenetic histories, genetic
constraint or their native hypoxic environments. We explored this idea
by devising a four-quadrant matrix that bins different aquatic hypoxic
environments according to their duration and PwO2

characteristics.
We then systematically mined the literature for well-studied species
native to environments within each quadrant, and, for each of 10 case
studies, described the species’ total hypoxic response (THR), defined
as its hypoxia-induced combination of sustained aerobic metabolism,
enhanced anaerobic metabolism and MRD, encompassing also the
mechanisms underlying these metabolic modes. Our analysis
revealed that fishes use a wide range of THRs, but that distantly
related species from environments within the same matrix quadrant
have converged on similar THRs. For example, environments of
moderately hypoxic PwO2 favoured predominantly aerobic THRs,
whereas environments of severely hypoxic PwO2 favoured MRD.
Capacity for aerial emergence as well as predation pressure (aquatic
and aerial) also contributed to these responses, in addition to other
biotic and abiotic factors. Generally, it appears that the particular type
of hypoxia experienced by a fish plays a major role in shaping its
particular THR.

KEY WORDS: Aquatic hypoxia, Total hypoxic response, Aerobic
metabolism, Anaerobic metabolism, Metabolic rate depression, Fish

Introduction
Environmental hypoxia is a multi-dimensional stressor of many
aquatic ecosystems, typically involving variations in O2 level (partial
pressure of O2 in water, PwO2

), rate of hypoxia induction and duration
of exposure. Aquatic hypoxic environments can therefore differ from
one another considerably. For example, intertidal pools oscillate
between ∼80 and 0 kPa PwO2

each day (Richards, 2011), whereas
oceanic oxygen minimum zones (OMZs), which typically occur at

depths of 200 to 1500 m, remain at stable hypoxic PwO2
(≤4.2 kPa;

Seibel, 2011). Orders of fishes have independently evolved abilities to
tolerate and exploit different hypoxic environments, and the literature
is rife with studies that reveal the different strategies that allow them to
do this. What remains unknown, however, is whether similar hypoxic
environments beget similar hypoxic survival strategies, independent
of phylogenetic relationships.

Our Review will explore variation in the hypoxic survival
strategies of different fish species in the context of these species’
native hypoxic environments. We will represent each species’
hypoxic survival strategy using the total hypoxic response (THR;
see Glossary), which we define as the combination of these three
metabolic modes an animal uses in hypoxia: (i) sustained aerobic
metabolism via a wide array of mechanisms that enhance capacities
for O2 uptake, transport and delivery; (ii) increased use of anaerobic
metabolism; and (iii) metabolic rate depression (MRD; see
Glossary). The THR is useful in this respect because it is a
complex phenotype that is contributed to by numerous traits
operating at lower levels of organization. Although these traits can
vary among species [e.g. some species increase haemoglobin
(Hb)–O2 binding affinity, whereas others increase haematocrit (see
Glossary)] or be similar but achieved through different mechanisms
(e.g. high gill surface area that is constitutively expressed or
increased via remodeling/plasticity), they may result in consistent
responses at higher levels of organization (e.g. sustained aerobic
metabolism). Interpreting hypoxic responses at these higher levels
of biological organization may reveal patterns of convergent
evolution (see Glossary) that are less visible at lower levels.

There are costs associated with hypoxic survival strategies
Although the metabolic strategies that contribute to the THR –
aerobic metabolism, anaerobic metabolism and MRD – benefit
hypoxic survival (Fig. 1; and see Box 1 for descriptions of these
metabolic modes and the data that may be used to interpret them),
each strategy has limits and potential costs that may influence how it
is (or is not) used in certain hypoxic environments. The main limit
of aerobic metabolism is a critical PwO2

(Pcrit; see Glossary) below
which aerobic reliance becomes severely compromised (see Box 1,
Fig. 1). Capacity for aerobic metabolism may be improved through
different mechanisms of increasing O2 supply, but these too can
come at a cost. For example, increasing respiratory surface area aids
in oxygen extraction from the water, but with potential negative
consequences of compromising ion and water fluxes, increasing
detrimental uptake of ammonia and other toxic substances, and
increasing the likelihood of bleeding (reviewed in Nilsson and
Randall, 2010). Similarly, an increase in ventilation and haematocrit
can improve O2 extraction and delivery, but an increase in
ventilation incurs a significant energetic cost (Hughes and
Sunders, 1970; Steffensen, 1985), and high haematocrit increases
blood viscosity, thus increasing blood flow resistance (reviewed in
Gallaugher and Farrell, 1998).

1Department of Biology, University of Ottawa, Ottawa, ON, Canada, K1N 6N5.
2Comparative Biosciences Department, University of Wisconsin-Madison,
Madison, WI 35706, USA.
*These authors contributed equally to this work

‡Author for correspondence (mmandic@uottawa.ca)

M.M., 0000-0002-9377-4173; M.D.R., 0000-0001-9341-5747

1

© 2018. Published by The Company of Biologists Ltd | Journal of Experimental Biology (2018) 221, jeb161349. doi:10.1242/jeb.161349

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

mailto:mmandic@uottawa.ca
http://orcid.org/0000-0002-9377-4173
http://orcid.org/0000-0001-9341-5747


For anaerobic metabolism (i.e. anaerobic glycolysis, hereafter
referred to as glycolysis), the main limit is a finite substrate pool
(glucose, glycogen) that restricts the time over which an animal may
rely on glycolysis (Wang et al., 2009). The main cost of prolonged
anaerobic reliance is a metabolic acidosis (see Glossary) that
jeopardizes the fish’s health and hypoxia tolerance (Driedzic
and Gesser, 1994; Hochachka and Somero, 2002; Nilsson and

Östlund-Nilsson, 2008). And more generally, glycolysis is
relatively inefficient at converting energy stored in food to forms
that are usable by the cell (ATP).

For MRD, the costs can be physiological or ecological.
Physiologically, these include oxidative damage (Carey et al.,
2000), reduced growth, repair and immunocompetence (Burton and
Reichman, 1999), and cognitive impairments stemming from
neuronal damage (Popov et al., 1992; Lefevre et al., 2017).
Ecologically, costs include ceased reproduction (Humphries et al.,
2003) and increased susceptibility to predation stemming from
significantly reduced awareness and motor activity (Draud et al.,
2004; Kokurewicz, 2004; Lanszki et al., 2006;Wiklund et al., 2008;
Estok et al., 2009; Sommer et al., 2009; Olofsson et al., 2011).

There is great variation in how different fish species use each
metabolic strategy in response to hypoxia. Some species prioritize
aerobic and anaerobic metabolism (e.g. intertidal sculpins), whereas
others rely on anaerobic metabolism coupled with MRD (e.g.
crucian carp). It is possible that the diversity of THRs is partly
attributable to the aforementioned costs, which may be more or less
relevant to a given species depending on its ability to mitigate them.
This ability may be influenced by factors such as genetic constraint
or the ecological environment. However, no study has explicitly
examined the causes underlying why different hypoxia-tolerant
species have (or have not) evolved particular THR profiles.

THRs may arise through different mechanisms
Despite multiple THRs arising among the hypoxia-tolerant fishes,
there is a finite number of evolutionary solutions and most species
can be broadly grouped into clusters of similar metabolic strategies.
Three mechanisms may influence this probability of convergence:
genetic constraints, phylogenetic history and/or natural selection
(Christin et al., 2010; Losos, 2011; Rosenblum et al., 2014).

Genetic constraints, such as pleiotropy (see Glossary) or limited
genetic variation, increase the likelihood of repeated evolution of a
given phenotype because the constraints decrease the number of
evolutionary paths available in response to an environmental
stressor such as hypoxia (Chevin et al., 2010; Conte et al., 2012).
Phylogenetic history may also lead to similar THRs, whereby the
shared genetic backgrounds of closely related species increase their
probabilities of evolving parallel solutions (Rosenblum et al., 2014).
Natural selection may also be a possible driver of convergence,
where the ecological environment is the primary determinant of
evolution of a similar THR across species. If the environment is a
driving factor in the evolution of a particular THR, then mining the
extensive hypoxia literature should reveal a pattern whereby
distantly related species native to similar hypoxic environments
display similar THRs. Conversely, closely related species native to
different hypoxic environments may display different THRs.

Exploring the role of the environment in THR evolution
To begin to explore how variation in the hypoxic environment
influences the THR of fishes, we first devised a four-quadrant
matrix (Q1–Q4; Fig. 2) that bins different aquatic hypoxic
environments according to their time and PwO2

dimensions: Q1,
hypoxia that is short in duration and moderate in PwO2

; Q2, short in
duration and severe in PwO2

; Q3, long in duration and moderate
in PwO2

; and Q4, long in duration and severe in PwO2
. Although

this broad binning has its shortcomings (e.g. it is insensitive to
finer-scale environment variations), it is to our knowledge the first
meta-analysis to incorporate this level of hypoxic complexity, a
necessary step towards understanding the fundamental aspects of
hypoxia tolerance.

List of symbols and abbreviations
ASR aquatic surface respiration
CrP creatine phosphate
Hb haemoglobin
Hb P50 partial pressure of O2 at which Hb is 50% saturated with O2

ṀO2
oxygen consumption rate

MRD metabolic rate depression
OMZ oxygen minimum zone
PwO2 partial pressure of oxygen in water
THR total hypoxic response

Glossary
Aquatic surface respiration
A breathing technique that involves skimming the relatively well-
oxygenated surface layer of the water column.
Bohr effect
A reduced haemoglobin–oxygen binding affinity resulting from a reduced
pH.
Convergent evolution
Independent evolution of similar traits in different evolutionary lineages.
Eutrophic
A body of water enriched with nutrients and minerals, resulting in
excessive growth of plants and algae.
Haematocrit
Proportion of whole blood that consists of red blood cells.
Macrophyte
An aquatic plant that grows in or near water, and is emergent,
submergent or floating.
Metabolic acidosis
Reduced pH resulting from metabolic activity.
Metabolic rate depression
A coordinated and reversible depression of metabolic rate below
standard metabolic rate.
Oligotrophic
A body of water with lowaccumulation of nutrients andminerals, resulting
in sparse growth of plants an algae.
Critical oxygen tension (Pcrit)
The lowest PO2 at which an animal can sustain routine ṀO2, below which
ṀO2 progressively decreases.
Pleiotropy
Phenotypic effect of a gene on more than one trait.
Total hypoxic response
The hypoxia-induced combination of sustained aerobic metabolism,
enhanced anaerobic metabolism and metabolic rate depression
(encompassing also the mechanisms underlying these metabolic
modes) that an animal uses to survive hypoxia.
Ventilation amplitude
Volume of water pumped over the gills during a single breath.
Ventilation rate
Number of breaths per minute.
Water column stratification
Vertical distribution of water layers that form as a result of low mixing
between water masses of different properties (e.g. hypoxia, salinity,
density, temperature).
White muscle
A rapid or fast-twitch muscle fibre type.
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We then turned to the literature for examples of particularly well-
studied species native to environments within these four quadrants.
We found 10 hypoxic environment types with well-studied resident
species (or multi-species systems) with respect to THR-related
characteristics. Other relevant species–environment combinations
exist in both the literature and the natural world, but we chose ours
based on well-resolved understandings of the O2 dynamics of the
environment and an understanding of at least two of the three
metabolic modes of the THR.Wemined the literature systematically
(see Table S1), but were limited in some cases by information
availability (especially regarding MRD, the least studied metabolic
mode) and the possibility of ascertainment bias regarding some
traits and species (i.e. certain phenomena are better suited to study in
some species than others). This may have influenced some of our
interpretations. However, for the most part, compiling results from
across multiple studies allowed us to piece together most species’
THRs, something that had not been done before. Interpreting
these THRs in the context of each species’ natural hypoxic
environment revealed patterns whereby distantly related species
under similar hypoxic pressures rely on similar THRs, and

suggested that other factors such as predation also likely play
roles in shaping the THR.

The following sections are organized by quadrant, and within
each section are descriptions of that quadrant’s representative case
studies. Although we have elected to describe Q1 below, species
belonging to these environments are not particularly hypoxia-
tolerant. As such, they are not the focus of the Review but have been
included as a comparison case of how mildly tolerant species may
respond to hypoxia. We have detailed our literature-mining process
in Table S1, and have also included an extensive outline of these
studies and their reported THR-related values. In the final section of
the paper, we summarize our findings and reflect on what they
might mean for the evolution of hypoxic survival strategies.

Q1: Moderate PwO2 of short duration
Many aquatic species encounter low PwO2

in the environment, but
most avoid or escape these hypoxic zones and are therefore only
transiently exposed to moderate hypoxia. One such species is the
well-studied rainbow trout (Oncorhynchus mykiss), an inhabitant
of streams and lakes, where pockets of O2-depleted water
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Fig. 1. The aerobic, anaerobic and
metabolic rate depression (MRD)
responses of a fish to hypoxia.
(A) The aerobic response of a typical
fish to decreasing partial pressure of
oxygen in water (PwO2). The solid curve
represents the oxygen consumption rate
(ṀO2) that is required to support routine
metabolic rate, and a typical fish can
maintain this ṀO2 over a broad
PwO2

range (including moderately
hypoxic PwO2) using the mechanisms
listed on the right. The ability to use
these mechanisms varies among
species. Pcrit (vertical dashed line) is the
critical PwO2 at which the animal is
unable to extract sufficient
environmental O2 to support routine
ṀO2. PwO2 values below Pcrit are
severely hypoxic, and, because aerobic
ATP supply is compromised at these
PwO2 values, the fish’s survival depends
on enhanced reliance on anaerobic ATP
supply pathways (glycolysis) and/or
MRD. (B) Theoretical metabolic
responses of an animal at sub-Pcrit (i.e.
severely hypoxic) PwO2 as a function of
time, with the y-axis representing the
rate of energy use instead of ṀO2. Line 1
(solid line) represents a fish that
maintains routine metabolic rate in
severe hypoxia by supplementing its
reduced aerobic ATP supply capacity
with an enhanced reliance on glycolysis.
Line 2 (dashed line) represents a fish
that induces MRD to better match its
ATP demand to its reduced ATP supply
capacity, and this is accomplished by
reducing processes such as those listed
on the right. Both metabolic responses
to severe hypoxia are ultimately
unsustainable, but the MRD response
(line 2), here illustrated with its
approximately 50% depression of
metabolic rate, allows this hypothetical
fish to survive for twice as long in
severe hypoxia.
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periodically form. Like most salmonids, rainbow trout are not
particularly hypoxia tolerant (Doudoroff and Shumway, 1970) and
avoid hypoxic areas by migrating vertically away from the reduced
PwO2

of deeper waters (Rowe and Chisnall, 1995). Studies
performed under controlled laboratory conditions have found that,
similar to hypoxia-tolerant species (discussed in subsequent
sections), rainbow trout rapidly (minutes to hours) attempt to
maximize O2 uptake during hypoxia by increasing ventilation rate
(Holeton and Randall, 1967a,b) and amplitude (Hughes and
Sunders, 1970) (see Glossary), and blood Hb–O2 affinity via
reduced intraerythrocytic ATP concentrations (Tetens and
Lykkeboe, 1981). In contrast to tolerant species that typically
maintain O2 consumption rate (ṀO2

) as PwO2
drops towards Pcrit,

rainbow trout increase ṀO2
, likely the result of enhanced ventilatory

efforts (Hughes and Saunders, 1970). Further PwO2
reductions see

the trout enhance anaerobic metabolism (Dunn and Hochachka,
1986), but, unlike most hypoxia-tolerant fishes, the trout’s
anaerobic metabolism does not appear to be fuelled by hepatic
glycogen stores (Dunn and Hochachka, 1987; Van Raaij et al.,
1996). And perhaps most indicative of the trout’s relative

Box 1. The metabolic responses of fishes to hypoxia
Energy metabolism
Energy metabolism is the rate of ATP turnover of a cell, tissue or whole
animal (or organism). ATP is supplied by oxidative phosphorylation and/
or anaerobic glycolysis, and is consumed by energy-demanding
biological processes ranging from whole animal behaviour to protein
translation. For a hypoxia-exposed animal, energy metabolism is the
combined sum of aerobic metabolism, anaerobic metabolism and
metabolic rate depression.

Aerobic metabolism
Aerobic metabolism centers on oxidative phosphorylation, the
O2-dependent process by which ATP is produced in the mitochondria.
Optimizing steps along the O2-transport cascade to more efficiently
move O2 from the environment to the mitochondria can aid hypoxic
survival (Weibel, 1984), and hypoxia-adapted fishes have evolved traits
at each step to do so (Sollid et al., 2003; Gracey et al., 2001; Affonso
et al., 2002; Lai et al., 2006; Turko et al., 2014; Holeton and Randall,
1967a,b; Itazawa and Takeda, 1978; Tzaneva et al., 2011; Vulesevic
and Perry, 2006; Sundin et al., 1995). The collective effectiveness of
these traits to extract O2 from hypoxic water is quantified by the critical
PwO2 (Pcrit; Fig. 1) of O2 uptake rate (ṀO2). The lower the Pcrit, the greater
the PwO2 range over which the fish can maintain routine metabolic rate
aerobically. As PwO2 drops below Pcrit and aerobic metabolism becomes
compromised, a fish’s survival requires either supplementing aerobic
metabolism with anaerobic metabolism to maintain routine metabolic
rate, or depressing ATP-consuming processes to better match reduced
ATP supply rates.

Data that are relevant to aerobic metabolism
ṀO2; Pcrit ; behaviours that maximize O2 uptake (from water or air);
ventilatory responses; respiratory surface anatomy; haematology andHb
function; circulatory anatomy and physiology; aerobic enzyme function;
mitochondrial function.

Anaerobic metabolism
Anaerobic metabolism includes anaerobic glycolysis and creatine
phosphate (CrP) hydrolysis. CrP is important for activity, but because
CrP reserves are small and quickly depleted, they play a minimal role in
hypoxic survival. Glycolysis is beneficial in O2-limited environments
because it allows for an O2-independent supply of ATP. Most fishes,
tolerant and intolerant, upregulate glycolysis during hypoxia, but
tolerant fishes display a suite of biochemical adaptations that
collectively enhance their anaerobic potentials (Hochachka and
Somero, 2002; Farwell et al., 2007; Mandic et al., 2013; Lushchak
et al., 1998; Abbaraju and Rees, 2011; Johnston, 1977; Shoubridge and
Hochachka, 1980). However, even in hypoxia-tolerant species, should
the hypoxic exposure last too long, glycolysis cannot sustain sufficient
ATP supply and survival becomes dependent on the reduction of
metabolic demand.

Data that are relevant to anaerobic metabolism
A species’ reliance on anaerobic glycolysis may be represented by
tissue/plasma lactate accumulation, tissue/whole-body glycogen
depletion, tissue/plasma ethanol accumulation, or ethanol excretion to
the water; tissue/whole-body [glycogen] quantifies a species’ anaerobic
fuel stores; glycolytic enzyme function represents potential glycolytic
flux rates.

Metabolic rate depression
Metabolic rate depression (MRD) is a reduction in metabolic rate below
standardmetabolic rate (SMR; Hochachka and Somero, 2002; Richards,
2009). Metabolic rate is reduced to SMR through adjustments at
behavioural and physiological levels, and below SMR (i.e. MRD)
through adjustments at physiological and cellular/biochemical levels
(Brett and Groves, 1979; Chiba, 1983; Pedersen, 1987; Nilsson et al.,
1993; Schurmann and Steffensen, 1994; McKenzie et al., 1995;
Hochachka et al., 1996; Hochachka and Somero, 2002; Thomas et al.,
2006; Fitzgibbon et al., 2007; Perry et al., 2009; Richards, 2009; Wang
et al., 2009; Wu, 2009). MRD is an effective mechanism for maintaining
energy balance when ATP supply is limited at sub-Pcrit PwO2, but
although some fishes use it, others do not. Those that do use MRD tend
to be highly tolerant.

Data that are relevant to MRD
Calorimetric measurements of metabolic heat production, though rare in
the fish literature, are the best indicator of MRD because they inherently
account for aerobic and anaerobic contributions to metabolic rate
(Nelson, 2016); simultaneous measurements of ṀO2 and anaerobic
reliance (see above); reduced rates of ATP-consuming processes such
as ATPase activity and protein translation may (but not necessarily)
indicate MRD; whole-body quiescence reduces ATP demand,
though is not MRD because it does not reduce metabolic rate
below standard levels.
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Fig. 2. An environmental hypoxia matrix. Natural hypoxic environments
are grouped according to their O2 levels (PwO2) and time durations over
which they remain hypoxic. Quadrant 1 (Q1) portrays moderately hypoxic
PwO2+short-duration environments. Q2 portrays severely hypoxic PwO2 +
short-duration environments. Q3 portrays moderately hypoxic PwO2 + long-
duration environments. Q4 portrays severely hypoxic PwO2 + long-duration
environments. Note that as the Amazon basin encompasses a wide
diversity of hypoxic habitats, it is listed under Q2–Q4 (for greater
description, see ‘Heterogeneous hypoxic environments’ section).
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intolerance, hypoxia exposure rapidly and significantly reduces
cellular [ATP], [creatine phosphate] ([CrP]) and energy charge in
crucial tissues such as the heart (Dunn and Hochachka, 1986).
The rainbow trout therefore employs a primarily aerobic THR

with some contribution of anaerobic metabolism in severe
hypoxia. This is similar to many species (see below), but the
trout’s relatively limited capacity for these strategies results in
cellular [ATP] imbalance and, consequently, a low hypoxia
tolerance. Nevertheless, given the moderate PwO2

and escapable
nature of the trout’s hypoxic environment, this THR is sufficient.

Q2: Severe PwO2 of short duration
Intertidal zones
Fishes routinely found in high intertidal pools experience dramatic
and acute changes in PwO2

, unlike their subtidal counterparts that
inhabit much more O2-stable environments (see environment
description in Box 2). Intertidal sculpins, such as the tidepool
sculpin (Oligocottus maculosus) and the intertidal triplefin
twister (Bellapiscis medius), show lower Pcrit values than do
subtidal sculpins and triplefins, respectively (Hilton et al., 2008;
Mandic et al., 2009a). The intertidal fishes’ lower Pcrit, which
indicates their ability to maintain routine ṀO2

to lower PwO2
, is

achieved through behavioural and physiological modifications to
the O2 cascade that maximize O2 extraction and delivery to the
tissues, reducing the impact of environmental O2 limitation on
aerobic respiration.
Behaviourally, intertidal fishes respond to hypoxia with aquatic

surface respiration (ASR; skimming of the relatively well-
oxygenated surface layer of the water column; see Glossary) and
aerial emergence, where the fish leave the tidepool to respire in air
(reviewed in Bridges, 1988; Martin, 1995). Initiation of ASR and/or
emergence occurs as PwO2

falls below Pcrit (Congleton, 1980; Innes
andWells, 1985; Hill et al., 1996; Mandic et al., 2009b). If intertidal
fishes are restricted from the surface water or air, ṀO2

continually
declines with a decrease in PwO2

below Pcrit; however, given the
opportunity to access surface water or air, intertidal fish will use
ASR and/or emerge to breathe air, thus maintaining routine
ṀO2

(Yoshiyama and Cech, 1994; Martin, 1996). Indeed, a
number of studies report similar or only slightly reduced
respiratory rates in air compared with in water (Wright and
Raymond, 1978; Daxboeck and Heming, 1982; Martin, 1991;
Yoshiyama and Cech, 1994; Sloman et al., 2008). These
behavioural responses uncouple the intertidal fishes from their
aquatic habitat and allow them to maintain ṀO2

by accessing the
well-oxygenated upper layer of water or air when the bulk water of a
tidepool becomes severely hypoxic (i.e. sub-Pcrit) (Yoshiyama and
Cech, 1994; Martin, 1996).
Although these behaviours enhance hypoxic survival, they also

significantly elevate the fishes’ risk of aerial predation (Kramer,
1983). A perceived predatory threat from above will send the
intertidal fishes back into the tidepool’s severely hypoxic water (or
delay their emergence from it; Hugie et al., 1991; Shingles et al.,
2005; Sloman et al., 2008), and in these scenarios, survival
ultimately depends on a suite of physiological and biochemical
adaptations (Brix et al., 1999; Mandic et al., 2009a; Craig et al.,
2014; Lau et al., 2017). Compared with their subtidal counterparts,
intertidal fishes exhibit: higher mass-specific gill surface area
(Mandic et al., 2009a); higher haematocrits and blood–O2 carrying
capacities (Craig et al., 2014); higher Hb–O2 affinities (Mandic
et al., 2009a; Brix et al., 1999, respectively); and higher cytochrome
c oxidase O2 affinities (Lau et al., 2017). These adaptations allow
intertidal fishes to rely primarily on aerobic metabolism even if

predatory threats deny them surface access for periods of time.
However, if PwO2

in the tidepool falls below Pcrit, then the fishes’
survival may depend on anaerobic metabolism and/or MRD.

Intertidal sculpins have high capacities for anaerobic glycolysis.
Specifically, their glycogen reserves are large and their glycolytic
enzyme activity levels in brain are significantly higher than those
of closely related subtidal sculpins (Mandic et al., 2013). Similarly,
plainfin midshipman males, which are exposed to repeated hypoxic
bouts while tending their nests, have higher glycogen reserves (liver)
and glycolytic enzyme capacities (gill, skeletal muscle) than the less-
tolerant females, which do not tend the nests (LeMoine et al., 2014).
And both tidepool sculpins and the plainfin midshipman exhibit
significant accumulation of plasma lactate when exposed to
ecologically relevant hypoxic bouts lasting 4 to 6 h, indicating the
activation of anaerobic glycolysis (Speers-Roesch et al., 2013; Craig
et al., 2014).

Scant information exists on MRD in intertidal fishes. It is known
that tidepool and rosylip sculpins (Ascelichthys rhodorus), both
intertidal species, reduce locomotor activity and enter quiescent
states when denied access to air, a measure that helps conserve
energy (Yoshiyama et al., 1995). However, it is not known whether
cellular MRD occurs during this quiescent state. Parental male
plainfin midshipman have been suggested to induce cellular MRD
during hypoxia (Craig et al., 2014), but the evidence is based solely
on reduced Na+/K+-ATPase activity levels in the gill (and no
decrease in liver). It may be that the intertidal environment, which is
rich in predators, may not favour MRD owing to the reduced
predator avoidance abilities that accompany a metabolically
depressed state. In any case, careful work on these intertidal
species’ MRD use would compliment the extensive work that has
been done on their aerobic and anaerobic hypoxic defenses.

Taken together, the available evidence thus far suggests that
intertidal fishes prioritize aerobic metabolism under all possible
hypoxic conditions, and likely rely on anaerobic glycolysis
(and perhaps not MRD) when forced to spend time in severely
hypoxic water.

Estuaries
Estuarine fishes experience O2 regimes (severe PwO2

that is short in
duration; see Box 2) and aerial predation pressures similar to those
of intertidal fishes (Kneib, 1982; Burnett et al., 2007). Two
well-studied estuarine species are the Atlantic killifish (Fundulus
heteroclitus) and the gulf killifish (Fundulus grandis), whose Pcrit

values are similar to those of the intertidal fishes (see Table S1;
Cochran and Burnett, 1996; Virani and Rees, 2000; McBryan et al.,
2016). As estuarine PwO2

falls, both Fundulus species typically
skim the water’s surface and perform ASR (Wannamaker and Rice,
2000; Love and Rees, 2002), an important behavioural mechanism
that contributes to alleviating the negative effect of hypoxia on
growth rate in gulf killifish (Stierhoff et al., 2003). Akin to the
intertidal fishes, the killifishes’ THR is predominantly aerobic and
anaerobic metabolism rather than MRD, although how these
metabolic strategies are combined depends on the hypoxic
time frame.

During initial hypoxia exposures, there is an increase in
transcription of genes associated with oxidative phosphorylation,
suggesting that enhanced aerobic enzyme activity is among the first
lines of metabolic defense in the gulf killifish (Everett et al., 2012).
In both killifish species, sub-Pcrit PwO2

levels activate anaerobic
metabolism in the liver and the white muscle (see Glossary) during
short-term hypoxia (Virani and Rees, 2000; Richards et al., 2008),
but prolonged exposure (days to weeks) causes a shift to reliance on
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MRD in the white muscle but not in the liver (Kraemer and Schulte,
2004; Martinez et al., 2006; Richards et al., 2008; Abbaraju and
Rees, 2011). This indicates that the type of hypoxia strongly
influences the metabolic response of estuarine fishes. Borowiec
et al. (2015) explored this idea by acclimating Atlantic killifish to
either chronic or intermittent (diel cycles) hypoxia exposures. Both
exposure types lowered Pcrit and routine ṀO2

, but only killifish
acclimated to intermittent hypoxia upregulated mechanisms that
enhance glycolytic capacity and the processing of glycolytic
end-products. Killifish acclimated to chronic hypoxia exhibited
modified gill morphology (reduced filament length; reduced
mitochondrion-rich cells that potentially decrease ion loss and
cost of osmoregulation) in a way that may decrease metabolic
demand (Borowiec et al., 2015).
Overall, it appears that killifish exposed to short-term intermittent

hypoxia rely on an aerobic-anaerobic THR, while those exposed to
long-term hypoxia rely less on anaerobic metabolism and perhaps
more on MRD. Given that the killifishes’ natural habitat typically
experiences tidally influenced intermittent hypoxia, the former is
likely the predominant THR, similar to the intertidal fishes. This

THR may be well suited – and perhaps selected for – in predator-
rich environments that experience rapid and severe fluctuations
in PwO2

.

Coral reefs
Hypoxic events in coral reefs tend to be severe, cyclical and short in
duration (see Box 2), and so we would predict THRs among coral
reef inhabitants that are similar to those of intertidal and estuarine
fishes. Generally, coral reef fishes have relatively low Pcrit (3.1–
6.1 kPa; Nilsson and Ostlund-Nilsson, 2004; Nilsson et al., 2004;
Wong et al., 2018), but in-depth THR information is scant. The best-
studied species in this regard is the epaulette shark (Hemischyllium
ocellatum), a reef flat inhabitant. The shark’s Pcrit is approximately
5.1 kPa (Speers-Roesch et al., 2012a), the lowest of any
elasmobranch tested (Routley et al., 2002; Speers-Roesch et al.,
2012a) and similar to those of teleost reef inhabitants. A comparison
with a much less-tolerant elasmobranch, the shovelnose ray
(Aptychotrema rostrata), revealed the epaulette shark to have a
higher Hb–O2 affinity, higher arterial blood O2 content, higher
ṀO2

at sub-Pcrit PwO2
and better maintained routine cardiovascular

Box 2. Aquatic hypoxic environments
Each aquatic hypoxic environment is unique in the way physical and biological factors create its hypoxic events. However, we have binned 12 different
hypoxic environments according to their PwO2 and durations over which they remain hypoxic using a four-quadrant matrix: Q1, hypoxia that is short in
duration and moderate in PwO2; Q2, short duration and severe; Q3, long duration and moderate; Q4, long duration and severe. We describe these
environments below.
Q1: Thermally stratified lakes
The hypolimnion is the lower layer of a thermally stratified lake, and is frequently hypoxic, especially during the summer months (Rowe and Chisnall, 1995;
Roberts et al., 2009).
Q2: Intertidal zones
Tidepools high in the intertidal zone become isolated from the ocean for hours to days with the falling tide. Their small water volumes and often-dense biota
result in enormous fluctuations in PwO2 reaching anoxia at night and up to 80 kPa in the day (Truchot and Duhamel-Jouve, 1980; Burggren and Roberts,
1991; Richards, 2011).
Q2: Estuaries
Estuarinewaters are subject to tides and strong winds that upwell O2-poor bottomwaters and cause severe diel variation inPwO2 levels, with hypoxic events
often occurring at night (Breitburg, 1990; D’Avanzo and Kremer, 1994). Dense biota and water column stratification (see Glossary) further reduce
PwO2 (Breitburg, 1990).
Q2: Coral reefs
Pools on coral reef flats become hypoxic when isolated during tidal cycles, and nocturnal O2 consumption among the coral colonies themselves can
severely reduce PwO2 to as low as 0.4 kPa (Goldshmid et al., 2004; Nilsson and Ostlund-Nilsson, 2006; Nilsson et al., 2007).
Q2, Q3: Oceanic oxygen minimum zones (OMZs)
OMZs occur at depths between 200 and 1500 m, where certain biological and physical processes combine to reduce PwO2 to <6.4 kPa around the OMZ’s
periphery and 0.5 kPa in its centre. Biologically, a high density of aerobic bacteria reduce the OMZ’s O2 levels as they feed upon the organic matter falling
from the mixed layer above, while physically, a lack of atmospheric contact and low levels of convective mixing keep these waters low in O2.
Q3: High-altitude lakes
Atmospheric pressure decreases by ∼0.91 kPa with every 100 m of altitudinal ascent. Water bodies at higher altitudes consequently have lower partial
pressures for all gases, including O2. These hypoxic exposures are typically chronic and moderate in PwO2, reaching ∼14 kPa as a result of altitude in lakes
at 3750 m above sea level (about the highest at which fish species have been studied).
Q3, Q4: Winterfreeze lakes
Winterfreeze lakes generally occur at high elevations or at far northern or southern latitudes, where low wintertime atmospheric temperatures freeze the
lake’s surface layer. Biological activity reduces PwO2, and the ice/snow layer prevents photosynthesis and water–atmosphere mixing until the spring thaw
(Ultsch, 1989; Barica and Mathias, 1979; Mathias and Barica, 1980). The relatively low biological activity levels of oligotrophic lakes (Fig. 2, Q3) can cause
moderately hypoxic PwO2, whereas the high activity levels of eutrophic lakes can cause anoxia for months (Fig. 2, Q4) (Vornanen, 2004).
Q4: Swamps
Swamps, such as those surrounding Lake Victoria, typically experience hypoxia that is chronically low in PwO2, varying from 0.6 kPa in the bottom layers at
night to a maximum of 3.2 kPa in the upper layer during the day (Chapman et al., 2002) as a result of high biological activity.
Q2, Q3, Q4: The Amazon
The Amazon basin floods each year when the Amazon River spills over its riverbanks into the surrounding forests (igapo) and floodplains (varzea), bringing
many of the Amazon’s 5600+ fish species with it (Albert and Reis, 2011). The basin is a network of complex heterogeneous environments where interacting
biological and physical factors create long- and short-term fluctuations in O2 levels (Val et al., 1998). At the peak of the wet season, all of the flooded areas
are interconnected, allowing fish to move among them. The hypoxia that occurs during this season arises from extensive floating macrophytes (see
Glossary) and occurs mainly in the varzea lakes (Val and Almeida-Val, 1995). As the season wears on, the water levels recede and leave behind smaller,
isolated water bodies that become hypoxic (even anoxic) as a result of high biological activity and a lack of light penetration (Val and Almeida-Val, 1995; Val
et al., 1998). These habitats can remain deeply hypoxic for months at a time, even chronically, or undergo large diurnal changes in O2, all depending on the
shape, size, depth, winds and vegetation of the varzea lakes (Val and Almeida-Val, 1995).
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function in hypoxia (Speers-Roesch et al., 2012a,b; Hickey et al.,
2012), suggesting an aerobic-focused THR. Furthermore, elevated
ventilatory frequencies (Routley et al., 2002) and altered blood flow
patterns that enhance blood supply to the gills and return it directly
to the heart (Stenslokken et al., 2004) support the epaulette shark’s
aerobic-focused THR.
Though epaulette sharks are known to clamber over land in

search of water when the receding tide exposes tidal flats (Goto
et al., 1999), they are not known to exploit the air’s (or surface
waters’) higher O2 levels like intertidal and estuarine fishes. When
PwO2

falls to ∼3.7 kPa (i.e. sub-Pcrit) as it typically does each night
(Routley et al., 2002), anaerobic metabolism contributes to ATP
production, as indicated by significant lactate accumulation with
progressive, cyclical hypoxia exposures (Wise et al., 1998; Routley
et al., 2002). There is conflicting information about whether the
shark also uses MRD in these situations. Evidence for MRD use
includes the shark’s loss of righting reflex with anoxia exposure
despite stable brain ATP levels (Renshaw et al., 2002), and reduced
neuronal oxidative demand with cyclical severe hypoxia exposure
(Mulvey and Renshaw, 2000). Relatively low cardiac lactate levels
of hypoxia-exposed epaulette sharks are speculated to be due to
MRD in extra-cardiac tissues, which would leave more O2 available
for the heart (Speers-Roesch et al., 2012b). However, other studies
have found no evidence of MRD in epaulette sharks (Dowd et al.,
2010), nor a loss of body posture or voluntary movement with
cyclical severe hypoxia (Wise et al., 1998). The conflicting results
are possibly a function of the studies’ different experimental
hypoxia exposure protocols, but nevertheless, the presence of MRD
in even some of these studies suggests that the epaulette shark has
evolved an ability to useMRD, and perhaps does so in thewild. This
is unlike the previously discussed intertidal and estuarine species,
which are not known to employ MRD when exposed to tidally
relevant (i.e. short-term intermittent) hypoxia despite their similar
natural hypoxic habitats (though killifish may do so when
acclimated to chronic hypoxia; see above). We speculate that the
reason may involve predation pressure. Whereas the previous
species are small and subject to predation during their hypoxia
exposures, the shark is relatively large and less likely to encounter
predators during its hypoxia exposures. Thus, the reduced predation
risk may allow the shark to depress metabolism during hypoxia.

Oceanic OMZs – migratory residents
There are two types of OMZ resident: permanent and migratory.
Permanent residents, which we discuss later, spend their entire lives
in the OMZ and therefore experience chronic moderate-to-severe
PwO2

levels (Q3 and Q4 in Fig. 2). Migratory residents, by contrast,
spend their days in the OMZ’s severely hypoxic centre and migrate
vertically into well-oxygenated surface waters each night to feed in
the cover of darkness (Seibel, 2011). This migratory pattern exposes
these animals to progressively changing PwO2

, becoming normoxic
with upwards migration and hypoxic with downwards migration.
The hypoxic exposures experienced by these animals are therefore
severe (PwO2

) and short in duration (see Box 2), similar to those
described above. Despite this similarity, migratory OMZ residents
use a different THR. Although they tend to possess traits that
enhance O2 extraction (e.g. Seibel, 2013; Trueblood and Seibel,
2013) and glycolytic capacity (e.g. Gonzalez and Quiñones, 2002;
Torres et al., 2012), migratory OMZ residents rely primarily on
MRD while in the deeply hypoxic OMZ during the day (Seibel,
2011; Seibel et al., 2016). For example, the jumbo (or Humboldt)
squid (Dosidicus gigas) depresses metabolic rate by 87%when held
at 0.6 kPa, the PwO2

at which it typically spends the daytime in the

OMZ (Rosa and Seibel, 2010; Trueblood and Seibel, 2013).
Migratory krill (Euphausia eximia and Nematoscelis gracilis) from
this same OMZ region also employ MRD at this PwO2

(Seibel,
2011; Seibel et al., 2016). These are different THRs than those
employed by tidepool sculpins and killifish despite similar
environmental O2 characteristics, and the reason may involve
predation risk. As discussed, predation risk in tidepools and
estuaries is high, particularly for small animals in MRD. But
predation risk in the OMZ is relatively low owing to low light and
activity levels, a diffuse distribution of animals (see Childress,
1995; Drazen and Seibel, 2007; Seibel and Drazen, 2007; Seibel
et al., 2000), and low O2 levels that tend to keep top ocean predators
such as sharks, tunas and billfishes out (Brill, 1994; Nasby-Lucas
et al., 2009; Vetter et al., 2008). Consequently, animals living in the
OMZ – particularly those that migrate into oxygenated surface
waters to complete necessary behaviours such as feeding and
mating – can employ MRD with a relatively low risk of being eaten.

Q3: Moderate PwO2 of long duration
Oceanic OMZs – permanent residents
Permanent OMZ residents experience hypoxia that is moderate
(PwO2

) and chronic (see Box 2). These animals, which include
many fish and invertebrate species, tend to live towards the OMZ’s
periphery, where PwO2

levels are not as severe as in its centre
(Childress and Seibel, 1998). Probably owing to the detrimental
effects of chronic reliance on anaerobic glycolysis and/or MRD,
these animals rely primarily on aerobic metabolism through a suite
of highly effective O2 extraction adaptations.

From a THR perspective, by far the best-studied permanent OMZ
resident is the giant red mysid (Gnathophausia ingens). The red
mysid has a high ventilatory capacity (Childress, 1971), a large
mass-specific gill surface area (Childress, 1971), a small blood–
water diffusion distance across the gills (Seibel, 2011), a high
circulatory capacity (Belman and Childress, 1976), and a
haemocyanin with an extremely high affinity for O2 and a large
Bohr effect (see Glossary) to facilitate tissue O2 delivery (Sanders
and Childress, 1990a,b). Combined with an extremely low routine
metabolic rate (a common trait of permanent OMZ residents; see
Childress, 1995), this results in a Pcrit value of 0.8 kPa (Seibel,
2011), coincident with the minimum PwO2

that the mysid typically
encounters in the OMZ (Childress and Seibel, 1998). In fact, across
a wide range of OMZ residents, Pcrit has been shown to correlate at
near-unity (or below) with the minimum PwO2

each of these animals
experience in the wild (Childress, 1975; Cowles et al., 1991;
Donnelly and Torres, 1988; Torres et al., 1994).

Highly developed mechanisms of O2 extraction and delivery are
present in a diverse array of permanent OMZ resident species
beyond the giant red mysid (Childress and Seibel, 1998; Lamont
and Gage, 2000; Levin, 2003), and these mechanisms may preclude
a significant reliance on anaerobic glycolysis. It is believed that
anaerobic glycolysis is used by permanent OMZ residents in the
same way it is used by species from normoxic habitats, not to
support routine metabolic rate, but to supplement supra-routine
metabolic rates (Childress and Seibel, 1998; Levin, 2003).
Consistent with this, the capacities for anaerobic metabolism (as
indicated by maximal rates of anaerobic enzymes) of the permanent
OMZ residents that have been investigated are no higher than those
of closely related species (or conspecifics) from outside the OMZ
(Childress and Somero, 1979; Yang and Somero, 1993; Vetter
et al., 2008; Childress and Seibel, 1998; Friedman et al., 2012).
Exceptions exist, however. Some permanent OMZ residents such
as the copepod Gaussia princeps (Childress, 1976) and the
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isopod Anuropus bathypelagicus (Childress, 1975) have been
caught at PwO2

levels that are lower than their measured Pcrit

values (0.8 kPa for G. princeps, 0.6 kPa for A. bathypelagicus)
and they may therefore use anaerobic glycolysis to support
routine metabolic rates. But such examples are rare (see
Childress and Seibel, 1998).
In summary, permanent OMZ residents use a predominantly

aerobic THR to survive in their chronically hypoxic habitat.
Anaerobic glycolysis is typically reserved for supplementing supra-
routine metabolic rates, while MRD has not been measured in these
species. This THR enables these species to carry out routine
behaviours and life-history events without accumulating a
significant O2 debt, despite living permanently in hypoxia.
Predominantly aerobic THRs may be selected for in other chronic
hypoxic environments of moderate PwO2

, such as high-altitude
(<3000 m) lakes. The single physiology study on species from these
environments that we know of revealed a highly plastic gill surface
area in Lake Qinghai (3205 m) naked carp (Matey et al., 2008).
However, more work is needed to say anything general about
hypoxic adaptations in high-altitude fishes.

Oligotrophic winterfreeze lakes
Oligotrophic (see Glossary) winterfreeze lakes experience hypoxia
that is moderately severe (PwO2

) and long in duration (see Box 2). A
recent study examined the THRs of two threespine stickleback
(Gasterosteus aculeatus) populations from two isolated lakes in
British Columbia: Alta Lake, which experiences long-term hypoxia
owing towinterfreeze, and Trout Lake, which does not (Regan et al.,
2017b). The Alta Lake fish were found to be significantly more
hypoxia-tolerant than the Trout Lake fish, and although Pcrit and
lactate accumulation did not differ, the Alta Lake fish used MRD at
sub-Pcrit PwO2

levels and the Trout Lake fish did not. Interestingly,
aspects of the Alta Lake fish’s MRD were different than those of
another MRD-inducing species, the goldfish (discussed in detail
below). Alta Lake sticklebacks depress metabolic rate by 33% and
do so at 2.8 kPa PwO2

, whereas goldfish depress metabolic rate by
80% and wait until near-anoxia to initiate it. TheseMRD differences
may relate to variation in each species’ hypoxic environment.
Although the native lakes of goldfish likely become anoxic during
wintertime (like the native lakes of crucian carp; Vornanen, 2004),
apart from at the water–sediment interface (Dunnington et al.,
2016), Alta Lake waters do not reach anoxia (Jacques Whitford
AXYS Ltd, 2007). Selection may therefore be acting on hypoxic
survival strategies at higher PwO2

values in the Alta Lake
environment than in the more severe goldfish environment.

Q4: Severe PwO2 of long duration
Eutrophic winterfreeze lakes
Eutrophic (see Glossary) winterfreeze lakes are typified by hypoxia
that is severe (PwO2

) and long in duration (see Box 2).
Consequently, they tend to be colonized by highly tolerant fishes,
such as the well-studied crucian carp (Carassius carassius;
Vornanen et al., 2009) and its congener, the goldfish (Carassius
auratus; Ultsch, 1989). These fishes employ a complex THR that
involves highly effective mechanisms of aerobic metabolism,
anaerobic metabolism and MRD. Aspects of this THR are altered
not only in response to PwO2

, rate of hypoxia induction and duration
of hypoxia exposure, but also in anticipation of the naturally
occurring hypoxic season. Despite this THR’s complexity, the
evidence suggests it is altered so as to maintain routine metabolic
rate in as many hypoxic environments as possible. This is
accomplished in different ways depending on time: for rapid

induction rates and acute exposure durations (−21 kPa PwO2
h−1,

1 h exposure), goldfish upregulate glycolysis to buffer ATP supply
so as to maintain routine metabolic rate (Regan et al., 2017a);
whereas for gradual induction rates and long exposure durations
(−2.6 kPa PwO2

h−1, 8 h exposure), goldfish and carp increase
environmental O2 extraction by increasing gill surface area and Hb–
O2 affinity so as to support routine metabolic rate aerobically (Sollid
et al., 2003; Tzaneva et al., 2011; Dhillon et al., 2013; Regan and
Richards, 2017). The combination of a highly plastic gill surface
area, the highest Hb–O2 binding affinities reported for vertebrates
(Burggren, 1982; Sollid et al., 2003; Regan et al., 2017a), and a
generally low routine metabolic demand allows goldfish to maintain
routine metabolic rates down to ∼1 kPa PwO2

.
At PwO2

below∼1 kPa, goldfish rapidly depress metabolic rate to
∼20% of routine values in less than 20 min (van Ginneken and van
den Thillart, 2009; Regan et al., 2013). O2 content in the water is
negligible or altogether absent at these PwO2

levels, and the goldfish
and carp become solely reliant on glycolysis to supply the ATP
required to fuel their reduced metabolic demands. The use of MRD
and glycolysis initially leads to an accumulation of lactate and
protons (Regan et al., 2017a), but as the hypoxic/anoxic exposure
duration lengthens, the fish begin to convert these end-products into
ethanol, which they excrete across their gills and thus mitigate a
metabolic acidosis (Shoubridge and Hochachka, 1980; Holopainen
et al., 1986; Regan et al., 2017a). The glycogen stores of goldfish
and crucian carp are larger than those of any other fish species
(Richards, 2009), and, similar to fat stores in hibernating
mammals, these stores significantly increase in size over the late
summer and early autumn to levels that are sufficient to fuel the
fish’s depressed metabolic rates in anoxia during the winter
months (Vornanen et al., 2009).

Another species system native to eutrophic winterfreeze lakes is
the centrarchid sunfishes. The ranges of two closely related sunfish,
the bluegill (Lepomis macrochirus) and pumpkinseed (Lepomis
gibbosus), overlap, but the most northern lakes – the ones that
experience the most severe winterfreeze hypoxia – contain only
pumpkinseed (Mittelbach, 1984; Farwell et al., 2007).
Unsurprisingly, pumpkinseed have repeatedly been shown to be
more hypoxia-tolerant than bluegill (Farwell et al., 2007; Mathers
et al., 2014; Borowiec et al., 2016). The pumpkinseed’s greater
tolerance does not appear to result from greater aerobic abilities, as
the two species do not differ in Pcrit (Mathers et al., 2014; Borowiec
et al., 2016) or a wide array of underlying mechanisms (Crans et al.,
2015; Borowiec et al., 2016). Where the species do differ is in their
capacities for anaerobic metabolism, with the more tolerant
pumpkinseed displaying higher lactate dehydrogenase activities in
axial muscle (Farwell et al., 2007; Borowiec et al., 2016) and heart
(Borowiec et al., 2016) than the less tolerant bluegill. The
pumpkinseed’s greater anaerobic capacity may contribute to its
greater hypoxia tolerance, but because anaerobic glycolysis on its
own is a limited long-term strategy owing to glycogen depletion and
end-product accumulation, it is unlikely to solely explain how
pumpkinseed can tolerate the more hypoxic northern lakes that
bluegill cannot. It may be that pumpkinseed, like goldfish, rely on
MRD and/or plastic mechanisms that enhance O2 extraction, and
that their capacities for these traits are greater than the bluegill’s.
This warrants further investigation.

Swamps
The swamps surrounding Lake Victoria experience hypoxia that is
chronic and severe in PwO2

(see Box 2). The haplochromine cichlids
that live here rely on a primarily aerobic THR. Compared with
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closely related lake-dwelling (i.e. normoxic) species or
conspecifics, the swamp-dwelling fish have larger gill surface
areas, higher haematocrits and Hb concentrations, and lower routine
O2 demands. These modifications result in swamp-dwelling fishes
exhibiting extremely low Pcrit values that are approximately half
those of lake-dwelling fishes and just slightly higher than the lowest
PwO2

measured in these habitats (Chapman et al., 2002). Their
hypoxia tolerance is further enhanced by effective ASR abilities,
which are a central component of their overall THR (Chapman et al.,
1995). Moreover, swamp dwellers engage ASR at significantly
lower PwO2

than do lake dwellers (which are also capable of ASR;
Chapman et al., 2002), a possible advantage given the high daytime
predation pressures exerted by pied kingfishers (Ceryle rudis)
(Randle and Chapman, 2004). The swamp dwellers’ low Pcrit values
enable them to remain in deeper, safer waters throughout the day
when the kingfisher is active and when photosynthetic activity
elevates PwO2

above Pcrit.
It is not known whether these fishes use MRD, but it is known that

the swamp dwellers’ capacities for anaerobic metabolism are no
higher than those of closely related lake-dwelling fishes (as indicated
by anaerobic enzyme activities in various tissues of
Pseudocrenilabrus multicolor populations from swamp and lake
habitats; Crocker et al., 2013). It therefore appears that swamp dwellers
employ a predominantly aerobic THR, though additional MRD-
focused work is needed to provide a complete picture of their THR.

Heterogeneous hypoxic environments in the Amazon
Amazonian fishes can experience hypoxia that is mild or severe in
PwO2

, and short or long in duration (see Box 2). Perhaps because of
the diversity and widespread persistence of Amazonian hypoxic
habitats, many Amazonian fish species have independently evolved
high tolerances to hypoxia (Almeida-Val and Val, 1993). Most
of these species achieve this through behavioural and/or
morphological features that maximize their abilities to acquire O2

in their O2-depleted habitats, the prime examples being ASR and air
breathing. Many Amazonian fish families have independently
evolved morphological features to optimize ASR and air breathing,
including extensible lower lips to syphon O2-rich water directly
across the gills, and a wide variety of air-breathing organs ranging
from modified buccal cavities to lungs (Val et al., 1998). These
morphological features, and the behaviours they optimize, are
believed to have evolved in response to aquatic hypoxia (Graham,
1997; Kramer and McClure, 1982). It is no surprise then that they are
widely used among the Amazon’s hypoxia-dwelling fish species.
One study collected the resident species from an isolated

Amazonian lake (Camaleao Lake) after it had become severely
hypoxic, and then determined the primary hypoxia tolerance
strategy used by each species. Of the 11 families caught
(numerous species for most), seven used air-breathing as their
primary means of tolerating hypoxia, two used ASR, one used
Hb–O2 affinity modulation and one used MRD (Junk et al., 1983).
In a similar study in which 20 species were caught in a hypoxic
Amazonian lake, 10 species used ASR as a primary means of
tolerating hypoxia, four used air-breathing, four positioned
themselves directly adjacent to O2-secreting plant roots, one
combined a large gill surface area with a high Hb–O2 affinity and
one used MRD (the Amazonian oscar, Astronotus ocellatus, the
most tolerant of the group; Soares et al., 2006). Furthermore,
although air breathing and/or ASR behaviours increase the
susceptibility to aerial predation (Kramer and Mehegan, 1981),
some of these fishes have evolved complex group behaviours to
mitigate this risk (Sloman et al., 2009).

In addition to ASR and air breathing, hypoxia-adapted
Amazonian fishes tend to possess characteristics across the
multiple steps of the O2 cascade that enhance O2 extraction and
delivery. These include high ventilation rates, large gill surface areas
(Saint-Paul, 1984), and high blood–O2 carrying capacities through
increased red blood cell count, [Hb] and Hb–O2 binding affinities
(Saint-Paul, 1984; Val and Almeida-Val, 1995; Muusze et al., 1998;
Val et al., 1998; Affonso et al., 2002). Beyond sustaining aerobic
metabolism, hypoxia-exposed Amazonian fishes also strongly
activate anaerobic metabolism (e.g. glycolysis, CrP hydrolysis)
(Chippari-Gomes et al., 2005; MacCormack et al., 2006; Richards
et al., 2007; Scott et al., 2008). And at least one species – the
Amazonian oscar – uses MRD, evidenced by suppressed ṀO2

and
ATP-consuming processes and enzymes, such as protein synthesis
and Na+/K+-ATPase, respectively (Muusze et al., 1998; Lewis et al.,
2007; Richards et al., 2007; Scott et al., 2008). Given the Amazon’s
species diversity and hypoxic heterogeneity, it is perhaps
unsurprising that a wide range of THRs would be seen among
Amazonian fishes. However, as not all aspects of the THR are
available for all species discussed (e.g. scarcity of MRD
information), it is also possible that THRs of Amazonian fishes
are more similar than the data currently suggest.

Summary and perspectives
We can combine the 10 case studies summarized above with the
environmental hypoxia matrix in Fig. 2 to draw some general
conclusions on how the THRmay relate to the hypoxic environment
(Fig. 3). Importantly, these are generalizations based on the limited
number of available studies, and more specifically, the relatively
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Fig. 3. The total hypoxic responses (THRs) of species inhabiting the
different hypoxic quadrants. The circular pie charts represent THR. Each pie
chart’s total area qualitatively represents its total metabolic rate relative to the
size of the pie chart in Q1, which represents normoxic routine metabolic rate. A
smaller-diameter pie chart therefore represents a depressed metabolic rate.
The black-filled portion of a pie chart qualitatively represents the aerobic
contribution to that THR’s metabolic rate, and the white-filled portion
represents the anaerobic contribution (ratios are approximate). All-black and
all-white pie charts therefore represent fully aerobic and anaerobic THRs,
respectively. ‘Access to higher O2’ labels indicate environments in which the
inhabitants may access higher PwO2 regions within their hypoxic environment
(e.g. via aerial emergence).
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small number explored here. As additional studies are completed on
species native to environments within each hypoxia matrix
quadrant, these generalizations will become more refined and
likely modified in various ways. For now, however, we will use
currently available information from across studies to build an initial
environment-focused THR framework. The individual studies we
used to do so (which are highlighted in Table S1) were chosen based
on two main criteria: (i) they used sound methods to measure
mechanisms that are directly related to one or more THR metabolic
modes; and (ii) they were carried out on species native to hypoxic
environments that are well characterized.
For hypoxia exposures that are short (time) and moderate (PwO2

)
(Q1), we believe the THR may vary with the ability to escape to
more oxygenated waters. If escape to more oxygenated waters is not
possible, the fishes tend to employ a primarily aerobic THR with
some contribution of anaerobic metabolism. Generally, Q1 fishes
are hypoxia intolerant relative to Q2, Q3 and Q4 species.
For hypoxia exposures that are short and severe (Q2), we believe

the THR may be heavily influenced by aerial/surface access and
predators (Fig. 3); if the air–water interface is accessible (e.g.
tidepools), fishes living in these environments tend to prioritize
aerobic metabolism by using ASR and/or air breathing. If an aerial
predator presents itself, fishes tend to dive into the hypoxic water
and buffer routine metabolic rate using anaerobic glycolysis, which
in this environment may be more practical than inducing MRD

because it allows the fishes to maintain cellular energy balance
(though not indefinitely) without impairing predator avoidance
behaviour as a result of a metabolic shut-down. The costs of
anaerobic metabolism (fuel depletion, end-product accumulation)
are positively correlated with time spent in the hypoxic
environment, and, for these fishes, this would typically be short:
either the predation threat will subside and allow the fish to re-
emerge and/or perform ASR, or the O2 will be replenished by
photosynthesis and/or the rising tide. The costs accrued with
anaerobic reliance would therefore be low. For Q2 environments
that lack an air–water interface, the response tends to depend on
PwO2

. If PwO2
is above residents’ Pcrit (e.g. less hypoxic OMZ

regions), then aerobic metabolism will be prioritized. However, if
PwO2

is below residents’ Pcrit (e.g. more hypoxic OMZ regions),
then aerobic metabolism cannot be sustained. Animals living in
these environments tend to use MRD over anaerobic metabolism,
perhaps enabled by relatively low predation pressures. Deep MRD
is used if predation risk is low to absent (e.g. jumbo squid),
and moderate MRD is used if predation risk is moderate to low
(e.g. krill).

For exposures that are long and moderate (Q3), we believe the
THR may vary as a function of exposure duration (Fig. 3). Species
that live in chronically moderate hypoxic environments (e.g. OMZ
periphery, high-altitude lakes) tend to rely on enhanced O2

extraction abilities to support metabolic rate aerobically. Because

Order Sculpin

Triplefin

Killifish

Midshipman

Pleuronectiformes
Aerobic metabolism (low Pcrit, aerial emergence, ASR, high mass-specific gill surface
area, high Hb−O2 affinity, high cytochrome c oxidase affinity for O2)
Anaerobic metabolism (activation of glycolysis, high glycolytic enzyme activity, high
glycogen reserves)
MRD (reduce locomotor activity and enter quiescent state but no data on cellular
MRD)

Aerobic metabolism (low Pcrit, high Hb−O2 affinity)
Anaerobic metabolism (no data available)
MRD (no data available)

Aerobic metabolism (low Pcrit, ASR, aerial emergence, enhanced aerobic enzyme
activity)
Anaerobic metabolism (activation of glycolysis)
MRD (MRD in white muscle but only during long-term hypoxia)

Aerobic metabolism (aerial respiration, high hematocrit, high blood O2 carrying
capacity)
Anaerobic metabolism (activation of glycolysis, high glycogen reserves, high
glycolytic enzyme activity)
MRD (reduced Na+/K+-ATPase activity but only in gill and not liver)

Gasterpsteiformes

Tetraodontiformes

Synbranchiformes

Beryciformes

Superorder
Acanthopterygii

Superorder
Paracanthopterygii

Beloniformes

Atheriniformes

Mugiliformes

Ophidiiformes

Gadiformes

Percopsiformes

Lophiiformes

Stephanoberyciformes

Zeiformes

Scorpaeniformes * 

Perciformes * 

Cyprinodontiformes *  

Batrachoidiformes *  

Fig. 4. Phylogenyand the traits underlying the THRof representative fishes fromQ2.A truncated phylogeny of well-studied examples of Q2 fishes – sculpins
(order Scorpaeniformes), triplefins (order Perciformes), killifish (Cyprinodontiformes) and plainfin midshipman (order Batrachoidiformes) – is represented
(modified from Nelson, 2006). Listed are the known traits underlying the THR of each group of species.
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these species infrequently enter fully oxygenated waters, they need
to support routine activities such as feeding and mating in chronic
hypoxia, and this makes an aerobically based THR ideal. Species
that live in seasonally moderate hypoxic environments (e.g.
oligotrophic winterfreeze lakes) tend to use modest MRD,
perhaps because energetically costly routine activities such as
mating and reproduction are typically accomplished during the
oxygenated months of the year. More work is needed on species
from seasonally fluctuating moderately hypoxic environments.
Finally, for exposures that are long and severe (Q4), we believe the

THR may vary as a function of aerial/surface access (Fig. 3). If it is
accessible (e.g. Amazon basin), then the fishes living in these
environments tend to exploit its high O2 content using ASR and/or air
breathing, effectively uncoupling themselves from their severely
hypoxic aquatic environment. If the air–water interface is not available
(e.g. eutrophic winterfreeze lakes), then aerobic metabolism is not an
option and the fishes living here tend to employ deep MRD so as to
conserve limited anaerobic fuel reserves. A general lack of predators in
these environments allows these fishes to surrender locomotor
performance with minimal predation-related consequences, while
the return of O2 with spring thaw allows them to complete routine
activities such as feeding and mating in oxygenated waters.
Looking across these studies as a function of hypoxic

environmental variation, it is apparent that the hypoxic
environment is not the sole influence on THR. It is possible that
other factors such as genetic constraint, rate of environmental
change (e.g. climate change-related) and complex interactions with
other abiotic factors (e.g. temperature, PwCO2

, pH) may also
contribute to a species’ THR, and divorcing these effects from those
of the hypoxic environment is difficult. However, there appear to be
common patterns in the THRs across species that depend on their
native hypoxic environments. Using the extensively studied Q2, we
illustrate that distantly related species share similar THRs,
suggesting that convergent evolution has played a role in shaping
the hypoxic metabolic phenotype. Spanning different phylogenetic
orders, sculpins (Scorpaeniformes), triplefins (Perciformes),
killifish (Cyprinodontiformes) and the plainfin midshipman
(Betrachoidiformes) are commonly found to have an enhancement
of aerobic metabolism along with contributions from anaerobic
metabolism in defense of hypoxic stress (although the scarcity of
direct MRD measurements in ecologically relevant time frames
should be noted; Fig. 4). The THR is more similar in the distantly
related species than with the species’ respective taxonomic
counterparts. For example, hypoxia-tolerant sculpin and triplefin
species inhabiting the intertidal zone share more similar traits with
each other, e.g. low Pcrit and high Hb–O2 affinity, than with the less
tolerant subtidal sculpin and triplefin species, respectively, e.g. high
Pcrit and low Hb–O2 affinity (Mandic et al., 2009a; Brix et al.,
1999). This would suggest a convergence of similar metabolic
strategies among distantly related species. However, disentangling
the roles of phylogenetic history and the hypoxic environment per se
on shaping species’ THRs will require a more widespread use of
rigorous, phylogenetically appropriate comparisons.
As current human practices increase the prevalence and severity

of hypoxia among the world’s aquatic environments (IPCC, 2014;
Schmidtko et al., 2017; Smith et al., 2006), understanding how
metabolic strategies associate with different hypoxic environments
is probably more important than ever. Knowing which THRs are
most conducive to survival in which types of hypoxic environments
may help us to better identify potentially vulnerable species, and
better predict their redistribution patterns as their environments
become increasingly hypoxic.
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