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Summary
In this report, we have shown that miR146b promotes the maintenance of pregnancy-derived mammary luminal alveolar progenitors.
MiR146b expression was significantly higher in the mammary glands of pregnant and lactating mice than in virgin mice. Furthermore,
miR146b levels were significantly higher in mouse mammary glands exposed to the sex hormones, estrogen and progesterone, compared

with those of untreated control animals. Pregnancy-derived primary mouse mammary epithelial cells in which miR146b was knocked
down showed a significant reduction in the number of hollow acinar organoid structures formed on three-dimensional Matrigel and in b-
casein expression. This demonstrates that miR146b promotes the maintenance of pregnancy-derived mammary luminal alveolar

progenitors. It has been shown that mouse mammary luminal progenitors give rise to hollow organoid structures, whereas solid organoid
structures are derived from stem cells. Among several miR146b targets, miR146b knockdown resulted in preferential STAT3b
overexpression. In the primary mouse mammary epithelial cells, overexpression of STAT3b isoform caused mammary epithelial cell
death and a significant reduction in b-casein mRNA expression. Therefore, we conclude that during pregnancy miR146b is involved in

luminal alveolar progenitor cell maintenance, at least partially, by regulating STAT3b.
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Introduction
Development of the mammary gland is a highly dynamic process

and involves distinct embryonic, pubertal, pregnancy, lactation

and involution stages. Hormones and growth factors undoubtedly

play key roles in all stages of mammary development. The

essential role of micro-RNAs (miRNAs) in the various stages of

mammary development is being recognized. Not surprisingly, a

disruption in miRNAs, has been implicated in human breast

cancers (Watson and Khaled, 2008).

MiRNAs have been linked to both normal physiology and

pathology, including regulation of developmental processes,

proliferation, differentiation and apoptosis. Loss of mature

miRNAs resulted in a failure of the cells to differentiate (Andl

et al., 2006; Bernstein et al., 2003; Kanellopoulou et al., 2005;

Muljo et al., 2005), providing evidence that miRNAs are

involved in stem cell maintenance, self-renewal, and/or

differentiation (Greene et al., 2010). MiRNAs have been found

in co-expressed clusters during mammary gland development,

suggesting co-regulation of miRNA groups (Avril-Sassen et al.,

2009; Piao and Ma, 2012). Furthermore, it has been shown that

mRNAs encoding receptors of endocrine hormones are direct

targets of specific miRNAs, which also indicates the role of

miRNAs in mammary gland development (Cui et al., 2011).

Mouse microRNA-146b-5p (miR146b) is located on chromosome

19 at position 19qC3, whereas miR146a is located on chromosome

11 at position 11qA5 (Fujita et al., 2011). Structurally, the mature

miR146a and miR146b differ by only two nucleotides at the 39 end, a

region that is believed to play a minor role in target recognition, and

in many instances miR146a and miR146b have demonstrated

redundant activities (Lewis et al., 2003). The role of miR146b

in cancer progression is currently controversial. MiR146b

overexpression has been shown to be associated with aggressive

behavior in papillary thyroid carcinomas (PTC) (He et al., 2005) and

triple negative breast cancers (Garcia et al., 2011). Conversely,

miR146b has also been shown to inhibit carcinogenesis. Welch

and colleagues recently classified miR146a/b as a ‘metastasis-

suppressing metastamir’ (Hurst et al., 2009). The term ‘metastamir’

refers to metastasis regulatory miRNAs that have an impact on

critical steps in the metastatic cascade, such as epithelial–

mesenchymal transition (EMT), apoptosis and angiogenesis (Hurst

et al., 2009). For example, miR146b was shown to inhibit

glioblastoma cell migration (Xia et al., 2009) and to suppress

breast cancer metastasis (Bhaumik et al., 2008; Hurst et al., 2009).

These findings suggest that miR146b may play a dual role in cancer

and that much remains to be learned about the mechanism by which

this miRNA may participate during carcinogenesis.
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Recently, our group isolated distinct populations of ductal-
limited, alveolar-limited and multipotent mammary progenitors by

single-cell cloning of the COMMA-D (CD) cell line (Kittrell et al.,
2011). Transplantation of the alveolar-limited clone, referred to
herein as an ‘alveolar progenitor cells/clone’, generated functional

alveolar structures in vivo. Transplantation of ductal-limited clone,
referred to hereinafter as a ‘ductal progenitor clone’, generated
only ductal structures devoid of functional alveolar differentiation
potential. Transplantation of two of the clones, referred to

hereinafter as ‘multipotent progenitor clones’, generated ducts
and alveolar structures (Kittrell et al., 2011). Using this model
system, we identified a hormonally regulated miRNA, miR146b,

that plays a pivotal role in alveolar progenitor cell maintenance.

As mentioned above, altered expression of miR146b has been
linked to an invasive and metastatic capacity in diverse cancers.

Finding a hormonally regulated miRNA that regulates both the
processes of alveolar cell maintenance and breast cancer may
provide one missing link in the molecular pathways implicated in

hormonal regulation of human breast cancer.

Results
MiR146b is highly expressed in the alveolar progenitor
cells

The distinct mammary alveolar, ductal and multipotent
progenitor clones were used to screen for changes in the
expression of 84 unique miRNAs (Fig. 1A) by an RT2 miRNA

PCR array. This screening showed a set of 74 upregulated
miRNAs in the clones with in vivo morphogenic potential
(including the alveolar progenitor, ductal progenitor and

multipotent progenitors) when compared with clones that
exhibited no in vivo morphogenic potential. Twenty miRNAs
showed a 10 to 20-fold increase, and 15 miRNAs showed .20-
fold increase (Fig. 1A). Among those upregulated, miR146b

showed .72-fold increase, and miR-203 showed .77-fold
increase. To examine the expression of upregulated miRNAs in
the specific progenitor clones, RT-qPCR was used on RNA

derived from progenitor clones grown on Matrigel in three
dimensions (3D). MiR146b was the only miRNA that showed
differential expression as it was highly expressed by the alveolar

progenitor clone with a 10-fold increase compared with the level
in the ductal and the multipotent progenitor clones (1061.8
versus 1.2960.7 and 160.23, respectively; Fig. 1B). Others such
as miR203 expression showed no difference between the distinct

progenitor clones (data not shown).

To confirm these findings, miR146b expression levels were

examined in the primary mammary epithelial cells (PMECs)
derived from virgin, pregnant, lactating and 10 days post-
weaning (involuting) female BALB/c mice (Fig. 1C). These
studies showed a 6.3-fold increase in miR146b expression levels

in the PMECs derived from pregnant mice compared with those
from virgin and post-weaning mice (6.360.83 versus 1.060.44
and 1.361.17, respectively, P,0.05) and a 12-fold increase in

PMEC derived from lactating compared with virgin and post-
weaning mice (12.0361.45 versus 1.060.44 and 1.361.17,
respectively, P,0.05). MiR146b expression levels were

normalized to keratin-18, in order to exclude the contribution
of stromal cells. Because the pattern of expression of miR146a
and miR146b are similar and the isoforms are reported to be co-

regulated (Garcia et al., 2011), miR146a levels were similarly
examined by RT-qPCR. The results showed that miR146a levels
increased similarly during pregnancy and lactation. However, the

increase in miR146a expression levels, were not as significant as
miR146b (Fig. 1C).

Recently, the progenitor and differentiated cells in the
mouse mammary glands and human breast were phenotypically

and functionally characterized by fluorescence-activated cell
sorting (FACS) followed by transplantation. These studies
defined the subpopulations enriched in stem cells by the

expression of unique surface markers, lineage-negative (lin2)
CD24+CD29hi and lin2CD24+CD49fhi, luminal progenitors
by lin2CD29loCD24+CD61+, differentiated estrogen receptor-
positive (ER+) luminal cells by CD24+CD133+ and

myoepithelial progenitors by CD29loCD24lo (Asselin-Labat
et al., 2007; Shackleton et al., 2006; Stingl et al., 2006).

To find the mammary epithelial sub-population with the
highest level of miR146b expression, the luminal progenitors

(lin2CD29loCD24+CD61+), basal/stem cells (lin2CD29hiCD24+)
and differentiated luminal cells (lin2CD29loCD24+CD612) were
FACS sorted from the mammary glands of virgin and pregnant

BALB/c mouse, followed by RNA extraction and RT-qPCR. The
results revealed that during pregnancy miR146b expression levels
were ,2-fold higher in the luminal progenitors when compared

with the basal/stem cells (10.662.17 versus 4.660.19; P,0.05)
and 1.6-fold higher when compared with the differentiated luminal
cells (10.662.17 versus 6.360.68; P,0.05; Fig. 1D,E). However,
there were no differences in miR146b expression levels between

these epithelial subpopulations derived from virgin mouse
mammary glands (Fig. 1E). Interestingly, miR146b was 10.5-
fold higher in the luminal progenitors (alveolar) of pregnant

compared with virgin (ductal) mice (10.662.17 versus 1.0160.38;
P,0.05). Since expression was significantly higher in the luminal
alveolar progenitors than in stem cells and differentiated luminal

cells, we focused our studies on the functional role of miR146b in
the luminal alveolar progenitor cells.

Sex hormones and prolactin result in the upregulation of
miR146b levels in primary mammary epithelial cells

Since miR146b expression levels were significantly higher in all

epithelial subpopulations from pregnant compared with virgin mice,
we hypothesized that pregnancy hormones may participate in its
upregulation. To investigate the influence of hormones on miR146b,

we exposed glands from virgins to estrogen (E) and progesterone (P)
in vivo. E plus P hormonal pellets were placed subcutaneously in
virgin BALB/c mice for 3 weeks. Following treatment, the

mammary glands were removed followed by PMEC isolation.
RT-qPCR revealed that E plus P treatment resulted in a 2.7-fold
increase in miR146b expression levels, normalized to keratin-18,

compared with the level in the non-treated controls (2.760.08
versus 160.54; P,0.05; Fig. 2A). To rule out the contribution of
stroma, PMECs derived from virgin mouse mammary glands were
treated with E plus P, prolactin alone, or all three hormones for 10

days in vitro. A similar rise in miR146b levels was found upon
exposure to E plus P, prolactin alone, or all three hormones
compared with the level in the untreated cells (1.4660.09 and

1.3860.09, respectively, versus 160.26; P,0.05; Fig. 2C). These
results suggested that sex hormones and or prolactin, directly or
indirectly, mediate the upregulation in miR146b levels.

MiR146b mediates the maintenance of alveolar luminal
progenitor cells

To assess the functional role of miR146b, ‘GFP’-labeled Locked
Nucleic Acid oligonucleotides (LNATM, Exiqon) complementary

Role of MiR146b in alveolar progenitor cell survival 2447
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to miR146b were used to knockdown miR146b expression. For

these studies, PMECs derived from BALB/c mouse mammary

glands and/or CD-derived alveolar progenitor cells were used. In

order to examine the specificity of the miR146b LNA, RT-qPCR

was used to examine miR146a levels following miR146b

knockdown. The data showed a non-significant reduction in

miR146a, confirming that the knockdown was selective against

miR146b (Fig. 3A). Furthermore, time-course experiments using

Fig. 1. MiR146b expression is upregulated in the CD-derived alveolar progenitor cells and in mouse mammary glands during pregnancy and lactation.

(A) An RT2 miRNA PCR array was used to screen for miRNAs differentially expressed in CD clones with in vivo growth potential normalized to CD clones

lacking in vivo growth potential. (B) Quantitative PCR of miR146b expression in three CD-derived clones grown for 7 days on Matrigel. Ductal and alveolar

progenitor clones were normalized to the multipotent clone (n54; *P,0.05). (C) Quantitative PCR of miR146b and miR146a expression in PMECs from virgin,

pregnant, lactating or 10 days post-weaning mice (n53; different letters indicate a statistical difference; P,0.05). (D) Representative histogram of flow cytometry

analysis of the three mammary cell subpopulations, lin2CD24+CD29hi (stem cells/basal cells), lin2CD24+CD29loCD61+ (luminal progenitor cells) and

lin2CD24+CD29loCD612 (differentiated luminal cells), from virgin and pregnant mice. The subpopulations were sorted by FACS. (E) miR146b expression in the

subpopulations analyzed by qPCR (n53, *P,0.05 compared with the stem cells). Data are means 6 s.e.m.; different letters indicate a statistical difference,

P,0.05.
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the CD-derived alveolar progenitor cells followed by RT-qPCR

showed stable miR146b knockdown up to 72 hours post-

transfection (supplementary material Fig. S1A). To assess

effects on alveolar progenitor cell survival, the CD-derived

alveolar progenitor cells were collected at 48, 60 and 72 hours

post-transfection followed by staining with the LIVE/DEADH
Fixable Dead Cell Staining Kit. The fluorescent dye can

permeate the compromised membranes of dead cells and react

with free amines both in the interior and on the cell surface. A

significant reduction in the alveolar progenitor cells was seen at

72 hours post-transfection (Fig. 3C,D; supplementary material

Fig. S1B). Effects on cell death was confirmed by a western blot

analysis, which showed an increase in cleaved caspase 3 in the

alveolar progenitor cells knocked down of miR146b compared

with the control groups (Fig. 3B). Our data showed selective

effect on cell survival in the alveolar progenitor cells when

compared with the CD-derived ductal limited and multipotent
progenitor cells (Fig. 3C,D; supplementary material Fig. S1B).

As seen in supplementary material Fig. S1C, .80% of the total
population of CD cells were transfected with the miR146b LNA.
Even though ,60% of the PMECs were transfected with the
miR146b LNA, there was not a significant effect on survival of

the total population of PMECs derived from pregnant mouse
mammary glands (data not shown). However, as seen in
Fig. 3E,F, there was a significant reduction in the percentage of

alveolar luminal progenitor cells knocked down of miR146b
(lin2CD29loCD24hiCD61+) compared with the control
(0.5560.097% versus 1.060.18%; means 6 s.e.m., P,0.05).

To further examine the functional role of miR146b in the
luminal alveolar progenitors, an assay involving three-
dimensional (3D) hollow or solid acinar organoid formation
efficiency on Matrigel was performed. Based on previously

published studies, the mammary stem cells give rise to solid
acinar organoids, whereas luminal progenitors form hollow
acinar organoid structures when grown in 3D Matrigel cultures

(Guo et al., 2012; Lim et al., 2009; Shackleton et al., 2006; Stingl
et al., 2006). For these studies, PMECs were isolated from
pregnant mouse mammary glands followed by transfection with

miR146b LNA. At 24 hours post-transfection, the cells were
transferred from tissue culture plates to Matrigel and treated with
prolactin for 7 days. The epithelial organoids were counted and
classified into solid or hollow acinar organoid structures. In

addition, some cells were recovered from each group to test for
knockdown efficiency using RT-qPCR. As seen in Fig. 4A, the
PMECs were efficiently knocked down of miR146b up to 7 days

post-LNA transfection. Furthermore, there was a 5.3-fold
reduction in the number of hollow acinar organoid structures
upon miR146b knockdown compared with the control groups

(260 versus 10.662.4; means 6 s.e.m., P,0.05), reflecting a
reduction either in the number of luminal alveolar progenitors or
their ability to give rise to the differentiated luminal structures on

Matrigel (Fig. 4B,C). However, the number of the solid
structures remained constant in all of the treatment groups. The
number of hollow acinar structures were higher with prolactin
treatment (1664 versus 761.15; means 6 s.e.m., P,0.05).

However, the effect of miR146b knockdown was similar with or
without treatment with prolactin.

To further investigate the effect of miR146b knockdown on the

alveolar progenitor cell function we tested the ability of the
CD-derived alveolar progenitor cell line to express b-casein
milk protein following miR146b knockdown. b-casein is

endogenously expressed in the CD-cell line and can be rapidly
induced by prolactin in vitro (Ball et al., 1988). The CD-derived
alveolar progenitor cells and primary mouse epithelial cells were
transfected with miR146b LNA inhibitor in 2D culture. At

24 hours post-transfection the cells were transferred to Matrigel
and treated with prolactin (PRL) for another 72 hours. The cells
were then recovered from the Matrigel and an RT-qPCR for

b-casein mRNA levels was performed. MiR146b knockdown
produced a significant reduction in b-casein expression compared
with the level in the control CD-derived alveolar progenitor cells

treated with PRL (2.3E460.1E4 versus 3.7E460.2E4; mean
normalized expression 6 s.e.m., P,0.05; Fig. 4D), as well as in
the primary mouse mammary epithelial cells (0.160.03 versus

160.04; mean normalized expression 6 s.e.m., P,0.05; Fig. 4E).
These data show that miR146b regulated b-casein expression, a
marker of alveolar cell viability and function.

Fig. 2. In vivo administration of estrogen and progesterone resulted in

upregulation of miR-146b expression in the mammary epithelial cells.

(A) Quantitative PCR of miR-146b in PMECs from virgin mice treated with

estrogen and progesterone for 3 weeks compared with non-treated virgin

mice. Data are means 6 s.e.m. (n54, *P,0.05). (B) Representative

Hematoxylin and Eosin-stained sections from the hormone-treated and

control mice. Scale bars: 100 mm. (C) Quantitative PCR of miR-146b in

PMECs from virgin mice treated with estrogen plus progesterone (E+P), with

prolactin (PRL) or both for 10 days in vitro compared with non-treated

PMECs. Data are means 6 s.e.m. (n53, *P,0.05 compared with the control).

Role of MiR146b in alveolar progenitor cell survival 2449
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MiR146b promotes alveolar progenitor cell maintenance, at

least partially, through downregulation of STAT3b

We hypothesized that miR146b may promote alveolar progenitor

cell survival and function by suppressing transcription factors

with key roles during mammary gland development during

pregnancy and or involution. Previous studies have shown

miR146b targets to include interleukin (IL)-1 receptor

associated kinase (IRAK1), TNF receptor-associated factor 6

(TRAF6), nuclear factor kappa-light-chain-enhancer of activated

B cells (NFkB) and SMAD family member 4 (SMAD4)

(Bhaumik et al., 2008; Geraldo et al., 2012). Since some

miRNAs might also upregulate expression (Ghosh et al., 2008;

Vasudevan et al., 2007), we also examined signal transducer and

activator of transcription 5a (STAT5a) and Elf5, two

transcription factors that promote alveologenesis (Bouras et al.,

2008; Siegel and Muller, 2010). For these experiments, the CD-

derived alveolar progenitor cells were knocked down of miR146b

to screen for targets. As shown in Fig. 5A, knockdown of

miR146b by LNA inhibitors decreased the expression of

SMAD4, IRAK1 and NFkB, but had no effects on STAT5a,

TRAF6 and Elf5. These data suggest that the previously

identified targets of miR146b may not be directly regulated in

the mammary glands.

STAT3 is a transcription factor that has been implicated

previously in promoting mammary epithelial cell apoptosis at the

onset of involution (Chapman et al., 1999). This finding

prompted us to examine whether miR146b might target

STAT3. The 39UTR of the STAT3 gene was analyzed with

Ensembl 2012 (Flicek et al., 2012) and RNA22 target prediction

program (Miranda et al., 2006), and two putative miR146b

binding sites were identified in the STAT3a 39UTR (1.9 kb),

while three miR146b binding sites were identified in STAT3b
39UTR (3.6 kb; Fig. 6A). The two binding sites in STAT3a
39UTR are similar to STAT3b 39UTR.

Knockdown of miR146b in the CD-derived alveolar progenitor

cells, resulted in a significant increase in STAT3b expression

compared with STAT3a (Fig. 5B; supplementary material Fig.

S1E). A western blot using STAT3b-specific antibody (generated

Fig. 3. Knockdown of miR-146b leads to a reduction in the luminal progenitor subpopulation during pregnancy. (A) Quantitative RT-PCR of miR146a and

miR146b in PMECs at 72 hours post-transfection with a miR146b LNA inhibitor (miR146b KD) and with non-silencing controls (NS; n53, P,0.05).

(B) Representative western analysis of cleaved caspase 3, and b-actin in the alveolar progenitor cell line 48 hours post-transfection in non-transfected (NT), NS

and miR146b KD cells. (C) Representative histograms of flow cytometry analysis for cells stained with the LIVE/DEADH Fixable Dead Cell Staining Kit.

(D) Quantification of the percentage of live cells from the live–dead analysis of the alveolar progenitor cell line at 72 hours post-transfection (n53, P,0.05).

(E) Representative flow cytometry dot plots of PMECs at 72 hours post-transfection analyzed for the Lin2CD24+CD29loCD61+ population. (F) The reduction in

the CD24+CD61+ progenitor population from the lin2CD29lo population of PMECs following knockdown of miR-146b (n53, *P,0.05). Data are means 6 s.e.m.

Journal of Cell Science 126 (11)2450
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in the laboratory of D. J. T.) showed that the upregulated lower
band in total STAT3 western blot was indeed STAT3b and not a
product of STAT3a proteolytic degradation (Fig. 5B; middle

panel). The STAT3b-specific antibody was raised against the
unique C-terminal 7 residues in STAT3b protein. The increase in
STAT3b expression upon miR146b knockdown in PMECs

derived from pregnant mouse mammary glands was up to 2-
fold compared with the controls (Fig. 5C, and densitometry data
not shown). These data suggest that miR146b preferentially

regulates STAT3b protein expression.

MiR146b binds to the 39UTR of STAT3a and STAT3b

To determine if the putative miR146b binding sites resided

within the 39UTR of STAT3, we utilized luciferase constructs in
which the 39UTRs of STAT3a or STAT3b were inserted
downstream of the firefly luciferase reporter gene (driven by

SV40 promoter). A chimeric mRNA is transcribed consisting of
the firefly luciferase and the STAT3a or b 39UTR sequence. The
vector also contains a Renilla luciferase as an internal control

downstream of the CMV promoter (Fig. 6B). To examine
whether miR146b directly regulates STAT3a and b, 293T cells
were transfected either with the STAT3a or b 39UTR reporter

construct along with the miR146b precursor and the Pre-miRTM

negative control. Firefly luciferase activity was then measured
and normalized to Renilla luciferase activities in the same wells.

The results showed a statistically significant reduction in
luciferase reporter activity of STAT3a (70.261.7% versus
10062.4%; mean normalized luciferase units 6 s.e.m.,

P,0.0001) and in luciferase reporter activity of STAT3b
(72.963.2% versus 10063.1%; mean normalized luciferase
units 6 s.e.m., P,0.0001) when cells overexpressed miR146b

compared with cells that expressed the Pre-miRTM negative
control (Fig. 6C). Luciferase reporter activity of the STAT3a
(data not shown) and STAT3b39UTR was also significantly

lower in PMECs from pregnant mice, which had significantly
higher miR146b expression, compared with luciferase activity in
PMECs from virgin mice (7169.8% versus 10065.6%; mean
normalized luciferase units 6 s.e.m., P,0.0001; Fig. 6D). These

data suggest that miR146b directly binds the 39UTR of STAT3a
and STAT3b. In order to examine effects on STAT3 splicing,
real time RT-PCR using specific primers to STAT3a and

STAT3b was performed. The results showed that, upon
miR146b knockdown, STAT3a and STAT3b mRNA levels
were unchanged (Fig. 6E). Therefore, most likely, miR146b does

not affect STAT3 splicing.

STAT3b may play a functional role during mammary
gland involution

The contribution of specific STAT3 isoforms during mammary
epithelial cell apoptosis at the onset of involution is not known at

Fig. 4. MiR146b knockdown reduced

the alveolar luminal progenitor cell

number when grown in MatrigelH.

(A) Quantitative PCR of the PMECs at

24 hours post-transfection (before

growth on MatrigelH) and after 7 days

on Matrigel. (B) Immunofluorescent

images of the solid and hollow

acinar structures. The nucleus is

counterstained with DAPI (blue).

(C) The solid organoid- and hollow

acinus-forming efficiencies of PMECs

transfected with the miR146b-LNA

inhibitor (miR146b KD) compared with

non-silencing controls (NS) and non-

transfected cells (NT). The cells were

cultured on Matrigel for 7 days, either

with or without prolactin treatment

(n53, P,0.05). (D,E) RT-qPCR of the

CD-derived alveolar progenitor cells

(D), and primary mammary epithelial

cells (E) transfected with the miR146b-

LNA inhibitor (miR146b KD)

compared with non-silencing controls

(NS) and non-transfected cells (NT).

The cells were cultured on Matrigel for

72 hours, with prolactin treatment.

Cells were recovered and analyzed for

b-casein expression by qPCR (n53,

*P,0.05 compared with other cells).

Data are means 6 s.e.m.

Role of MiR146b in alveolar progenitor cell survival 2451
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this time. To correlate miR146b expression with STAT3a/b
levels during mammary development, we performed total STAT3

western blots using CD-derived progenitor clones as well as

BALB/c-derived mammary glands from virgin, pregnant,

lactating, and 1, 3 and 6 days post-weaning (involution) mice.

Interestingly, STAT3b levels were inversely correlated with

miR146b expression in the CD-derived progenitor clones

(compare Fig. 7A and Fig. 1B). Furthermore, STAT3b levels

were inversely correlated with miR146b levels at each

physiological stage, while STAT3a was equally expressed

throughout the distinct mammary developmental stages

(compare Fig. 7B and Fig. 1C). As shown previously

(Chapman et al., 1999) and in this study (Fig. 7C,D), there is

an increase in STAT3a and STAT3b tyrosine phosphorylation

(phosphor-Y705-STAT3, present in both STAT3a and STAT3b)

prior to a significant rise in STAT3a serine phosphorylation

(phosphor-S727-STAT3 present only in STAT3a) beginning at

day 2 post-weaning. These findings suggests that STAT3b,

either as homodimers or heterodimer with STAT3a or other

transcription factors, may contribute to the onset of mammary

involution. The specific STAT3 isoform knockout mice have

been generated, but the contribution of each isoform to mammary

involution has not been reported (Maritano et al., 2004). In order

to relate the role of miR146b to STAT3b, we studied the effect of

STAT3b overexpression on alveolar luminal cell viability and

function. A cDNA overexpressing STAT3b was transfected into

the CD-derived alveolar progenitor cells. The cells were collected

at 24 hours post-transfection and stained with the LIVE/DEADH
Fixable Dead Cell Staining Kit. As expected, similar to the

effects seen with miR146b knockdown, STAT3b overexpression

reduced cell viability in the CD-derived alveolar progenitors

by 20% compared with the controls (76.661.04% versus

95.761.5%; means 6 s.e.m.; Fig. 7E,F). Furthermore, we

examined whether overexpression of STAT3 isoforms resulted

in a similar reduction in b-casein mRNA levels as seen with

miR146b knockdown. For these experiments, virgin-derived

mouse mammary epithelial cells were transfected with

the STAT3b- and STAT3a-overexpressing cDNA clones,

Fig. 5. Effect of knockdown on miR146b known targets as well as on STAT3a/b. (A) Western analysis of Smad4, IRAK1, STAT5a, NFkB, TRAF6, ELF5 and

b-actin in the alveolar progenitor cell line 48 hours post-transfection in non-transfected (NT), NS and miR146b KD cells. (B,C) qPCR showing successful

knockdown (top panels, and representative western analysis (bottom panels) of total-STAT3 (top row), STAT3b-specific antibody (middle row in B) and b-actin

(lower row) in the alveolar progenitor cell line and in non-transfected (NT), NS and miR146b KD cells (n54) 48 hours post-transfection.

Journal of Cell Science 126 (11)2452
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transferred onto Matrigel, and treated with PRL for 72 hours. The

cells were then recovered for RT-qPCR. Fig. 7G, shows that

similar to miR146b knockdown, overexpression of STAT3a and to

a higher extent STAT3b resulted in a significant reduction in b-

casein mRNA levels compared with the control (0.260.01 and

0.0660.02 versus 160.13; mean normalized expression 6 s.e.m.,

P,0.05). These data suggests that miR146b may regulate alveolar

progenitor cells, at least partially, through direct regulation of

STAT3b. Since we did not find a significant regulation of STAT3a
protein expression by miR146b, we believe that miR146b effects

are at least partially, through regulation of STAT3b.

Discussion
In this study, it is demonstrated that miR146b expression is

upregulated in the luminal alveolar progenitor cells during

pregnancy and lactation and upon hormonal stimulation with (E

plus P) and prolactin. Furthermore, transient knockdown of

miR146b reduced survival of luminal alveolar progenitor cells.

These data suggest that miR146b participates in alveologenesis

under the influence of sex hormones and prolactin. The effects of

miR146b may, at least partially, be through suppression of key

transcription factors involved in alveolar cell death during

involution, such as STAT3b.

Fig. 6. MiR-146b targets the 39UTR of STAT3a/b. (A) A diagram of the 39UTRs of STAT3a and b computationally predicted binding sites for miR-146b.

(B) Vector backbone of STAT3a/b 39UTR reporter construct, STAT3a and b 39UTR sequences were inserted downstream of the firefly luciferase reporter gene,

driven by the SV40 promoter. Renilla luciferase was used as an internal control. (C) Luciferase reporter activity of the STAT3a and b 39UTR in 293T cells

expressing miR146b, the non-silencing negative control and the luciferase positive control. Reporter activity decreases by 30% when cells are overexpressing

miR146b. Each sample was normalized to Renilla luciferase activity (n56,*P,0.0001). (D) Luciferase reporter activity of the STAT3b 39UTR in PMECs from

pregnant and virgin mice without treatment, and in PMECs treated with the luciferase positive control (n56,*P,0.0001). (E) RT-qPCR of PMECs transfected

with the miR146b-LNA inhibitor (miR146b KD) compared with non-silencing controls (NS). At 72 hours post-transfection the cells were analyzed for STAT3a

and STAT3b expression by qPCR (n53, P.0.05). Data are means 6 s.e.m.
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Although many studies report the role of miR146b in cancer,

its role in mammary gland development is still unknown.

Bockmeyer et al. studied the miRNA profiles of human basal

and luminal epithelial cells as well as basal and luminal breast

cancers (Bockmeyer et al., 2011). These studies showed

miR146b to be a basal-specific miRNA and to be upregulated

in basal-like breast cancers when compared with luminal A and B

breast cancer subtypes (Bockmeyer et al., 2011). Other than in

this report, expression of miR146b and its role in mammary

epithelial cell development have not been described.

We reasoned that miR146b might play a role in alveolar cell

maintenance by regulating a known target such as IRAK1/TRAF6,

NF-kB, or SMAD4 or by regulating transcription factors with

known roles during alveologenesis such as STAT5a and E74-like

factor 5 (ELF5). A review of the literature showed miR146b to

regulate TGF-b signaling by repressing SMAD4 in thyroid cancers

(Geraldo et al., 2012). TGF-b has been shown to play an important

role during mammary involution by inducing cellular apoptosis and

alveolar collapse in the early stages of involution (Flanders and

Wakefield, 2009). Furthermore, miR146b has been shown to inhibit

breast cancer cell invasion and migration by targeting IRAK1/

TRAF6 and by downregulating NF-kB signaling (Bhaumik et al.,

2008). NF-kB has also been shown to destabilize STAT5a, a key

transcription factor that promotes alveologenesis (Floyd et al.,

2007). Interestingly, miR146b knockdown did not result in the

upregulation of any of the known suspected targets. Therefore, the

previously identified miR146b targets may not be similarly

regulated in normal mammary glands.

Fig. 7. STAT3b is activated in the mammary epithelial

cells during involution. (A) Western blot analysis of total

STAT3a/b in the CDb cell line and the CD-derived clones.

(B–D) Western blot analysis of total STAT3a/b (B);

phosphorylated tyrosine 705 (phospho-Tyr-STAT3; C);

phosphorylated serine 727 (phosphor-ser-STAT3; D) in

total glands from virgin (V), pregnant (P) and lactating (L)

mice and from mice at different physiological stages of

involution: days 1, 3 and 6 (B–D) and 10 (C) days post-

weaning (D-PW). (E) Representative histogram of flow

cytometry analysis of the alveolar progenitor cell line

stained with the LIVE/DEADH Fixable Dead Cell Staining

Kit at 24 hours post-transfection with STAT3b

overexpression clone. (F) Quantification of the percentage

of live cells (n53, P,0.05). (G) RT-qPCR of mouse

mammary epithelial cells transfected with

STAT3a(STAT3a-OE)- or STAT3b (STAT3b-OE)-

overexpression clone compared with cells transfected with

the empty vector (control). The cells were cultured on

Matrigel for 72 hours, with prolactin treatment. Cells were

recovered and analyzed for b-casein expression by qPCR

(n53, *P,0.05 compared with other cells). Data are

means 6 s.e.m.
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Since STAT3 transcription factors were reported to play key

roles in mammary epithelial cell apoptosis at the onset of

involution, we explored the role of miR146b in regulating

STAT3 isoforms. STAT3 has two main isoforms: the full-length

STAT3a and the truncated STAT3b, by alternative mRNA

splicing of exon 23 (Huang et al., 2007; Zammarchi et al., 2011).

In STAT3b, the 55-amino acid C-terminal acidic transactivation

domain of STAT3a is replaced by seven unique amino acid

residues (Zammarchi et al., 2011). An important factor in STAT3

functional heterogeneity may be the existence of these two

alternatively spliced isoforms. As suspected, miR146b

knockdown resulted in upregulation of STAT3 expression in

both PMECs derived from pregnant mammary glands and in the

alveolar progenitor cells. However, the upregulation of the

STAT3b isoform was higher than that of STAT3a. There are

several possibilities for preferential regulation of STAT3b
protein expression by miR146b. One is the existence of an

additional miR146b binding site on the predicted STAT3b
39UTR, resulting in a different secondary structure and higher

efficiency of mir146b binding (Flicek et al., 2012). Another

mechanism, may be the regulation of alternative splicing events.

The interplay between the miRNA and splicing regulation has

been demonstrated previously. These studies showed that

miR124 and miR133 regulate the RNA-binding protein,

polypyrimidine tract-binding protein 1 (PTBP1). PTBP1 is a

global repressor of alternative pre-mRNA splicing in non

neuronal cells (Boutz et al., 2007; Makeyev et al., 2007).

Additionally, ESEfinder and PESX algorithms predicted a

putative exonic splicing enhancer (ESE), which overlaps with

one of the predicted miR146b binding sites. MiR146b binding to

this overlapped region may regulate ESE. MiR146b could also

indirectly regulate STAT3 alternative splicing by targeting key

splicing factors. Real-time RT-PCR results showed that STAT3a
and STAT3b mRNA levels remain constant in miR146b

knockdown cells despite striking changes in protein expression,

suggesting that miR146b most likely affects STAT3 protein

translation.

STAT3 is characterized by its capacity to activate different sets

of genes in different cell types (Levy and Lee, 2002), and the

different STAT3 isoforms seem to regulate cell survival and

maintenance in a cell-type- and context-specific manner by

suppressing or activating a variety of target genes (Pensa et al.,

2009). STAT3b has been considered a dominant-negative factor

by inhibiting STAT3a gene transactivation (Caldenhoven et al.,

1996; Schaefer et al., 1995). More recent studies have

demonstrated that STAT3b may activate a specific set of genes

and possess non-redundant functions to STAT3a. Zammarchi

et al. used morpholino oligomers to redirect endogenous STAT3

alternative splicing from STAT3a to STAT3b (Zammarchi et al.,

2011). This study showed that inducing the STAT3b isoform in

MDA-MB-435 cells caused cell death and tumor regression in the

xenograft models. The same study showed that STAT3 canonical

Fig. 8. A proposed model for the role of miR-146b in alveolar progenitor cell maintenance. Mammary epithelial cell hierarchy begins by asymmetric self-

renewal in the stem cells, which generates multipotent and bipotent ductal and alveolar progenitor cells. Ductal and alveolar progenitor cells give rise to luminal-

and myoepithelium-restricted progenitors. During pregnancy and lactation, miR146b is upregulated under the influence of estrogen, progesterone and prolactin.

Upregulation of miR146b results in survival of luminal alveolar progenitor cells, at least partially, through suppression of STAT3b/a. During involution,

miR-146b is downregulated in the alveolar progenitors to de-repress STAT3b/a, followed by death of the luminal alveolar cells resulting in the onset of involution.
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target genes were not affected by the switch from STAT3a to

STAT3b. Rather, a unique expression signature seems to be
associated with the physiological a-to-b splicing shift (Zammarchi
et al., 2011). In mammary gland development, it has become clear

that STAT3 regulates a complex series of processes involving
alveolar epithelial cell death during involution by maintaining the
balance of inflammatory and anti-inflammatory signaling (Pensa
et al., 2009). The contribution of specific STAT3 isoforms to the

mammary involution process is still not known. Knockout mice of
specific STAT3 isoforms have been generated (Maritano et al.,
2004). It is reported that STAT3b knockout mice are viable, fertile

and capable of nursing their pups (Maritano et al., 2004). However,
a detailed characterization of the mammary glands during
involution has not been reported in these mice. Our study clearly

demonstrates that both isoforms of STAT3 are upregulated during
involution, and overexpression of STAT3b in the alveolar luminal
progenitor cells reduced their survival. It would be interesting to

decipher the contribution of specific STAT3 isoforms to the
mammary involution process in specific STAT3-isoform knockout
mice.

In conclusion, we have demonstrated that estrogen plus

progesterone and prolactin result in the upregulation miR146b.
Furthermore, miR146b levels rise in the mouse mammary glands
during lactation and pregnancy. MiR146b upregulation during

pregnancy and lactation may mediate the maintenance of alveolar
luminal progenitor cells by selectively suppressing STAT3b and
to a lesser extent STAT3a. Following weaning and during the
process of involution, miR146b levels drop to basal levels, which

result in the upregulation of STAT3 isoforms and induction of
alveolar cell death (Fig. 8). The LNA inhibitors induce a
transient knockdown in miR146b; thus they are not suitable for

long term in vivo transplantation studies. It will be essential to
confirm our results by more stable miR146b knockdown and
overexpression in mammary epithelial cells followed by in vivo

transplantation studies.

Material and Methods
Cell lines

CommaDb-derived clones (SP-1, SP-3, SP-4, NSP-1, NSP-2, NSP-3, NSP-4 and
NSP-5) were used. The alveolar progenitor (SP-3), ductal progenitor (NSP-2) and
multipotent progenitor clones (NSP-5) have previously been described and
characterized (Kittrell et al., 2011). 293T cells (Clontech, cat. no. 632180) were
used for luciferase reporter assays.

Animals

We used female BALB/c mice which were either bred or purchased from Harlan
Laboratories, Inc., IN, USA. We used mice in late pregnancy, as well as mice
24 hours, 3 days and 6 days post-weaning (involuting mammary glands), and
virgin mice in the metestrous phase of the estrous cycle as confirmed by vaginal
cytology (Caligioni, 2009). Animal experiments were conducted following
protocols approved by the University of Kansas Medical Center Institutional
Animal Care and Use Committee.

Mouse surgeries

Slow-releasing pellets containing 50 mg of estradiol and 20 mg of progesterone for
hormonal treatment were placed subcutaneously on the lateral side of the neck
between the ear and shoulder. After three weeks, mice were sacrificed, and the
mammary glands were excised. One mammary gland was processed for
embedding, and the other mammary gland was used to recover the epithelial
cells according to established protocol in our laboratory (Valdez et al., 2011).

Cell culture: 2D/3D (MatrigelTM)

Primary mouse cells were grown and maintained in F12 (Invitrogen, cat. no.
11765) supplemented with 5% fetal bovine serum (Invitrogen, cat. no. 10438026),
1% antibiotic/antimycotic reagents (AA; Invitrogen, cat. no. 15240), 50 mg/ml
gentamicin (Sigma-Aldrich cat. no. G1272), 1 mg/ml hydrocortisone (Stem Cell
Technologies, cat. no. 07904), and 5 ng/ml epidermal growth factor. The

CD-derived clones (i.e. SP-3, NSP-2 and NSP-5) were grown in DMEM/F12
(Invitrogen, cat. no. 11320) containing 2% fetal bovine serum, 5 ng/ml epidermal
growth factor, 10 mM HEPES (Invitrogen, cat. no.15630), 5 mg/ml insulin, 50 mg/
ml gentamicin and 1% antibiotic/antimycotic.

293T cells were grown in DMEM (Sigma-Aldrich, cat. no. D5796) containing
10% fetal bovine serum, and 1% antibiotic/antimycotic. Hormonal treatment
include: 100 nM progesterone (Sigma, cat. no. P0130-25G), 100 mM b-estradiol
(Sigma, cat. no. E8875-1G) and 3 mg/ml ovine prolactin (Harbor-UCLA Research
and education institute). The cells were grown in humidified incubator at 37 C̊ and
5% CO2. For 3D culture, cells were plated in media containing 2% BD Basement
Membrane Matrix MatrigelTM (BD Biosciences, cat. no. 356234) on a thin film of
MatrigelTM. Cell recovery was achieved using BD Cell Recovery Solution (BD
Biosciences, cat. no. 354253).

Hematoxylin and Eosin staining

Excised mammary glands were fixed in 4% paraformaldehyde for 2 hours on ice,
then in 70% ethanol at 4 C̊ until processing, and then embedded in paraffin
according to established protocols. The slides containing 5-mm sections were
deparaffinized in xylene (X3P-1GAL, Fisher scientific) and hydrated through
graded ethanol series (100%, 95%, 80% and 70%), followed by hematoxylin
staining (s212A-32OZ Harris hematoxylin with glacial acetic acid; Poly Scientific)
for 30 seconds and destaining in acid ethanol (0.3% of concentrated HCl in 70%
ethanol), followed by eosin staining (S176 Eosin Phloxine stain; Poly Scientific)
for 30 seconds and dehydration in graded ethanol (95% and 100%) and xylene
three times for 15 minutes each, followed by placement of a coverslip onto the
slide with xylene-based permount (SP15-100 histological mounting medium,
Fisher Scientific) (Valdez et al., 2011). Light microscopy was performed by using
an Axio Imager.M2 microscope (Carl Zeiss MicroImaging, Inc., Thornwood, NY,
USA). Pictures were taken at 106magnification (objective N-Achroplan; 106/0.25
‘/0.17) with an AxioCam MRc5 High Resolution Camera (Carl Zeiss
MicroImaging, Inc., Thornwood, NY, USA), and the acquisition software used
was Ziess Axiovision GmbH (Carl Zeiss MicroImaging, Inc.).

RNA Isolation and Quantitative PCR (qPCR)

Total RNA was isolated with miRNeasy Mini Kit (Qiagen cat. no. 217004) using
the manufacturer’s protocol, and cDNA was synthesized from 250 ng of total RNA
with miScript Reverse Transcription Kit (Qiagen, cat. no. 218061). MiRNA and
mRNA were measured using miScript SYBR Green PCR Kit (Qiagen, cat. no.
218073), power SYBRH green PCR Master Mix (Applied Biosystems, cat. no.
4367659), TaqManH Gene Expression Master Mix (Applied Biosystems, cat. no.
4369016) and primers specific for hsa-miR-146b-5p (IDT, Ref. no. 52053397),
hsa-miR-146a (IDT, Ref. no. 51289005), STAT3a/b forward (IDT, Ref. no.
86187028), STAT3a reverse (IDT, Ref. no. 86187029), STAT3b reverse (IDT,
Ref. no. 86187030), b-casein (Applied Biosystems, cat. no. Mm04207880-m1).
Reactions were performed in the StepOnePlusTM Real-Time PCR System and
software (Applied Biosystems) in 96-well plates. Target gene expression was
normalized to snU6: snU6 forward (IDT, Ref. no. 50315659) and snU6 reverse
(IDT, Ref. no. 50315660), actin forward (IDT, Ref. no. 86146439), actin reverse
(IDT, Ref. no. 86146440) keratin 18 forward (IDT, Ref. no. 89270345), actin
(Applied Biosystems, cat. no. Mm01204962-gH), keratin 18 reverse (IDT, Ref. no.
89270346). The standard curve method was used for quantification.

Statistical analysis

Data are presented as mean normalized expression 6 s.e.m. One-way analysis of
variance (ANOVA) was used for statistical comparisons. A value of P#0.05 was
considered significant.

Microarray studies

RNA from CDb clones with growth potential (SP-3, NSP-1, NSP-2, NSP-5) and
those without growth potential (NSP-3, NSP-4, SP-1, SP-4) were combined. RNA
quantity and quality (RIN .8) was checked using the Agilent Bioanalyzer.
Reverse transcription was done using SA Biosciences RT2 miRNA First Strand
Kit, RT2 miRNA PCR Array System (human cancer array, SABiosciences MAH-
102E). PCR array was loaded according to SA Biosciences protocol for loading
map. The data were analyzed using the DDCT method. (www.sabiosciences.com/
pcrarraydataanalysis.php).

FACS analysis and sorting

Primary antibodies used were anti-mouse CD29 (APC/Cy7)-conjugated antibody
(Biolegend, cat. no. 102226), anti-mouse CD24 (PE)-conjugated antibody (BD
Biosciences, cat. no. 553262), anti-mouse CD61 (Alexa Fluor 647)-conjugated
(Biolegend, cat. no. 104314), biotin-conjugated anti-mouse CD31 (Biolegend, cat.
no. 102404), biotin-conjugated anti-mouse CD140a (Biolegend, cat. no. 135910),
biotin-conjugated Rat anti-mouse CD45 (BD Pharmingen, cat. no. 553077), biotin-
conjugated rat anti-mouse Ter-119 (BD Pharmingen, cat. no. 559971). The biotin-
conjugated antibodies were labeled using streptavidin-V450 (BD Biosciences, cat.
no. 560797). Isotype control staining was performed using PE-conjugated anti-rat
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immunoglobulin G2bk (IgG2bk) antibody (Biolegend, cat. no. 400635), APC/Cy7-
conjugated mouse IgG2bk antibody (BD Pharmingen, cat. no. 558061) and biotin-
conjugated rat IgG2ak (IgG2ak) antibody (BD Pharmingen, cat. no. 553928). The
cells were stained at a final concentration of 1:200 for 30 minutes on ice followed
by washes in Hanks’ balanced salt solution (Invitrogen, Carlsbad, CA, USA)
containing 2% fetal bovine serum. For the live–dead assay, LIVE/DEADH Fixable
Dead Cell Stain Kit (Invitrogen, cat. no. L34955) was used according to the
manufacturer’s protocol. FACS and data analysis were performed using the BD
LSR II flow cytometer and FlowJo software (Tree Star, Inc., Ashland, OR, USA).
Cell sorting was performed using the FACS Aria (BD Biosciences, San Jose,
California, USA).

MiR146b knockdown and overexpression in CDb clones and in PMECs

To overexpress miR-146b, 40 nM of hsa-miR-146b-5p synthetic pre-miR
precursors (Ambion, RefNO. AM17100) were transfected into PMECs, along
with the Pre-miRTMmiRNA Precursor Negative Control #1 (Ambion RefNO.
AM17110). To knockdown miR-146b, 40 nM of miRCURY LNA microRNA
inhibitor (Exiqon, cat. no. 410066-04) for hsa-miR-146b-5p was transfected into
the cell lines and PMECs.

Because the human and murine miR-146b-5p have identical sequences, the use
of pre-miRs and LNA inhibitor products designed for human are a perfect match
for the mouse. MiRCURY LNA microRNA inhibitor control (Exiqon, cat. no.
199004-04) was used as a negative control. In both cases, cells were seeded in a
six-well plate and transfected 24 hours later with LipofectamineTM 2000
Transfection Reagent (Invitrogen, cat. no. 11668-019) in the media described
above, without serum or antibiotic present. Twenty-four hours after transfection,
the cells were nourished with 1% serum. Seventy-two hours post-transfection, the
cells were washed with PBS and recovered for analysis as described above.

STAT3a and b overexpression in 293T cells

293T cells were transiently transfected with cDNA encoding mouse STAT3b
(OriGene Technologies, cat. no. MC221089), mouse STAT3a (OriGene
Technologies, cat. no. MC221487) and control (OriGene Technologies, cat. no.
PS100001), according to the manufacturer’s protocol.

Western blot

Cells were lysed on ice using RIPA buffer (50 mM Tris-HCl, pH 7.4, 150 mM
NaCl, 2 mM EGTA, 0.25% deoxycholate and 1% Triton X-100) containing
protease inhibitors (Calbiochem, cat. no. 535140) and phosphatase inhibitors
(Calbiochem, cat. no.524627). The protein extracts were prepared by collecting
supernatants after centrifugation at 12,000 g at 4 C̊ for 30 minutes. The protein
concentrations were measured using the BCA protein assay kit according to the
manufacturer’s protocol (Thermo Scientific, cat. no. 23250). Ten mg of protein was
separated on an 8–10% SDS-PAGE gel, transferred onto PVDF membrane
(Millipore, 0.45 mm) in Tris-glycine (25 mM Tris and 192 mM glycine, pH 8.3;
BioRad, cat. no. 161-0771) containing 20% v/v methanol at 100 V for 2 hours.
The PVDF membrane was blocked with 5% non-fat dry milk in TBS containing
0.05% Tween 20 (TBST) at room temperature for 1 hour. The blots were washed
three times for 10 minutes with TBST before incubating with primary antibody in
TBST for 1 hour at room temperature or overnight at 4 C̊. The primary antibodies
STAT5a (Invitrogen, cat. no. 13-3600), STAT3 (K-15; Santa Cruz, cat. no. sc-
483), p(Ser)-STAT3 (23G5; Santa Cruz, cat. no. sc-56747), p(Tyr)-STAT3 (Cell
signaling, cat. no. 9131S) TRAF6 (H-274; Santa Cruz, cat. no. sc-7221), IRAK1
(H-273; Santa Cruz, cat. no. sc-7883), STAT5a (ST5a-2H2; Invitrogen, cat. no. 13-
3600), NFkB p65 (C22B4; Cell Signaling, cat. no. 4764), ELF5 (N-20; Santa Cruz,
cat. no. sc-9645) and Smad4 (B-8; Santa Cruz, cat. no. sc-7966) were used at a
dilution of 1:1000, mouse monoclonal antibody clone specific for the C-terminal 7
residues of STAT3b was generated in D.J.T.’s laboratory, and was used at a
dilution of 1:100 overnight. Following primary antibody incubation, the
membranes were washed thoroughly with TBST (36, 10 minutes each) and
incubated with horseradish-peroxidase (HRP)-conjugated secondary antibodies
donkey anti-rabbit-HRP (Jackson, cat. no. 711-035-152) at 1:10,000 or goat anti-
mouse-HRP (Santa Cruz, cat. no. sc2005) at 1:10,000 in TBST containing 1% milk
for 1 hour at room temperature. After washing with TBST (36, 10 minutes each),
the bands were visualized with enhanced chemiluminescence (ECL), SuperSignal
West Femto Kit (Thermo Scientific, cat. no. 34095) and the blots were digitalized
using Auto Chemi systems (UVP Inc., Upland, CA). The membranes were stripped
by incubating with stripping buffer (50 mM Tris-HCl, pH 6.8, 2% SDS and
100 mM b-marcaptoethanol) at 50 C̊ for 30 minutes followed by washing with
TBST and re-probed with b-actin antibody (Santa Cruz, cat. no. sc1616, 1:1500
dilution) followed by anti-goat IgG HRP (Santa Cruz, cat. no. sc2350, 1:10,000
dilution) for loading control. Densitometry analysis was performed using
LabWorks software (UVP Inc., Upland, CA).

Luciferase reporter constructs

293T cells (Clontech, cat. no. 632180) were plated in 6-well plates. After 24 hours,
the cells were transfected with 1.0 mg of STAT3a 39UTR (GeneCopoiea, cat. no.

MmiT043695) or with STAT3b 39UTR (GeneCopoiea, cat. no. CS-MmiT102J-
MT01) miRNA target sequence expression clone in pEZX-MT01 vector with fLuc
along with 40 nM of miR-146b precursor miRNA (Ambion, RefNO. AM17100)
and miRNA control (Ambion RefNO. AM17110). The cells were transferred to a
96-well plate 18 hours after transfection and cultured for another 24 hours. Both
firefly luciferase and Renilla luciferase activities were measured using
GeneCopoeia Luc-PairTM miR Luciferase Assay kit (GeneCopoiea, cat. no.
LPFR-M030) according to the manufacturer’s protocol, and data were recorded on
a BioTek Microplate Reader using Gen5TMsoftware. Firefly luciferase activity was
normalized with Renilla luciferase activities in the same well.
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Fig. S1. (A) RT-PCR of miR-146b in CD-alveolar progenitor cell line at 24, 48 and 72 hours after transfection. Data are presented as 
the mean ± s.e.m. (n=3). (B) Representative histogram of flow cytometry analysis for cells stained with the LIVE/DEAD® Fixable 
Dead Cell Staining Kit. Live-dead analysis was done in the alveolar progenitor cell line at 48, 60 and 72 hours post-transfection. 
(C,D) Representative histograms of flow cytometry analysis for cells transfected with the GFP-labeled LNA inhibitors and their 
controls, showing the percentage of GFP positive cells in the CD-derived distinct progenitor cell lines (C) and in the PMECs (D). (E) 
Representative bar graphs of densitometry for STAT3a and STAT3b levels normalized to b-actin in CD-derived alveolar progenitor 
cells (n=4, *indicates P<0.05 compared to other cells). Data are presented as the mean ± s.e.m.
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