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Stuxnet fine-tunes Notch dose during development using
a functional Polycomb response element
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ABSTRACT

Evolutionarily conserved Notch signaling is highly sensitive to changes
in Notch receptor dose caused by intrinsic and environmental
fluctuations. It is well known that epigenetic regulation responds
dynamically to genetic, cellular and environmental stresses. However,
it is unclear whether the Notch receptor dose is directly regulated at the
epigenetic level. Here, by studying the role of the upstream epigenetic
regulator Stuxnet (Stx) in Drosophila developmental signaling, we find
that Stx promotes Notch receptor mRNA expression by counteracting
the activity of Polycomb repressive complex 1 (PRC1). In addition, we
provide evidence that Notch is a direct PRC1 target by identifying and
validating in vivo the only bona fide Polycomb response element (PRE)
among the seven Polycomb group (PcG)-binding sites revealed by
DamID-seq and ChIP-seq analysis. Importantly, in situ deletion of this
PRE results in increasedNotch expression and phenotypes resembling
Notch hyperactivation in cell fate specification. These results not only
underscore the importance of epigenetic regulation in fine-tuning the
Notch activity dose, but also the need to assess the physiological
significance of omics-based PcG binding in development.
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INTRODUCTION
Notch signaling is evolutionarily conserved, and it controls many
important biological processes in metazoan development and adult
homeostasis (Henrique and Schweisguth, 2019; Sprinzak and
Blacklow, 2021). Dysfunction of Notch signaling often leads to
birth defects and cancer in humans (Aster et al., 2017; Mašek and
Andersson, 2017; McIntyre et al., 2020). Activation of Notch
signaling depends on the proteolytic cleavage and direct
translocation of the intracellular domain of the Notch receptor
(Nicd) into the nucleus, where Nicd binds to transcription factor
Suppressor of Hairless [Su(H)] and activates the expression of
downstream target genes. Notch signaling activation is dose
sensitive to Notch receptors due to direct signaling from the
plasma membrane to the nucleus. In Drosophila, heterozygotes
carrying one copy of the loss-of-function Notch mutation show a
stereotypical notched wing phenotype, whereas females harboring
three copies of the Notch gene display the Confluens wing vein

phenotype (Artavanis-Tsakonas and Muskavitch, 2010). Similarly,
Notch receptor haploinsufficiency and increased Notch gene copy
number in mammals are associated with multiple forms of
developmental anomalies and cancer (Aster et al., 2017; Mašek
and Andersson, 2017). Therefore, the dose of Notch receptors must
be tightly controlled to ensure normal development and adult tissue
homeostasis.

Modulation of Notch receptor dose occurs at multiple levels. At the
transcriptional level, a few transcription factors and co-factors have
been shown to bind directly to the Notch loci and control their
transcription (Lambertini et al., 2010; Lefort et al., 2007; Koyama
et al., 2014; Taranova et al., 2006;Wang et al., 2019;Wu et al., 2005).
At the protein level, several E3 ligases (Hori et al., 2004; Jehn et al.,
2002; Mukherjee et al., 2005; Qiu et al., 2000; Sakata et al., 2004;
Wilkin et al., 2004) and γ-secretases (Cras-Méneur et al., 2009; De
Strooper et al., 1999; Struhl and Greenwald, 1999; Wu et al., 2001)
have been shown to mediate the ubiquitylation and processing of
Notch receptors, thereby regulating their stability or signaling activity.
Ubiquitylation-mediated degradation of Notch receptors can be
further regulated by other forms of post-translational modifications,
including phosphorylation, acetylation and methylation (Foltz et al.,
2002; Fryer et al., 2004; Guarani et al., 2011; Hein et al., 2015; Li
et al., 2014; Mo et al., 2007; Sjöqvist et al., 2014). Furthermore, O-
fucosyltransferase 1 (O-fut1) interacts with the extracellular domain of
Notch to facilitate its endocytosis and turnover (Sasamura et al., 2007).

In addition to transcriptional and post-translational regulation,
there is growing evidence that epigenetic repression mediated by
Polycomb group (PcG) proteins is an integral part of the Notch
signaling regulatory network (Acharyya et al., 2010; Felician et al.,
2014; Feng et al., 2011; Jin et al., 2017; Loubiere et al., 2016;
Martinez et al., 2009; Schwanbeck, 2015). For Notch receptors,
PcG protein recruitment has been detected at the Notch loci,
highlighting the possibility that the Notch receptor dose may be
additionally regulated at the epigenetic level. Specifically, members
of Polycomb repressive complex 2 (PRC2) Su(Z)12 and EZH2 bind
to the promoter region of the Notch1 and Notch3 loci in cultured
mammalian cells, but the effect of the PRC2 recruitment on Notch
expression has not been determined (Acharyya et al., 2010; Jin
et al., 2017). In the Drosophila eye, Notch expression is elevated
when the polyhomeotic (ph-p and ph-d) gene, which encodes a core
component of the PRC1, is mutated. This is closely related to the
observed deposition of Ph and Pc (another member of the PRC1) in
the promoter region of the Notch locus (Loubiere et al., 2016;
Martinez et al., 2009). However, PRC1 proteins are known to bind
to loci other than Notch, including key members of the JNK, JAK-
STAT and Wingless (Wg) signaling cascades (Classen et al., 2009;
Loubiere et al., 2016). Given the extensive crosstalk between Notch
and the developmental signaling pathways described above (Beira
et al., 2018; Feng et al., 2011; Torres et al., 2018), it is uncertain
whether the observed effect of PRC1 onNotch expression during fly
eye development is direct.
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Epigenetic phenomena were first reported in Drosophila, and
experimentally validated epigenetic targets all contain cis-regulatory
elements called Polycomb response elements (PREs) that recruit PcG
proteins to their respective genomic loci (Grossniklaus and Paro,
2014; Kassis et al., 2017; Schuettengruber et al., 2017). As no
functional PREs have been detected at the Notch locus, it is necessary
to identify physiologically relevant PREs to establish a direct role of
PcG in controlling the Notch receptor dose in Drosophila. In this
study, we found that Stuxnet (Stx), an upstream epigenetic regulator
that controls PRC1 stability and assembly (Du et al., 2016), positively
regulates Notch mRNA expression, thus providing us with an
excellent opportunity to evaluate the direct contribution of
epigenetic regulation of the Notch receptor dose. We showed that
Stx is a positive regulator of Notch signaling in multiple
developmental processes. It epigenetically controls Notch receptor
gene transcription by removing Pc from a previously uncharacterized
PRE at the Notch receptor gene locus. Unlike those PcG-binding sites
mapped to the Notch locus by chromatin immunoprecipitation
sequencing (ChIP-seq) (Ahmad and Spens, 2019; Loubiere et al.,
2016; Martinez et al., 2009), this new PRE, named Notch PRE, is
responsive to altered Stx and PRC1 activities, providing in vivo
evidence that Notch is a bona fide PcG target. Although PcG
deposition has been found at many genomic loci through ‘omics’
studies, in vivo evidence supporting the physiological relevance of
epigenetic regulation to specific targets is lacking, in part because, in
most cases, epigenetic regulation can only fine-tune development,
which is often counteracted by the intrinsic genetic and cellular
plasticity of the embryo to ensure developmental robustness (De et al.,
2016; Mihaly et al., 1997; Ogiyama et al., 2018; Sipos et al., 2007;
Xiao et al., 2022). We show that the new Notch PRE identified in our
study is functional in vivo. Deleting this PRE in situ from the Notch
locus increases Notch mRNA expression, resulting in loss of
macrochaetes in the notum and excessive crystal cell differentiation
in the lymph gland: two stereotypical phenotypes associated with
hyperactivation of Notch signaling. As cell fate specification in
macrochaetes and in lymph gland development is highly sensitive to
changes in Notch activity, in situ PRE deletion in such systems, which
requires precise and robust control, may help to definitively determine
the physiological role of epigenetic regulation in development.

RESULTS
stx positively regulates Notch signaling in Drosophila
To examine whether the upstream epigenetic regulator Stx regulates
Notch signaling, we manipulated stx expression in the posterior
compartment of the Drosophila wing (Fig. 1A-F″) and found that
knockdown of stx by RNAi resulted in loss of marginal tissue in
adult wing blades (compare Fig. 1C with 1A), resembling the
stereotypical phenotype associated with reduced Notch signaling
(Xu et al., 1990). To eliminate off-target effects of RNAi, we used
two additional RNAi lines that target different regions in the stx-
coding sequence (Fig. S1A). When overexpressed, both RNAi lines
led to downregulated Notch signaling in adult wings (Fig. S1B-C′).
Furthermore, the wing-notching phenotype observed in stx RNAi
flies could be largely rescued by stx overexpression (Fig. S1D,E),
using either a GS line that inserts the UAS element upstream of the
stx-coding sequence (Toba et al., 1999) or a UAS-stx transgenic line
(Du et al., 2016).
To confirm that Notch signaling is indeed regulated by stx, we

examined the expression of Notch signaling targets cut andwg, as well
as NRE-gfp, a Notch signaling reporter indicating that cells exhibit
Su(H)-dependent activation of Notch signaling (Saj et al., 2010), in
third instar larval wing imaginal discs. As expected, when stx

expression was knocked down by RNAi in the posterior
compartment of the wing disc, we observed decreased expression
of Cut and Wg (Fig. 1D-D″), and reduced activity of the NRE-gfp
reporter (Fig. S1G,G′). Furthermore, a similar wing-notching
phenotype and reduced expression of Notch signaling target
genes were observed when the YFP protein trap line CPTI-
004181, with a yfp cassette inserted in frame at the stx locus and a
reported trapping efficiency of 68% (Du et al., 2016), was used for
destabilizing endogenous Stx-YFP fusion proteins using the anti-
GFP nanobody (Fig. S1I-J′; Caussinus et al., 2012). In contrast to
the effects associated with reduced stx activity, overexpression of stx
resulted in loss of vein tissue (Fig. 1E), a phenotype associated with
increased Notch signaling (Xu et al., 1990), and corresponding
increases in Cut and Wg expression, and in NRE-gfp activity
(Fig. 1F-F″; Fig. S1H,H′).

To further determine the involvement of stx in Notch signaling,
we examined the genetic interactions between stx and various Notch
pathway components. We found that the wing-notching phenotype
caused by stx RNAi could be further enhanced by loss-of-function
alleles of positive regulators of Notch signaling, such as Notch1,
NotchPL24, Ser1 and mam8 (Fig. S1K-O). Consistently, this stx
RNAi phenotype was suppressed by the loss-of-function allele of
Suppressor of deltex [Su(dx)], a negative regulator of Notch
signaling (Fig. S1P; Wilkin et al., 2004). These data suggest that
stx plays a positive role in Notch signaling in wing development.

As the regulation and outcome of Notch signaling often depends
on the cellular context (Bray, 2016), we investigated whether stx
promotes Notch signaling in tissues other than the developing wing.
The specification ofDrosophila sensory organ precursors (SOPs) in
the developing adult notum and crystal cells in the lymph gland is
highly sensitive to fluctuating Notch signaling (Brennan et al.,
1999; Jung et al., 2005; Kopan, 1999; Lan et al., 2020; Lebestky
et al., 2003). Impaired Notch activity leads to supernumerary SOPs
and reduced crystal cell specification, whereas overactivation of
Notch signaling results in SOP loss and crystal cell overproduction.
The adult scutellum contains four bristles derived from two SOPs,
aSC and pSC, in the notum of the larval wing disc (Fig. 1G,H;
Hartenstein and Posakony, 1989). We examined the requirement
of stx in scutellar bristle development by manipulating stx
expression using a patched ( ptc)-Gal4 driver whose expressing
domain in notum spans aSC and pSC (Fig. 1H; Brennan et al.,
1999). Reduced stx expression by RNAi increased the number of
scutellar bristles and the number of neuralized (neur)-lacZ-labeled
SOPs (Fig. 1I,J,M; Huang et al., 1991). Conversely, increased stx
activity prevented scutellar bristle development and SOP
specification (Fig. 1K-M). We used lozenge (lz)-Gal4 to regulate
stx expression in crystal cells and found that knocking down stx
significantly reduced the number of crystal cells labeled by lz>GFP
and Notch (Fig. 1O,O′,Q; Lebestky et al., 2000), whereas elevated
stx expression enhanced crystal cell specification (Fig. 1P,Q). To
rule out the possibility that the decrease in the number of crystal
cells caused by stx knockdown is a consequence of induced
apoptosis, we examined the protein levels of cleaved Dcp-1 caspase,
an indicator of apoptosis, in the lymph glands and found that
knocking down stx expression did not induce the cleavage of Dcp-1
(Fig. S1Q-Q″). Based on the above observations, we conclude that
stx is a general positive regulator of Notch signaling in Drosophila.

Stx regulatesNotchmRNA expression through its effects on
PRC1
Our previous study showed that Stx promotes proteasomal degradation
of the Pc protein, a core component of the epigenetic repressive PRC1
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complex, thereby disrupting the assembly and activity of PRC1 (Du
et al., 2016). In addition to Pc, Drosophila PRC1 is made up of three
other proteins, including Ph, Posterior sex combs (Psc) and Sex combs
extra (Sce). As increased expression of the Notch receptor and its
ligand Serrate (Ser) but not the other ligandDelta (Dl) was observed in
the ph and Pscmutant eye discs (Loubiere et al., 2016; Martinez et al.,
2009), we investigated whether Stx positively regulates Notch
signaling in the developing wing by regulating the expression of Dl,
Ser or Notch. We found that when stx was knocked down in the wing
disc, the expression levels of both Notch ligands, Dl and Ser, were not
affected (Fig. S2A-D′). However, the expression pattern ofDl changed
from two stripes adjacent to the D-V boundary to one stripe
overlapping the D-V boundary (Fig. S2E-E″). This phenotype
has been observed in wing discs carrying temperature-sensitive

Notch (Notchts) mutations (de Celis and Bray, 1997), thus suggesting
that Notch receptor expression may be affected.We consistently found
a significant reduction in the amount of Notch protein in stx
knockdown cells (Fig. 2B,B′, compare with 2A). Conversely, when
stx was overexpressed, Notch expression increased significantly
(Fig. 2C,C′; compare with 2A).

To further determine whether regulation of Notch by Stx occurs at
the transcriptional or post-transcriptional level, we performed
fluorescence in situ hybridization in the wing disc and found that
Notch mRNA was greatly reduced when stx was knocked down
(Fig. 2E, comparewith 2D). Conversely, overexpression of stx resulted
in elevated Notch expression (Fig. 2F, compare with 2D). Regulation
of Notch receptor mRNA expression by stx was also quantified by
quantitative real-time PCR (qPCR). When stx expression in the wing

Fig. 1. stx is a positive regulator of Notch
signaling in Drosophila development. (A-F″) Adult
wings (A,C,E), Wg and Cut expression in wing discs
(B-B″,D-D″,F-F″) of the indicated genotypes are
shown. Knocking down stx in the posterior
compartment using hh-Gal4 leads to stereotypical
notched wing margin formation (arrowheads in C),
whereas overexpression of stx in the posterior
compartment using en-Gal4 results in loss of vein
tissues (arrowheads in E). When stx expression is
reduced by RNAi, the Notch signaling targets Wg
(D′, compare with B′) and Cut (D″, compare with B″)
are downregulated. Conversely, when stx is
overexpressed, Wg (F′, compare with B′) and Cut
(F″, compare with B″) expression increases. RFP
marks the posterior compartment of the wing disc
expressing hh-Gal4. Adult wings are shown with
proximal to the left, with anterior/posterior (a/p)
boundaries marked with red dashed lines. Wing discs
are shown with anterior to the left and ventral at the
top, with a/p boundaries marked with yellow dashed
lines. (G-L) Adult nota (G,I,K) and neur-lacZ
expression in wing discs (H,J,L) of the indicated
genotypes. When ptc-Gal4-driven RNAi reduces stx
expression, the number of scutellar bristles and neur-
lacZ-labeled SOPs in the GFP-marked RNAi-
expressing region increases (asterisks in I and arrow
in J, compare with G and H). Conversely,
overexpression of stx-Flag results in a decrease in
the number of scutellar bristles and SOPs (K and
arrow in L, compare with G and H). SOPs outside the
GFP-expression region (arrowheads in H,J,L) are not
affected by stx manipulation. (M) The mean number
of bristles per scutellum of the indicated genotype
(n=17). Error bars represent s.d. ***P<0.001
(one-way ANOVA, Dunnett’s multiple comparison
tests). (N-P′) lz>GFP and Notch expression in lymph
glands of the indicated genotypes. When stx is
knocked down by RNAi, the number of lz>GFP-
labeled crystal cells decreases (O′, compare with N′).
Conversely, when stx is overexpressed, lz>GFP-
labeled crystal cells are overproduced (P′, compare
with N′). (Q) The mean number of crystal cells per
primary lobe in lymph glands of the indicated
genotype (n=6). Error bars represent s.d. ***P<0.001
(one-way ANOVA, Dunnett’s multiple comparison
tests). Scale bars: 100 μm in A,C,E,G,I,K; 50 μm in
B-B″,D-D″,F-F″, H,J,L,N-P′.
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disc was knocked down by T80-Gal4, Notch mRNA levels were
reduced by 80%, whereas increased stx activity produced byMS1096-
Gal4 resulted in a fivefold upregulation of Notch mRNA expression
(Fig. 2G). Furthermore, we showed that the wing-notching phenotype
caused by stx knockdown was largely rescued by overexpression of
NotchFL (Fig. 2H-J). Therefore, we conclude that Stx positively
regulates Notch signaling by promoting Notch mRNA expression.
As Stx is known to promote Pc protein degradation (Du et al.,

2016), we investigated the possibility of Stx regulating Notch
mRNA expression through Pc. As expected, removing a single copy
of the Pc was sufficient to rescue the adult wing margin defects
caused by reduced stx expression (Fig. 3B, compare with 3A).
Consistent with this observation, Notch expression and activation of
the Notch signaling targets cut and wg were also largely restored
(Fig. 3E-F′, compare with. 3C-D′). Conversely, Notch upregulation
induced by stx overexpression was abolished when Pc was
co-expressed (Fig. 3H-H″, compare with 3G-G″). These results
suggest that Pc is epistatic to stx and that the regulation of Notch
mRNA expression by Stx may depend on Pc activity. This inference
is further supported by the cell-autonomous enhancement of Notch
protein production observed in the loss-of-function PcXT109 clones
in the wing disc (Fig. 3I-I″).
Increased Notch expression is observed when the ph or Psc

function of the Drosophila eye disc is impaired (Loubiere et al.,

2016; Martinez et al., 2009). Therefore, we asked whether the
regulation of Notch by Stx also depends on other components of the
PRC1 complex. As expected, removal of one copy of ph or Psc
largely rescued the stx RNAi-induced wing-notching phenotype
(Fig. 3J,K, compare with 3A). In contrast, this phenotype was
unaffected when 50% of Enhancer of zeste [E(z)],which encodes the
enzymatic subunit of the PRC2 complex responsible for depositing
the H3K27me3 mark, was removed (Fig. 3L, compare with 3A).
This result is consistent with a previous study showing that
H3K27me3 modification may be dispensable for epigenetic
repression of Notch (Loubiere et al., 2016). Taken together, the
above results demonstrate that Stx promotes Notch mRNA
expression by reducing PRC1 activity.

The Notch receptor gene is a bona fide neo-PRC1 target
in vivo
In Drosophila, canonical PcG target genes often contain PRE at
their respective genomic loci, which is a specific cis-regulatory
sequence required for PRC recruitment (Grossniklaus and Paro,
2014). To identify functional PREs at the Notch locus, we
performed DNA adenine methyltransferase identification by
sequencing (DamID-seq) in wing imaginal discs and analyzed
these data together with the two previously published ChIP-seq
datasets (Ahmad and Spens, 2019; Loubiere et al., 2016). Similar to

Fig. 2. Stx positively regulates Notch gene transcription. (A-C′) Notch expression in wing discs of the indicated genotype is shown. Notch protein is
uniformly expressed in the anterior and posterior cells of the wing disc (A). Notch protein levels decrease when stx expression is reduced by hh-Gal4-driven
RNAi (B′, compare with A). Conversely, when stx is overexpressed, Notch expression increases (C′, compare with A). GFP marks the hh-Gal4-expressing
posterior compartment of the wing disc. (D-G) Notch mRNA detected in the wing disc of the indicated genotype by fluorescence in situ hybridization
(D-F) and qPCR (G) is shown. Notch mRNA is uniformly expressed in the anterior and posterior compartments of the wing disc (D). When stx is knocked
down by hh-Gal4-driven RNAi in posterior compartment cells, Notch mRNA decreases (E, compare with D). Conversely, Notch mRNA is elevated when stx is
overexpressed using hh-Gal4 (F, compare with D). (G) Notch mRNA expression was quantified by qPCR after manipulating stx activity. The bar graph
represents relative Notch mRNA levels of indicated genotype (n=3). Error bars represent s.d. ***P<0.001 (two-tailed Student’s t-test). (H-J) Adult wings of the
indicated genotype are shown. The wing notching phenotype induced by stx RNAi (I, compare with H) is largely rescued when NotchFL and stx RNAi are
expressed simultaneously (J, compare with H and I). Adult wings are shown with proximal to the left, with a/p boundaries marked with red dashed lines.
Wing discs are shown with anterior to the left and ventral at the top, with a/p boundaries marked with yellow dashed lines. Scale bars: 50 μm in A-F; 100 μm
in H-J.
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the two published ChIP-seq datasets, DamID-seq showed
significant Pc recruitment to canonical PcG target genes,
including Ultrabithorax (Ubx), bithoraxoid (bxd), abdominal A
(abd-A), iab-8 and Abdominal B (Abd-B). Consistent with the role
of Stx in reducing Pc activity, Pc recruitment was lost at these loci
when stx was overexpressed (Fig. S3A; Du et al., 2016). However,
Pc recruitment to theNotch locus revealed by the DamID-seq data in
this study did not fully conform to what was found in a previously
published ChIP-seq data (Ahmad and Spens, 2019; Loubiere et al.,
2016; Fig. S3B). Therefore, we treated all Pc-bound regions in the
Notch locus revealed by three different datasets as putative PREs,
which we named E1-E7 (Fig. 4A; Fig. S3B). Among them, E1 was
identified by all three datasets, while E4 and E6 were identified by
ChIP-seq data from Ahmad and Spens (2019) and by DamID-seq
data from this study. Furthermore, E2 and E7 were only identified
by ChIP-seq data from Ahmad and Spens (2019), while E3 and E5
were identified only by DamID-seq data from this study (Fig. S3B).
Similar to the canonical PcG targets, the binding of Pc to E1,E3,E4,
E5 and E6 was greatly reduced when stx was overexpressed
(Fig. S3B), further supporting the observation that Stx promotes
Notch receptor mRNA expression by preventing PRC1 recruitment
to the Notch locus.
To determine whether these Pc-binding regions are functional

PREs in vivo, we constructed a set of PRE-GFP reporter plasmids in
which nuclear GFP expression is jointly controlled by a quadrant
enhancer of the vestigial gene (vgQE) and one of seven putative
PREs flanked by two FRT sites (Sengupta et al., 2004). The

presence of functional PRE is expected to repress vgQE-mediated
GFP expression, whereas excision of the PRE should restore GFP
expression (Fig. 4B). These plasmids were integrated into the same
attP2 landing site in the Drosophila genome by φC31 integrase,
generating seven transgenic fly lines for in vivo analysis of putative
PRE function. We found that GFP expression regulated by E1 or E5,
but not by E2, E3, E4, E6 or E7, showed a significant reduction in
wing imaginal discs compared with vgQE alone (Fig. 4C-E,L;
Fig. S4B-I′,L). Notably, E5 inhibited vgQE-mediated GFP
expression more strongly than E1 (Fig. 4D,E,L, compare with 4C′;
Fig. S4C′,G′,L compare with S4B′). When E1 or E5was excised by
en-Gal4-driven flippase expression in the posterior compartment of
the wing disc, vgQE-GFP expression was restored (Fig. 4F-G′,M),
implying that E1 and E5 are responsible for the decrease in GFP
expression. However, when Pc was knocked down or stx was
overexpressed in the posterior compartment of the wing disc, only
the inhibitory effect of E5 was attenuated, whereas E1 was not
(Fig. 4H-K′,M), suggesting that only the function of E5 depends on
endogenous PcG activity, and E1 cooporates with factors other than
PcG proteins to repress Notch expression. This conclusion is further
supported by the observation that loss of ph (Fig. S4J,J′,M compare
with Fig. S4G′) or knockdown of Psc (Fig. S4K,K′,N, comparewith
S4G′) significantly increased GFP expression of the E5 reporter. E5
spans the ∼1 kb region (ChrX: 3,153,915-3,155,043; r6.49) located
in the second intron of the Notch locus (Fig. S3B). It does not
overlap with any known Notch regulatory sequence, but contains 32
putative binding sites for Pho, GAF, or DSP1 (Fig. S3C), all of

Fig. 3. Stx regulates Notch expression by
reducing PRC1 activity. (A-F′) Adult wings (A,B) and
protein production of Notch, Wg and Cut in wing discs
(C-F′) of the indicated genotype are shown. Knocking
down stx by hh-Gal4-driven RNAi results in a
posterior wing-notching phenotype (A), and reduced
Notch (C), Wg (D) and Cut levels (D′) in posterior
wing disc cells. These phenotypes are largely
restored by removing 50% of endogenous Pc using a
loss-of-function PcXT109 allele (B, compare with A and
E-F′, compare with C-D′). The arrowhead marks the
a/p boundary of the wing disc (D,D′,F,F′). (G-H″) Pc
and Notch expression in wing discs of the indicated
genotype are shown. Overexpression of stx by hh-
Gal4 in posterior cells promotes Pc degradation (G′)
and enhanced Notch expression (G″). When Pc (H′)
and stx are co-expressed, the upregulation of Notch is
eliminated (H″, compare with G″). (I-I″) Notch
expression is elevated in PcXT109 somatic clones (I″),
which are negatively marked by GFP (I′). (J-L) Adult
wings of the indicated genotype are shown. The
posterior wing-notching phenotype caused by stx
knockdown is substantially rescued by phdel, an
amorphic ph allele (J, compare with A) or Psce24, a
loss-of-function Psc allele (K, compare with A), but
not by E(z)63 (L, compare with A), which is an
amorphic E(z) allele. Adult wings are shown with
proximal to the left, with a/p boundaries marked with
red dashed lines. Wing discs are shown with anterior
to the left and ventral at the top, with a/p boundaries
marked with yellow dashed lines. Scale bars: 100 μm
in A,B,J-L; 50 μm in C-I″.
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Fig. 4. Identification of the functional PRE at the Notch locus. (A) Schematic diagram of the putative PREs (rectangles) in the Notch locus where each
putative PRE is assigned a unique color key that matches the PRE GFP reporter activity shown in L and M. (B) Schematic diagram of the PRE reporter. GFP
reporter expression is jointly controlled by the vgQE enhancer and putative PRE. (C-K′) GFP reporter expression (C,F-K) and corresponding heatmap images
(C′,D,E,F′-K′) in wing discs of the indicated genotype are shown. The vertical color bar on the right (C′) represents the intensity range. Compared with GFP
reporter activity controlled by only vgQE (C′), adding E1 to the reporter construct slightly represses GFP reporter expression (D, compare with C′), while E5
strongly inhibits GFP expression (E, compare with C′). GFP reporter expression is restored upon removal of E1 (F′) or E5 (G′) by the flippase-mediated
flip-out strategy in the posterior compartment of the wing disc (indicated by square brackets). Reducing PcG activity by overexpressing stx or knocking down
Pc has little effect on E1-GFP reporter expression (H′,I′), but significantly increases E5-GFP expression (J′,K′). (L,M) Statistical analyses of relative GFP
fluorescence intensity in wing discs of the indicated genotype (n=4). GFP activity controlled only by vgQE is used as a normalized standard. Data are
mean9±s.d. ***P<0.001, n.s. P>0.05 (one-way ANOVA, Dunnett’s multiple comparison tests). (N-R) qChIP experiments with H3K27me3, Pc, Ph or Sce were
performed using nuclear extracts from wild-type w1118 wing discs (N) and wing discs expressing Pc-GFP (P), ph-GFP (Q) or Sce-Flag (R). (O) DamID-qPCR
was performed in wing discs expressing Dam or Pc-Dam to compare Pc recruitment in E1 and E5 regions. H3K27me3 status and Pc, Ph and Psc
recruitment at regions E1 and E5 of the Notch locus are shown. PGRP-LE was used as a negative control for normalization. Antp, a widely studied PcG
target gene, was used as a positive control. Experiments were performed in triplicate and data are mean±s.d. ***P<0.001, **P<0.01, n.s. P>0.05 (one-way
ANOVA, Dunnett’s multiple comparison tests). Wing discs are shown with anterior to the left and ventral at the top, with a/p boundaries marked with yellow
dashed lines. Scale bar: 50 μm.
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which are transcription factors reported to be involved in PcG
recruitment (Déjardin et al., 2005; Grossniklaus and Paro, 2014;
Schuettengruber et al., 2017). We believe that a detailed analysis of
the binding of these transcription factors to E5 will provide
mechanistic insights into epigentic control of Notch receptor gene
transcription.
Notch has previously been classified as a neo-PRC1 target because

only PRC1 recruitment, but no H3K27me3 modification marks, was
detected around theNotch locus (Loubiere et al., 2016). Therefore, we
performed quantitative chromatin immunoprecipitation (qChIP) and
DamID-qPCR in the wing imaginal disc to examine whether E5 is
sufficient to recruit PRC1 in the absence of H3K27me3 modification.
As shown by the qChIP and DamID-qPCR assays, significant
recruitment of Pc, Ph and Sce was detected at E5, but without the
H3K27me3 modification mark (Fig. 4N-R). Moreover, these PRC1
components boundE5more strongly thanE1 (Fig. 4O-R), echoing the
conclusion that E5 may be more important than E1 in PRC1
recruitment. Combined with the above PRE reporter analysis, we
identifiedE5 as a functional PRE at theNotch locus, regulated by PcG.
Therefore, we name E5 as the ‘Notch PRE’. In conclusion, we provide
evidence thatNotch is a bona fide neo-PRC1 target and that epigenetic
regulation of Notch dose is mainly mediated through our newly
discovered Notch PRE. Given that Notch PRE is the first
experimentally verified PRE of neo-PRC1 targets, this PRE will
serve as a starting point for understanding the mechanisms underlying
the dynamic regulation ofNotch, as well as the growing class of PRC1
target genes (Loubiere et al., 2016) that acquire little or no
H3K27me3, resulting in transient silencing.

The Notch PRE is indispensable for Notch receptor dose
control in vivo
To investigate the physiological role of this Notch PRE, we
generated a NotchΔPRE mutant allele in which the Notch PRE was
removed in situ from the Notch locus by CRISPR-Cas9-mediated
homologous recombination (Fig. S5A). The removal of Notch PRE,
confirmed by PCR and Sanger sequencing (Fig. S5B,C), resulted in
an ∼30% increase in NotchmRNA expression in NotchΔPREmutant
larvae (Fig. 5A,B). Based on the above PRE reporter analysis and
genetic interactions, we believe that after removing the PRE in situ
from the Notch locus, Notch expression is no longer regulated by
Stx. Consistent with this speculation, the notched adult wing
phenotype and downregulation of Notch, Wg and Cut expression
caused by stx RNAi were largely restored in the context of
NotchΔPRE mutation (Fig. S5G-I′, compare with S5D-F′). Genetic
interactions further support this view, as the adult wing morphology
of NotchΔPRE could not be altered against the background of Pc3

heterozygotes (Fig. S5L, compare with S5K,J). Of note, the
posterior wing margin curvature phenotype shown by the Pc3

heterozygotic mutation (Fig. S5K,L) is a homeotic transformation
phenotype unrelated to Notch hyperactivation (Bi et al., 2022).
Given the importance of Notch receptor dose in Notch signaling

homeostasis, the loss of Notch PRE-mediated PRC1 repression may
impair developmental processes that are sensitive to changes in
Notch activity. As expected, we found that NotchΔPRE flies
exhibited loss of notal and scutellar macrochaetae, and excessive
crystal cell differentiation in the lymph gland, two stereotypical
phenotypes associated with hyperactivation of Notch signaling
(Brennan et al., 1999; Jung et al., 2005; Kopan, 1999; Lan et al.,
2020; Lebestky et al., 2003). The number of dorsocentral bristles
(DCs) and scutellar bristles (SCs) in adult NotchΔPRE flies was
significantly decreased (Fig. 5D,E, compare with 5C), which was
consistent with the decrease in the number of neur-lacZ-labeled

SOPs in the wing imaginal disc of NotchΔPRE larvae (Fig. 5G,
compare with 5F). Furthermore, Lz-GFP ( piggyBac insertion allele
of lz) and Notch antibody labeled crystal cells increased by
approximately 50% in the primary lobes of the lymph glands of the
third instar NotchΔPRE larvae (Fig. 5I-J, compare with 5H′). These
results highlight the crucial role of Notch PRE in cell fate decisions
that are highly sensitive to changes in Notch activity.

Although the loss of Notch PRE did not result in apparent defects
in the developing wings, probably due to the need for further
refinement and correction of the wing patterning process during the
pupal stage, the genetic interactions between NotchΔPRE and
classical Notch alleles still support the role of this PRE in Notch
receptor dose control in wing development. Specifically, one copy
of NotchΔPRE completely rescued the phenotypes caused by loss-of-
function Notch55e11/+, including overproduction of scutellar
bristles and notched wings (Fig. 5K-N; de Celis et al., 1993,
1991). Furthermore, in trans-heterozygotes of NotchΔPRE and
NotchAx-E2, a gain-of-function allele that does not show any
defects in scutellar bristle development under heterozygosity
(Fig. 5T; Xu et al., 1990), scutellar bristles were more extensively
lost than in heterozygous NotchΔPRE alone (Fig. 5U,V, compare
with 5S). Taken together, the above results suggest that Notch PRE
is an integral part of the Notch receptor dose-controlling
developmental process in the Notch signaling network.

DISCUSSION
Taking advantage of the power of Drosophila genetics, we
identified Stx as a new epigenetic regulator that positively
controls Notch receptor dose. This mode of regulation is mainly
mediated by a bona fide PRE in the Notch locus, repressing Notch
mRNA expression independently of H3K27 trimethylation.
Importantly, this PRE plays a physiologically crucial role in
Notch receptor dose control in multiple developmental contexts.

PRE is an important cis-regulatory element for PcG-mediated
epigenetic repression (Grossniklaus and Paro, 2014; Steffen and
Ringrose, 2014). It was originally discovered inDrosophila as DNA
sequences that recruit PcG proteins and maintain transcriptional
silencing of reporter genes (Chan et al., 1994; Kassis, 1994; Simon
et al., 1993). To date, extensive genome-wide ChIP-seq data have
revealed clustered PcG protein-binding sites in the Drosophila
genome, of which only a few have been confirmed as functional
PREs by reporter gene analysis (Bauer et al., 2016). This partly
explains why most PcG-binding genes are not derepressed when the
PcG complex is dysfunctional (Cohen et al., 2018; Gargiulo et al.,
2013; Loubiere et al., 2016; Morey et al., 2015; Pherson et al.,
2017). In cultured Drosophila BG3 cells with reduced ph
expression, only about 5% of the genes occupied by PcG proteins
are significantly upregulated (Pherson et al., 2017), whereas in the
eye discs of PcG mutants, this number does not exceed 30%
(Loubiere et al., 2016). A similar phenomenon was observed in
mice. When Bmi1, Ring1a or Ring1b (Rnf2) expression is reduced,
only about 4.8-15% of PcG target genes are derepressed (Cohen
et al., 2018; Gargiulo et al., 2013; Morey et al., 2015). These results
confirm why many cis-regulatory elements that recruit PcG proteins
have little effect in in vivo reporter assays (Cuddapah et al., 2012;
Cunningham et al., 2010). By integrating our DamID-seq and
published ChIP-seq data (Ahmad and Spens, 2019; Loubiere et al.,
2016), we identified seven PRC1-binding regions at the Notch locus
with varying degrees of binding strength. Our study suggests that
binding strength is not necessarily a good predicator of the
physiological requirement for these binding regions. Only in
combination with in vivo reporter assays did we identify two

7

RESEARCH ARTICLE Development (2023) 150, dev201297. doi:10.1242/dev.201297

D
E
V
E
LO

P
M

E
N
T

https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201297
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201297
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201297
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201297
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201297
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201297
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.201297


PRC1-binding regions sufficient to mediate Notch gene repression,
only one of which is shown to respond to epigenetic regulation by
Pc and Stx in vivo. Notably, this experimentally validated PRE does
not belong to the PRC1-binding sites with the highest binding
strength identified in previously published ChIP-seq datasets.
Therefore, our study demonstrates that, in PRE prediction, it is
not only necessary to determine the binding of PcG proteins to

genomic loci but also, more importantly, to directly test the role of
PcG-binding sites by reporter assays, as well as in situ deletion
of these PcG-binding sites in the corresponding genomic loci.
This conclusion echoes concerns that high-throughput sequencing
analysis alone only increases the number of associations and should
be further validated to reveal causality in biological processes
(Stern, 2022).

Fig. 5. In situ deletion of Notch PRE results in hyperactivation of Notch signaling during development. (A,B) Notch mRNA expression in the wing disc
(A) and whole larvae (B) of w1118 and NotchΔPRE was quantified by qPCR. Bar graphs represent relative Notch mRNA levels of the indicated genotype (n=3);
error bars represent s.d. *P<0.05 (two-tailed Student’s t-test). (C-G) Adult nota (C,D) and neur-lacZ expression in wing discs (F,G) of the indicated genotype
are shown. NotchΔPRE flies are defective in the development of notal and scutellar macrochaetae (D, compare with C). The number of DCs and SCs is
significantly reduced (E). Consistently, neur-lacZ-labeled SOPs in wing discs that are determined to become DCs and SCs disappear (G; compare with F).
(E) The mean number of DCs or SCs in adult nota of the indicated genotype (n=100). Error bars represent s.d. ***P<0.001 (two-tailed Student’s t-test).
(H-J) Expression of Lz-GFP and Notch in lymph glands of w1118 and NotchΔPRE is shown. The number of Lz-GFP-labeled crystal cells was significantly
increased in NotchΔPRE larvae (I′; compare with H′). (J) The mean number of Lz-GFP positive cells per primary lobe of w1118 and NotchΔPRE larvae (n=10).
Error bars represent s.d. ***P<0.001 (two-tailed Student’s t-test). (K-R) The genetic interaction between NotchΔPRE and Notch55e11, a loss-of-function allele of
Notch. Adult nota (K-M) and wings (O-Q) of the indicated genotype are shown. (N,R) The mean number of bristles in the scutellum (N) and in the hair-loss
region in wing margin (R) of the indicated genotypes (n=30). Error bars represent s.d. ***P<0.001, **P<0.01 (one-way ANOVA, Dunnett’s multiple
comparison tests). (S-V) The genetic interaction between NotchΔPRE and NotchAx-E2, a hypermorphic allele of Notch. Adult nota of the indicated genotypes
are shown (S-U). (V) The mean number of bristles in scutellum of the indicated genotypes (n=30). Error bars represent s.d. ***P<0.001 (one-way ANOVA,
Dunnett’s multiple comparison tests). Adult wings are shown with proximal to the left. Wing discs are shown with anterior to the left and ventral at the top.
Scale bars: 100 μm in C,D,K-M,O-Q,S-U; 50 μm in F,G-I′.
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Although PRE is considered crucial for epigenetic silencing of
target genes, there is little in-depth study of their physiological
function. To date, only a few PREs in the Drosophila genome have
been deleted to directly test their in vivo requirement, and the
phenotypic consequences of PRE deletion vary. In one case,
deletion of Ubx PRE leads to ectopic Ubx expression and homeotic
transformation (Sipos et al., 2007), supporting the crucial role of
PRE in mediating epigenetic repression. This contrasts with the
effect of removing a characterized PRE of iab-7, which does not
result in a visible phenotype (Mihaly et al., 1997). This may be due
to the presence of other cis-regulatory PRE-like elements required
for epigenetic gene repression. Alternatively, in the absence of a
canonical PRE, compensatory mechanisms for developmental
robustness can be activated, as in the case of epigenetic control of
the invected-engrailed (inv-en) gene complex. After in situ removal
of inv-en PRE, the remaining weak PcG-binding interactions
between PcG domains can maintain epigenetically silenced 3D
chromatin structures (De et al., 2016). A similar result was observed
in PRE deletion of the vg gene (Ahmad and Spens, 2019). The exact
mechanisms behind these paradoxical phenomena require further
investigation.
Metazoans use a variety of genetic, epigenetic and cellular

mechanisms to ensure developmental robustness to buffer against
genetic perturbations or environmental fluctuations (Félix andWagner,
2008; Spatz et al., 2021). In our study, the increased expression of
Notch caused by PRE deletion alters transient and rapid decision-
dependent cell fate specification in the notum and lymph gland, but
does not result in significant defects in wing margin formation, a
gradual developmental process that requires further refinement
and correction in later developmental stages. These seemingly
contradictory consequences of PRE deletion in different tissues may
reflect the different plasticity of the developmental process conferred
by genetic and cellular compensation, thereby adapting to changes
in developmentally regulatory gene expression and heterogeneous
cellular responses (Xiao et al., 2022). Although our Notch PRE
deletion mutation does not readily exhibit the classical gain-of-
functionConfluens phenotype in the developingwing, it is sufficient to
compensate for the loss-of-function wing-notching phenotype in the
sensitized background. Similarly, in vivo deletion of PRE in the
dachshund (dac) gene results in only a very mild tarsal transformation
of the first leg, a phenotype that can be further enhanced when flies are
reared at higher temperatures (Ogiyama et al., 2018). Consistent with
these observations, ectopic Notch or dac activity is known to lead to
broader defects (Anderson et al., 2006; Baonza and Freeman, 2005;
Córdoba and Estella, 2014; Dong et al., 2001; Ku and Sun, 2017; Shen
and Mardon, 1997), as opposed to the more limited phenotypes
observed when the corresponding PRE is deleted in situ. Thus,
context-dependent sensitivity to PRE-mediated epigenetic control
highlights the integral role of epigenetic adaptation to genetic and
environmental fluctuations during development.

MATERIALS AND METHODS
Fly genetics
All fly crosses were maintained at 25°C, except those listed in Table S1.
The following fly stocks were obtained from the Bloomington Drosophila
Stock Center: ap (apterous)-Gal4 (#3041), ap-lacZ (#5374), dpp
(decapentaplegic)-Gal4 (#1553), en (engrailed)-Gal4 (#30564), hh
(hedgehog)-Gal4, nub-Gal4 (#25754), Lz-GFP (#43954), mam8 (#1596),
MS1096-Gal4 (#8860), Notch1 (#6873), Notch55e11 (#28813), neur-lacZ
(#4369), NRE-gfp (#30727), pPc-Pc-GFP (#9593), Pc3 (#1730), ph410

(#5813), Psce24 (#24155), ptc-Gal4 (#2017), rotund (rn)-Gal4 (#7405), Ser1

(#89), spalt major (salm)-Gal4 (#5818), Su(dx)2 (#293), T80-Gal4 (#1878),
UAS-flp (#4539), UAS-NotchFL (#26820), UAS-Nslmb-vhhgfp4 (#38422),

UAS-Pc RNAi (#33622) and w1118 (#3605). Three UAS-stx RNAi lines
(GD27036, GD23946 and KK109495) and a UAS-Psc RNAi line
(GD30587) were obtained from the Vienna Drosophila RNAi Center
(VDRC). The stx-yfp protein trap line CPTI-004181 and the GS line for stx
(GS200070) were obtained from the Drosophila Genetic Resource Center
(DGRC). UAS-stx-Flag and UAS-Flag-Pc have been described previously
(Du et al., 2016).

E(z)63 was a gift from Peter Harte (Case Western Reserve University,
Cleveland, OH, USA). hs-flp;; ubi-gfp, FRT2A was a gift from Jocelyn
McDonald (Kansas State University, Manhattan, KS, USA). lz-Gal4,
UAS-gfp (BL#6313) was a gift from Ying Su (Ocean University of
China, Qingdao, China). NotchAx-E2 was a gift from Michelle Longworth
(Cleveland Clinic, OH, USA). NotchPL24 was a gift from Alain Vincent
(Université Toulouse III, France) (Bourbon et al., 2002). PcXT109 was a gift
from Jürg Müller (Max-Planck Institute of Biochemistry, Munich,
Germany) (Müller et al., 1995). phdel was a gift from Jian Wang
(University of Maryland, College Park, USA) (Feng et al., 2011). UAS-
Dam was a gift from Andrea Brand (University of Cambridge, UK)
(Southall et al., 2014). UAS-pPc-ph-GFP was a gift from Donna Arndt-
Jovin (Max-Planck Institute for Biophysical Chemistry, Göttingen,
Germany) (Ficz et al., 2005). UAS-Sce-Flag was a gift from Judith
Kassis (National Institutes of Health, USA) (Langlais et al., 2012).

Transgenic flies expressing UAS-Pc-Dam were generated by P-element
mediated germline transformation. UAS-stx-HA and GFP reporters for
putative Notch PREs were integrated into attP2 site using φC31 integrase-
mediated recombination to generate transgenic flies. NotchΔPRE mutant was
generated by CRISPR/Cas9-mediated homologous recombination (Port et al.,
2014). Details of related plasmids and primers are provided in Table S2.

Immunofluorescence staining, in situ hybridization and imaging
of adult fly structures
Standard procedures were used for wing disc immunofluorescence staining
and in situ hybridization (Su et al., 2011). Lymph glands were
immunofluorescently stained using the described protocol (Evans et al.,
2014). The following primary antibodies were used for immunofluorescence
staining: rabbit anti-β-galactosidase (1:4000; 55976; Cappel), mouse anti-
β-galactosidase [1:200; 40-1A; Developmental Studies Hybridoma Bank
(DSHB)], mouse anti-Cut (1:100; 2B10; DSHB), rabbit anti-cleaved Dcp-1
(1:400; 9578; Cell Signaling Technology), mouse anti-Dl (1:200; C594.9B;
DSHB), rabbit anti-GFP (1:4000; A11122; Invitrogen), mouse anti-Nicd

(1:200; C17.9C6; DSHB), rabbit anti-Pc (1:500; this study), rat anti-Ser
(1:2000; a gift from Kenneth Irvine, Rutgers University, NJ, USA;
Papayannopoulos et al., 1998), mouse anti-Wg (1:100; 2A1; DSHB) and
rabbit anti-Wg (1:1000; this study). Primers used for RNA probes synthesis
are listed in Table S2.

Fluorescence images were acquired with a Leica SP8 confocal microscope
or a Zeiss Axio Imager Z1microscope equippedwith anApoTome. Heatmap
images were generated in ImageJ using the heatmap plugin. Figures were
assembled in Adobe Photoshop CC. Minor image adjustments (brightness
and/or contrast) were made in Adobe Photoshop CC.

Adult wings and nota were dissected and mounted as described
previously (Zhu et al., 2003). The images of these adult tissues were
acquired with a Leica DMIL inverted microscope (wings) or a Keyence
VHX-7000 digital microscope (nota).

Antibody generation
Rabbit polyclonal antibodies were raised against amino acids 191-354 of the
Pc protein (Schuettengruber et al., 2009) and amino acids 3-468 of the Wg
protein (Brook and Cohen, 1996) (Abclonal Biotech), and affinity purified
for immunofluorescence staining. The specificity of rabbit anti-Pc antibody
was validated by Pc RNAi in the wing disc (Fig. S6A’). Staining pattern of
rabbit anti-Wg antibody in the wing pouch (Fig. S6B) is similar to that of
mouse anti-Wg antibody (4D4; DSHB) (Fig. S6C).

RNA isolation and quantitative real-time PCR
Total RNA of third instar larval wing discs was extracted using Eastep Super
Total RNA Extraction Kit (LS1040; Promega). Reverse transcription was
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performed with Eastep RT Master Mix Kit (LS2050; Promega). cDNA
levels were quantified by real-time PCR in a 7500 real time PCR system
(Applied Biosystems) using PowerUp SYBR Green Master Mix (A25741;
Thermo Fisher Scientific). Relative fold changes of Notch mRNA levels
were calculated using comparative CT method. Samples from three
independent experiments were prepared and run in triplicate. Primers used
for qPCR are listed in Table S2.

Quantitative chromatin immunoprecipitation
qChIP analyses of the wing disc were performed using the previously
described protocol (Loubiere et al., 2017). For each qChIP experiments,
∼900 pairs of wing discs were collected and three biological replicates were
performed. w1118 was used for H3K27me3 qChIP experiments. pPc-Pc-
GFP transgenic flies, in which GFP-tagged Pc is expressed under the control
of an endogenous Pc promoter (Dietzel et al., 1999), were used for qChIP
experiments on Pc. For qChIP experiments with Ph or Sce, wing discs
expressing UAS-pPc-ph-GFP (Ficz et al., 2005) or UAS-Sce-Flag
(Langlais et al., 2012) under nub-Gal4 control were used. Rabbit anti-
GFP (6 μg per IP; A11122; Invitrogen) for Pc-GFP and Ph-GFP, rabbit anti-
H3K27me3 (3 μg per IP; ABE44-S; Millipore) and mouse anti-Flag (5 μg
per IP; AT0022; Engibody) for Sce-Flag were used. Primers used for qPCR
are listed in Table S2. The results were normalized using the PGRP-LE
gene, which served as a negative control.

DNA adenine methyltransferase identification
The Pc cDNA was cloned into the pUAST-attB-LT3-Dam vector (a gift
from Andrea Brand) (Southall et al., 2014), and transgenic flies were
generated by integrating the vector at the attP2 site. UAS-Dam transgenic
flies were used as negative controls for nonspecific Dam activity. The
genotypes used for the experiments were: nub-Gal4/+; UAS-Dam/+, nub-
Gal4/+; UAS-Dam-Pc/+ and nub-Gal4/+; UAS-Dam-Pc/UAS-stx-HA.
Crosses were raised at 25°C. For DamID-qPCR, 100 pairs of wing discs
from each of three independent experiments were dissected from third instar
larvae in ice-cold Schneider’s Drosophila medium. For DamID-seq, 300
pairs of wing discs were dissected. The DamID was performed according to
a previously described protocol (Vogel et al., 2007). The PCR products were
purified by QIAquick PCR purification kit (Qiagen).

For DamID-qPCR, purified PCR products were used for real-time
quantitative PCR analyses. Primers for qPCR are listed in Table S2. For
DamID-seq, purified PCR products were used to generate the next-generation
sequencing (NGS) libraries that were further sequenced via HiSeq 2500 and
multiplexed to yield ∼50 million mapped reads per sample (Novogene). Using
the damidseq_pipeline (http://owenjm.github.io/damidseq_pipeline/) (Marshall
and Brand, 2015), NGS reads were aligned to the Drosophila melanogaster
reference genome version r6.41 by bowtie2 (Langmead and Salzberg, 2012),
and a final log2 ratio file in bedgraph format was generated. These files were
visualized and analyzed by Integrative genomics viewer (IGV) (Robinson et al.,
2011).

Quantification and statistical analysis
To quantify the hair-loss region in adult wing margin, mounted adult
wings were imaged and the length of hair-loss regions was measured by
QCapture Pro software (QImaging). For quantification of the intensity of
GFP fluorescence in the wing disc, images were taken with the same
confocal settings. The GFP fluorescence intensity of wing pouch region,
posterior or anterior compartment of the wing pouch was measured using
NIH ImageJ software.

Statistical analysis was performed using Graphpad Prism 8. For
comparison between sample pairs, a two-tailed Student’s t-test was used
(Fig. 2G; Fig. 5A,B,E,J; Fig. S4M,N); for comparisons between three or
more conditions, one-way ANOVA followed by Dunnett’s multiple
comparison tests were used (Fig. 1M,Q; Fig. 4L-R; Fig. 5N,R,V; Fig. S4L).
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Fig. S1. stx positively regulates Notch signaling. 

(A) Schematic diagram showing the targeted regions of three stx RNAi transgenic lines on the stx coding sequence. 

(B-E) Adult wings of the indicated genotype are shown. Knockdown of stx by two additional RNAi lines targeting 

different coding regions of stx resulted in similar wing notching phenotypes (B and C). The magnified box area in panel 

C is shown (C’); arrows mark small deltas distal to the L3 and L4 longitudinal veins. Overexpression of stx using a GS 

line (D) or a UAS-stx-Flag transgene (E) largely rescued the notched wing phenotype associated with stx RNAi.  
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(F-H’) NRE-GFP reporter expression in wing discs of the indicated genotype is shown. Reducing stx expression by 

RNAi decreased NRE-GFP expression (G’; cf. F’), while overexpression of stx increased NRE-GFP activity (H’; cf. F’). 

(I-J’) Adult wing and expression of Stx-YFP and Cut in wing discs of the indicated genotype are shown. Knockdown of 

stx by the deGradFP strategy in a CPTI line, in which a YFP protein trap cassette was inserted into the stx locus, 

resulted in a notched adult wing phenotype (I) and downregulation of Cut expression (J’) in the wing disc. 

(K-P) Adult wings of the indicated genotype are shown. When one copy of Notch (L, M), Ser (N) or mam (O) was 

mutated, the loss of wing margin tissue caused by stx RNAi (K) was exacerbated. In contrast, this phenotype was 

partially rescued in Su(dx)1 heterozygotes (P).

(Q-Q’’) The expression of lz>GFP and cleaved Dcp-1 in the lymph gland of the indicated genotype is shown. Knocking 

down stx did not induce the cleavage of Dcp-1 in GFP-marked crystal cells. 

The adult wings in are shown proximal to the left, with anterior/posterior (a/p) boundaries marked with red dashed 

lines. The wing discs are shown anterior to the left and ventral at the top, with a/p boundaries marked with yellow 

dashed lines.

Scale bar, B-E, I and K-P, 100 μm; C’, F-H’, J, J’ and Q-Q’’, 50 μm. 
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Fig. S2. stx does not regulate Dl or Ser expression. 

Ser (A-B’), Dl (C-E’), and ap-lacZ expression (E, E’) in the wing disc of the indicated genotype are shown. In GFP-

marked posterior compartment cells where stx expression was knocked down by hh-Gal4-driven RNAi, Ser protein 

expression was unaffected (B’; cf. A), but the expression pattern of Dl changed from two stripes (C) to one stripe along 

the dorsal/ventral (D/V) boundary (D’ and E-E’’). The dorsal compartment of the wing disc was marked with ap-lacZ 

(E’’).  

The wing discs are shown anterior to the left and ventral at the top, with a/p boundaries marked with yellow dashed 

lines.

Scale bar, 50 μm. 

Development: doi:10.1242/dev.201297: Supplementary information
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Fig. S3. Pc and Ph recruitment in canonical PcG target genes and the Notch locus. 

(A) Pc and Ph recruitment to the indicated region containing canonical PcG target genes were compared by analysing 

three datasets: CUT&RUN and ChIP-seq data from the wing disc in previous studies (Loubiere et al., 2016; Ahmad and 

Spens, 2019) and the DamID-seq data generated in this study. 

Development: doi:10.1242/dev.201297: Supplementary information
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(B) Pc and Ph recruitment at the Notch locus were compared by analysing three datasets, as shown in A. The putative 

PREs are displayed as color-coded rectangles that match the PRE GFP reporter activity shown in Figure 4L, M and 

Figure S4L-N.  

(C) Shown are the putative binding sites of Pho, GAGA, and DSP1 in the E5 region.  

Development: doi:10.1242/dev.201297: Supplementary information
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Fig. S4. E1 and E5 are potential functional PREs. 

(A) Schematic diagram of the putative PREs (rectangles) in the Notch locus where each putative PRE is assigned a 

unique color key that matches the PRE GFP reporter activity shown in panels L-N. 

(B-N) GFP reporter expression (B-K) and corresponding heatmap images (B’-K’) of relative GFP intensity in wing 

discs of the indicated genotype are shown. The vertical color bar on the right (B’) represents the intensity range. Both 

E1 (C’) and E5 (G’) were able to repress the expression of GFP reporter, with E5 showing a stronger effect, while the 

other five fragments had no inhibitory effects on GFP reporter expression (D’, E’, F’, H’, I’). Moreover, GFP 

expression of the E5 reporter was significantly increased in loss-of-function ph410 mutant wing disc (J’; cf. G’) and in 

the posterior compartment of the wing disc where Psc was knocked down by en-Gal4-driven RNAi (K’; cf. G’). 

Statistical analyses of relative GFP fluorescence intensity in wing discs of the indicated genotype (n=4) are shown 

(L-N). GFP activity controlled only by vgQE was used as a normalized standard. Data were presented as mean±S.D, 

*** p<0.001, n.s. p>0.05 (One-way ANOVA, Dunnett’s multiple comparison tests). 

The wing discs are shown anterior to the left and ventral at the top, with a/p boundaries marked with yellow dashed 

lines.

Scale bar, 50 μm. 
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Fig. S5. The expression of Notch in Notch
ΔPRE mutant flies is no longer modulated by Stx and Pc.

(A) Schematic diagram showing the location of gRNAs and primers used to generate and validate the NotchΔPRE allele.

(B) Using the forward and reverse primers shown in panel A, PCR products amplified using genomic DNA extracted 

from w1118 and NotchΔPRE flies, respectively, showed that the 1.1 Kb PRE sequence was removed from the Notch locus.

(C) A comparison of the Sanger sequencing results of the two PCR products in panel B confirmed that the PRE 

sequence was deleted in situ from the NotchΔPRE allele.
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(D-I’) Adult wings (D, G) and the expression of Notch (E, H) and Notch signaling target genes Wg (F, I) and Cut (F’, I’) 

in the wing disc of the indicated genotype are shown. Knockdown of stx resulted in a notched adult wing phenotype (D) 

and downregulation of Notch (E), Wg (F), and Cut expression (F’) in the wing disc. These phenotypes were largely 

restored in the NotchΔPRE mutant wing blade (G; cf. D) and wing discs (H-I’; cf. E-F’). The arrowhead marks the a/p 

boundary of the wing disc (F, F’, I, I’). 

(J-L) Adult wings of the indicated genotype are shown. No apparent wing vein phenotype associated with gain-of-

function Notch signaling was observed in adult NotchΔPRE wings (J), nor did Pc3 heterozygosity change this phenotype 

(L). Note that the posterior wing margin curvature phenotype of the Pc3 heterzygous wing (arrowheads in K and L) is 

due to partial transformation of the methothoracic wing to the metathoracic haltere (Bi et al., 2022), which is not related 

to Notch signaling alteration. 

The adult wings are shown proximal to the left, with a/p boundaries marked with red dashed lines. The wing discs are 

shown anterior to the left and ventral at the top, with a/p boundaries marked with yellow dashed lines.

Scale bar, D, G and J-L, 100 μm; E-F’ and H-I’, 50 μm. 
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Table S1. Genetic crosses for figures and supplemental figures 

Click here to download Table S1

Table S2. List of primers used in this study 

Click here to download Table S2
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Fig. S6. Validation of the Pc and Wg antibodies generated in this study.  

Pc (A, A’) and Wg expression (B, C) in the wing disc of the indicated genotype were detected by the 

indicated antibodies. In posterior compartment cells where Pc expression was knocked down by en-

Gal4-driven RNAi, the expression of Pc protein detected by the rabbit anti-Pc antibody generated in this 

study was significantly reduced (A’). Rabbit anti-Wg antibody (B) generated in this study and mouse 

anti-Wg antibody (C) purchased from DSHB (clone 4D4) detected similar Wg expression patterns in the 

wing pouch. 

Wing discs are shown with anterior to the left and ventral at the top, with a/p boundaries marked with 

yellow dashed lines. 

Scale bar, 50 μm. 

http://www.biologists.com/DEV_Movies/DEV201297/TableS1.xlsx
http://www.biologists.com/DEV_Movies/DEV201297/TableS2.xlsx

