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The impact of cell size on morphogen gradient precision
Jan A. Adelmann1,2, Roman Vetter1,2 and Dagmar Iber1,2,*

ABSTRACT

Tissue patterning during embryonic development is remarkably
precise. Here, we numerically determine the impact of the cell
diameter, gradient length and themorphogen source on the variability
of morphogen gradients. We show that the positional error increases
with the gradient length relative to the size of the morphogen source,
and with the square root of the cell diameter and the readout position.
We provide theoretical explanations for these relationships, and show
that they enable high patterning precision over developmental time for
readouts that scale with expanding tissue domains, as observed in
theDrosophilawing disc. Our analysis suggests that epithelial tissues
generally achieve higher patterning precision with small cross-
sectional cell areas. An extensive survey of measured apical cell
areas shows that they are indeed small in developing tissues that are
patterned by morphogen gradients. Enhanced precision may thus
have led to the emergence of pseudostratification in epithelia, a
phenomenon for which the evolutionary benefit had so far remained
elusive.

KEY WORDS: Morphogen gradient, Patterning, Precision,
Development, Cell size

INTRODUCTION
During embryogenesis, cellsmust coordinate complex differentiation
programs within expanding tissues. According to the French flag
model (Wolpert, 1969), morphogen gradients define pattern
boundaries in the developing tissue based on concentration
thresholds. Exponential functions of the form

CðxÞ ¼ C0e
�x=l ð1Þ

approximate the shape of measured morphogen gradients very well
(Kicheva et al., 2007; Gregor et al., 2007; 2008; Yu et al., 2009;
Wartlick et al., 2011; 2014; Cohen et al., 2015; Mateus et al., 2020).
For such gradients, the mean readout position

mx ¼ mean ½xu�
and the positional error

sx ¼ stddev ½xu�

of the domain boundary positions

xu ¼ l ln
C0

Cu

in different embryos depend on the variation in the decay length λ
and in the amplitude C0 relative to the concentration threshold Cθ.
Strikingly, the positional error of measured morphogen gradients has
been reported to exceed that of their readouts (Houchmandzadeh
et al., 2002; Gregor et al., 2007; Zagorski et al., 2017). Several
theories have been proposed to explain the high readout precision,
despite inevitable noise and variation in morphogen gradients and
their readout processes. They include temporal and spatial averaging,
self-enhanced morphogen turnover, the use of opposing gradients,
dynamic readouts, and cell-cell signalling (Houchmandzadeh et al.,
2002; Gregor et al., 2007; Lander et al., 2009; Morishita and Iwasa,
2009, 2011; Tkacǐk et al., 2015; Zagorski et al., 2017; Erdmann et al.,
2009; Sokolowski and Tkačik, 2015; Ellison et al., 2016; Mugler
et al., 2016; Reyes et al., 2022 preprint). In zebrafish, in which cells
are rather motile, cell sorting and competition can further enhance
boundary precision (Xiong et al., 2013; Akieda et al., 2019; Tsai
et al., 2020). Here, we have studied patterning precision conveyed by
morphogen gradients in epithelia but leave the effect of precision-
enhancing processes in the morphogen readout for future work.

A recently developed numerical framework estimates how much
variability in and between morphogen gradients can be accounted
for by cell-to-cell variability reported for morphogen production,
decay and diffusion (Vetter and Iber, 2022). In this article, we
extend the model to take a different perspective on the precision
of gradient-based patterning in cellular tissues. We analyse the
impact of various length scales present in the epithelium, such as the
cell diameter and source size, as well as spatial averaging, on
morphogen gradient variability. The findings suggest that positional
accuracy is higher, the narrower the cells and the larger the
morphogen source.

We approximate the patterning axis by a discrete line consisting
of two subdomains, a source domain on the interval− Ls≤x≤0 and a
patterning domain on the interval 0≤x≤Lp, each divided into sub-
intervals i representing individual epithelial cells with diameter δi in
1D, or cross-sectional areas Ai in 2D (Fig. 1A). Noisy exponential
gradients were generated by numerically solving the one-
dimensional steady-state reaction-diffusion boundary value
problem (Vetter and Iber, 2022)

piHð�xÞ � diCðxÞ ¼ �Di
@2CðxÞ
@x2

ð2Þ

with zero-flux boundary conditions

@C

@x

����
x¼�Ls;Lp

¼ 0:

Eqn 2 contains a source with production rates pi and a linear sink
with degradation rates di, and models morphogen transport by
Fickian diffusion with effective coefficientsDi; subscripts i indicate
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that they vary from cell to cell. The Heaviside step function H(−x)
ensures that morphogen production occurs only in the source,
whereas degradation is assumed to take place over the whole
domain. The kinetic parameters k=p, d, D were drawn for each cell
independently from log-normal distributions. This assumes
statistical independence of neighbouring cells; we will later relax
this assumption by introducing spatial correlation. The distributions
had prescribed mean values μk and respective coefficients of
variation CVk=σk/μk, analogous to Vetter and Iber (2022). We fixed
molecular variability at the physiological value CVk=0.3 (Vetter and
Iber, 2022).
As a new source of noise, we introduced cell size variability. As

the cell area distributions in the Drosophila larval and prepupal
wing discs, and in the mouse neural tube resemble log-normal
distributions (Sánchez-Gutiérrez et al., 2016; Guerrero et al., 2019),
we drew individual cell areas Ai independently of a log-normal
distribution with a prescribed mean μA and a coefficient of variation
CVA. This allowed us to evaluate the impact of cell-to-cell
variability in the production, degradation and diffusion rates pi, di
and Di, as well as in the cell cross-sectional areas Ai, on gradient
variability (Fig. 1B).

RESULTS
Gradient variability increases with cell size, but not with
physiological levels of cell area variability
We quantify relative variability or uncertainty of a positive quantity
X by its coefficient of variation CVX=σX/μX, where μX and σX
indicate the mean and standard deviation of X, respectively. For the
local morphogen concentration, this is CVC. Alternatively, one can
fit Eqn 1 to each generated morphogen gradient (see supplementary
Materials and Methods) and quantify CVλ and CV0 of the two free
parameters λ and C0 individually. We performed simulations
covering awide range of cell sizes, potentially larger than is relevant
for a specific type of tissue or organism, to reveal the functional
dependency of gradient variability on the cell diameter with
statistical confidence. An increase in the average cell diameter μδ
leads to greater variability in λ and C0 (Fig. 2A,B), according to
power laws

CVl � ma
d and CV0 � mb

d ð3Þ
with exponents α=0.510±0.004 (SE, Fig. 2A, blue curve) and
β=0.472±0.005 (Fig. 2B, blue curve). The amplitude variability
CV0 plateaus when μδ≥Ls, because the source defaults back to a
single cell in this case. Square-root scaling for the decay length
variability (α=1/2) follows theoretically from the law of large
numbers and is consistent with the inverse-square-root scaling
reported for the dependency of CVλ on the patterning domain length

Lp at fixed cell size (Vetter and Iber, 2022). Together, this suggests
that

CVl �
ffiffiffiffiffiffi
md

Lp

r
�

ffiffiffiffiffiffiffiffiffiffi
1

Ncells

s
ð4Þ

where Ncells is the (mean) number of cells along the patterning axis.
Similarly, morphogen sources composed of more and smaller cells
buffer cell-to-cell variability in morphogen kinetics more effectively,
leading to the observed reduction in amplitude variability CV0.
Smaller cell diameters thus lead to smaller effective morphogen
gradient variability.

Cell-to-cell variability in the cross-sectional cell area A does not
affect the gradient variability as long as CVA<1 (Fig. 2C,D). Only for
extreme cell area variability exceeding 1 does the variability in λ grow
(Fig. 2C). However, we are not aware of any reported CVA>1
(Guerrero et al., 2019; Kokic et al., 2019 preprint; Gómez et al., 2021;
Bocanegra-Moreno et al., 2023). Consequently, cell size has a
considerable impact on gradient variability, while physiological levels
of variability in the cell area do not contribute to gradient imprecision.
A larger source or gradient length reduces only the amplitude
variability, but does not affect the decay length variability (Fig. 2E-H).
Amplitude and gradient decay length variability is reduced in a source
that is composed of many cells with a small mean diameter (see
supplementaryMaterials andMethods for further details, Fig. S5). The
parameter values in all reported simulations correspond to those
reported for the mouse neural tube (μλ=20 μm, μδ=5 μm, Ls=5μδ and
Lp=50μδ), unless stated otherwise. At these values, source sizes above
25 μm and gradient decay lengths above 20 μm barely reduce
amplitude variability. Sonic hedgehog (SHH) in the neural tube is
secreted from both the notochord and the floor plate, while bone
morphogenetic protein (BMP) is secreted from both the ectoderm and
the roof plate. Intriguingly, while the SHH-secreting notochord shrinks
over time, it still measures about 30 μm in width by the 5-somite stage
(Imuta et al., 2014), and the SHH-secreting floor plate then emerges in
the ventral part of the neural tube and widens over time (Kicheva et al.,
2014). The gradient length remains constant at about μλ=20 μm
(Cohen et al., 2015; Zagorski et al., 2017), the largest value for which
the positional error remains small at a large distance (12μλ=240 μm)
from the source. The source size thus assumes the smallest value and
the gradient decay length the largest value for which morphogen
gradient variability remains small.

Readout position is barely shifted by spatial averaging
As cells can assume only a single fate, domain boundaries must
follow cell boundaries (Fig. 3A). We sought to quantify the impact
on the readout position if epithelial cells average the signal over

Fig. 1. Patterning in epithelial tissues with variability in the
morphogen kinetics and cell size. (A) Schematic of an epithelial
layer of cells (index i) with cross-sectional area A and diameter δ
along the patterning axis x. (B) Schematic of positional variability
resulting from the readout of noisy gradients in a cellular domain,
split into a morphogen-secreting source of length Ls and a
patterning domain of length Lp.
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their entire apical cell surface. Assuming that cells have no
orientational bias, we can approximate cell surfaces as disks with
radius r=μδ/2 about a centre point x0. If threshold-based readout
operates on the averaged concentration, the effective readout
domain boundary is shifted along the exponential concentration
gradient to x0=xθ+Δx by the distance

Dx ¼ l ln
X1
k¼0

ðr=2lÞ2k
k!ðk þ 1Þ!

" #

¼ l
1

8

r

l

� �2
� 1

384

r

l

� �4
þO r

l

� �6
� �� 	

ð5Þ

in absence of morphogen gradient variability and cell size
variability (see supplementary Materials and Methods for further
details, Fig. S1). For r=2.45 μm and λ=19.3 μm, as found for SHH
in the mouse neural tube (Cohen et al., 2015), the shift is Δx=0.039
μm or 0.8% of the cell diameter.

In the case of rectangular rather than circular cell areas, cells are
confined to the interval [x0−r, x0+r]. The theoretically predicted
shift is then approximately 0.052 μm in the mouse neural tube (see
supplementaryMaterials andMethods for further details, Fig. S2) or
1% of the cell diameter. This agrees with the shift we measured in
our simulations, Δx=0.0523±0.0001 μm (mean±s.e.m.), confirming
that spatial averaging of an exponential gradient results in a higher
average concentration than centroid readout. Kinetic and area
variability both increase Δx (Fig. 3B), but it remains small enough
(small fractions of a cell diameter) to be neglected in the analysis of
tissue patterning under biological conditions where r/λ≪1. Linear
gradients (Wolpert, 1969) would not result in any shift at all.

Spatial averaging barely reduces variability between
gradients
Spatial and temporal averaging can reduce the positional error of
morphogen gradients (Berg and Purcell, 1977). Previously, these

Fig. 2. Impact of cell size, source length and gradient length on morphogen gradient variability. (A,B) Scaling of gradient variability with the cell
diameter at fixed kinetic variability CVp,d,D and fixed cell area variability CVA. Fitted power-law exponents are indicated, and correspond to fits to the blue
data points. (C,D) Effect of cell area variability on gradient variability. (E,F) Effect of source length on gradient decay length and amplitude variability.
(G,H) Impact of mean gradient decay length on decay length and amplitude variability. Data are mean±s.e.m. of n=103 independent simulations, with kinetic
variability only in the parameters indicated by different symbols: purple, CVp=0.3, CVd,D=0; red, CVd=0.3, CVp,D=0; green, CVD=0.3, CVp,d=0; blue,
CVp,d,D=0.3. Cell area variability: CVA=0.5, except in C,D. Domain sizes: Ls=25 μm, except in E,F; Lp=250 μm, except in F,G. The effect of CVp on CVλ is
minuscule, Oð10�8Þ, and therefore not plotted in the top row. See supplementary Materials and Methods for further details and Table S1 for fit parameters.

Fig. 3. Readout position of exponential gradients is barely
shifted by spatial averaging. (A) Cell-based readout of a
morphogen gradient. A concentration threshold Cθ (yellow) defines
a readout position xθ (blue). If cells read out cell area averaged
concentrations, the effectively sensed concentration profile is a
step function (grey). Pattern boundaries form at cell edges (red).
For illustrative purposes, the cell size is exaggerated compared
with the gradient decay length. (B) Cell-area-averaged readout of
exponential gradients results in a small shift, Δx, compared with
readout at the cell centroid.
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mechanisms have been mainly analysed at the level of the
morphogen readouts – typically transcription factors (TFs) – which
are averaged by diffusion between nuclei (Houchmandzadeh et al.,
2002; Bialek and Setayeshgar, 2005; Gregor et al., 2007; Erdmann
et al., 2009; Sokolowski and Tkacǐk, 2015; Ellison et al., 2016;
Mugler et al., 2016). This is easily possible in a syncytium, as present
in the early Drosophila embryo, but the role of TF diffusion in
increasing patterning precision has remained controversial (Jaeger
and Verd, 2020). In an epithelium, nuclei are separated by cell
membranes such that the averaging of morphogen-induced factors
would require transport between cells, a complex and slow process
with many additional sources of molecular noise (Entchev and
González-Gaitán, 2002; Lander et al., 2002). However, epithelial
cells potentially can reap the benefits of spatial averaging by
averaging the morphogen signal over their surface (Fig. 4A, green).
Receptors may either be dispersed on the apical cell surface or along
the baso-lateral surface, or, in the case of hormones, be limited to
nuclei (Saitoh et al., 2013; Zhang et al., 2019). In the last case,
morphogen receptors would be limited to a small patch, which could
either be randomly positioned (Fig. 4A, blue) or located at the
centroid of the cell (Fig. 4A, red). In the mouse neural tube, the SHH
receptor PTCH1 is restricted to a cilium located on the apical surface
(Saade et al., 2013). The range of spatial averaging then depends on
the cilium length and flexibility, rather than the cross-sectional cell
area (Fig. 4A, purple). We sought to analyse how the different spatial
averaging strategies without crosstalk between neighbouring cells
affect the variability of gradients and thus the positional error.
Although the mean cell diameter μδ greatly affects the concentration

variability CVC, the readout strategy has only a moderate impact
(Fig. 4B). The difference is most pronounced for large cells (μδ=μλ),

where the sensedmorphogen variability is largest if the cellular readout
point is randomly placed (Fig. 4B, blue). Readout at the centroid or
averaged over the entire cell yield similar sensed concentration
variabilities. This is understandable because the theoretical
considerations above predict only a small shift. In addition, a cilium
that averages the gradient concentration over larger regions than a
single cell area barely reduces the sensed variability (Fig. 4C).

In summary, larger cross-sectional cell diameters increase the
variability of the morphogen concentration profiles, while spatial
averaging over the cell surface barely reduces the gradient
variability. Spatial averaging may, however, counteract detection
noise at low morphogen concentrations far away from the source. It
is currently unknown over what distance morphogen gradients
operate. At a distance 12λ from the source, for example, exponential
concentrations will have declined by e12≈160-thousand-fold. At
such low levels, detection noise may dominate readout variability
unless removed by spatial averaging.

Scaling of the positional error with gradient length, source
size, cell diameter and readout position
From dimensional analysis, the positional error of the gradient, σx,
being a measure of distance, must scale with a multiplicative
combination of the length scales occurring in the patterning process.
These can either originate from geometrical features of the tissue or
from the reaction-diffusion kinetics. We varied all relevant length
scales in simulations and found that σx is asymptotically
proportional to the mean characteristic gradient decay length, μλ,
close to the source, but transitions tom2

l at larger distances (Fig. 4D).
Additionally, it is inversely proportional to the source length Ls,
asymptotically for small Ls (Fig. 4E), but saturates for large sources.

Fig. 4. Impact of spatial averaging, gradient length, source size, cell diameter and readout position on the positional error of morphogen gradients.
(A) Four different methods to explain how cells may read out morphogens. Colours in B-G correspond to these readout mechanisms. (B) Concentration
variability along the patterning domain for different readout mechanisms and different cell sizes. (C) Effect of spatial averaging over a readout region with
radius r on sensed morphogen concentration variability. (D) Impact of absolute gradient decay length μλ on the positional error. (E) Impact of source size Ls
on the positional error. (F) Effect of mean cell diameter μδ on the positional error. Dotted lines show the relationship sx ¼ g

ffiffiffiffiffiffi
md

p
for γ=2.2, 4.5 (lengths in

units of mm). (G) Scaling of the positional error with the readout position μx. Scaling relationships in D-G are asymptotic. Each data point in B-G corresponds
to the mean±s.e.m. of n=103 independent simulations. Simulation parameters: Lp=65μδ, except in G; μλ=20 mm, except in D; Ls=5μδ, except in E;
muδ=5 mm, CVp,d,D=0.3, CVA=0.5. See supplementary Materials and Methods for further details and Table S1 for fit parameters.
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Moreover, the positional error increases with the square root of the
mean cell diameter μδ (Fig. 4F) and, up to an offset, with the square
root of the mean position along the patterning axis μx (Fig. 4G).
Together, this can be expressed by the asymptotic scaling
relationship

sx � ml

Ls

ffiffiffiffiffiffiffiffiffiffiffi
md mx

p
: ð6Þ

The linear dependency on the gradient length μλ is due to the effect
of gradient steepness on the positional error, and outweighs
the reduction in gradient amplitude variability (Fig. 2H). It
intuitively follows from σx≈|∂C/∂x|−1σC≈μλCVC, which is a valid
approximation when the average gradient has an exponential shape
(Vetter and Iber, 2022). As before (Fig. 2F), at constant μδ, a longer
source reduces the gradient amplitude variability because noise is
buffered by a larger number of source cells (see supplementary
Materials and Methods for further details, Fig. S5). Narrower cells
(smaller μδ) reduce the positional error of the morphogen gradients
according to the law of large numbers, sx � ffiffiffiffiffiffi

md
p

. Cell width in the
patterning domain is more influential than in the source, however,
and the benefit of reducing cell width in the source alone is limited
(see supplementary Materials and Methods for further details, Fig.
S6). The deterministic limit (CVC→0, σx→0) is recovered in the
continuum limit μδ→0. Domain boundaries can thus be defined
more accurately at a certain target location μx within the tissue with
narrow cells. Depending on the other lengths, the positional error
can easily be less than a cell diameter if the readout position is close
enough to the source (Fig. 4F). We note that the previously reported
linear scaling σx∼μx (Vetter and Iber, 2022) is valid only for
idealized gradients that vary only through noise in λ, but not in their
amplitude or from cell to cell. For the noisy more-physiological
gradients simulated here, the positional error increases according to
sx � ffiffiffiffiffi

mx
p

(asymptotically, Fig. 4G) and thus remains lower with
increasing distance from the source than previously anticipated.
This further challenges previous reports of excessive inaccuracy of
the SHH and BMP gradients in the mouse neural tube (Zagorski
et al., 2017).

High precision of scaled patterns by parallel changes in
gradient length, source size and cell diameter in the
Drosophila wing disc
The Decapentaplegic (Dpp) morphogen gradient in the Drosophila
wing imaginal disc defines the position of several veins in the adult
wing (Fig. 5A). Thus, the anterior-most limits of the Dpp source and
theDpp target gene spalt (sal) define the positions of the third (L3) and
second (L2) longitudinal veins in the anterior compartment,
respectively (Sturtevant et al., 1997; Bollenbach et al., 2008;
Restrepo et al., 2014; Tripathi and Irvine, 2022), while the fifth
longitudinal (L5) wing vein forms at the border between the expression
domains of optomotor-blind (omb) and brinker (brk) in the posterior
compartment (Cook et al., 2004). TheDpp readout positions scalewith
the total length of the uniformly expanding patterning domain, such
that the anterior position of the Sal-domain boundary remains roughly
at 40-45% of the anterior domain length La, while the posterior Omb
domain boundary remains at approximately 50% of the posterior
domain length Lp (Bollenbach et al., 2008; Wartlick et al., 2011;
Hamaratoglu et al., 2011; Restrepo et al., 2014). The gradient readout
positions scale with the length of the patterning domain, because both
the gradient length, λ, and the gradient amplitude, C0, increase
dynamically with the expanding tissue (Wartlick et al., 2011;
Hamaratoglu et al., 2011; Fried and Iber, 2014, 2015) (Fig. 5B). On
their own, the increases in μλ and in μxwould lower the precision of the

readout substantially over time (Eq. 6). However, the Dpp source
widens in parallel, keeping the μλ/Ls ratio at about 0.69 (Fig. 5B).
Moreover, the apical cell diameter μδ shrinks threefold close to the
source from 4.5 to 1.5 μm (Aegerter-Wilmsen et al., 2012; Corrigall
et al., 2007; Escudero et al., 2011; Legoff et al., 2013; Kokic et al.,
2019 preprint), which somewhat balances the increase in μx over time.
Plugging these dynamics into our model, the simulations showed that
the positional error at μx=0.4La increases from 2.9 μm to 4.3 μm over
developmental time (Fig. 5C, orange diamonds). If no compensation
were taking place, the positional error would increase to about 6.5 μm
in the same time period (Fig. 5C, blue circles).

The relative patterning precision, as quantified by the coefficient
of variation CVx=σx/μx, has even been reported to increase during
development, as the CV of the distance between the L2 and L3 veins
in the adult fly is only half (CVx=0.08) that of the anterior-most Sal
domain boundary (CVx=0.16) (Bollenbach et al., 2008). How this
increase in precision is achieved has remained elusive. In light of
Eqn 6, CVx ¼ sx=mx � 1=

ffiffiffiffiffi
mx

p
(Fig. 5D), such that the decreasing

CVx in adult stages could at least partly be a consequence of
the increase in μx=0.4La between the stage when the precision of the
Sal domain boundary was measured and the termination of
Dpp-dependent patterning. The asymptotic relationship sx � ffiffiffiffiffi

mx
p

may thus provide an explanation of how the relative precision of
patterning increases during Drosophila wing disc development.

The effect of spatial correlation
Our theoretical considerations and simulations above are based on
statistical independence between adjacent cells. To examine the effect
of spatial correlations, we performed additional simulations in which
this assumption was relaxed. We introduced a maximal degree of
spatial correlation between neighbouring cells, given a certain degree
of intercellular variability CVk, by sorting the kinetic parameters pi, di
andDi in ascending or descending order along the patterning axis after
they had been drawn from their respective probability distributions,
and then solved the reaction-diffusion problem (Eqn 2). The square-
root increase of the positional error with the mean cell diameter
remains intact in the presence of such spatial correlations between cells
(see supplementary Materials and Methods for further details, Fig.
S3), with a slightly smaller prefactor. Because any physiological level
of cell-to-cell correlation that preserves CVk will lie somewhere
between the uncorrelated and the maximally correlated extremes, the
impact of such a form of spatial correlation on patterning precision can
be expected to be minimal, and our findings also remain valid in
presence of spatial correlations.

An additional form of inter-cellular correlation may occur if
nearby cells stem from the same lineage and, as such, may have
correlated kinetic properties. In its most extreme form, neighbouring
cells may share all their molecular parameters, p, d and D,
effectively becoming one wider joint cell in our model. We can use
our results for cell-autonomous noise to predict the dependency of
patterning precision on the number of adjacent cells sharing their
kinetic properties, N. As the effective cell diameter simply becomes
Nμδ, the positional error will scale as sx �

ffiffiffiffi
N

p
. In this sense, the

mean cell diameter μδ in our formulas may be interpreted as an
effective spatial distance over which morphogen kinetics are shared,
proportional to a spatial correlation length in the tissue, if any.

Cell-specific morphogen production and decay rates, and local
variability in morphogen transport rates have not yet been quantified
in epithelial tissues. A spatial coupling of molecular noise in dividing
cells would require a perfectly symmetric division of cell contents
upon cell division and the absence of cell-intrinsic noise. Dpp-
containing endosomes are indeed distributed equally upon cell
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division in theDrosophilawing disc (Bökel et al., 2006). However, no
cellular system without intrinsic noise has so far been reported.
Differences between genetically identical sister cells were first shown
for bacterial cells (Elowitz et al., 2002), but have since also been
demonstrated for mammalian cells, and pose a key challenge in
synthetic biology (Raser and O’Shea, 2005; Zoller et al., 2015; Urban
and Johnston, 2018). The coefficients of variation that we used are
based on the reported variabilities of production and decay rates in
single genetically identical cells in cell culture (Vetter and Iber, 2022).
There are further reasons why low spatial correlation of the

kinetic parameters is to be expected. In pseudostratified epithelia,
interkinetic nuclear migration (IKNM) introduces differences
between cells as the cell cross-sectional areas change along the
entire apical-basal axis over time (Gómez et al., 2021). As the tight
junctions constitute a diffusion barrier between the apical and the
basolateral domains, the apical receptor density between cells will
change dynamically between cells if the apical receptor number is
equal and fixed for all cells. To maintain the same receptor density,
even though IKNM proceeds at different rates between
neighbouring cells, as reflected in the different nuclear positions
along the apical-basal axis (Gómez et al., 2021), the processes that

balance receptor production and internalisation would need to be
identical between neighbouring cells, although differences in cell
and nuclear volumes may also need to be compensated for. The
same holds for the glyocalyx and extracellular matrix, which define
the speed of morphogen diffusion, or for fillipodia, in the case of
cytoneme-based transport. In summary, the combination of an
unequal distribution of cell components in cell division, differences
in the relative surface area to cell and nuclear volume, and intrinsic
noise in gene expression must be expected to lead to individual
differences between neighbouring cells, even if they stem from the
same lineage.

Epithelial tissues patterned by morphogen gradients have
small mean apical cell areas
After finding that patterning precision is greater with narrower cells
in our model, we collected mean apical cell areas for a wide range of
tissues from the literature to check whether cell diameters are small
in tissues that rely on gradient-based patterning (Fig. 6). In the chick
(cNT) and mouse neural tube (mNT), where SHH, BMP and WNT
gradients define the progenitor domain boundaries (Briscoe and
Small, 2015), the mean apical cell areas are largely around 7 μm2

Fig. 5. High precision of scaled patterns by parallel changes of gradient length, source size and cell diameter in the Drosophila wing disc.
(A) Schematic of Dpp-dependent patterning in the Drosophila wing disc (adapted, with permission, from Matsuda et al., 2021, where it was published under a
CC-BY 4.0 license). Dpp is secreted from the green stripe, and supports the expression of sal (orange) and omb (blue), while repressing brk (pink) in the
pouch. The colours in the wing blade indicate the gene that defines the particular vein: the anterior-most limit of the sal domain defines the position of the L2
vein, the anterior-most limit of the dpp domain the L3 vein and the posterior-most limit of the omb domain define the L5 vein. omb is also expressed in the
anterior sal domain, and sal in part of the posterior omb domain, but these are omitted from the wing blade for clarity. For further details, see the main text.
(B) The reported Dpp gradient length and source size increase in parallel with the expanding length, Lp, of the posterior compartment. Data are from Wartlick
et al. (2011). (C) The predicted positional error at the relative readout position μx/La=40% is smallest when μλ and Ls evolve according to the linear fits in B,
and μδ declines linearly from 4.5 to 1.5 μm (orange diamonds). The positional error if μδ is fixed and μλ, Ls evolve (blue circles), or if the source length is fixed
and μλ, μδ evolve (pink triangles) is shown for comparison. (D) The predicted positional coefficient of variation CVx=σx/0.4La declines as the domain
expands. See supplementary Materials and Methods for further details and Table S1 for fit parameters.
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and remain below 12 μm2 (Escudero et al., 2011; Guerrero et al.,
2019; Bocanegra-Moreno et al., 2023). The chick embryonic
ectoderm (cEE) appears to be patterned by BMP gradients (Pera
et al., 1999), with mean apical cell area just below 12 μm2 (Escudero
et al., 2011). In theDrosophila larval eye disc (dEYE), notum (dNP)
and wing disc (dWL), Hedgehog (Hh), Decapentaplegic (Dpp) and
Wg gradients pattern the epithelium (Tomoyasu et al., 2000;
Cavodeassi et al., 2002; Briscoe and Small, 2015), with mean apical
cell areas smaller than 7 μm2 (Corrigall et al., 2007; Escudero et al.,
2011; Aegerter-Wilmsen et al., 2012; Kokic et al., 2019 preprint).
The mean apical cell areas of the wing disc increase through the pre-
pupal stages (dWP and dPW), to approximately 18 μm2 in the pupal
stages (Escudero et al., 2011; Kokic et al., 2019 preprint); other
measurements in the Drosophila wing disc (dWD) report mean
apical cell areas from 0 to 16 μm2 (Aegerter-Wilmsen et al., 2012).
In the Drosophila eye antennal disc, no gradient-based patterning
was described (dEA folded, mean apical cell areas of approximately
33 μm2; dEA non-folded, mean apical cell areas of approximately
39 μm2) (Ku and Sun, 2017). For the peripodal membrane (dPE10-
24) of the Drosophila eye disc, no gradient-based patterning has
been described and mean apical cell areas range from 85 μm2 to
more than 300 μm2 (Kokic et al., 2019 preprint). In the Drosophila
egg chamber (dEC), the mean apical cell areas decline from around
30 μm2 at stage 2/3 to around 10 μm2 by stage 6/7 (Finegan et al.,
2019), consistent with reported gradient-based patterning at stage 6
(Osterfield et al., 2017); we did not find reports of earlier gradient-
based patterning. Although gradients pattern the Drosophila
blastoderm syncytium (Briscoe and Small, 2015), we are not
aware of morphogen gradient readout during cellularisation. In the
Drosophila embryo anterior pole (dEAP), the mean apical cell area
is approximately 46 μm2 and in the embryo trunk (dET) it is roughly
35 μm2 (Rupprecht et al., 2017), much larger than in the neural tube
or wing disc. Before cellularisation, the situation is different from
that in an epithelium in that free diffusion in the inter-nuclear space
of the syncytium likely counteracts any sharp transition in the
kinetic parameters, as represented in our epithelial model, where cell
membranes compartmentalise space. In the Drosophila L2 trachea
(dL2 T), no gradients have been reported and the mean apical cell
areas are greater than 200 μm2 (Skouloudaki et al., 2019). In the
mouse embryonic lung (mLUNG), no morphogen gradients have
been reported, despite chemical patterning (Iber, 2021), and the
mean apical cell area is approximately 19 μm2 (Kadzik et al.,2014).
Mean apical cell areas in the postnatal (P1-P21) cochlea are between
15 and 55 μm2 (Etournay et al., 2010). In adult mouse retinal
pigment epithelial (mRPE) cells, the mean apical cell areas exceed
200 μm2 in young mice (P30) and increase to over 400 μm2 in old
mice (P720) (Kim et al., 2021). No gradient-based patterning has

been reported in mouse outer hair cells (mOHC1-3; P1, P3, P5,
P7.5); mean apical cell areas decrease from 35 μm2 (P1) to 16 μm2

(P7.5). No gradient-based patterning takes place in the inner hair
cells (mIHC1; P1, P3, P6, P7.5); mean apical cell areas decrease
from 54 μm2 (P1) to 29 μm2 (P7.5) (Etournay et al., 2010). No
gradient-based patterning has been reported in the mouse ear
epidermis (mEE), with mean apical cell areas of 1044 μm2

(Yokouchi et al., 2016). The data thus confirm that apical cell
areas are small in tissues that employ gradient-based patterning. Our
theory makes no prediction about the apical areas in tissues that do
not employ gradient-based patterning, but in all cases that we have
checked, apical areas are larger and appear to further increase in later
developmental stages and in adult animals.

DISCUSSION
We have shown that gradient precision decreases with increasing
cross-sectional area of the patterned cells. Consistent with our
prediction, apical surface areas are small in epithelia that employ
gradient-based patterning. In curved domains, spatial precision will
be higher on the inside, where the average cell diameter is smaller. In
the mouse neural tube, the SHH-sensing cilium is indeed located on
the inner, apical surface (Saade et al., 2013), while in the flat
Drosophila imaginal discs, cells sense Hedgehog along the entire
apical-basal axis (Gore et al., 2021). In theDrosophilawing disc, the
apical cell diameters shrink in the centre of the domain, such that the
apical areas are almost twofold smaller close to the source and
increase roughly linearly (Corrigall et al., 2007; Widmann and
Dahmann, 2009; Legoff et al., 2013; Bai et al., 2013). In the eye disc,
the size gradient is even more pronounced, with tiny apical areas in
the Dpp secreting morphogenetic furrow (Corrigall et al., 2007). The
declining apical cell diameters have previously been attributed to a
mechanical pressure feedback caused by growth (Hufnagel et al.,
2007; Aegerter-Wilmsen et al., 2012). However, signalling by Dpp,
the fly homolog of mammalian BMP2/4, has been shown to result in
taller cells with smaller cross-sectional area in its patterning domain
compared with other parts of the Drosophila wing and eye disc
(Corrigall et al., 2007; Widmann and Dahmann, 2009; Legoff et al.,
2013; Bai et al., 2013). Similarly, the morphogens SHH and WNT
have been observed to increase cell height and reduce the cell
cross-sectional area via their impact on actin polymerisation, myosin
localisation and activity in the embryonic mouse neural tube and
lung (Kadzik et al., 2014; Widmann and Dahmann, 2009;
Gritli-Linde et al., 2002; Kondo and Hayashi, 2015; Chiang et al.,
1996). Complementary to these observations, it would be interesting
to test our hypothesis in experiments that alter cell shape using either
a genetic or mechanical approach (Neufeld et al., 1998; Duda et al.,
2019).

Fig. 6. Mean apical cell areas of epithelial tissues. Apical cell
areas were categorised into three groups based on whether the
tissue is patterned by morphogen gradients or not, or whether
this is not known. m, mouse; d, Drosophila; c, chick (see text for
details).
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In light of our study, it is possible that the morphogen-dependent
reduction in the cross-sectional cell area via positive modulation of
cell height serves to enhance patterning precision. The precision
advantage of small cell diameters may then have led to the
emergence of pseudostratification in epithelial monolayers, a
phenomenon that has so far remained unexplained. Our finding
that wide cells and very large cell area variability are both
detrimental to patterning precision indicate that there is
potentially a window for epithelial pseudostratification in which
patterning precision is optimal: High cell density benefits precision
because cell diameters are small; however, with nuclei much wider
than the average cell diameter (Gómez et al., 2021), precision would
decline due to large area variability. It is remarkable that all the
tissues we analysed seem to lie in the optimal range of this trade-off
(Kokic et al., 2019 preprint).
We have revealed scaling relationships between the positional

error, cell diameter, gradient decay length and source length (Eqn 6).
In follow-up work, we found that these also hold for non-exponential
gradients arising from non-linear morphogen degradation
(Adelmann et al., 2023), as far as they were studied, and also in
2D tissue patterning (Long et al., 2023 preprint). These relationships
predict that morphogen gradients remain highly accurate over very
long distances, providing precise positional information even at a
distance from the morphogen source. Our results are system-
agnostic, and could thus apply widely in development. The
compensation between cell diameter, gradient length, source size
and readout location, which we have found here, allows a patterning
system to tune its length scales to achieve a particular level of spatial
precision. Our theoretical work suggests a potential evolutionary
benefit for a developmental mechanism that regulates features such
as the cell diameter or the l=Ls ratio to maintain high patterning
precision. A loss in precision due to a shift in readout position away
from the morphogen source, for example, can be compensated for by
narrower cells in the source or in the patterning domain. This allows
developmental systems to maintain high patterning precision at
readout positions that scale with a growing tissue domain.
Whether pre-steady-state gradients, as likely play a role in the

patterning of the Drosophila wing disc (Fried and Iber, 2014),
follow the same behaviour as discovered here for the steady state,
remains an issue for future research. Assuming that they do, our
results offer a potential explanation for the observed increase in
relative patterning precision during wing disc development.

MATERIALS AND METHODS
Generation of variable morphogen gradients
The patterning axis was constructed as follows: a random cell area Ai was
drawn for cell i=1, and then converted to a diameter di ¼ 2

ffiffiffiffiffiffiffiffiffiffi
Ai=p

p
, which

assumes that cell surfaces are roughly isotropic. This process was repeated
for the next cells i=2, 3,... until their cumulated diameters matched the
domain length Ls or Lp. To control the mean cell diameter μδ, cell areas were
drawn with a mean value of mA ¼ pðmd=2Þ2ð1þ CV2

AÞ1=4 for given μδ and
CVA, as follows from the transformation properties of log-normal random
variables, such that md ¼ E½di� ¼ 2E½ ffiffiffiffiffi

Ai
p �= ffiffiffiffi

p
p

. The patterning axis was
then discretized into subintervals of length δi; the source and patterning
domains were pasted together, such that x=0 marked the source boundary;
random kinetic parameters pi, di and Di were drawn independently for each
cell from log-normal distributions. The results reported in this work are
largely independent of the specific choice of probability distribution, given
that they do not allow for very small (or even negative) kinetic parameters,
which would not be compatible with a successful morphogen transport and
patterning process. A gamma distribution with the same mean and variance,
for example, yields largely unchanged behaviour (see supplementary
Materials and Methods for further details, Fig. S4).

We then solved Eqn 2 numerically on the discretized domain using
Matlab’s built-in fourth-order boundary value problem solver bvp4c
(version R2020b). Continuity of the morphogen concentration and its flux
was imposed at each cell boundary. Further technical details can be found in
Vetter and Iber (2022). Each simulation was repeated n=103 times with
independent random parameters and cell areas.

Gradient parameter extraction
We determined the amplitude C0 and decay length λ for each numerically
generated noisy morphogen gradient by fitting the deterministic solution to
it. With no-flux boundaries, the gradient shapes are hyperbolic cosines that
slightly deviate from a pure exponential at the far end (Vetter and Iber,
2022). We fitted these inside the patterning domain to obtain C0 and λ after
logarithmisation of the morphogen concentration, as detailed by Vetter and
Iber (2022).

As the fitted characteristic gradient length λ drifts away from the
prescribed value for noisy gradients depending on which of the kinetic
parameters is varied and by how much (Vetter and Iber, 2022), we corrected
for this drift in our numerical implementation to be able to use the true
observed value of μλ in our results:

ml ¼ lð1þ 0:435CV2
dÞ�0:080

ml ¼ lð1� 0:003CVD þ 1:045CV2
D � 0:113CV3

D

þ 0:0043CV4
DÞ0:471

ml ¼ lð1� 0:011CV p;d;D þ 1:355CV2
p;d;D � 0:179CV3

p;d;D

þ 0:0077CV4
p;d;DÞ0:357

;

where λ is the deterministic (prescribed) value. When only the production
rate p was varied, μλ=λ. These empirical relationships approximate the data
shown by Vetter and Iber (2022).
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In this supplementary document, we theoretically show that
averaging morphogen concentrations over a spatial region (such
as cell areas) can shift the effective readout position compared
to point-like readout, and we derive the corresponding shift ∆x
analytically for isotropic and for rectangular cell shapes. We
focus on exponential morphogen gradients here as they arise in
systems with diffusion-driven morphogen transport and uniform
linear degradation, but note that the developed formalism can
be applied directly also to other gradient shapes. Moreover, the
impact of spatial correlation of the kinetic cell parameters on the
positional error, the choice of the kinetic parameter distribution
and the effect of cell number in the source domain are discussed.

Readout in a continuous domain

Consider an exponential morphogen concentration gradient

C(x) = C0 exp
[
−x

λ

]
with concentration C0 at the source at x = 0, and decay length
λ. Assuming a continuous readout based on a threshold con-
centration Cθ = C(xθ), a positional identity boundary forms at
position

xθ = λ ln

[
C0

Cθ

]
. (S1)

This mechanism allows for gradient-based tissue patterning,
where individual patterning domains are delineated by different
boundary positions xθ resulting from different readout thresholds
Cθ.

Readout in a tissue of isotropic cells

For morphogen readout in a cellular tissue, we consider several
different cases in a unified description. Cells can either sense
the morphogen concentration at a singular point, averaged over
a spatial region with radius r about that point (which may or
may not be smaller than a cell), or as an average concentration
over the entire cell area. We denote this readout region by Ω
(Fig. S1). The average concentration in Ω is

⟨C⟩ =
∫
Ω
C(x) dΩ∫
Ω
dΩ

.

Assuming that the averaging domain is circular (i.e., the cell
areas have no orientational bias) in a two-dimensional tissue
cross section or surface, we can approximate Ω as a disk with
radius r about a center point (x0, 0):

Ω =
{
(x, y) | (x− x0)

2 + y2 < r2
}
.

readout region Ω

∆x

C(x) = C0 exp
[
−x

λ

]

x0−r x0xθ x0+r

Cθ

⟨C⟩

Distance from source x

M
o
rp
h
o
g
en

co
n
ce
n
tr
a
ti
o
n
C

Fig. S1. Averaging an exponential morphogen concentration 
(blue) over a local region such as the cell area leads to a larger 
readout concentration (green) than taking the concentration at 
the middle of the region (red). To compensate for this effect, 
the readout position shifts downhill (away from the source) by 
a distance ∆x from xθ to x0.

In the case where the concentration is averaged over the entire
cell area, r is the effective cell radius. The average concentration
thus becomes

⟨C⟩ = C0

πr2

∫
Ω

exp
[
−x

λ

]
dΩ

=
C0

πr2
2πrλ exp

[
−x0

λ

]
I1

( r

λ

)
where

In(z) =

∞∑
k=0

(z/2)2k+n

k!(k + n)!

is the modified Bessel function of the first kind for integer n.
The series converges very quickly if r ≪ λ, such that higher
order terms in r/λ can be dropped. Substitution and expansion
of the Bessel function yields

⟨C⟩ = C(x0)
2λ

r
I1

( r

λ

)
= C(x0)

∞∑
k=0

(r/2λ)2k

k!(k + 1)!

= C(x0)

[
1 +

1

8

( r

λ

)2

+
1

192

( r

λ

)4

+O
(( r

λ

)6
)]

.

Thus, the mean concentration ⟨C⟩ is larger than the one in
the middle of the readout domain, C(x0), and this deviation
increases with larger readout regions and shorter gradient decay
lengths.
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Fig. S2. Readout boundary shift due to spatial averaging as a 
function of the size over which the morphogen concentration is 
averaged. The purple line shows the isotropic case with a 
circular averaging region (Eq. S2); the orange line represents 
the case with rectangular cells (Eq. S4).

If threshold-based readout operates on the averaged concen-
tration, we must have Cθ = ⟨C⟩. Therefore,

C(xθ)

C(x0)
= exp

[
−xθ − x0

λ

]
=

∞∑
k=0

(r/2λ)2k

k!(k + 1)!
.

The location of domain boundaries is shifted down the concen-
tration gradient by the distance

∆x = x0 − xθ = λ ln

[
∞∑

k=0

(r/2λ)2k

k!(k + 1)!

]
(S2)

as shown in Fig. S1. Notably, the shift is independent of both
the gradient amplitude C0 and the concentration threshold Cθ

for an exponential gradient. Therefore, it is the same for all
readout positions in the pattern if the averaging radius r and
the decay length λ are spatially invariant, such that all domain
boundaries are shifted equally by this averaging effect. Eq. S2
is plotted in Fig. S2.

Using the power series expansion of the natural logarithm,

ln[1 + x] =

∞∑
k=1

(−1)k+1 x
k

k
= x− x2

2
+O

(
x3) ,

the boundary shift can be expanded to

∆x = λ

[
1

8

( r

λ

)2

− 1

384

( r

λ

)4

+O
(( r

λ

)6
)]

.

For a mean cell radius of r = 2.5µm and a gradient decay
length of λ = 20 µm, the shift is ∆x ≈ 0.039 µm.

By combining Eqs. S1 and S2, we find the mean domain
boundary position at

x0 = xθ +∆x = λ ln

[
C0

Cθ

∞∑
k=0

(r/2λ)2k

k!(k + 1)!

]
. (S3)

Readout in a tissue of rectangular cells

We now derive the downhill shift ∆x also for rectangular cell
areas, effectively rendering the problem one-dimensional. This
scenario corresponds to a tissue composed of cuboidal cells in

which the morphogen gradient forms in a direction perpendicular
to one of the cells’ axes. In this case,

Ω = {(x, y) | |x− x0| < r} .

Averaging over the cell area thus gives

⟨C⟩ = C0

2r

∫
Ω

exp
[
−x

λ

]
dΩ

= C(x0)
λ

r
sinh

[ r
λ

]
Requiring again that the readout threshold be the average
concentration, Cθ = ⟨C⟩, yields

C(xθ)

C(x0)
= exp

[
−xθ − x0

λ

]
=

λ

r
sinh

[ r
λ

]
.

The shift in the readout position then follows as

∆x = x0 − xθ = λ ln

[
λ

r
sinh

( r

λ

)]
(S4)

which expands to

∆x = λ

[
1

6

( r

λ

)2

− 1

180

( r

λ

)4

+O
(( r

λ

)6
)]

.

Eq. S4 is plotted in Fig. S2. For a mean cell radius of
r = 2.5 µm (which in this case corresponds to the half-width of
the rectangular cells) and a gradient decay length of λ = 20 µm,
the shift is ∆x ≈ 0.052 µm.

In analogy to Eq. S3, the mean domain boundary position is
found at

x0 = xθ +∆x = λ ln

[
C0

Cθ

λ

r
sinh

( r

λ

)]
.

in tissues composed of rectangular cells.

Impact of spatial correlation on the positional
error

In the main article, we assumed uncorrelated morphogen kinet-
ics. Here, we demonstrate how spatial correlation affects the
positional error. First, we consider total correlation, where all
three kinetic parameters (p, d, D) are the same for all cells, but
are still varied between different simulations (different tissues).
In this limiting case, morphogen gradient variability occurs
only between tissues, not within them. The positional error
is significantly greater than with independent cells, and the
square-root scaling is lost (Fig. S3, green triangles), because
to the morphogen gradient, the tissue effectively appears like a
homogeneous continuum with uniform properties.

Next, we consider, as a second extreme case, a maximal de-
gree of cell-to-cell correlation in the kinetic parameters, while
preserving their probability distributions within the tissue. The
kinetic cell parameters (pi, di, Di) are drawn individually and
independently for each cell, but are then sorted along the pat-
terning axis and assigned to the cells i, prior to solving the
reaction-diffusion equation. Sorting does not affect the pattern-
ing precision appreciably, independent of the ordering (Fig. S3).
In comparison to zero correlation, sorting slightly reduces the
positional error—an effect that is most pronounced for larger
cell diameters. But even with this maximal level of spatial
cell-to-cell correlation, the square-root scaling of the positional
error holds. Intermediate levels of spatial correlation can be
expected to yield positional errors lying in between the curves
for zero and maximal cell-to-cell correlation.
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Fig. S3. Impact of correlation on the positional error at different readout positions and cell diameters. Green 
triangles represent total correlation (all cells have equal kinetic parameters), yellow triangles represent no correlation (as presented 
in the main Fig. 4F). Blue (red) triangles correspond to the case with maximal spatial correlation at given cell-to-cell variability 
CVp,d,D, where the cell parameters were drawn from log-normal distributions and then sorted in descending (ascending) order. 
All simulations were repeated n = 103 times and the mean positional error ± SEM is plotted.

Choice of the kinetic parameter distribution

In the main article, we assumed log-normally distributed mor-
phogen kinetics. In this section, we show that our results are
largely independent of the probability distribution assumed for
the kinetic parameters, provided that it meets certain physio-
logical criteria:

• The morphogen production rates, degradation rates and
diffusivities must be strictly positive. This rules out a
normal distribution.

• The probability density of near-zero kinetic parameters
must vanish quickly, as otherwise no successful patterning
can occur. For example, a tiny diffusion coefficient would
not enable morphogen transport over biologically useful dis-
tances within useful time periods. This rules out a normal
distribution truncated at zero, because very low diffusivities
would occur rather frequently for such a distribution.

We repeated the simulations shown in Figs. 2A,B and 4F with
a gamma distribution in place of the log-normal distribution.
Among other distributions that are conceivable, a gamma dis-
tribution with appropriate shape parameter α and inverse scale
parameter β fulfills the above criteria. In order to recover the
mean and variance of the kinetic parameters, we set αk = 1/CV2

k

and βk = CV2
k/µk, where CVk is the coefficient of variation and

µk the mean value of a specific kinetic parameter k. As can
be appreciated from Fig. S4, the results are not significantly
altered by the specific choice of probability distribution, and our
conclusions remain valid. The scaling exponents are consistent
within statistical errors.

Effect of cell number in the source domain on
gradient precision

In the main article, we showed that patterning precision increases
with narrower cells and wider sources. These effects are coupled—
wider sources will be composed of more cells if the average cell
diameter remains constant. In this section, we demonstrate that
the positional error is mainly dominated by the cell diameter
rather than the source size, and that the found scaling σx ∼ 1/Ls

(Eq. 6) is largely due to higher cell numbers in wider sources.
Increasing the number of cells in a source of fixed length

improves the precision of the morphogen gradient parameters
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Fig. S4. Gradient variability and positional error 
under gamma-distributed morphogen kinetics. All sim-

ulations were repeated n = 103 times and the mean values ± 
SEM are plotted. A,B The same scaling laws for the gradient 
variability found for the gamma and log-normal distributions 
(Fig. 2A,B) are consistent. C Different readout s trategies (iden-
tical to Fig. 4A). D Square-root scaling of the positional error 
with the cell diameter is found also with gamma-distributed 
morphogen kinetics. Symbol colours in D correspond to the 
different morphogen sensing strategies in C.

according to the asymptotic relationship

CVλ,0 ∼
√

µδs

Ls
∼

√
1

Ncells
,

where Ncells is the number of cells in the source domain
(Fig. S5A,B). They thus approximately follow the law of large
numbers. The positional error decreases analogously with in-
creased cell number in a source of fixed length (Fig. S5C). If,
on the other hand, the number of source cells is fixed but the
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Figure S5: Effect of source length and number of source
cells on gradients precision. A,B In a source of fixed
length Ls, there is less variability in the gradient parameters
λ and C0 as the number of constituting cells increases. C The
positional error decreases with more cells in a source of fixed
length, but saturates beyond about 5 source cells. D,E The
gradient parameters become more variable in wider sources
consisting of a fixed number of cells. F The positional error
mildly increases in wider morphogen sources with fixed cell
count. Colours in C,F correspond to readout strategies shown in
Fig. S4C. All data points show mean values ± SEM from n = 103

simulations. Model parameters: µδp = 5 µm, CVp,d,D = 0.3,
CVA = 0.5, µλ = 20 µm.

source size increases, the variability in the gradient parameters
increases according to power laws (Fig. S5D,E),

CVλ,0 ∼ µα
δ and CV0 ∼ µβ

δ (S5)

with exponents α = 0.510 ± 0.005 (Fig. S5D, blue curve) and
β = 0.43±0.02 (Fig. S5E, blue curve), suggesting again CVλ,0 ∼√

µδs/Ls. A source composed of a fixed number of cells yields
only a mildly greater positional error if its constituent cells
have a larger average diameter, however (Fig. S5F). In these
simulations, the mean cell diameter in the patterning domain was
fixed. Thus, in order to achieve high spatial gradient precision,
a morphogen source must have a large number of cells with
small diameters, but the cell count is more decisive than the
source length.

To study the competition of cell sizes between the source and
patterning domain, we then changed the mean cell diameter
separately in both subdomains, retaining the mean diameter in
the other at a constant value. No further appreciable increase in
gradient precision takes place once the mean cell diameter in the
source subceeds the one in the patterning domain (µδs < µδp ,
Fig. S6). The mean cell diameter in the source has a limited
impact on gradient precision (Fig. S6, pink symbols) compared
to the mean diameter in the patterning domain (Fig. S6, yellow
symbols). Overall, this suggests that a large number of narrow
cells in both the source and patterning domain, but mainly in
the latter, is advantageous for patterning precision.

Fit parameters

In Table S1, we list all functional relationships used to fit the
data shown in the main article and this supplementary document,
together with the fit parameters and their standard errors (SE).
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Fig. S6. Separate effects of the mean cell diameter in the source and patterning domains on the positional 
error. A,B,C Change of positional error at µx = 3µλ = 60 µm, as the mean cell diameter is varied only in the source (µδ = µδs , 
pink), only in the pattern (µδ = µδp , yellow) or in both simultaneously (µδ = µδs = µδp , blue), but is fixed elsewhere (at 2, 5, 
10 µm in A, B, C, respectively). All simulations were repeated n = 103 times and the mean values ± SEM are plotted. Model 
parameters: Ls = 5µδs , CVp,d,D = 0.3, CVA = 0.5.
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Table S1. Summary of the fit functions and their parameters. All lengths are in micrometres.

Figure Model Legend entry a SE(a) b SE(b)

2A lnCVλ = a lnµδ + b k = D 0.507 0.002 −4.528 0.004
k = p, d,D 0.510 0.004 −4.199 0.008

2B lnCV0 = a lnµδ + b k = p 0.497 0.003 −4.528 0.004
k = d 0.457 0.004 −2.847 0.006
k = D 0.387 0.006 −3.403 0.008
k = p, d,D 0.472 0.005 −2.396 0.007

2E CVλ = b k = D — — 0.0249 0.0001
k = p, d,D — — 0.0343 0.0001

2F CV0 = a/Ls + b k = p 1.087 0.038 0.095 0.002
k = D −0.158 0.010 0.070 0.001
k = p, d,D 0.870 0.025 0.160 0.001

2G CVλ = b k = d — — 0.0238 0.0002
k = D — — 0.0246 0.0001
k = p, d,D — — 0.0338 0.0001

4D σx = aµλ + b µx = 3µλ average 0.097 0.004 3.4 0.1
µx = 3µλ centroid 0.087 0.004 3.4 0.1
µx = 3µλ random 0.096 0.004 3.7 0.1
µx = 6µλ average 0.083 0.003 4.9 0.1
µx = 6µλ centroid 0.083 0.003 4.9 0.1
µx = 6µλ random 0.083 0.003 5.1 0.1

4D σx = aµ2
λ + b µx = 12µλ average 0.0014 0.0001 7.8 0.1

µx = 12µλ centroid 0.0014 0.0001 7.8 0.1
µx = 12µλ random 0.0014 0.0001 7.9 0.1

4E σx = a/Ls + b µx = 3µλ average 12.5 0.9 4.75 0.05
µx = 3µλ centroid 12.6 0.8 4.74 0.05
µx = 3µλ random 12.3 1.0 5.01 0.05
µx = 6µλ average 11.4 0.6 6.01 0.03
µx = 6µλ centroid 11.3 0.6 6.01 0.03
µx = 6µλ random 10.9 0.6 6.20 0.03
µx = 12µλ average 8.9 1.0 8.01 0.06
µx = 12µλ centroid 8.9 1.0 8.01 0.06
µx = 12µλ random 8.5 1.0 8.24 0.05

4G σx = a
√
µx + b average 0.429 0.003 1.86 0.06

centroid 0.429 0.003 1.85 0.06
random 0.421 0.003 2.17 0.07

5D CVx = a/
√

Lp + b 1.28 0.02 −0.039 0.002

S5A CVλ = a/
√
Ncells k = D 0.0778 0.0006 — —

k = p, d,D 0.1082 0.0005 — —

S5B CV0 = a/
√
Ncells + b k = p 0.293 0.009 0.019 0.004

k = d 0.325 0.003 0.011 0.001
k = D 0.171 0.004 0.014 0.002
k = p, d,D 0.490 0.006 0.019 0.003

S5C σx = a/Ncells + b µx = 3µλ average 4.9 0.2 3.48 0.06
µx = 3µλ centroid 4.9 0.2 3.47 0.06
µx = 3µλ random 4.8 0.2 3.73 0.07
µx = 6µλ average 4.2 0.1 4.94 0.06
µx = 6µλ centroid 4.2 0.1 4.95 0.05
µx = 6µλ random 3.9 0.1 5.25 0.05
µx = 12µλ average 3.6 0.2 7.10 0.10
µx = 12µλ centroid 3.6 0.2 7.10 0.10
µx = 12µλ random 3.4 0.2 7.40 0.10

S5D lnCVλ = a lnLs + b k = D 0.520 0.004 −5.38 0.01
k = p, d,D 0.510 0.006 −5.01 0.02

S5E lnCV0 = a lnLs + b k = d 0.42 0.01 −3.48 0.03
k = D 0.53 0.01 −4.52 0.05
k = p, d,D 0.43 0.02 −3.08 0.07
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