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Introduction
Development and functioning of the central nervous system

involves multiple processes, including neuronal differentiation,

synaptogenesis and synaptic activity, as well as crucial death and

survival choices. These activities require specialized signaling

pathways generally initiated by activation of membrane receptors.

Neurotrophin and ephrin receptors [tropomyosin-related kinase

(Trk) and Eph, respectively], and those for the neurotransmitter

glutamate, play pivotal roles. Their signaling cascades are supported

by large and dynamic complexes formed by multiple proteins, such

as those associated to the N-methyl-D-aspartate type of glutamate

receptor (NMDAR) (Husi et al., 2000).

The interactions established among receptors and with their

signaling proteins are challenged in several pathologies, for instance

those related to excitotoxicity. This specific form of cell death, due

to overstimulation of the NMDAR, contributes to neuronal

degeneration in acute disorders such as hypoxia, ischemia, trauma

and epilepsy, or chronic neurodegenerative pathologies such as

Alzheimer’s, Parkinson’s or Huntington’s diseases (Choi, 1988).

The NMDAR is central to physiology, promoting neuronal

survival and playing key functions in synaptic activity, plasticity,

learning and memory, but is also involved in the etiology of human

diseases and neuronal death. The basis for the dichotomy of

NMDARs regulating survival and death decisions is beginning to

be established. Physiological NMDAR stimulation is crucial for

neuronal survival: it induces the activation of, among others,

extracellular signal-regulated kinase (ERK; also known as mitogen-

activated protein kinase) (Thomas and Huganir, 2004), and increases

antioxidant defenses (Papadia et al., 2008). By contrast, activation

of NMDARs under pathological conditions, for example in brain

ischemia after massive glutamate release, opposes these

neuroprotective effects and is coupled to cell death pathways

(Hardingham et al., 2002). We have described an autoregulatory

mechanism induced by excitotoxicity and ischemia; this mechanism

rapidly decreases NMDAR function. It consists of transcriptional

downregulation of the gene encoding the obligatory NR1 subunit

(Gascon et al., 2005), and the processing of NR2A and NR2B C-

terminal regions by calpain (Gascon et al., 2008), an important

effector of Ca2+ overload resulting from NMDAR overactivation

(Neumar et al., 2003). Calpain also cleaves several NMDAR-

interacting and signaling proteins (reviewed by Vosler et al., 2008).

This mechanism is central to neuronal death because it affects many

Functional and protein interactions between the N-methyl-D-

aspartate type of glutamate receptor (NMDAR) and

neurotrophin or ephrin receptors play essential roles in neuronal

survival and differentiation. A shared downstream effector for

neurotrophin- and ephrin-receptor signaling is kinase D-

interacting substrate of 220 kDa (Kidins220), also known as

ankyrin repeat-rich membrane spanning (ARMS). Because this

molecule is obligatory for neurotrophin-induced differentiation,

we investigated whether Kidins220/ARMS and NMDAR

functions were related. Here, we identify an association between

these proteins and discover that excitotoxicity, a specific form

of neuronal death induced by NMDAR overstimulation,

dramatically decreases Kidins220/ARMS levels in cortical

neurons and in a model of cerebral ischemia. Kidins220/ARMS

downregulation is triggered by overactivation of NMDARs

containing NR2B subunits and subsequent Ca2+ influx, and

involves a dual mechanism: rapid cleavage by the Ca2+-

dependent protease calpain and calpain-independent silencing

of Kidins220/Arms gene transcription. Additionally, Kidins220/

ARMS knockdown decreases ERK activation and basal

neuronal viability, and enhances neuronal death under

excitotoxic conditions. Our results demonstrate Kidins220/

ARMS participation in neuronal life and death pathways, and

constitute the first report of its regulation under pathological

conditions.
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components of NMDAR complexes, including the NR2A subunit,

which is crucial for synaptic transmission and survival.

Interactions among NMDAR, Trk and Eph have been reported.

TrkB coimmunoprecipitates with Fyn, a tyrosine kinase also

associated to NR2B (Tezuka et al., 1999). Neural Shc (N-Shc), an

adaptor protein transmitting neurotrophin signals from TrkB to ERK,

also regulates NMDAR function (Miyamoto et al., 2005).

Additionally, NMDAR association with EphB controls synapse

formation (Dalva et al., 2000) and function (Henderson et al., 2001),

and ephrin-B activation of EphB positively modulates NMDAR-

dependent Ca2+ influx and gene expression (Takasu et al., 2002).

A downstream effector for both Trk and Eph is kinase D-interacting

substrate of 220 kDa (Kidins220) (Iglesias et al., 2000), also known

as ankyrin repeat-rich membrane spanning (ARMS) (Kong et al.,

2001). Kidins220/ARMS is an integral membrane protein originally

identified as the first physiological substrate for protein kinase D

(PKD) (Iglesias et al., 2000). This novel molecule bears multiple

protein-interaction domains, including a binding motif for PDZ

[postsynaptic density 95 (PSD-95), discs large, zonula occludens-

1] proteins at its C-terminus (Iglesias et al., 2000; Kong et al., 2001).

This motif is responsible for Kidins220/ARMS localization at the

neuromuscular junction, through association with α-syntrophin, a

PDZ protein that enhances EphA4 signaling in a Kidins220/ARMS-

dependent manner (Luo et al., 2005). Notably, NR2A-C subunits,

which present a PDZ ligand (Kornau et al., 1995), also interact with

syntrophin in neurons (Cui et al., 2007). Additionally,

Kidins220/ARMS forms a complex with neurotrophin receptors

(Kong et al., 2001). The presence of Kidins220/ARMS within this

complex is obligatory for prolonged ERK activation mediated by

the GTPase Rap1, leading to neuronal differentiation in response

to neurotrophins (Arevalo et al., 2006; Arevalo et al., 2004). The

major component for sustained ERK stimulation relies on tetrameric

complexes formed by Trk, Kidins220/ARMS, the PDZ protein

synaptic scaffolding molecule (S-SCAM) and the activator of Rap1,

PDZ-GEF1 (Hisata et al., 2007). It is noteworthy that S-SCAM

was first cloned as an NMDAR-interacting protein (Hirao et al.,

1998). All these observations evidence a possible, as-yet-

unexplored, functional link between Kidins220/ARMS and

NMDAR signaling pathways.

Herein, we demonstrate the association of Kidins220/ARMS and

NMDARs in neurons and brain. We discover that NMDAR

overstimulation provokes a dramatic downregulation of

Kidins220/ARMS in cultured cortical neurons and in a model of

transient cerebral ischemia, the first report of Kidins220/ARMS

regulation under pathological conditions. This downregulation

involves calpain-dependent and -independent mechanisms.

Importantly, we show that Kidins220/ARMS knockdown decreases

ERK activation and basal neuronal viability, and enhances neuronal

death during excitotoxicity, demonstrating a key role for this

protein in crucial life and death decisions.

Results
Kidins220/ARMS associates with NMDARs in cortical neurons
and brain
We investigated the association between NMDARs and

Kidins220/ARMS because they are targets and/or interact with

neurotrophin and ephrin receptors (Dalva et al., 2000; Kong et al.,

2001; Miyamoto et al., 2005; Takasu et al., 2002; Yamada and

Nabeshima, 2004). Kidins220/ARMS and the NR2A, NR2B and

NR1 subunits coimmunoprecipitated in rat cortical neurons grown

for 14 days in vitro (DIV) (Fig. 1A) or brain (Fig. 1B).

Immunofluorescence and confocal microscopy showed that the NR1,

and NR2A and NR2B (collectively referred to as NR2A/B) subunits

mostly overlapped with Kidins220/ARMS at soma and along

extensions (Fig. 1C; supplementary material Fig. S1). A pool of

Kidins220/ARMS was enriched at tips of neuronal processes; this

pool was especially detected when using the polyclonal antibody

recognizing a Kidins220/ARMS C-terminal peptide as previously

described (Iglesias et al., 2000). To analyze the coexistence of

Kidins220/ARMS and NMDARs at the neuronal surface, we used

lentiviral-infected neurons expressing recombinant NR2A with an

N-terminal extracellular hemagglutinin epitope (HA-NR2A). We

have previously demonstrated that this recombinant protein

colocalizes with endogenous NR2A and NR2B subunits (Gascon et

al., 2008). This approach was necessary owing to the lack of good

antibodies for immunofluorescence that are able to recognize

specifically the extracellular regions of each NR2 subunit. Neurons

were stained for HA before permeabilization and Kidins220/ARMS

labeling. Images showed HA-NR2A at the surface largely

colocalizing with endogenous Kidins220/ARMS at certain plasma-

membrane domains (Fig. 1D). Kidins220/ARMS immunostaining

was very similar in infected and non-infected neurons, and alike to

previous results (Sanchez-Ruiloba et al., 2006). These data establish

an association of Kidins220/ARMS with NMDARs at the neuronal

surface, suggesting that they could be functionally related.

Kidins220/ARMS is irreversibly downregulated by excitotoxic
stimulation of NR2B-containing NMDARs in neurons
We next examined Kidins220/ARMS regulation by NMDAR

overactivation, because other NMDAR-interacting proteins such as

PSD-95 are downregulated in excitotoxicity (Gascon et al., 2008).

Neurons were incubated for different times with high concentrations

of NMDA (100 μM) and the co-agonist glycine (10 μM), conditions

that overstimulate synaptic and extrasynaptic NMDARs.

Excitotoxicity already decreased Kidins220/ARMS after 2 hours

to levels of 46±10% (P<0.05) relative to untreated cells (Fig. 2A,B,

upper panels). Stimulation over 4 and 6 hours further reduced

Kidins220/ARMS levels to 27±4% and 16±3% (P<0.001),

respectively (Fig. 2A,B, upper panels). NR2A analysis showed a

slower kinetics for Kidins220/ARMS downregulation (Fig. 2A).

Levels of the neuronal-specific enolase (NSE) were not significantly

modified after NMDA treatment (Fig. 2A), suggesting that

Kidins220/ARMS decrease was not a consequence of a massive

neuronal death. Measurement of neuronal viability by MTT assays

confirmed that excitotoxic death was a 35±5% (P<0.001) at 6 hours

of NMDA treatment (Fig. 2B, lower panel), well below the

reduction observed in Kidins220/ARMS levels at this time (84%)

(Fig. 2B, upper panel). However, although viability was still high

in this time window, these neurons were committed to die and a

progressive increase in neuronal death was observed at later times

of NMDA treatment (Fig. 2B, lower panel). Kidins220/ARMS

immunofluorescence also decreased after 6 hours of NMDAR

overstimulation, whereas levels of neuron-specific βIII-tubulin

immunolabeling were not significantly modified (Fig. 2C).

However, βIII-tubulin staining denoted morphological changes

characteristic of the excitotoxic process, with dendritic focal

swelling and varicosities preceding cell death as previously

described (Park et al., 1996).

Kidins220/ARMS downregulation relies on excitotoxic

stimulation of NMDARs, because it was not induced using low

agonist concentrations. Neurons incubated for 6 hours with glycine

(10 μM) and different concentrations of NMDA (0.1-100 μM)
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showed a dramatic reduction of Kidins220/ARMS (84% for 100

μM NMDA; P<0.001) only for concentrations higher than 10 μM

(Fig. 2D). Excitotoxic neuronal death is coupled to stimulation of

extrasynaptic NMDARs (Hardingham et al., 2002). Although some

authors described NR2B as the main NR2 subunit in extrasynaptic

positions (Li et al., 1998), others found receptors containing NR2A

and NR2B subunits in either synaptic or extrasynaptic compartments

(Thomas et al., 2006). We have previously shown using ifenprodil,

a selective inhibitor for NR2B subunits (Williams, 1993), that

downregulation of NR1 and NR2 subunits is irreversibly induced

by brief agonist-overactivation of NR2B-containing NMDARs

(Gascon et al., 2005; Gascon et al., 2008). Similarly, ifenprodil, or

the generic NMDAR antagonist DL-AP5, prevented the

Kidins220/ARMS decrease induced by NMDA (Fig. 2E). Because

cultured neurons at this time express both NR2A and NR2B, we

conclude that Kidins220/ARMS downregulation specifically

requires overactivation of NMDARs containing NR2B subunits.

Furthermore, stimulation of neurons with NMDA for 25 minutes

was sufficient to induce a reduction in the levels detected 24 hours

later, similar to that induced by 3 hours of treatment (Fig. 2F). This

suggests that Kidins220/ARMS loss is triggered irreversibly by brief

overstimulation of NMDARs, which cannot be blocked by

antagonists, a similar mechanism to that operating on or over the

NMDAR subunits.

Journal of Cell Science 122 (19)

Kidins220/ARMS is downregulated in an animal model of
cerebral ischemia
Next, we examined Kidins220/ARMS protein after in vivo

overstimulation of NMDARs. We selected an animal model of

cerebral ischemia on the basis that excitotoxicity induced by

overactivation of NMDARs is responsible for neuronal degeneration

in this pathology (Choi, 1988). Transient focal cerebral ischemia

was induced in rats by 1-hour occlusion of the middle cerebral artery

(MCAO) followed by reperfusion from 0 to 48 hours. This is a

highly reliable model that we have previously used, in which large

infarcts detected by Nissl staining are produced in the right MCA

territory after 24 hours of reperfusion (Gascon et al., 2005; Gascon

et al., 2008). As shown in Fig. 3A, the ipsilateral neocortex presented

a Nissl hypochromatic area indicative of neuronal injury, absent

in the equivalent region of the contralateral cortex.

Immunohistochemistry of adjacent sections showed

Kidins220/ARMS in neuronal somas and fibers of the contralateral

cortex and a dramatic signal decrease within ipsilateral infarcted

tissue (Fig. 3A). The areas of staining reduction matched those of

ischemic injury delimited by Nissl. Contiguous sections were

immunolabeled for neuronal nuclei protein (NeuN) to show the

presence of neurons in the infarcted region. The time course of

Kidins220/ARMS downregulation was then analyzed by

immunoblotting extracts from the infarcted area and corresponding

Fig. 1. The neurotrophin effector Kidins220/ARMS associates with NMDAR subunits in rat primary cortical neurons and in brain. (A) Lysates from cortical neurons
were immunoprecipitated with rabbit polyclonal anti-Kidins220/ARMS, -NR2A or -NR2B antibodies, and with mouse monoclonal antibodies against NR1. These
proteins were detected in total lysates (TL) or immunoprecipitates (IP) by western blot (WB) using those same antibodies or sera recognizing the NR2A C-terminus as
well as conserved regions in the C-terminus of both NR2A and NR2B (herein NR2A/B). Immunoprecipitation with IgG immunoglobulin was used as negative control
(IP IgG). (B) The presence of NMDAR subunits in Kidins220/ARMS immunoprecipitates from adult rat brain extracts was assessed by WB. (C) Low-density neuronal
cultures (12 DIV) were immunostained with polyclonal or mouse monoclonal anti-Kidins220/ARMS C-terminal antibodies (green), together with mouse monoclonal
anti-NR1 (red; left panel) or rabbit anti-NR2A/B (red; right panel) antibodies. Confocal-microscopy merged images correspond to single sections. Scale bars: 50μm.
(D) Neurons infected with syn-HA-NR2A lentivirus were fixed and immunostained with a mouse monoclonal anti-HA antibody (red), followed by a second fixation,
permeabilization and incubation with anti-Kidins220/ARMS rabbit polyclonal antibody (green). The confocal-microscopy image in the upper panel corresponds to a
two-dimensional maximal projection of a z-series of sections. The enlarged zoom image in the lower panel contains a single section corresponding to the square area.
Details of the colocalization through the cell depth are also shown. Scale bars: 10μm.Jo
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3557Excitotoxicity regulates Kidins220/ARMS

regions of the contralateral hemisphere using animals subjected to

MCAO and different durations of blood reperfusion (Fig. 3B).

Occlusion induced a moderate decrease in Kidins220/ARMS (time

0; Fig. 3B). However, reperfusion extensively reduced Kidins220/

ARMS levels (normalized to NSE levels) by 80-90% in the

infarcted area of animals sacrificed after 24 or 48 hours. Similar

results were obtained for NR2A, whereas NSE did not undergo

major changes.

Kidins220/ARMS downregulation requires Ca2+ entry and
calpain activation
NMDAR overstimulation leads to a Ca2+ influx that is required for

the downregulation of its subunits (Gascon et al., 2005; Gascon et

al., 2008). Buffering of extracellular Ca2+ with EGTA prevented

Kidins220/ARMS decrease induced by NMDA (Fig. 4A), showing

that Ca2+ entry also participates in Kidins220/ARMS reduction

during excitotoxicity.

Calpain plays a major role in excitotoxicity and ischemia through

processing different substrates (Hong et al., 1994; Siman and

Noszek, 1988), including NR2A and NR2B together with their

interacting protein PSD-95 (Gascon et al., 2008; Simpkins et al.,

2003). We investigated calpain participation in Kidins220/ARMS

decrease by using different inhibitors. Preincubation of cultures with

the neutral cysteine protease inhibitors ALLN and ALLM partially

prevented the decrease in Kidins220/ARMS levels induced by

NMDA, whereas treatment with the lysosomotropic drug

chloroquine did not (Fig. 4B). Pretreatment with calpain-specific

inhibitor III (CiIII) almost completely hampered the downregulation

of this protein (Fig. 4C). Other inhibitors, such as pan-caspase

inhibitor zVAD or matrix-metalloproteinases inhibitor GM6001,

exerted no effect on Kidins220/ARMS recovery (Fig. 4C). These

results strongly support the requirement of calpain activity for

Kidins220/ARMS downregulation stimulated by excitotoxicity and

suggest Kidins220/ARMS as a novel calpain substrate.

The susceptibility of Kidins220/ARMS to in vitro processing by

two concentrations of calpain I was analyzed in our neuronal protein

extracts (Fig. 4D). The emergence of breakdown products (BDPs)

from full-length (FL) brain spectrin, a widely used marker for

calpain activity, confirmed activation of this protease.

Kidins220/ARMS was found to be highly sensitive to calpain

Fig. 2. Excitotoxic stimulation of NMDARs containing NR2B subunits induces a rapid and irreversible downregulation of Kidins220/ARMS levels in neurons.
(A) Cortical neurons were stimulated with high concentrations of NMDA (100 μM) and the co-agonist glycine (10 μM) for various periods of time. The presence of
Kidins220/ARMS and NR2A was analyzed by western blot (WB) using antibodies recognizing specifically the C-terminal regions of these proteins.
(B) Quantitation of the decline of Kidins220/ARMS protein expression (upper graph) and neuronal viability (lower graph) with time of NMDA and glycine
treatment. Levels of Kidins220/ARMS were determined by densitometric analysis and normalized to those of neuronal specific enolase (NSE). Protein levels are
expressed as the percentage of the value in untreated cells. Neuronal viability was measured by MTT assays and is expressed relative to untreated cultures. The data
shown are the means ± s.e.m. of six independent experiments, and statistical significance was evaluated by the Student’s unpaired t-test (*P<0.05, **P<0.01,
***P<0.001). (C) Neurons untreated or treated with NMDA and glycine for 6 hours were permeabilized and immunostained for Kidins220/ARMS (green) and the
neuronal marker βIII tubulin (red). Confocal-microscopy merged images correspond to single sections. Scale bars: 50μm. (D) WB analysis of Kidins220/ARMS in
neurons treated for 6 hours with concentrations of NMDA (0.1-100 μM), and the co-agonist glycine (10 μM). (E) Neuronal cultures were incubated for 4 hours with
NMDA in the absence or presence of the NMDAR competitive antagonist DL-AP5 (200 μM) or the NR2B-specific inhibitor ifenprodil (IFN; 10 μM).
Kidins220/ARMS presence was examined by WB. (F) Neurons were treated with NMDA for the indicated times. Then, the initial medium was replaced by
conditioned medium containing the antagonist DL-AP5 (200 μM) and cultures were maintained for the time needed to add up to 24 hours of stimulation.
Kidins220/ARMS signal was detected by WB. In all experiments, time-matched untreated cells and levels of NSE were used as controls. Results are representative
of three to six independent experiments.
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cleavage, and FL protein was not detected under conditions that

only partially fragmented FL-spectrin. Notably, a band of

approximately 70 kDa was recognized by anti-Kidins220/ARMS

antibody at the lower calpain concentration, suggesting the

generation of at least a transient C-terminal product. This finding

is in contrast to results from the cellular and animal models, in which

no C-terminal fragments were observed (data not shown). Two

different calpain inhibitors (CiIII and calpeptin) prevented the in

Journal of Cell Science 122 (19)

vitro processing of Kidins220/ARMS by calpain (supplementary

material Fig. S2). The specificity of this assay was established by

analyzing NSE, which is not a calpain substrate.

Next, we quantified the contribution of calpain to the mechanisms

governing Kidins220/ARMS downregulation during excitotoxicity.

Preincubation of cultures with CiIII prevented NMDA-induced

spectrin proteolysis (Fig. 4E), although it was not able to completely

restore Kidins220/ARMS to control levels, preserving only 86±11%

(P<0.05) of this molecule (Fig. 4E,F). These data support the

existence of other mechanisms contributing to Kidins220/ARMS

disappearance during excitotoxicity. Collectively, these experiments

define the mechanism of Kidins220/ARMS downregulation in

excitotoxicity as a process triggered by Ca2+ entry, with one major

component consisting of an extensive calpain-dependent processing

and other component(s) to be determined.

Transcriptional inhibition of the Kidins220/Arms gene after
excitotoxic activation of NMDARs
Contrary to NR2 subunits, levels of NR1 decrease during

excitotoxicity, as a consequence of transcriptional repression of its

promoter by calpain-independent mechanisms (Gascon et al., 2005).

Because our results suggested a second component independent of

calpain activity in Kidins220/ARMS downregulation, we explored

a possible transcriptional control of the Kidins220/Arms gene under

excitotoxic conditions. We analyzed, by northern blot, mRNA from

neurons incubated for different times with excitotoxic concentrations

of NMDA (Fig. 5A). Quantitation of steady-state Kidins220/Arms
mRNA levels revealed a notable decrease (39%) after 2 hours of

stimulation and a reduction that was more dramatic at later times.

Real-time quantitative PCR analysis showed that transcripts were

decreased by 54±10% (P<0.05) after 2 hours of NMDA stimulation,

and further reduced at later times up to a 73±4% and 84±3%

decrease (P<0.001) after 4 and 6 hours, respectively (Fig. 5B).

Importantly, this decrease was independent of calpain activation,

because preincubation with CiIII was not able to restore

Kidins220/Arms mRNA to control levels (Fig. 5C), although it could

largely prevent the protein decay induced by NMDA (Fig. 5C, inset).

By contrast, and in accordance with protein data (Fig. 2E; Fig. 4A),

treatment with EGTA (Fig. 5D) or ifenprodil (Fig. 5E) prevented

the decrease of Kidins220/Arms mRNA. Furthermore,

Kidins220/Arms mRNA decay was very similar in neurons treated

with the transcriptional inhibitor actinomycin D alone or in

combination with NMDA (Fig. 5F). These data indicate that

Kidins220/Arms mRNA turnover does not change in excitotoxicity,

and that its downregulation is independent of de novo transcription

of transcriptional regulators.

We finally examined a direct effect of excitotoxicity on the in

vivo transcriptional rate of Kidins220/Arms by nuclear transcription

run-on assay. Duplicate sets of filters containing cDNAs of

Kidins220/Arms, NR2A, NR1, cyclophilin, γ-actin and NSE were

hybridized to α-32P-UTP-labeled RNA probes prepared from

nuclei purified from neurons, untreated or treated with NMDA for

4 hours (Fig. 5G). Quantitation showed a significant reduction of

the Kidins220/Arms transcriptional rate under excitotoxic

conditions, which was of 53%, 49% and 46% relative to untreated

cells, using cyclophilin, γ-actin or NSE, respectively, for

normalization. Similar results were obtained for NR1, although the

decrease in its transcriptional rate was slightly higher (60-70%,

depending on the gene used to normalize). By contrast, NR2A, a

gene non-transcriptionally regulated by NMDAR overstimulation

(Gascon et al., 2005), did not render variations (Fig. 5G). Thus,

Fig. 3. Kidins220/ARMS is downregulated by in vivo excitotoxicity induced
by transient focal cerebral ischemia. (A) Immunohistochemistry of
Kidins220/ARMS (middle panels) and neuronal nuclei protein (NeuN; lower
panels) in coronal sections prepared from rat brain subjected to 1 hour of
MCAO followed by 24 hours of reperfusion. Nissl staining of adjacent
sections (upper panels) allowed us to establish the region of infarcted tissue in
the ipsilateral neocortex and was required to locate the area in the
immunohistochemistry preparations (right panels) that will be compared with
the corresponding regions in the contralateral neocortex (left panels). The
approximate border for the infarct is indicated by a dotted line and injured
tissue corresponds to the upper part in those panels. Representative images are
shown. Scale bar: 10 μm. (B) Protein extracts were prepared from the infarcted
region of the cortex (I) and the corresponding area in the contralateral
hemisphere (C) of rats subjected to 1 hour of MCAO followed by reperfusion
for the indicated times, and analyzed by WB with anti-Kidins220/ARMS and -
NR2A antibodies. NSE signal was used as control. Numbers below each lane
correspond to the densitometric quantitation of Kidins220/ARMS and NR2A
signals normalized to that of NSE in the same sample, and related to the value
of each control animal (assigned a value of 100%).
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Kidins220/Arms is a direct target transcriptionally downregulated

by excitotoxicity.

Altogether, our data show a dual mechanism affecting

Kidins220/ARMS at the protein and mRNA level. Both components

are activated through NMDAR overstimulation leading to Ca2+

influx. Downstream, Kidins220/ARMS protein is rapidly

proteolyzed by calpain and Kidins220/Arms gene transcription is

directly downregulated by mechanisms independent of calpain

activation (see Discussion).

Knockdown of Kidins220/ARMS decreases ERK activity and
neuronal viability under basal and excitotoxic conditions
The results shown above demonstrating an association of

Kidins220/ARMS with NMDARs, together with the unique role of

this protein in neurotrophin- and ephrin-receptor signaling (Kong

et al., 2001), strongly suggest an important role of Kidins220/ARMS

in neuronal survival pathways. Therefore, the downregulation of

Kidins220/ARMS induced by excitotoxicity could significantly

contribute to neuronal death. To test the effect on neuronal viability

of downregulating Kidins220/ARMS expression, we generated a

lentiviral short hairpin (sh)RNA vector to knockdown Kidins220/

ARMS expression (shK). An equivalent lentiviral vector containing

a non-specific shRNA sequence was used as control (shC).

Immunoblot analysis showed that shK infection provoked an

efficient and specific knockdown of Kidins220/ARMS expression

compared to shC-transduced cells (Fig. 6A). When excitotoxicity

was induced in shK-infected neurons, calpain-dependent (NR2A/B)

and calpain-independent (NR1) downregulation mechanisms were

similar to those in shC-transduced neurons (supplementary material

Fig. S3). These data indicate that Kidins220/ARMS (and probably

its association to NMDARs) is not obligatory for NMDA-induced

excitotoxicity to occur.

It is known that Kidins220/Arms silencing hampers the sustained

ERK activation elicited by neurotrophin-receptor stimulation

(Arevalo et al., 2006; Arevalo et al., 2004). In addition, ERK

signaling mediates synaptic NMDAR-dependent neuronal plasticity

and survival (reviewed by Thomas and Huganir, 2004). We therefore

first explored in our cortical cultures the effects of knocking down

Kidins220/ARMS to different degrees on ERK activation (Fig. 6B).

The decline of Kidins220/ARMS levels using different amounts of

shK virus was dose-dependent, and was accompanied by a

progressive decrease of active phospho-ERK (ERK-P), whereas

total ERK was unaffected (Fig. 6B, left panel). Quantitation of five

experiments showed that, at the highest shK viral concentrations,

ERK1-P and ERK2-P signals were reduced by 51±5% and 49±7%

(P<0.01), respectively (Fig. 6B, right panel).

The results regarding activation-inactivation of the ERK signaling

cascade during excitotoxicity are heterogeneous and depend on the

particular experimental conditions used (Gouix et al., 2009; Ivanov

et al., 2006; Leveille et al., 2008). Thus, we investigated ERK

activation in response to excitotoxic concentrations of NMDA in

our model, and in parallel the effects of knocking down

Kidins220/ARMS to almost undetectable levels. In shC-infected

cultures, we observed a progressive ERK activation that peaked at

2 hours of NMDA treatment, followed by a gradual reduction to

basal levels after 6 hours (Fig. 6C, middle time points not shown).

Overstimulation of NMDARs also evoked a moderate increase in

ERK activity in shK-transduced neurons, but it was well below the

one obtained with shC-expressing virus in all the NMDA-

stimulation time-points studied. Furthermore, at 6 hours of NMDA

Fig. 4. Kidins220/ARMS downregulation by NMDAR overstimulation
requires Ca2+ entry and calpain activation. (A) Neurons were
preincubated for 1 hour with the Ca2+ chelator EGTA (2 mM) before
addition of NMDA and glycine (named as ‘NMDA’ here). To prevent
toxic effects, cells were preincubated with EGTA for 1 hour before a
short exposure to NMDA (1 hour) and, after elimination of EGTA and
NMDA, culture proceeded for an additional 22 hours in the presence of
DL-AP5. Kidins220/ARMS was detected by western blot (WB).
(B,C) Cortical neurons were pretreated for 1 hour with inhibitors before
the addition of NMDA for 4 hours. The inhibitors remained in the
culture media for the duration of the experiment and were: chloroquine
(Cloq; 200 μM), ALLM (5 μM), ALLN (5 μM), GM6001 (10 μM),
zVAD (100 μM) and CiIII (10 μM). Kidins220/ARMS was analyzed by
WB. (D) Protein extracts from neuronal cultures were incubated for 30
minutes with 20 or 80 U/ml of purified calpain I (Calp I), or left
untreated. Kidins220/ARMS signal was then analyzed by WB. A C-
terminal fragment transitorily produced is denoted by an asterisk. The
electrophoretical mobility of full-length (FL) spectrin (240 kDa) or the
breakdown products (BDPs) resulting from calpain activation (150 kDa
and 145 kDa) are also indicated. (E,F) Cultures were pre-incubated for 1
hour with the calpain-specific inhibitor CiIII (10 μM) before a 4-hour
treatment with NMDA. Kidins220/ARMS was detected by WB.
(F) Quantitative analysis of Kidins220/ARMS WB signal was carried
out by normalizing with NSE levels. Results are represented relative to
data obtained for the untreated neurons, arbitrarily assigned a 100%
value. The data shown are the means ± s.e.m. of four independent
experiments, and statistical significance was evaluated by the Student’s
unpaired t-test (*P<0.05, ***P<0.001). In all experiments, levels of
NSE were used as control. Results are representative of three or four
independent experiments.
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treatment, levels of ERK1/2-P in shC neurons were similar to those

detected in cultures transduced with shK-expressing lentivirus after

only 2 hours of NMDA incubation. Our results support that

Kidins220/ARMS contributes to the activation of ERK elicited by

NMDA excitotoxicity in our model.

Journal of Cell Science 122 (19)

Importantly, these variations on ERK activity correlate with

changes in neuronal death. Kidin220/ARMS knockdown decreased

neuronal viability under basal conditions, an effect that was

enhanced by exposure to excitotoxic concentrations of NMDA for

different durations (Fig. 6D). MTT assays performed in six

Fig. 5. Overstimulation of NR2B-containing NMDARs directly downregulates Kidins220/Arms gene transcription by a mechanism triggered by Ca2+ entry but
independent of calpain activation. (A) Northern blot analysis of Kidins220/ARMS in excitotoxicity. Total RNA was prepared from cortical neurons untreated or
treated with NMDA and glycine (named as ‘NMDA’ here). A fragment of the rat Kidins220/Arms sequence was used as a DNA probe and γ-actin mRNA was
detected as control. Quantitation of Kidins220/ARMS radioactive signal, normalized to that of γ-actin in the same sample, is represented by a number below each
band after assigning a value of 100% to untreated neurons. The autoradiography is representative of three independent experiments. (B) Quantitative real-time PCR
analysis of Kidins220/Arms mRNA during excitotoxicity. Total RNA was amplified with Kidins220/Arms-specific primers. (C) Quantitative real-time PCR of
Kidins220/Arms mRNA from neurons pretreated with the calpain inhibitor CiIII (10 μM) for 1 hour before addition of NMDA for 4 hours was performed. The
inhibitor remained in the culture media for the duration of the experiment. The upper inset corresponds to a representative western blot (WB) performed with time-
paired neurons subjected to the same treatments. (D) Cultures of neurons were preincubated for 1 hour with EGTA (2 mM) before addition of NMDA. After 1 hour
of treatment, the medium was replaced by new conditioned medium containing the antagonist DL-AP5 (200μM). Cultures were maintained up to 24 hours before
determining Kidins220/Arms mRNA levels by quantitative real-time PCR. (E) Quantitative real-time PCR of Kidins220/Arms mRNA from neurons treated with
NMDA alone or together with the NR2B-specific inhibitor ifenprodil (IFN, 10 μM) for 4 hours. (F) Kidins220/Arms mRNA decay in cortical neurons incubated
with actinomycin D (ActD) alone or in combination with NMDA for 4 and 6 hours was determined by quantitative real-time PCR. Cells were pre-treated with
ActD (2.5 μg/ml) for 1 hour, before adding the agonists. ActD was left in the medium for the duration of the experiment. Kidins220/Arms mRNA levels were
normalized to those of L32. Values in arbitrary units are expressed relative to those found in untreated cells (assigned a value of 100%). For all quantitative real-
time PCR results, the data shown are the means ± s.e.m. of three independent experiments performed in triplicate, and statistical significance was evaluated by the
Student’s unpaired t-test (*P<0.05, **P<0.01, ***P<0.001). (G) The transcriptional rate of Kidins220/Arms gene was determined by in vivo transcriptional run-on
assay. Nuclei were isolated from cortical neurons treated with NMDA for 4 hours or from time-paired untreated cells. Extending RNA was labeled using α-32P-
UTP, then extracted and used to hybridize membranes containing dots of plasmids encoding diverse cDNAs: cyclophilin (Cy), γ-actin (Ac), NSE, Kidins220/Arms
(Kidins), NR1 and NR2A. Cyclophilin, γ-actin and NSE were used as normalizing genes. The table on the right was made after quantifying the radioactivity present
in Kidins220/Arms, NR1 or NR2A dots, and represents the transcriptional rate of those genes after NMDA treatment (NMDA 4 h), compared with untreated neurons
(C, control), assigned a value of one. Values in arbitrary units, obtained for Kidins220/Arms, NR1 and NR2A transcripts, were normalized separately with the signal
for cyclophilin, γ-actin and NSE. 
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independent experiments showed a modest but reproducible and

significant decrease of 7±4% (P<0.05) in basal viability of shK

compared with shC-infected neurons (Fig. 6D). This reduction in

viability was further increased by NMDA treatment. Overactivation

of NMDARs for 2 hours in shK-transduced neurons (the time point

at which ERK-P levels were the highest in shC-infected cultures)

was enough to reduce their viability by 33±4% (P<0.001) (taking

as 100% basal viability of shK neurons). To reach a similar reduction

in viability of shC neurons (35±3%; P<0.001), 4 hours of NMDA

treatment were needed. After 6 hours of NMDA stimulation, these

differences still remained, with cell-death values of 62±2%

(P<0.001) and 52±3% (P<0.001) in shK and shC neurons,

respectively. Therefore, knocking down Kidins220/ARMS results

in a decrease in neuronal survival as well as an enhanced neuronal

death triggered by NMDAR overstimulation, making neurons more

vulnerable to excitotoxicity. Altogether, our results show that

Kidins220/ARMS contributes to neuronal viability and support a

central role of this molecule in the pro-survival ERK signaling

cascade.

Discussion
Association between Kidins220/ARMS and the NMDAR
We have discovered an association of Kidins220/ARMS with the

NR1 and NR2 subunits of the NMDAR in cultured cortical neurons

and in brain. Although the nature of this association is unknown,

several possibilities can be envisioned. A direct interaction of

Kidins220/ARMS with all or some of the NMDAR subunits might

exist. The transmembrane regions of these proteins could be

mediating this interaction, in the same way it has been shown for

the interaction between Kidins220/ARMS and Trk (Arevalo et al.,

2004). Here we have obtained data supporting this idea, because

truncated forms of NR2A/B that, after short exposure to

excitotoxicity, have lost their C-termini can still associate with full-

length Kidins220/ARMS (supplementary material Fig. S4).

Recently, we showed that the processing of the NR2A and NR2B

C-terminal regions by calpain in excitotoxicity and ischemia

produces truncated N-terminal-NR2A/B subunits that remain at the

neuronal surface (Gascon et al., 2008). We investigated whether

cleavage of NR2 subunits interfered with their association with

unprocessed Kidins220/ARMS molecules after brief NMDAR

overstimulation (2 hours). Using an antibody against N-terminal

regions of the NR2A/B subunits, we confirmed their extensive

calpain cleavage to produce stable N-terminal fragments at this time

point. Notably, intact Kidins220/ARMS still coimmunoprecipitated

and colocalized with these truncated N-terminal-NR2A/B subunits.

This result, however, does not exclude that other molecules could

contribute to their association. Function of NMDARs requires the

participation of large and dynamic signaling complexes (Husi et

al., 2000) whose formation mainly depends on C-terminal domains,

including PDZ-binding motifs present in most NR2 and NR1

subunits (Kornau et al., 1995). The Kidins220/ARMS C-terminus

also bears a PDZ ligand (Kong et al., 2001; Sanchez-Ruiloba et al.,

2006). The regulation of neurotrophin and ephrin signaling by

Kidins220/ARMS requires the binding of this motif to the PDZ

proteins S-SCAM and α-syntrophin, respectively (Hisata et al.,

2007; Luo et al., 2005). Out of six the PDZ domains (PDZ0-PDZ5)

contained in S-SCAM, PDZ5 binds directly to NMDAR subunits

(Hirao et al., 2000), whereas PDZ4 mediates the interaction with

Kidins220/ARMS (Hisata et al., 2007). Therefore, S-SCAM might

also participate in the association of Kidins220/ARMS and the

NMDARs.

A dual mechanism mediates the downregulation of
Kidins220/ARMS during excitotoxicity
Herein, we also report a dramatic downregulation of

Kidins220/ARMS induced by overactivation of NMDARs both in

vitro and in vivo. In our cellular model of excitotoxicity, NMDAR

overstimulation induces a specific and rapid decrease of

Kidins220/ARMS with characteristics reminiscent of those

described for NMDAR subunits (Gascon et al., 2005; Gascon et

al., 2008). Kidins220/ARMS undergoes a comparable regulation in

the model of cerebral ischemia, in which NMDARs are

overactivated by glutamate pathologically released from neurons

in the ischemic core. This is not unexpected because excitotoxic

activation of NMDARs is a crucial event in neuronal degeneration

and death produced in ischemia (Choi, 1988), and good correlation

Fig. 6. Kidins220/ARMS knockdown reduces basal and
NMDA-stimulated ERK activity and neuronal viability.
(A) Western blot (WB) analysis of the efficiency of lentiviral
transduction of primary cortical neurons. Neurons (7 DIV)
were infected with lentiviruses expressing Kidin220/Arms
shRNA (shK) or control shRNA (shC). Kidins220/ARMS and
NSE were detected by WB at 14 DIV. (B) Cortical neurons
were infected with increasing doses (3�105, 5�105 and 8�105

transduction units) of shC or shK lentiviruses.
Kidins220/ARMS and ERK-P (p-ERK1/2) were detected by
WB. NSE and total-ERK (tot-ERK1/2) levels were used as
controls. Signals of ERK1-P and ERK2-P from five
independent experiments from shC- and shK-infected neurons
were quantified and normalized to NSE and tot-ERK1/2 (right
panel). (C) Cortical neurons transduced with shC or shK
lentiviruses were stimulated with NMDA and glycine (named
as ‘NMDA’ here) for the indicated times and Kidins220/ARMS
and ERK-P levels were analyzed by WB. (D) Quantitation of
the decline of neuronal viability measured by MTT assays
(expressed as the percentage of the value obtained in untreated
shC-infected cells) in cultures infected with shC or shK
lentiviral particles. Time of NMDA treatment is shown. The
data shown are the means ± s.e.m. of six independent
experiments, and statistical significance was evaluated by the
Student’s unpaired t-test (*P<0.05, **P<0.01).
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between cellular and animal models of excitotoxicity has been

previously shown (Gascon et al., 2005; Gascon et al., 2008). It is

important to highlight here that this is the first report on the

regulation of Kidins220/ARMS in relation to a pathological

condition. These results are not only meaningful for cerebral

ischemia but might prove to be also important for other disorders

in which excitotoxicity plays a central role, such as hypoxia, acute

trauma and several neurodegenerative pathologies (Choi, 1988).

We have analyzed in detail the mechanism modulating

Kidins220/ARMS after excitotoxic insults, finding two main

contributions, one dependent on and the other independent of

calpain activation (Fig. 7). Our results also reveal Kidins220/ARMS

as a novel calpain substrate, because it is rapidly and efficiently

cleaved by this protease. Calpains are important mediators of

cellular toxicity and pathology (Vanderklish and Bahr, 2000) and

are activated in processes of cerebral ischemia and excitotoxic

degeneration, among others (Hong et al., 1994; Siman and Noszek,

1988). They contribute to neuronal degeneration by cleavage of

specific substrates that have crucial roles in neuronal survival such

Journal of Cell Science 122 (19)

as the Na+-Ca2+ exchanger (NCX) (Bano et al., 2005), the major

plasma-membrane Ca2+-extruding system. Importantly, calpain

processes NR2A and NR2B subunits as well as scaffolding and

effector molecules associated to NMDARs (reviewed by Vosler et

al., 2008), thus uncoupling them from downstream signaling

pathways and the cytoskeleton. The degradation of

Kidins220/ARMS by calpain in excitotoxic neurodegeneration

constitutes an important finding given the involvement of this novel

substrate in neuronal differentiation and survival. A transient C-

terminal fragment of Kidins220/ARMS was only detectable after

in vitro calpain digestion, suggesting that it is probably unstable.

Excitotoxicity and calpain activation produces stable truncated

NR2A/B subunits bearing their N-termini that interact with NR1

at the neuronal surface, whereas no NR2 C-terminal fragments are

detected (Gascon et al., 2008). Whether proteolysis of

Kidins220/ARMS after initial calpain processing is complete or

only partial remains to be elucidated. Regardless of the existence

of truncated forms of the protein, the loss of the C-terminal PDZ

ligand of Kidins220/ARMS will hamper its association with PDZ

Fig. 7. Model of Kidins220/ARMS downregulation during excitotoxicity and ischemia. Kidins220/ARMS is associated with the NMDAR subunits NR1 and
NR2A/B at the neuronal surface. Overactivation of NMDARs containing NR2B subunits by the co-agonists glutamate (Glu) and glycine (Gly) leads to high Ca2+

influx in postsynaptic neurons and excitotoxicity. Ca2+ entry downregulates Kidins220/ARMS by two mechanisms acting at the protein and mRNA levels, through
calpain-dependent and -independent pathways, respectively. First, Ca2+ overloading results in the activation of the Ca2+-dependent neutral cysteine protease calpain
I. This protease rapidly cleaves the C-terminal region of Kidins220/ARMS, together with those of the NR2A and NR2B subunits. Note that the Kidins220/ARMS-
specific cleavage site remains unknown, so it is arbitrary represented in the figure. A stable complex formed by the NR1 subunit and truncated N-terminal-NR2A/B
subunits remains at the surface of overactivated neurons (Gascon et al., 2008). Kidins220/ARMS might be subjected to complete degradation after calpain
activation. Alternatively, this protein might undergo cleavage to produce a C-terminal fragment of highly unstable nature, leaving a stable truncated form of the
protein bearing N-terminal domains (similarly to the NR2A/B subunits), whose detection remains elusive with tools available at present. High Ca2+ influx during
excitotoxicity also results in a rapid transcriptional inhibition of the Kidins220/Arms gene, similar to that observed for NR1 (Gascon et al., 2005). The mechanism
responsible for this direct transcriptional blockage of the Kidins220/Arms gene is still unknown, although we have determined that it is calpain independent but
requires Ca2+ entry and activation of NR2B-containing receptors. A general decrease of Kidins220/ARMS protein caused by these mechanisms would impact on
signaling pathways and processes in which this protein participates, such as neurotrophin (TrkB)- and ephrin (Eph)-receptor cascades. Additionally,
Kidins220/ARMS plays an important role in neuronal survival and might also have important implications for NMDAR functionality and molecular pathways
(dashed line). Its downregulation during excitotoxicity could contribute to ERK inactivation and neuronal death.
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proteins and downstream signal transduction (Hisata et al., 2007;

Luo et al., 2005).

A second mechanism of Kidins220/ARMS regulation induced

by excitotoxicity consists of a rapid suppression of Kidins220/Arms
gene transcription in a process independent of calpain activation

(Fig. 7). This mechanism resembles that described for NR1 (Gascon

et al., 2005) (and herein Fig. 5), suggesting the existence of a

common process controlling the transcriptional blockage of both

genes probably mediated by Ca2+-dependent transcription factors.

A good candidate is CREB (cAMP/calcium response element

binding protein), whose signaling pathway undergoes a shut-off

coupled to cell death under excitotoxic circumstances (Hardingham

et al., 2002). CREB inactivation has been also described in stroke

conditions (Walton and Dragunow, 2000). Studies with

Kidins220/Arms and NR1 promoters will help us to identify the

mechanisms governing their transcriptional regulation.

Between the two mechanisms contributing to Kidins220/ARMS

downregulation, calpain cleavage is very fast and probably operates

from early stages after exposure to excitotoxic insults, such as

neuronal stimulation with high concentration of NMDA or cerebral

ischemia. Our previous results obtained in both models probe a very

early activation of this protease after NMDAR overstimulation

(Gascon et al., 2008). The data herein also indicate that calpain

processing will be the first and preferential mechanism to

downregulate Kidins220/ARMS, because we have observed it to

be responsible for an almost 80% decrease of Kidins220/ARMS

levels after 4 hours of NMDA treatment (see Fig. 4F). In accordance

with this data, the kinetics of Kidins220/ARMS regulation is very

fast in cerebral ischemia and MCAO is sufficient to induce an

important decrease in the levels of this protein as demonstrated in

animals sacrificed immediately after 1 hour of occlusion.

Downregulation of Kidins220/ARMS is similar to that of NR2A,

a protein we have previously shown to be processed very early after

ischemic injury, in parallel to calpain activation (Gascon et al.,

2008). We propose this rapid calpain-dependent mechanism as the

main contributor to Kidins220/ARMS modulation by ischemic

insults. The downregulation of Kidins220/Arms gene transcription

would result in a progressive decrease of Kidins220/ARMS levels

after long-term excitotoxic damage.

What might be the functional implications of Kidins220/ARMS
downregulation induced by excitotoxicity?
Altogether, our findings open the perspective of Kidins220/ARMS

as being a common target in the glutamate, neurotrophin and

ephrin signaling pathways. A general decrease of

Kidins220/ARMS will undoubtedly impact on signaling pathways

in which this protein participates. Kidins220/ARMS is a unique

downstream target for neurotrophin and ephrin receptors (Kong

et al., 2001), acting as an early effector for prolonged neurotrophin

signaling (Arevalo et al., 2006; Arevalo et al., 2004; Hisata et al.,

2007) and a modulator of ephrin-receptor cascades (Luo et al.,

2005). The downregulation of Kidins220/ARMS might also have

important implications not only in neuronal excitotoxicity

pathways but also in NMDAR physiological function because the

latter is regulated by interaction with Trk (Yamada and Nabeshima,

2004) and Eph (Henderson et al., 2001) receptors. In this context,

Kidins220/ARMS has been found to present an inverse

relationship with the level of synaptic activity, being suggested

as a modulator of NMDAR basal activity under some conditions

(Cortes et al., 2007). Identifying an association of

Kidins220/ARMS with NMDAR further supports a role of this

protein in neurotransmission and signaling events triggered by

activation of this type of glutamate receptor.

The stimulation of Trk receptors by neurotrophins provokes a

sustained activation of the ERK cascade, crucial for neuronal

differentiation and survival. The formation of a tetrameric complex

Trk–Kidins220/ARMS–S-SCAM–PDZ-GEF1 has been identified

as the major contributor to this prolonged ERK activation, the

presence of Kidins220/ARMS being obligatory (Hisata et al.,

2007). ERK signaling also mediates NMDAR-dependent neuronal

plasticity and survival (reviewed by Thomas and Huganir, 2004).

However, there is still some controversy regarding the regulation

of ERK activity during excitotoxicity because the results are

heterogeneous and depend on the experimental conditions and

models employed (Gouix et al., 2009; Ivanov et al., 2006; Leveille

et al., 2008). In our cellular model of excitotoxicity, we found an

early activation of ERK that peaks at 2 hours and is gradually shut-

off up to 6 hours of NMDAR overstimulation. Considering that

NMDA treatment in our model would stimulate synaptic and

extrasynaptic NMDARs, this initial increase in ERK-P levels might

be due to activation of the synaptic pool of receptors. At later times,

calpain-dependent processing of NR2 subunits and transcriptional

downregulation of NR1 will hamper NMDAR function, which,

together with the previous overstimulation of extrasynaptic

receptors, would result in the shut-off of the ERK pro-survival

cascade.

After knocking down Kidins220/ARMS, basal ERK activity

decreases and, during excitotoxicity, ERK-stimulation values are

far below those obtained in control cultures. Importantly, this

variation on ERK activity correlates with decreases in neuronal

viability that occur already under basal conditions but that are

enhanced during excitotoxicity. Therefore, in this model, ERK

activation induced by NMDA treatment might be regulated by two

different pathways, one of them being dependent on

Kidins220/ARMS. The sh-RNA-interference of this signaling

component leads to a reduction of ERK activity registered at early

time points of NMDA incubation. These low ERK-P values might

be under the threshold required to preserve neuronal viability in

untreated cultures, leading to a faster induction of neuronal death

in excitotoxic conditions. Similarly, a decrease in the levels of

Kidins220/ARMS protein induced by excitotoxicity through calpain

cleavage and downregulation of transcription could make neurons

more vulnerable to excitotoxic damage and death by a mechanism

that leads to an abnormal and lower activation of the ERK signaling

pathway. Our results demonstrate an important role of

Kidins220/ARMS in neuronal survival pathways and strongly

support that its downregulation during excitotoxicity could

significantly contribute to ERK inactivation and neuronal death.

Materials and Methods
Materials and chemicals
N-Methyl-D-aspartate (NMDA), glycine, cytosine β-D-arabinofuranoside (AraC),
poly-L-lysine, L-laminin, N-acetyl-L-leucyl-L-leucyl-L-norleucinal (ALLN), N-
acetyl-L-leucyl-L-leucyl-L-methioninal (ALLM), actinomycin D and chloroquine
were obtained from Sigma (St Louis, MO). Antagonists 2-amino-phosphonopentanoic
acid (DL-AP5) and ifenprodil were obtained from Tocris-Cookson (Bristol, UK).
Calpain I (μ-calpain), carbobenzoxy-valinyl-phenylalaninal (CiIII), calpeptin,
GM6001 and z-VAD-FMK were obtained from Calbiochem (Merck Bioscience,
Darmstadt, Germany). Oligonucleotide primers were from Invitrogen (Carlsbad, CA).

Antibodies
Rabbit polyclonal and mouse monoclonal antibodies against Kidins220/ARMS were
used as described (Cabrera-Poch et al., 2004; Iglesias et al., 2000). Mouse monoclonal
antibodies for NR1, hemagglutinin (HA) and neuronal nuclei protein (NeuN) were
from Pharmingen (San Diego, CA), Covance (Berkeley, CA) and Abcam (Cambridge,
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UK), respectively, whereas those for non-erythroid spectrin and the βIII isoform of

tubulin were from Chemicon (Temacula, CA). Rabbit polyclonal antibodies

recognizing conserved regions in the N- or C-terminus of NR2A and NR2B subunits

were from Pharmingen (San Diego, CA) and Chemicon (Temacula, CA), respectively,

and NSE antibody was from ICN Biomedicals (Costa Mesa, CA). Goat antibodies

recognizing NR2A C-terminus and rabbit polyclonals specific for the N-terminus of

NR2A or NR2B subunits were from Santa Cruz Biotechnology (Santa Cruz, CA).

Rabbit polyclonal antibodies recognizing phospho-p44/p42 Map kinase (Thr202/Tyr204)

and p44/p42 Map kinase (herein active ERK1/2-P and total ERK1/2) were from Cell

Signaling Technology (Beverly, MA) and Santa Cruz Biotechnology, respectively.

Horseradish peroxidase-conjugated and Texas-red- and Alexa-Fluor-488-conjugated

secondary antibodies were, respectively, from General Electric (Fairfield, CT) and

Molecular Probes (Invitrogen, Carlsbad, CA). Anti-rabbit biotin-conjugated antibodies

and streptavidin horseradish peroxidase were from Sigma (St Louis, MO).

Culture and treatment of primary cortical neurons
Cultures were prepared from cerebral cortex of 19-day-old Wistar rat embryos as we

have already described (Gascon et al., 2005). Unless otherwise stated, cells were

used after 14 DIV, when NR2A and NR2B are both expressed (Li et al., 1998). Cells

were pretreated or treated with the following concentrations of reactives: 100 μM

NMDA, 10 μM glycine, 200 μM DL-AP5, 10 μM ifenprodil (IFN), 5 μM ALLN,

5 μM ALLM, 100 μM zVAD, 10 μM CiIII, 200 μM chloroquine, 10 μM GM6001,

2 mM EGTA, and 2.5 μg/ml actinomycin D. Excitotoxicity was induced by treatment

with the NMDAR co-agonists NMDA and glycine.

Assessment of neuronal injury in the primary cultures
We used the MTT reduction assay to measure cell viability as in our previous studies

(Gascon et al., 2005; Gascon et al., 2008).

Preparation of protein extracts
Protein lysates from neurons were prepared as described (Cabrera-Poch et al., 2004).

Brain cortex extracts were obtained from adult Wistar rats by tissue homogenization

and centrifugation at 1000 g for 15 minutes at 4°C. Brain lysates from rats subjected

to MCAO were obtained as previously described (Gascon et al., 2005).

In vitro proteolysis by calpain
Protein extracts were prepared from neurons by using radioimmunoprecipitation assay

(RIPA) buffer (25 mM Tris-HCl, pH 7.6, 1% Triton X-100, 0.5% sodium deoxycholate,

0.1% SDS, 150 mM NaCl), containing 1 mM phenylmethylsulfonyl fluoride, 10 μg/ml

pepstatine, 10 μg/ml aprotinin, 1 mM EDTA and 1 mM EGTA, and incubated for 30

minutes at 4°C. After centrifugation for 5 minutes at 1000 g, protein concentration

was determined. Processing was initiated by addition of calpain I to diluted extracts

supplemented with 5 mM DTT and 2.5 mM CaCl2, and incubation proceeded for 30

minutes at 37°C. When indicated, CiIII (20 μM) or calpeptin (40 μM) were added

to extracts immediately before calpain addition.

Immunoprecipitation and western blot analysis
Immunoprecipitation of Kidins220/ARMS and NR1 was performed as described

previously (Gascon et al., 2008; Iglesias et al., 2000). NR2A and NR2B subunits

were immunoprecipitated similarly to NR1. Equal amounts of total lysates or

equivalent volumes of immunoprecipitates were analyzed by western blot

(WB). Membranes were incubated with different primary antibodies and the

appropriate peroxidase-conjugated secondary antibodies, and immunoreactive

bands were visualized by ECL (General Electric, Fairfield, CT). Protein loading

was monitored by WB of NSE. Bands were quantified by densitometric analysis

(NIH Image).

Plasmids and lentiviral infection of neuronal cultures
A vector containing an shRNA to interfere with Kidins220/ARMS expression (shK)

was generated by cloning the following oligonucleotides into the HpaI and XhoI sites

of pLentiLox3.7 (pLL3.7) (Rubinson et al., 2003): 5�-TAATTATAGCTCGGAT-

GTCCATTTCAAGAGAATGGACATCCGAGCTATAATTTTTTTTC-3� and 5�-
TCGAGAAAAAAAATTATAGCTCGGATGTCCATTCTCTTGAAATGGACA -

T C CGAGCTATAATTA-3�. A control shRNA vector (shC) was constructed by

introducing oligonucleotides that do not match any known rat transcript: 5�-
TCAACAAGATGAAGAGCACCAATTCAAGAGATTGGTGCTCTTCATCTTG -

TT GT TT TTTC-3� and 5�-TCGAGAAAAAACAACAAGATGAAGAGCACCA -

ATCTCTTGAATTGGTGCTCTTCATCTTGTTGA-3�. The targeted Kidins220/Arms
sequence corresponds to rat mRNA positions 4890-4912. All novel constructs were

sequenced. The plasmid driving expression of an N-terminal tagged HA-NR2A subunit

under the control of a neuronal-specific synapsin promoter (Syn-HA-NR2A) and the

preparation of lentiviral particles have been previously described (Gascon et al., 2008).

Neurons grown for 7 DIV were infected with lentivirus directly added to the growing

media and infection proceeded for 7 additional days (Gascon et al., 2008).

Immunofluorescence and confocal microscopy
Kidins220/ARMS and NMDAR immunofluorescence was performed as detailed

(Gascon et al., 2008; Sanchez-Ruiloba et al., 2006). For colocalization studies at the

neuronal surface, non-permeabilized neurons infected with the lentivirus syn-HA-

NR2A were fixed, blocked and immunostained with anti-HA antibody. Then,

coverslips were fixed again and permeabilized for Kidins220/ARMS detection.

Confocal images were acquired and processed as described (Sanchez-Ruiloba et al.,

2006) and correspond to single sections or two-dimensional maximal projections of

a z-series of sections as specified in the figure legends.

Northern blot analysis and quantitative real-time PCR
Northern blot analysis was performed by standard procedures. RNA was hybridized

to 32P-DNA-labeled probes corresponding to nucleotides 4023-4876 of

Kidins220/Arms rat cDNA or human γ-actin complete cDNA. For quantitative real-

time PCR, total RNA was prepared using QIAshredder spin columns and RNeasy

Mini Kit (Qiagen, The Netherlands). Total RNA (2 μg) was treated with RQ1 RNase-

free DNase (1 U/μg RNA; Promega Corporation, Madison, WI), purified in Microcon-

100 columns (Millipore Corporation, Billerica, MA) and transcribed in reverse by

oligo-dT extension with Superscript II (Invitrogen, Carlsbad, CA). PCR reactions

(25 μl) contained 20 ng of cDNA, 0.25 μM amplification primers and 12.5 μl of 2�
SYBR Green Mastermix (Applied Biosystems, Foster City, CA). The PCR was

performed in a 7900 HT FAST Real Time PCR System thermocycler (Applied

Biosystems, Foster City, CA). Denaturation at 95°C for 10 minutes was followed by

40 cycles of 15 seconds at 95°C, and 1 minute at 60°C. The Kidins220/Arms forward

primer spanned nucleotides 5011-5030 of its cDNA (5�-CGGATGTCCATTTG -

CTCGGA-3�), and the reverse primer spanned nucleotides 5112-5131 (5�-
TGCTGGGCGTTCGGTTTAGA-3�). These primers amplified a fragment of 121 bp.

The amplification of Kidins220/Arms transcripts was normalized against the rat gene

encoding ribosomal protein L32. In this case, the forward primer spanned nucleotides

253-273 (5�-CTGGAAGTGCTGCTGATGTGC-3�) and the reverse primer spanned

nucleotides 359-379 (5�-CGTTGGGATTGGTGACTCTGA-3�), giving a PCR

product of 127 bp.

Run-on assay for in vivo transcription analysis
Intact nuclei were obtained from 11 DIV cultured neurons untreated or treated with

NMDA and glycine for 4 hours. Nuclei isolation and transcriptional nuclear run-on

assays were carried out as before (Iglesias et al., 1996). Linearized plasmids (5 μg)

containing Kidins220/Arms, NR1, NR2A, NSE, γ-actin or cyclophilin cDNAs were

denaturalized in 0.3 mM NaOH for 10 minutes at 95°C. After neutralization, cDNAs

were immobilized on duplicate nylon membranes. RNAs produced and 32P-labeled

in nuclei from untreated or treated neurons were used as probes to hybridize each

membrane, using standard hybridization protocols. Radioactivity was quantified using

a Typhoon Trio Variable Modo Imager (General Electrics HealthCare Life Sciences,

Uppsala, Sweden).

Animal model of cerebral ischemia
All animal procedures were performed in compliance with European Community

law 86/609/EEC and were approved by the ‘Consejo Superior de Investigaciones

Científicas’ ethical committee. Male Sprague-Dawley adult rats (275-300 g) were

anesthetized, maintained and monitored during the surgical procedure for MCAO,

as we have previously performed (Gascon et al., 2005; Gascon et al., 2008). To prepare

protein extracts, brain was sectioned into 2-mm slices and stained with a 2% solution

of triphenyltetrazolium chloride (TTC) (Merck Bioscience, Darmstadt, Germany).

The unstained area of the cerebral cortex (right hemisphere), defined as infarcted

tissue, was dissected, as well as the corresponding region in the left hemisphere. For

immunohistochemistry, 24 hours after blood reperfusion, rats were anesthetized and

perfused intracardially with cold 4% paraformaldehyde in PBS. Brains were removed

immediately and post-fixed in the same fixative at 4°C for 6 hours. Then, they were

cryoprotected by serial immersion for at least 6 hours in increasing concentrations

of sucrose (10, 15 and 20%) in PBS at 4°C. After that, coronal frozen sections (25

μm thick) were prepared using a cryostat (Leica, Heidelberg, Germany).

Immunohistochemistry
Identification of the infarcted tissue in the neocortex was performed by Nissl [0.1%

(w/v) Cresyl Violet] staining of slide-mounted coronal sections. Adjacent sections

were then processed for immunohistochemistry by permeabilization and blocking

with 10% (v/v) sheep serum, 0.4% (v/v) Triton X-100 in TBS for 3 hours at room

temperature. Sections were incubated overnight at 4°C with anti-Kidins220/ARMS

or -NeuN antibodies prepared in 4% (v/v) sheep serum, 0.2% (v/v) Triton X-100 in

TBS. Then, samples were incubated for 2 hours with biotinylated anti-rabbit or anti-

mouse secondary antibodies, respectively, before incubation with streptavidin

peroxidase-conjugate diluted in 4% (v/v) sheep serum prepared in TBS for 30 minutes

at room temperature. Antigen was visualized by incubation with diamino-benzidine

for 10 minutes in the dark. Once the color developed, sections were washed and

dehydrated before mounting on PDX (Sigma, St Louis, MO). Controls without primary

antibodies showed very low levels of nonspecific staining. Images were obtained

using a Leica DM IL inverted microscope with a 4� objective and photographed

with an Olympus DP12 digital camera.
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Statistical analysis
All data were expressed as mean ± standard error of the mean (s.e.m.) of at least
three independent experiments. Statistical significance was determined by Student’s
t-test. A P-value smaller than 0.05 was considered statistically significant.
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