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Using colour pattern edge contrast statistics to predict detection
speed and success in triggerfish (Rhinecanthus aculeatus)
Cedric P. van den Berg1,*, John A. Endler2, Daniel E. J. Papinczak1 and Karen L. Cheney1

ABSTRACT
Edge detection is important for object detection and recognition.
However, we do not know whether edge statistics accurately predict
the detection of prey by potential predators. This is crucial given the
growing availability of image analysis software and their application
across non-human visual systems. Here, we investigated whether
Boundary Strength Analysis (BSA), Local Edge Intensity Analysis
(LEIA) and the Gabor edge disruption ratio (GabRat) could predict the
speed and success with which triggerfish (Rhinecanthus aculeatus)
detected patterned circular stimuli against a noisy visual background,
in both chromatic and achromatic presentations. We found various
statistically significant correlations between edge statistics and
detection speed depending on treatment and viewing distance;
however, individual pattern statistics only explained up to 2% of the
variation in detection time, and up to 6% when considering edge
statistics simultaneously. We also found changes in fish response
over time. While highlighting the importance of spatial acuity and
relevant viewing distances in the study of visual signals, our results
demonstrate the importance of considering explained variation when
interpreting colour pattern statistics in behavioural experiments. We
emphasize the need for statistical approaches suitable for
investigating task-specific predictive relationships and ecological
effects when considering animal behaviour. This is particularly
important given the ever-increasing dimensionality and size of
datasets in the field of visual ecology.

KEY WORDS: Defensive animal colouration, Edge detection,
Perceptual grouping, Predator psychology, Visual modelling, Visual
search optimization

INTRODUCTION
Edge detection is crucial to the perception of spatial detail and
informs cognitive processes such as object detection and
discrimination (Bhagavatula et al., 2009; Cronin et al., 2014;
Endler, 2006; Ruxton et al., 2018; Stevens and Cuthill, 2006).
Therefore, edges should have an important function in defensive
animal colouration. For example, edges can allow animals to hide
against visual backgrounds by breaking up an animal’s outline via
disruptive camouflage (Cuthill et al., 2005; Endler, 2006;

Troscianko et al., 2017). Alternatively, highly contrasting edges
can help emphasize outlines of animals or body parts, helping to
generate potent visual signals, such as those used for aposematic or
deimatic signalling (Ruxton et al., 2018). Animals and objects with
edge intensity distributions, frequencies, regularity and orientations
matching those of the background tend to be difficult to detect or
discriminate, whereas salient visual signals contrast against their
visual background and are therefore easier to detect (Endler, 1978).
In addition to informing object detectability per se, variation in edge
contrast can have a profound impact on saliency and, thus, search
optimization (Green et al., 2018; Krummenacher et al., 2010).

To approximate the perception of edge contrast at early stages of
visual processing, colour pattern analyses relevant to animal vision
can be performed using calibrated digital photography (Stevens
et al., 2007), specifically using the Multispectral Image Calibration
& Analysis (MICA) toolbox (Troscianko and Stevens, 2015) and its
integrated frameworks such as Quantitative Colour Pattern Analysis
(QCPA) (van den Berg et al., 2020b). There has been much work on
quantifying various aspects of colour patterns including edge
contrast, but few attempts to relate colour pattern statistics to
ecologically relevant, task-specific behaviour using animal
behaviour experiments. This problem is common in the study of
defensive animal colouration, where the speed and reliability with
which a predator can detect and locate prey are crucial in
determining the survival rates of patterned prey, and hence the
evolution of cryptic (Galloway et al., 2020) or conspicuous (Speed
and Ruxton, 2005) defensive colouration.

The perception of spatial detail and thus edge contrast depends on
the acuity of an animal observer and the distance at which a visual
signal is observed (Caves et al., 2016; Endler, 1978), which can
dramatically alter the function of animal colouration. Despite the
known species and task specificity of neuronal processing and
cognition, few colour pattern statistics have been investigated for
their ability to reflect ecological significance in a specific context
for a particular animal observer. Investigations of whether and how
such modelled data correlate with animal behaviour are crucial,
particularly given the steady increase in available image analysis
methods and subsequent increase of data dimensionality.

Edge-detecting colour pattern analyses in the QCPA include the
Gabor edge disruption ratio (GabRat) (Troscianko et al., 2017),
Boundary Strength Analysis (BSA) (Endler et al., 2018) and Local
Edge Intensity Analysis (LEIA) (van den Berg et al., 2020b).
Troscianko et al. (2017) demonstrated that GabRat was more efficient
in explaining the detection speed of artificial grey scale moth stimuli
in an achromatic search task for humans compared with 12 other
edge-detecting pattern metrics. However, GabRat has not yet been
used in combination with spatial acuity and cone catch modelling
assuming non-human observers. Sibeaux et al. (2019) used BSA to
quantify female mate choice in Trinidad guppies (Poecillia
reticulata). However, there have been no studies investigating BSA
in a predation context, specifically in relation to detection speed andReceived 16 June 2022; Accepted 26 October 2022
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success, nor in combination with spatial acuity and cone catch
modelling. Lastly, while LEIA has been used in a study quantifying
camouflage in precocial chicks (Rohr et al., 2021), no study has
quantified correlations between LEIA statistics and animal behaviour.
To address these gaps, we investigated howQCPA edge detection

analyses correlate with the response of a fish observer in a controlled
experimental predation task. We investigated whether GabRat, BSA
or LEIA could predict the speed and success with which triggerfish,
Rhinecanthus aculeatus, detected a circular stimulus of variable
internal patterning against a noisy visual background. To do so, we
applied a range of analyses using both the investigation of
individual statistics and dimensionality reduction analyses. We
conducted two experiments with achromatic (treatment 1) and
chromatic (treatment 2) stimuli to investigate differences in search
performance between stimuli when only luminance noise was
present, in contrast to stimuli with both chromatic and luminance
noise (Gegenfurtner and Kiper, 1992).

MATERIALS AND METHODS
Edge-detecting pattern analyses in QCPA
BSA measures the colour and luminance contrast along edges,
considering the relative abundance of boundaries inside colour
patterns (Endler et al., 2018). The relative abundance of boundaries
between colour pattern elements is determined by using a transition
matrix counting synonymous and non-synonymous pixel transitions
along horizontal and vertical transects across an image (Endler,
2012). LEIA quantifies colour and luminance edge contrast across a
scene or object at the scale of individual edge detectors, as it does not
rely on a segmented image. Instead, LEIA quantifies edge contrast by
averaging the vertical, horizontal and diagonal edge contrast at the
scale of the minimum resolvable acuity of the modelled visual
system. This provides a non-parametric approach to the measurement
of edge distributions in an image as image statistics are derived from
histograms showing edge distributions (van den Berg et al., 2020b).
GabRat was developed to reflect the functional principles of
disruptive camouflage, quantifying the relative proportion and
intensity of edges running orthogonally to the outline of an object.
This is achieved by the use of Gabor filters with dimensions specified
by the λmax of the contrast sensitivity function (CSF) (Troscianko
et al., 2017). Here, we investigated a total of 17 pattern edge statistics
(BSA: 6; GabRat, LEIA: 10; for a more detailed description of
statistics used in this study, see Table S1).
Chromatic and achromatic contrast in BSA and LEIA is

determined using the log-scale receptor noise limited (RNL)
model (Vorobyev and Osorio, 1998). RNL compares differences in
cone outputs relative to their noise by the parameter ΔS. By plotting
the individual colour pattern elements in RNL colour space (Kelber
et al., 2003; Vorobyev et al., 2001), distances (ΔS) can be calculated
and used as approximations to receiver-specific colour and luminance
contrast perception. We applied the model using the log of cone
catches as this permits the use of Weber fractions (Vorobyev et al.,
2001). GabRat measures contrast intensity as the response of a Gabor
filter running along the shape outline of a greyscale intensity cone
catch image (Troscianko et al., 2017; van den Berg et al., 2020b). In
this study, we restricted the use of GabRat to the photoreceptor
channel responsible for luminance contrast perception, as achromatic
acuity is thought to be superior and dominating over chromatic acuity
in triggerfish (Cheney et al., 2022).

Study species
We used six adult triggerfish, Rhinecanthus aculeatus (Linnaeus
1758), a common shallow reef inhabitant found throughout the

Indo-Pacific, which feeds on algae, detritus and invertebrates
(Randall et al., 1997). The species is easy to train and their visual
system has been well studied (Cheney et al., 2022). They have
trichromatic vision based on a single cone (photoreceptor λmax short
wavelength=413 nm) and a double cone (photoreceptor λmax

medium wavelength=480 nm; and photoreceptor λmax long
wavelength=528 nm) (Cheney et al., 2013). The double cone
members are used independently in colour vision (Pignatelli et al.,
2010), but are thought to be used in tandem for luminance vision
(Siebeck et al., 2014), as in other animals such as birds and lizards
(Lythgoe, 1979). For this study, we have assumed both members to
be responsible for luminance contrast perception (van den Berg
et al., 2020a).

Fish were obtained from an aquarium supplier (Cairns Marine Pty
Ltd, Cairns, QLD, Australia), shipped to The University of
Queensland, Brisbane, and housed in individual tanks of 120 l
(40 cm×80 cm×40 cm W×L×H). Aquaria were divided in two
halves by a removable black PVC partition. All animals had been
housed at The University of Queensland for 2–4 years and used for
previous behavioural experiments, which facilitated training with
the animals having already learned to peck at visual stimuli for food.
Experiments were conducted consecutively between September
2020 and February 2021. All experimental procedures for this study
were approved by the University of Queensland Animal Ethics
Committee (SBS/077/17).

Background design
Using a custom-written Matlab (version r2019b, MathWorks) script
(originally written by J.A.E. and modified by C.v.d.B.), a
14 cm×14 cm noisy background was created on which target
stimuli were displayed. The background was designed to mimic the
spatial frequency distribution of natural marine habitats on a coral
reef determined using images from Lizard Island (Great Barrier
Reef), taken in February 2019 with a Nikon D810 in a Nauticam
housing in depths of less than 3 m, illuminated with natural sunlight.
These images were then segmented using QCPA’s RNL clustering
algorithm, using QCPA’s Gaussian acuity modelling to assume a
triggerfish with an acuity of 3 cycles per degree (cpd) (Champ et al.,
2014) observing the scenes at a distance of 10 cm, a luminance just
noticeable difference (JND) threshold of 4ΔS (van den Berg et al.,
2020a) and a colour discrimination threshold of 2ΔS (Green et al.,
2022). The images were subjected to five cycles of RNL ranked
filtering with a radius of 5 pixels and a falloff of 3. The resulting
clustering was then used to determine the size distribution of
randomly distributed clusters of 15,000 randomly shaped polygonal
colour pattern elements belonging to 32 separate classes of
equidistant 8-bit RGB values ranging from 0-0-0 RGB to 255-
255-255 RGB for the achromatic and 0-0-0 RGB to 0-255-0 RGB
for the chromatic background (Fig. 1).

Stimulus design
We chose circles for the overall shape and symmetric circular
internal patterning as these guaranteed equal numerical responses
from the pattern analyses across trials, independent of rotation and
viewing angle. Using repetitions of identical internal shapes further
allowed for the numerical calibration of boundary contrast to
theoretically be even across all stimuli when measured as the
abundance weighted mean luminance contrast between pattern
elements (BSA.BML, Table S1). This calibration allowed pattern
contrast to vary within a mutual design constraint across all stimuli
while allowing internal pattern variation. A set of four target stimuli
and a training stimulus (diameter of 1 cm) were developed using
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additional custom-written Matlab scripts (Table 1). Each stimulus
comprised a black background and a variable combination of
internal patterning composed of four regularly arranged smaller
spots (diameter 0.25 cm) (Table 1). Assuming a spatial acuity of
3 cpd (Champ et al., 2014), the internal spots would be discernible
by the fish at distances below 4.8 cm, whereas the entire stimulus
would be visible from as far as 19 cm, with the distance from the
divider separating the fish from the stimulus being 30 cm.
For the achromatic treatment, the internal dots were grey, with

equal RGB stimulus values for each pattern element (e.g. 80-80-80
RGB). For the chromatic (green) treatment, the same patterning was
repeated, but the R and B pixel value remained fixed at 0, while the
G value was identical to the achromatic treatment. This resulted in
the achromatic treatment having close to no measurable chromatic
contrast (<1ΔS) between and within stimuli and backgrounds as per
the visual system of a triggerfish, whereas the chromatic treatment
did (Fig. 1C,D).

Stimulus placement and session design
Using another custom-written Matlab script, each stimulus was
placed on the respective background at nine positions (top-left,
top-middle, top-right, middle-left, middle-middle, middle-right,
bottom-left, bottom-middle, bottom-right) in a random orientation
(Fig. 1). We then compiled sessions of six stimulus presentations,
using five pseudo-randomly drawn stimuli and position combinations
from all possible stimulus and position combinations. To balance
each session, the sixth stimulus and position combination for each
session was determined by pseudo-randomly choosing from the list

of least represented positions and stimuli of a given session.
Specifically, about 50% of trials (n=480) in the achromatic
treatment were determined using a random number generator. To
make sure each position was presented equally as often by the end of
all trials, this initial set of trials was augmented by a set of trials
calculated using random sampling without replacement. For the
chromatic treatment, all trials were pre-determined with random
sampling without replacement. This session design achieved a
minimum of 30 repetitions of each stimulus for each animal
(mean±s.d. 38.75±4.04) consisting of at least 3 repetitions of each
position for each stimulus (4.16±1.30) across all achromatic
sessions (n=27) and chromatic sessions (n=29). To ensure each
stimulus ended up being tested equally as often for all animals and
positions by the end of trials, stimulus and position frequencies were
tested using a Chi-square test, confirming there were no significant
differences. Stimuli were displayed on an iPad Air 2 fitted with a
matte screen protector and placed in a waterproof case (Lifeproof
Nuud iPad case) with brightness set to maximum. The iPad was then
placed parallel to the aquarium floor 10 cm from the bottom and
against the back wall.

Stimulus quantification
Image analysis was performed with the MICA toolbox (version 2.2)
running on ImageJ (version 1.53a) using a custom-designed
automated batch script of the QCPA. To quantify the edge
contrast provided by each of the three pattern statistics (BSA,
GabRat, LEIA), a calibrated Olympus E-PL5 Penlight camerawith a
60 mm macro lens was used to take images of each of the nine
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Fig. 1. Achromatic and chromatic
stimulus presentation. (A,B) Examples
of stimulus 1 randomly orientated on the
noisy background for the achromatic (A)
and chromatic (B) presentation. (C,D)
Receptor noise limited (RNL) intensity
images showing trichromatic (triggerfish)
chromatic contrast ΔS values (scale
shown top right) for stimulus 1 in the
achromatic (C) and chromatic
(D) presentation. Blue arrows indicate
stimulus position for illustrative purposes.
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replicated positions for each stimulus and treatment in air but
illuminated by the same lighting used in the trials. The pictures were
taken in the dark (as LED screens emit rather than reflect light) and
the brightest patch class (white or bright green) was used to calibrate
each image using the ‘estimate black point’ function when creating
the normalized and standardized multispectral image files (.mspec).
The ‘white’ patches (255-255-255 RGB) were determined to be of
72.5% reflectance (even though technically radiance, but the input to
QCPA is in reflectance), comparing the radiance of the patches to the
reflectance of a Spectralon (Ocean Optics) white standard illuminated
by a PX-2 light source (Ocean Optics). A chromatic cut-off (average
cone catch per pixel below which no chromaticity is possible) was set
at 3%, preventing artificial chromaticity due to minor absolute
differences between cones. Some chromatic contrast (<2ΔS)
remained in the achromatic treatment when viewed by triggerfish
(Fig. 1C,D) as RGB is deliberately designed for human colour vision.
However, residual chromaticity is well below thresholds determined
to be relevant in triggerfish (van den Berg et al., 2020a).
Each image (n=36) was manually segmented into stimulus and

corresponding background using manual image segmentation in
ImageJ (Schneider et al., 2012) and colour patterns were analysed
using an automated QCPA script. Each image was analysed at a
modelled viewing distance of 2, 5, 10 and 30 cm using the Gaussian
acuity modelling function in QCPA, resizing the images to a pixel
per minimally resolvable angle (MRA) ratio of 5, thus removing
spatial detail that cannot be resolved at a given distance (van den
Berg et al., 2020b). The viewing distances are within the range of
distances encountered by the fish from pecking a stimulus to
observing the stimulus from the divider (30 cm). GabRat analysis
was performed assuming a 1 cpd peak contrast acuity based on the
CSF curve shape of a black-faced blenny (Triperygion delaisi)
(Santon et al., 2019), the only marine fish for which a CSF is
currently available. Despite the distant relationship, the general
shape of the CSF is representative of most vertebrates, peaking at
around a third of the maximum (da Silva Souza et al., 2011). For
LEIA, the images were further subjected to a 5 times RNL-ranked

filtering with a radius of 5 pixels and a falloff value of 3 to remove
artificial colour gradients introduced during the acuity modelling.
LEIA values were obtained from the untransformed edge
histograms. For BSA, the images were further subjected to RNL
clustering (Fig. S1), using a 2ΔS chromatic and 4ΔS achromatic
threshold, which were based on empirical findings in past studies
(Green et al., 2022; van den Berg et al., 2020a). RNL contrast was
determined by using Weber fractions of 0.07:0.05:0.05:0.05 for
short wavelength:medium wavelelgnth:long wavelength:double
(sw:mw:lw:dbl) spectral sensitivities and a white LED illuminant
spectrum as per (van den Berg et al., 2020a). Weber fractions were
calculated assuming a receptor noise of 0.05 and a relative cone
abundance of 1:2:2:2 (sw:mw:lw:dbl).

Animal training
Using operant conditioning, fish were trained to peck at a piece of
squid placed on a black spot (diameter 1 cm) randomly placed
(using natural adhesive properties) on a uniform grey background
displayed on an iPad. Once fish had pecked at the food on the target,
they were given a second piece of squid from above with tweezers.
The size of the food reward on the target spot was subsequently
reduced until the fish were pecking at the target spot without any
food on it. Next, the target was changed to a patterned spot (Table 1,
stimulus 1) on a plain background and, finally, on a noisy
background (Fig. 1). Fish moved to each training stage when
successful in >80% trials over six consecutive sessions of six trials
per day. A trial was considered unsuccessful if the fish took longer
than 30 s (measured using a stopwatch) after swimming through the
door of the divider to make a choice or if it pecked at the background
more than twice. As the fish sometimes get distracted, we allowed a
fish two wrong pecks before concluding that it had not detected the
target. Testing was suspended for the day if the fish showedmultiple
timeouts (failure to peck at the stimulus within 30 s). Once fish had
completed treatment 1 (achromatic stimulus), they were re-trained
for treatment 2 (chromatic treatment) and had to meet training
criteria prior to commencing trials.

Table 1. Parameters for stimuli used in the experiment

Stimulus k t(i,j ) Li Target stimulus: achromatic/chromatic

1 3 t1,3=0.5, t2,3=0.5 L1=0.25, L2=0.75, L3=0

2 3 t1,3=1/4, t2,3=3/4 L1=0.25, L2=0.583, L3=0

3 3 t1,3=1/4, t2,3=3/4 L1=1, L2=0.33, L3=0

4 2 t1,3=1 L1=0.5, L2=0

Training 2 t1=1 L1=1, L2=0

k, number of colour pattern elements, with element 3 being the black background in the spot; t, relative proportion of boundary type between elements i and j; L,
luminance of each colour pattern element with L expressed as the percentage ofmaximumRGB (255) for the achromatic treatment and the percentage of G for the
chromatic treatment.
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Animal testing
For both treatments, six individuals were tested. However, two
individuals did not complete the chromatic trials and were excluded
from the chromatic data analysis. Every fish was tested for one
session of six trials per day, with each session determined as
described above. Stimulus 1 did not get drawn for the first three
sessions in the achromatic treatments (Fig. 2). As per training, a trial
was considered unsuccessful if the fish took longer than 30 s to
make a choice or if it pecked at the background more than twice.
Time to detection was recorded as the time between the moment the
fish moved past the divider and the successful peck at the target
spot.

Statistical analysis
All statistics were performed in R (v4.0, http://www.R-project.org/).
Time to detection was left-skewed and was transformed using
an ordered quantile normalizing transformation with the
bestNormalize package (Peterson and Cavanaugh, 2020) prior to
subsequent analyses to ensure normality. Pattern statistics were
normalized using the preProcess function in the caret package
(v6.0-88, https://CRAN.R-project.org/package=caret), with the
‘range’ option to restrict values to a range from 0 to 1. To ensure
the image statistics at each viewing distance (2, 5, 10, 30 cm) were
capturing the pattern differences between the stimuli, we used
regularized discriminant analysis (RDA) (Friedman, 1989) to
predict the stimulus category. RDA classification was done using
the caret and klaR (Weihs et al., 2011) R packages. This confirmed
that the selected pattern statistics were effectively delineating the
stimuli at all viewing distances with the stimulus type prediction
rates of the RDA trained model being 100% at all viewing distances.
Differences in time to detection between stimuli of each treatment

were tested with a linear mixed effects model accounting for session
number as a fixed effect (after confirming the absence of an
interaction with stimulus) and fish ID as a random effect using the
lmer function on the lme4 package (Bates et al., 2015). Failure rates
between stimuli were compared with a Fisher exact test in the rstatix
package (v0.7.0, https://CRAN.R-project.org/package=rstatix).
We then investigated whether colour pattern metrics correlated

with detection speed. For BSA, only the original BSA statistics
provided by the QCPA were used to capture luminance and
chromatic contrast (Table S1). For GabRat, only the achromatic (dbl

cone) contrast was used, as the acuity for luminance contrast
detection was assumed to be dominating the acuity provided by the
chromatic channels (Lind and Kelber, 2011). We looked at both the
statistics of the stimuli by themselves as well as in contrast to their
visual backgrounds. This was done by using the absolute difference
between a given stimulus statistic and the corresponding
background. As GabRat measures the appearance of a stimulus
edge against its background, GabRat values were identical in both
instances.

To identify each pattern statistic’s ability to predict detection
speed, the transformed time to detection for each pattern statistic
was investigated by fitting a linear mixed effect model using the
lmer function in the lme4 package. Fish ID was added as a random
effect to account for individual differences with viewing distance as
a nested random effect. The amount of deviance in the time to
detection explained by each pattern statistic was quantified using the
pamer function in the LMERConvenience Functions R package
(v3.0, https://CRAN.R-project.org/package=LMERConvenience
Functions). We omitted applying alpha corrections as per
Troscianko et al. (2017) to prevent inflating type II errors. The
position of the stimulus and the trial number were included as fixed
effects with an interaction term to reduce the amount of unexplained
variation in each model and to account for learning effects as per
Troscianko et al. (2017).

A principal component regression (PCR) analysis was applied to
all pattern statistics at each viewing distance. The PCR was done
using the pls package (https://CRAN.R-project.org/package=pls) to
find a set of principal components which explains a maximum
amount of variation in detection speed. To identify the best
combination of fully weighted predictors, a stepwise regression
analysis with sequential replacement was conducted using the leaps
package (https://CRAN.R-project.org/package=leaps) to identify
the model with the lowest prediction error. PCA regression analysis
and RDAwere performed by randomly selecting 80% of the data as
training data and 20% as test data.

RESULTS
Differences in detection speed and success between stimuli
Treatment 1: achromatic stimuli
We conducted a total of 866 achromatic trials, of which fish
successfully detected the target stimuli in 809 trials; therefore, a
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Fig. 2. Marginal effects plot of the detection
time for each session and stimulus
summarized across all animals. Achromatic
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confidence intervals indicated by shading.
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total of 57 out of 866 stimuli failed to be detected. There were no
individual differences in failure rate between fish across all stimuli
(Fisher exact test, P=0.955); however, failure rates between stimuli
were generally low but varied significantly (stimulus 1: 3.58% or 8
out of 223, stimulus 2: 9.76% or 20 out of 205, stimulus 3: 3.18% or
7 out of 220, stimulus 4: 10.10% or 22 out of 218; Fisher exact test,
P=0.004).
Detection speeds varied significantly between stimuli

(F796.21=4.69, P=0.003) with stimulus 1 being detected
significantly faster than stimulus 2, 3 and 4. Detection times
improved over time for stimulus 2 (F179.53=9.55, P=0.002),
stimulus 3 (F206.41=7.39, P=0.007) and stimulus 4 (F194=10.87,
P<0.001), but not for stimulus 1 (F208.49=1.75, P=0.10) (Fig. 2).

Treatment 2: chromatic stimuli
We conducted a total of 692 chromatic trials, of which fish
successfully detected the target stimuli in 677 trials. Fail rates in the
chromatic treatment were lower than fail rates in the achromatic
treatment (2.17% chromatic failure rate versus 6.58% achromatic
fail rate measured as failed trial proportion of all trials). There were
no individual differences in failure rate between fish across all
stimuli (Fisher exact test, P=0.212). While failure rates between
stimuli did not vary significantly (Fisher exact test, P=0.176), the
pattern of fail rates between stimuli resembled the achromatic
treatment, with stimuli 1 and 3 having the lowest fail rates (stimulus
1: 0.58% or 1 out of 172, stimulus 2: 4.10% or 7 out of 171, stimulus
3: 1.69% or 3 out of 177, stimulus 4: 2.33% or 4 out of 172).
Detection times for the chromatic context did not vary between

stimuli (F666.06=2.01, P=0.11). However, while detection times
generally improved over time (F669=4.56, P=0.03), those for
individual stimuli did not: stimulus 1 (F166.03=0.84, P=0.36),
stimulus 2 (F159.75=0.86, P=0.36), stimulus 3 (F169.16=1.02,
P=0.32), stimulus 4 (F163.51=2.47, P=0.12).

Investigating individual pattern statistics to predict
detection speed
The amount of explained variation in detection speed varied
substantially between analyses, but overall was very low.
Significant single-statistic analyses considering viewing distance
as a random factor were rarely able to explain more than 1% of
variation (maximum 1.22%, minimum 0.06%, mean±s.d.
0.35±0.29%; Tables 2 and 3). Considering the viewing distances

separately yielded larger proportions of explained variation
(maximum 1.65%, minimum 0.24%, mean±s.d. 0.82±0.37%;
Figs 3 and 4; see Table S2 for details).

Considering all possible pattern statistics provided more
explained variation, with the stepwise regression analysis able to
explain 2–4% (maximum 4.18%, minimum 0.81%, mean±s.d.
2.52±0.85%; Fig. 3) whereas the PCR analysis was able to explain
up to 6% (maximum 6.33%, minimum 0.11%, mean±s.d.
2.93±1.69%; Fig. 3), with statistics of all three pattern analyses
represented in all analyses.

However, different sets of pattern statistics were relevant at
different viewing distances (Fig. 4; see Tables S2–S4 for details).
There was seemingly little difference between the use of the
stimulus statistics themselves and the use of the respective
stimulus–background contrast considering the average explained
variation in fish behaviour. However, there were substantial
differences between considering the stimulus by itself or in the
context of its background when considering each statistic
individually (Fig. 4), with maximum explained variability in
detection speed coinciding with the estimated limit of internal
stimulus pattern perception (∼5 cm) for most comparisons (but see
Fig. 4D).

DISCUSSION
We demonstrate that different types of edge-detecting colour pattern
analyses in the QCPA framework (BSA, LEIA, GabRat) correlated
significantly with stimulus detectability, at least at some viewing
distances. However, individual edge contrast statistics only
explained a very low percentage of variation in detection speeds,
and we show that considering multiple statistics in combination was
more efficient in explaining behavioural variation than considering
individual statistics. Stimulus detectability in our study therefore
appears to be subject to a complex array of factors, with edge
contrast being one of many. We further show that differences in
internal patterning of visual stimuli lead to significant changes in
search optimization, detection speed and detection success.

We show that some aspects of the visual appearance are
(relatively speaking) more important in determining detection
speed at certain distances, while not being relevant at others. This is
intuitive, as brightness, colour and pattern geometry change
differently as a function of viewing distance, spectral sensitivity,
photoreceptor abundance and discrimination threshold. Our results

Table 2. Summary table of the proportion of deviance explained by each model tested considering stimulus appearance by itself

Stimulus only (achromatic) Stimulus only (chromatic) Stimulus only (combined)

Pattern
statistic F-value P-value

% Deviance
explained

Pattern
statistic F-value P-value

% Deviance
explained

Pattern
statistic F-value P-value

% Deviance
explained

BSA.BCVL 22.09 <0.001 0.61 GabRat 16.19 <0.001 0.53 BSA.BCVL 53.45 <0.001 0.80
Col.mean 26.83 <0.001 0.73 Lum.kurt 15.79 <0.001 0.51 Col.CoV 38.57 <0.001 0.57
Col.sd 30.46 <0.001 0.83 Col.sd 10.65 0.001 0.34 Col.mean 67.80 <0.001 1.00
Lum.CoV 19.82 <0.001 0.55 Lum.skew 9.55 0.002 0.31 Col.sd 80.80 <0.001 1.19
Col.kurt 16.04 <0.001 0.44 Col.skew 7.98 0.005 0.26 Lum.CoV 45.49 <0.001 0.68
BSA.BCVSsat 10.32 0.001 0.29 Lum.CoV 6.96 0.008 0.23 Lum.kurt 13.43 <0.001 0.20
Col.skew 9.52 0.002 0.26 Col.kurt 6.73 0.010 0.22 BSA.BML 11.09 0.001 0.17
BSA.BMSsat 9.15 0.003 0.25 Col.CoV 4.96 0.026 0.16 Col.kurt 10.80 0.001 0.16
BSA.BsL 7.84 0.005 0.22 Lum.skew 8.12 0.004 0.12
Lum.sd 6.66 0.010 0.18 BSA.BsSsat 7.65 0.006 0.11
GabRat 5.58 0.018 0.15 Col.skew 6.41 0.011 0.09
Lum.kurt 4.47 0.035 0.12 Lum.mean 6.32 0.012 0.09

GabRat 5.81 0.016 0.09
BSA.BsL 5.38 0.020 0.08

Statistics for each image statistic with viewing distance as a nested random effect.
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align with previous results that estimating a few statistics of early-
stage visual processing only reflects a fraction of the visual and
cognitive processing underlying the ultimate behaviour (Troscianko
et al., 2017). As viewing distances increase, finer internal patterns
start to blur, subsequently changing the appearance of both the
stimulus and its internal patterning, as well as the visual
background. As a result, various mechanics captured by the
pattern analyses used in this study change, leading to a variable
landscape of distance-dependent correlations between pattern
statistics and animal behaviour (Fig. 4; Table S2). However, it
remains unclear whether and how detection speed is explained by
the edge statistics used in the specific context of this study, given the
overall low degree of explained variation. Furthermore, feature
detectors in visual systems operate at different spatial scales (Elder
and Sachs, 2004; Hubel andWiesel, 1962) and considering multiple
viewing distances in QCPA is akin to testing multiple spatial scales.
Such variable feature detection at a given distance emphasizes the

importance of considering multiple viewing distances when using
QCPA or any colour pattern statistics. Doing so could contribute to
our understanding of differences in acuity estimates derived from
behavioural experiments as opposed to histology; or between
behavioural experiments using different sets of stimuli and
paradigms and different viewing distances.

We further show that the average correlation of pattern statistics
with detection speed is similar when considering the stimuli by
themselves or with their respective visual backgrounds. However,
there are large relative differences in behaviour prediction success
between pattern statistics and viewing distances depending upon
whether one considers the background or not (Fig. 4). Indeed,
tactical signal design is intrinsically linked to the perception of a
signal in the context of its visual background (Guilford and
Dawkins, 1991). Therefore, it is inappropriate to ignore the
backgrounds in studies where visual signals are observed against
a multitude of different visual backgrounds (Lind, 2016; Niskanen

Table 3. Summary table of the proportion of deviance explained by each model tested considering the pattern contrast between each stimulus and
its background

Stimulus vs background (achromatic) Stimulus vs background (chromatic) Stimulus vs background (combined)

Pattern
statistic F-value P-value

% Deviance
explained

Pattern
statistic F-value P-value

% Deviance
explained

Pattern
statistic F-value P-value

% Deviance
explained

Col.mean 27.98 <0.001 0.76 Col.sd 15.36 <0.001 0.50 BSA.BCVL 67.31 <0.001 1.00
Col.sd 22.73 <0.001 0.62 GabRat 16.19 <0.001 0.53 BSA.BML 33.65 <0.001 0.50
Col.kurt 15.89 <0.001 0.43 Lum.skew 8.29 0.004 0.27 Col.CoV 36.71 <0.001 0.55
BSA.BCVL 9.02 0.003 0.25 Lum.kurt 7.45 0.006 0.24 Col.mean 78.36 <0.001 1.15
Col.skew 8.26 0.004 0.23 Col.mean 6.33 0.012 0.21 Col.sd 82.92 <0.001 1.22
Lum.CoV 7.65 0.006 0.21 Col.skew 5.64 0.018 0.18 Lum.CoV 34.72 <0.001 0.52
GabRat 5.58 0.018 0.15 Lum.CoV 5.53 0.019 0.18 Lum.kurt 23.42 <0.001 0.35
BSA.BsL 4.47 0.035 0.12 Col.CoV 5.35 0.021 0.18 Lum.skew 24.53 <0.001 0.37
Lum.skew 4.34 0.037 0.12 BSA.BCVL 4.68 0.031 0.15 BSA.BsSsat 15.50 <0.001 0.23
Lum.kurt 4.24 0.040 0.12 BSA.BsL 4.51 0.034 0.15 BSA.BsL 12.38 <0.001 0.19
Lum.sd 3.88 0.049 0.11 BSA.BsSsat 4.46 0.035 0.15 GabRat 5.81 0.016 0.09

Col.kurt 4.41 0.036 0.14 BSA.BCVSsat 4.88 0.027 0.07
Lum.mean 4.11 0.043 0.06

Statistics for each image statistic with viewing distance as a nested random effect.
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and Mappes, 2005; Pike, 2018). We expect stronger differences
between prediction success with and without backgrounds when
conducting similar experiments with highly variable visual
backgrounds.
Our data show a pronounced effect of increasing detection speed

over time in the achromatic treatment but not in the chromatic
treatment. However, the effect was not equally as strong for all
stimuli. While stimuli 2, 3 and 4 significantly improved detection
speed over time, stimulus 1 was detected at maximal speed from the
beginning (Fig. 2), indicating adaptation in how efficiently the
animals were able to detect certain stimuli. This could be explained
by a gradual change in search pattern (Credidio et al., 2012)
coinciding with shifts in selective attention to specific features
(Langley et al., 1996), a crucial effect of colour pattern diversity on
predator cognition and a key mechanism behind apostatic selection
as well as the evolution and persistence of colour pattern variability
and polymorphism in nature (Bond and Kamil, 2006).
Differences in detection speed could also be due to the presence

of a distinct visual feature unique to stimulus 1, making it
significantly easier to detect. While stimulus 1 did not get
presented in the first three trials, the response is profoundly
different to that of the other stimuli despite a similar difference in
internal contrasts and, importantly, it persists throughout the
duration on the achromatic trials (Fig. 2). This makes the
difference in animal response unlikely to be the consequence of a
novelty effect due to delay in presentation. While the range of
contrast intensity in stimulus 1 is not unique, the diagonal symmetry
and potential presence of a diagonal symmetry axis is (Fig. 1). The
salience of this axis could be explained by mechanisms of
perceptual grouping (Brooks, 2014) and/or the presence of feature
detectors with differential selectivity to stimulus orientation (Hubel
and Wiesel, 1962). Perceptual grouping is crucial to the strategic

design of defensive colouration, such as the function of disruptive
colouration (Espinosa and Cuthill, 2014) as well as background
matching (Dimitrova and Merilaita, 2012). Unsurprisingly then,
perceptual grouping can also aid in the detection of patterned prey,
emphasizing the potential importance of symmetry in salient visual
signals, especially when seen against an irregular background
(Forsman and Merilaita, 1999, 2003). However, we are not aware of
any existing colour pattern analyses capable of quantifying
‘illusory’ features created by perceptual grouping in both human
and non-human observers. Therefore, this remains an intriguing
area of investigation for future research.

The absence of improved detection over time does not explain the
reduced error rate for stimulus 3, which is equally as low as that for
stimulus 1. Interestingly, stimulus 3 features a single high-contrast
marking, distinguishing it from stimuli 2 and 4 (Table 1). Thus,
while not making the stimulus easier to detect (i.e. by aiding in
switching from sequential to parallel search; Sagi and Julesz, 1984),
the bold marking potentially helps in identifying the stimulus upon
detection. This may highlight cognitive differences between object
detection and recognition and thus tactical and strategic signal
design (Guilford and Dawkins, 1991; Hebets and Papaj, 2005). This
is relevant in studies investigating the ecological significance of
animal colouration, as well as studies investigating psychophysical
thresholds (e.g. Santiago et al., 2020; van den Berg, et al., 2020a).
Given the salient markings of stimulus 1, the coinciding reduction in
error rates across both treatments makes sense although we cannot
delineate whether this is caused by facilitated detection (presence of
the stimulus), discrimination (identity of the stimulus) or both.

Developing approaches to the analysis of high-dimensional
visual modelling data is a key requirement for the investigation of
colour pattern space (van den Berg et al., 2020b). By using a variety
of dimensionality reduction approaches, we highlight a subset of
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tools which can be used to navigate high-dimensional datasets such
as those provided by the QCPA. The processing of visual signals
from the moment information is registered by photoreceptors to the
moment a behavioural response is observed is variable in specificity
and complexity. Consequently, this makes it reasonable to assume
anything from a single pattern statistic to complex multiparameter
interactions correlates with ecologically relevant animal behaviour.
Consequently, we suggest starting off with an unbiased presumption
on the potential validity of a large array of pattern statistics. This
provides an objective approach towards identifying key
morphological features contributing to the behavioural outcome
under investigation, rather than focusing on a select few image
statistics from the start. While our study focused on a detection task
in the context of a specific set of edge-detecting pattern statistics, it
is reasonable to assume that different types of visual information
and cognitive processes are relevant for observed or assumed
behavioural and ecological outcomes. These properties are reflected
by different, task-specific, constellations of pattern statistics, of
which this study only considers a few.
Our study investigated just 17 out of >200 QCPA image statistics,

of which all 17 exclusively measure edge contrast. This array of
statistics captures only a very limited set of visual features. Different
pattern statistics capture different aspects of visual signals which are
affected differently by natural selection. Consequently, high levels
of correlation between specific colour pattern statistics and animal
behaviour can be found in one context and not another. For
example, while significantly correlated, GabRat by itself managed
to barely explain 1% of variation in animal behaviour in this specific
experiment (Table 1), whereas Troscianko et al. (2017) found up to
11% of variation in human search behaviour to be explained by
stimulus appearance when quantified using GabRat. This
discrepancy could be explained by the low degree of internal
patterning variability close to the edge of each stimulus in our study,
a pattern property (edge disruption) that GabRat has been
specifically designed to quantify. Furthermore, the acuity value
used to fit the Gabor filter size to our analysis and the modelling
parameters, in general, are conservative estimates, as opposed to the
well-documented human parameters used in Troscianko et al.,
(2017).
Despite correlating significantly with detection time, edge

contrast metrics in this perceptual context do not appear to
capture a single dominating perceptual property of the stimuli
driving variation in animal behaviour. In fact, given the low degree
of explained variation independent of the statistical approach
(Fig. 3), it is evident that the pattern statistics used in our analysis are
not by themselves underlying behavioural outcomes in the specific
context of our study. This emphasizes the need to consider the
importance of explained variation of image statistics themselves
when assessing the strength of reported statistics and subsequently
presumed correlations between colour pattern statistics and their
biological significance. This is rarely done in behavioural studies
investigating colour pattern statistics. Indeed, it is common to find
large amounts of variation in animal behaviour not directly
attributed to a specific colour pattern descriptor despite a
significant deviation from H0 (e.g. Sibeaux et al., 2019; Sibeaux
et al., 2021). For example, while the fixed effect Lum.CoV (the
covariance of LEIA luminance edge contrast) explains 1.40% of
variation by itself (Table S2), the mixed effect linear model explains
79.03% of variation. This is on par with, if not superior to, values of
linear mixed effect models reported in comparable studies such as
that of Sibeaux et al. (2019), who report explained variation of their
models at around 50%. Therefore, the distinction between the

cumulatively explained variation of fixed and random effects and
the explained variation of a fixed effect within a mixed effect model
is crucial.

In conclusion, our study highlights the importance of broad and
differentiated approaches when concluding ecological relevance
from colour pattern statistics. We demonstrate the use of QCPA and
its edge-detecting statistics for the quantification of detection speed
and success when considering ecologically relevant viewing
contexts. We further provide evidence for a cautious approach
towards the identification of pattern statistics responsible for a
behavioural response. Specifically, we recommend the unbiased
consideration of large sets of colour pattern statistics unless a
specific hypothesis warrants the pre-emptive narrowing down of
candidate image statistics. We acknowledge the many remaining
unknowns involved in visual modelling, and we affirm the
continued need for ‘context-specific’ behavioural testing of
theories and hypotheses brought about by means of theoretical
modelling. This, consequently, requires continued testing of and
comparisons between colour pattern analyses as they continue to
radiate alongside the growing diversity of perceptual and ecological
contexts in which they are applied.
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Fig. S1. Example of stimulus 1 in the achromatic treatment following acuity modelling & 
image resizing, RNL ranked filtering and RNL clustering over a modelled viewing distance of 
2cm, 5cm, 10cm, 30cm and 50cm (left to right). Note the pronounced change in pattern & 
contrast over distance, including intermediate zones.  RGB reconstructions based on the 
modelled cone stimulation of a triggerfish. Brightness and contrast adjusted for better 
visibility of pattern geometry.   
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Table S1. Summary of all 17 parameters used in this study. For a detailed explanation of 
all parameters and their mathematical formulation, please see van den Berg et al. 
2020b. The different analyses are colour coded throughout the manuscript. 

Parameter 
Abbreviation Parameter name Parameter meaning 

GabRat Gabor Ratio 

Average ratio of luminance 
edges at right angle to 

stimulus outline to luminance 
edges (measured as dbl 

stimulation) parallel with the 
stimulus outline 

Lum.skew LEIA luminance skewness 

Skewness of histogram of all 
luminance edges measured in 
∆S at the scale of an edge 
detecting receptive field 

Lum.mean LEIA mean luminance 

Mean of luminance edges 
measured in ∆S at the scale of 

an edge detecting receptive 
field 

Lum. kurt LEIA luminance kurtosis 

Kurtosis of histogram of all 
luminance edges measured in 
∆S at the scale of an edge 
detecting receptive field 

Lum.CoV LEIA luminance coefficient of variation 

Coefficient of variation (mean 
relative to standard deviation) 
of luminance edges measured 
in ∆S at the scale of an edge 

detecting receptive field 

Lum.sd LEIA luminance standard deviation 

Standard deviation of 
luminance edges measured in 
∆S at the scale of an edge 
detecting receptive field 

Col.skew LEIA chromatic skewness 

Skewness of histogram of all 
chromatic edges measured in 
∆S at the scale of an edge 
detecting receptive field 

Col.mean LEIA mean chromaticity 

Mean of chromatic edges 
measured in ∆S at the scale of 

an edge detecting receptive 
field 

Col.kurt LEIA chromatic kurtosis 

Kurtosis of histogram of all 
chromatic edges measured in 
∆S at the scale of an edge 
detecting receptive field 

Col.CoV LEIA chromatic coefficient of variation 
Coefficient of variation (mean 
relative to standard deviation) 
of chromatic edges measured 
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in ∆S at the scale of an edge 
detecting receptive field 

Col.sd LEIA chromatic standard deviation 

Standard deviation of 
chromatic edges measured in 
∆S at the scale of an edge 
detecting receptive field 

BSA.BML BSA weighted mean boundary luminance 
contrast 

Abundance weighted mean of 
luminance edges measured as 
Michelson contrast of double 

cone stimulation between 
pattern elements 

BSA.BsL BSA standard deviation of boundary luminance 
contras 

Standard deviation of 
luminance edges measured as 
Michelson contrast of double 

cone stimulation between 
pattern elements 

BSA.BCVL BSA coefficient of variation of boundary 
luminance contrast 

Coefficient of variation of 
luminance edges measured as 
Michelson contrast of double 

cone stimulation between 
pattern elements 

BSA.BMSsat BSA weighted mean boundary saturation 
contrast 

Abundance weighted mean of 
chromatic edges measured as 

Michelson contrast of 
chromatic ∆S between pattern 

elements 

BSA.BsSsat BSA standard deviation of boundary saturation 
contrast 

Standard deviation of 
chromatic edges measured as 

Michelson contrast of 
chromatic ∆S between pattern 

elements 

BSA.BCVSsat BSA coefficient of variation of boundary 
saturation contrast 

Coefficient of variation of 
chromatic edges measured as 

Michelson contrast of 
chromatic ∆S between pattern 

elements 
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Parm D p F % Parm D p F % Parm D p F % Parm D p F % Parm D p F %

BSA.BsL 5 <0.001 13.75 1.52 Lum.CoV 5 <0.001 25.50 1.56 GabRat 10 <0.001 12.45 1.65 Lum.CoV 5 <0.001 25.91 1.58 Lum.CoV 5 <0.001 25.5 1.56

Lum.CoV 2 <0.001 12.53 1.40 Lum.mean 2 <0.001 24.77 1.51 GabRat 5 0.006 7.58 1.00 Lum.CoV 2 <0.001 25.62 1.56 Lum.mean 2 <0.001 24.77 1.51

BSA.BCVL 5 <0.001 12.67 1.39 Lum.CoV 2 <0.001 23.38 1.43 BSA.BMSsat 30 0.007 7.35 0.97 BSA.BCVL 5 <0.001 25.23 1.53 Lum.CoV 2 <0.001 23.38 1.43

BSA.BCVL 10 0.001 10.88 1.21 Col.mean 30 <0.001 23.15 1.42 Col.sd 2 0.008 7.15 0.94 BSA.BCVL 10 <0.001 23.71 1.44 Col.mean 30 <0.001 23.15 1.42

Lum.CoV 5 0.001 10.36 1.16 Lum.CoV 10 <0.001 22.40 1.37 Col.sd 5 0.010 6.64 0.88 Col.mean 30 <0.001 23.50 1.44 Lum.CoV 10 <0.001 22.4 1.37

Col.mean 30 0.004 8.36 0.93 Lum.mean 5 <0.001 20.75 1.26 BSA.BsSsat 10 0.013 6.25 0.84 Col.sd 30 <0.001 21.30 1.31 Lum.mean 5 <0.001 20.75 1.26

Col.mean 10 0.005 7.98 0.88 BSA.BCVL 10 <0.001 20.42 1.24 Col.mean 30 0.016 5.89 0.78 Lum.CoV 10 <0.001 21.03 1.28 BSA.BCVL 10 <0.001 20.42 1.24

Lum.skew 2 0.007 7.32 0.82 Col.sd 10 <0.001 20.09 1.22 Col.sd 10 0.027 4.93 0.65 BSA.BML 5 <0.001 20.61 1.25 Col.sd 10 <0.001 20.09 1.22

Lum.mean 30 0.008 7.14 0.80 Col.sd 5 <0.001 20.06 1.22 Lum.mean 30 0.030 4.72 0.62 Col.sd 10 <0.001 20.20 1.23 Col.sd 5 <0.001 20.06 1.22

BSA.BML 10 0.008 7.01 0.78 Col.sd 2 <0.001 19.87 1.21 BSA.BsL 10 0.037 4.36 0.58 Col.sd 5 <0.001 20.11 1.22 Col.sd 2 <0.001 19.87 1.21

Col.sd 2 0.009 6.87 0.76 Col.sd 30 <0.001 19.51 1.20 Lum.CoV 5 0.039 4.30 0.57 Col.sd 2 <0.001 19.93 1.21 Col.sd 30 <0.001 19.51 1.2

Col.sd 10 0.011 6.55 0.73 BSA.BML 10 <0.001 19.26 1.18 Col.sd 30 0.047 3.97 0.52 Col.CoV 2 <0.001 18.99 1.16 BSA.BML 10 <0.001 19.26 1.18

Col.mean 2 0.011 6.51 0.72 BSA.BCVL 2 <0.001 16.14 0.98 Lum.CoV 10 0.049 3.90 0.52 BSA.BML 10 <0.001 18.92 1.15 BSA.BCVL 2 <0.001 16.14 0.98

Col.sd 5 0.011 6.44 0.71 Col.mean 10 <0.001 15.42 0.94 Lum.mean 2 <0.001 18.49 1.12 Col.mean 10 <0.001 15.42 0.94

Lum.CoV 10 0.012 6.28 0.70 Lum.mean 30 <0.001 14.64 0.89 Parm D p F % Col.CoV 5 <0.001 18.22 1.12 Lum.mean 30 <0.001 14.64 0.89

Col.mean 5 0.013 6.18 0.68 Col.mean 5 <0.001 14.60 0.89 GabRat 10 <0.001 12.45 1.65 Col.mean 2 <0.001 18.05 1.10 Col.mean 5 <0.001 14.6 0.89

Lum.skew 5 0.017 5.73 0.64 BSA.BCVL 5 <0.001 14.26 0.87 BSA.BsSsat 30 0.001 11.74 1.54 Col.mean 5 <0.001 17.75 1.08 BSA.BCVL 5 <0.001 14.26 0.87

BSA.BML 30 0.017 5.69 0.64 Lum.skew 10 <0.001 14.11 0.86 Lum.skew 10 0.006 7.67 1.01 Lum.skew 2 <0.001 17.39 1.06 Lum.skew 10 <0.001 14.11 0.86

Col.kurt 10 0.020 5.45 0.61 Col.mean 2 <0.001 13.77 0.84 GabRat 5 0.006 7.58 1.00 Col.mean 10 <0.001 17.46 1.06 Col.mean 2 <0.001 13.77 0.84

Lum.mean 2 0.020 5.42 0.61 Lum.mean 10 <0.001 13.58 0.83 Lum.kurt 5 0.007 7.36 0.98 Lum.skew 5 <0.001 16.48 1.01 Col.mean 50 <0.001 13.61 0.84

BSA.BML 5 0.020 5.44 0.60 Col.CoV 2 <0.001 12.45 0.76 Lum.kurt 10 0.008 7.11 0.93 Lum.mean 5 <0.001 15.14 0.92 Lum.mean 10 <0.001 13.58 0.83

GabRat 2 0.023 5.17 0.58 Col.CoV 5 0.001 11.64 0.71 BSA.BsL 10 0.010 6.68 0.88 BSA.BCVL 2 <0.001 14.24 0.86 Col.CoV 2 <0.001 12.45 0.76

Col.kurt 50 0.024 5.13 0.57 Lum.sd 2 0.001 10.78 0.66 BSA.BsSsat 10 0.014 6.14 0.82 Col.CoV 10 <0.001 13.55 0.83 Col.CoV 5 0.001 11.64 0.71

BSA.BMSsat 2 0.025 5.07 0.56 BSA.BMSsat 30 0.001 10.38 0.63 Lum.mean 2 0.013 6.15 0.81 Lum.skew 10 <0.001 12.80 0.78 Lum.sd 2 0.001 10.78 0.66

GabRat 5 0.028 4.86 0.54 Lum.kurt 10 0.002 9.62 0.59 Col.mean 30 0.026 5.00 0.66 Lum.kurt 2 <0.001 12.44 0.76 BSA.BMSsat 30 0.001 10.38 0.63

Lum.kurt 2 0.028 4.84 0.54 Lum.kurt 5 0.002 9.34 0.57 BSA.BMSsat 30 0.032 4.64 0.61 BSA.BsSsat 10 0.001 12.20 0.75 Lum.kurt 10 0.002 9.62 0.59

BSA.BsSsat 30 0.033 4.58 0.51 Col.CoV 30 0.003 8.89 0.54 Lum.CoV 5 0.046 3.98 0.53 BSA.BsL 5 0.001 12.08 0.73 Lum.kurt 5 0.002 9.34 0.57

Col.kurt 30 0.035 4.49 0.50 BSA.BsL 10 0.003 8.77 0.53 Lum.mean 5 0.048 3.94 0.52 Lum.mean 30 0.001 11.95 0.73 Col.CoV 30 0.003 8.89 0.54

Col.kurt 5 0.037 4.39 0.49 BSA.BCVSsat 5 0.004 8.14 0.50 Lum.mean 30 0.049 3.89 0.52 BSA.BsSsat 2 0.001 11.59 0.71 BSA.BsL 10 0.003 8.77 0.53

Col.sd 30 0.048 3.92 0.43 BSA.BsSsat 2 0.013 6.15 0.38 Lum.kurt 5 0.001 11.23 0.69 BSA.BCVSsat 5 0.004 8.14 0.5

Lum.sd 30 0.013 6.14 0.38 BSA.BCVSsat 5 0.001 11.03 0.68 BSA.BsSsat 2 0.013 6.15 0.38

Col.CoV 10 0.015 5.89 0.36 Lum.mean 10 0.001 10.87 0.66 Lum.sd 30 0.013 6.14 0.38

Col.skew 2 0.015 5.93 0.36 BSA.BCVSsat 10 0.002 10.06 0.62 Col.CoV 10 0.015 5.89 0.36

BSA.BsSsat 10 0.020 5.39 0.33 BSA.BML 2 0.002 9.46 0.57 Col.skew 2 0.015 5.93 0.36

BSA.BML 5 0.022 5.23 0.32 BSA.BCVL 30 0.002 9.27 0.57 BSA.BsSsat 10 0.02 5.39 0.33

Lum.sd 5 0.033 4.56 0.28 BSA.BsL 10 0.004 8.28 0.50 BSA.BML 5 0.022 5.23 0.32

Lum.CoV 30 0.035 4.43 0.27 Lum.kurt 10 0.005 7.90 0.48 Lum.sd 5 0.033 4.56 0.28

Col.kurt 2 0.039 4.25 0.26 Lum.sd 30 0.006 7.65 0.47 Lum.CoV 30 0.035 4.43 0.27

Col.skew 5 0.044 4.05 0.25 BSA.BsSsat 5 0.007 7.30 0.45 Col.kurt 2 0.039 4.25 0.26

Col.kurt 10 0.046 4.00 0.24 Lum.sd 2 0.008 7.02 0.43 Col.skew 5 0.044 4.05 0.25

BSA.BCVL 30 0.047 3.96 0.24 BSA.BMSsat 30 0.016 5.78 0.35 Col.kurt 10 0.046 4 0.24

BSA.BCVSsat 2 0.022 5.26 0.32 BSA.BCVL 30 0.047 3.96 0.24

stimulus vs. background 

stimulus vs. backgroundstimulus only stimulus vs. background stimulus only stimulus only

Table S2. All significant correlations tested for each viewing distance (D) (single parameter linear mixed effect regression models).  Only parameters 
with significant (p) interactions are listed.  
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ROI Dist % var % var resp PCs ROI Dist % var % var resp PCs
Stim 2cm 62.66 3.18 3 Stimulus 2cm 23.55 0.11 1
Stim 5cm 47.84 3 2 Stimulus 5cm 99.79 5.05 13
Stim 10cm 98.18 5.16 11 Stimulus 10cm 91.14 2.67 6
Stim 30cm 99.95 5.73 15 Stimulus 30cm 96.21 6.33 8

Stim vs. BG 2cm 96.66 4.37 8 Stim vs. BG 2cm 99.3 2.82 9
Stim vs. BG 5cm 94.65 3.77 7 Stim vs. BG 5cm 94.85 2.37 7
Stim vs. BG 10cm 38.08 2.96 1 Stim vs. BG 10cm 38.72 0.35 1
Stim vs. BG 30cm 99.58 4.7 9 Stim vs. BG 30cm 99.96 4.2 9

ROI Dist % var % var resp PCs
Stim 2cm 80.14 2.16 5
Stim 5cm 57.77 1.32 3
Stim 10cm 24.57 0.97 1
Stim 30cm 54.88 1.81 2

Stim vs. BG 2cm 92.93 3.32 6
Stim vs. BG 5cm 30.21 1.07 1
Stim vs. BG 10cm 49.53 0.93 2
Stimsvs. BG 30cm 96.62 2 6

Combined Chromatic

Achromatic

Table S3. Summary of best models using pcr regression for each viewing distance (dist). The % of the 
variation in the data (% var), the % of explained variation in time to detection (% var resp) as well as 
the number of principal components (PC) are listed. 

Table S4. Summary of all stepwise regression analyses. 

ROI Treatment Dist Retained pattern statistics % var 
expl 

BSA.BML + Lum.CoV 2.45 
Lum.mean 0.81 

Stimulus Achromatic 2cm 
Stimulus Chromatic 2cm 
Stimulus Achromatic 5cm Lum.CoV 1.40 

Stimulus Chromatic 5cm BSA.BCVSsat + BSA.BML + BSA.BMSsat + BSA.BsL + 
BSA.BsSsat + Col.CoV + Col.kurt + Col.mean + Col.sd 1.89 

2.45 
2.67 
2.92 

Stimulus Achromatic 10cm BSA.BCVL + BSA.BCVSsat + BSA.BsSsat + Col.skew + Lum.CoV 
Stimulus Chromatic 10cm BSA.BMSsat + BSA.BsL + GabRat 
Stimulus Achromatic 30cm BSA.BCVSsat + Col.CoV + Col.mean 
Stimulus Chromatic 30cm BSA.BML + BSA.BMSsat + BSA.BsSsat 4.18 
Stim vs. 

BG Achromatic 2cm BSA.BMSsat + Lum.CoV 2.58 

Stim vs. 
BG Chromatic 2cm Col.sd 0.94 

Stim vs. 
BG Achromatic 5cm BSA.BCVL + Col.skew + GabRat + Lum.CoV + Lum.kurt 3.53 

Stim vs. 
BG Chromatic 5cm BSA.BCVSsat + Col.sd + GabRat + Lum.kurt 2.18 

Stim vs. 
BG Achromatic 10cm BSA.BCVL + Col.kurt 1.98 

Stim vs. 
BG Chromatic 10cm BSA.BCVSsat + BSA.BMSsat + Col.sd + GabRat + Lum.CoV + 

Lum.kurt 3.53 

Stim vs. 
BG Achromatic 30cm BSA.BCVL + BSA.BCVSsat + BSA.BML + BSA.BsSsat + Col.kurt + 

Col.mean + Lum.mean 2.94 

Stim vs. 
BG Chromatic 30cm BSA.BCVSsat + BSA.BMSsat + BSA.BsSsat + GabRat + Lum.mean 2.77 

Stimulus Combined 2cm BSA.BCVSsat + BSA.BMSsat + Col.mean + Col.skew + GabRat + 
Lum.kurt + Lum.mean + Lum.skew 3.34 

Stimulus Combined 5cm BSA.BCVSsat + BSA.BML + BSA.BsSsat + Col.mean + GabRat + 
Lum.CoV 2.27 

Stimulus Combined 10cm 
BSA.BCVL + BSA.BCVSsat + BSA.BML + BSA.BMSsat + BSA.BsL + 

BSA.BsSsat + Col.CoV + Col.mean + Col.skew + GabRat + 
Lum.CoV + Lum.kurt + Lum.mean 

3.41 

Stimulus Combined 30cm BSA.BCVSsat + BSA.BML + BSA.BMSsat + BSA.BsSsat + Col.CoV + 
Col.mean 3.37 

Stimulus Combined 50cm Col.mean 0.84 
Stim vs. 

BG Combined 2cm BSA.BMSsat + Col.mean + Lum.CoV 2.38 

Stim vs. 
BG Combined 5cm BSA.BsL + Col.mean + GabRat + Lum.mean 2.49 

Stim vs. 
BG Combined 10cm BSA.BCVL + BSA.BML + BSA.BsL + Col.kurt + Col.mean + GabRat 

+ Lum.mean 2.57 

Stim vs. 
BG Combined 30cm BSA.BCVSsat + BSA.BML + BSA.BMSsat + BSA.BsL + BSA.BsSsat + 

Col.kurt + Col.sd + GabRat + Lum.mean + Lum.sd 3.06 
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