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C. elegans srGAP is an α-catenin M domain-binding protein that
strengthens cadherin-dependent adhesion during morphogenesis
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ABSTRACT

The cadherin-catenin complex (CCC) is central to embryonic
development and tissue repair, yet how CCC binding partners
function alongside core CCC components remains poorly
understood. Here, we establish a previously unappreciated role for
an evolutionarily conserved protein, the slit-robo GTPase-activating
protein SRGP-1/srGAP, in cadherin-dependent morphogenetic
processes in the Caenorhabditis elegans embryo. SRGP-1 binds to
theM domain of the core CCC component, HMP-1/α-catenin, via its C
terminus. The SRGP-1 C terminus is sufficient to target it to adherens
junctions, but only during later embryonic morphogenesis, when
junctional tension is known to increase. Surprisingly, mutations that
disrupt stabilizing salt bridges in the M domain block this recruitment.
Loss of SRGP-1 leads to an increase in mobility and decrease of
junctional HMP-1. In sensitized genetic backgrounds with weakened
adherens junctions, loss of SRGP-1 leads to late embryonic failure.
Rescue of these phenotypes requires the C terminus of SRGP-1 but
also other domains of the protein. Taken together, these data
establish a role for an srGAP in stabilizing and organizing the CCC
during epithelial morphogenesis by binding to a partially closed
conformation of α-catenin at junctions.
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INTRODUCTION
As cells rearrange and change shape during embryonic
morphogenesis, adhesions between cells must be dynamically
formed, broken and reformed (Pinheiro and Bellaiotache, 2018;
Takeichi, 2014; Walck-Shannon and Hardin, 2014), yet they must
also withstand tensile forces (Charras and Yap, 2018; Guillot and
Lecuit, 2013; Leckband and de Rooij, 2014; Lecuit and Yap, 2015;
Pannekoek et al., 2019; Priya and Yap, 2015). Central to meeting
this fundamental challenge is the cadherin-catenin complex (CCC)
(Harris and Tepass, 2010; Leckband and de Rooij, 2014; Lecuit and
Yap, 2015; Niessen et al., 2011; Takeichi, 2014). The CCC
mediates intercellular adhesion at adherens junctions (AJs) through
homophilic interactions of transmembrane cadherins. β-Catenin

binds the cadherin C terminus and the N terminus of α-catenins
(Pokutta and Weis, 2007). The C terminus of α-catenin binds
F-actin, linking the CCC to the cytoskeleton (Buckley et al., 2014;
Maiden and Hardin, 2011; Mege and Ishiyama, 2017).

The CCC must respond to differing tension states (Charras and
Yap, 2018; Guillot and Lecuit, 2013; Huveneers and de Rooij,
2013; Leckband and de Rooij, 2014; Lecuit et al., 2011; Lecuit and
Yap, 2015; Mege and Ishiyama, 2017). α-Catenin is one locus for
such regulation. Imaging (Kim et al., 2015), molecular dynamics
simulations (Barrick et al., 2018; Ishiyama et al., 2018; Li et al.,
2015), crystallographic data (Choi et al., 2012; Ishiyama et al.,
2013, 2018; Kang et al., 2017) and single-molecule tweezing (Pang
et al., 2019; Yao et al., 2014) suggest that the middle (M) domain of
α-catenins undergoes reversible distension under tension. Tension
unmasks the binding site for vinculin in vertebrate αE-catenin
(Yonemura et al., 2010); however, disruption of vinculin binding
sites in αE-catenin leads to weak effects (Huveneers et al., 2012),
suggesting that additional tension-sensitive α-catenin binding
partners may act cooperatively to strengthen the CCC.

A useful system for identifying novel, functionally relevant,
interactors with the CCC is the embryonic epidermis of the
Caenorhabditis elegans embryo. The epidermis is born on the
dorsal side of the embryo and spreads ventrally during ventral
enclosure (Williams-Masson et al., 1997). After enclosure,
actomyosin-mediated constriction of epidermal cells squeezes the
embryo into a vermiform shape (Chisholm and Hardin, 2005;
Marston and Goldstein, 2006; Vuong-Brender et al., 2016).
In C. elegans, the core CCC is composed of HMR-1/cadherin,
HMP-1/α-catenin, and HMP-2/β-catenin (see Fig. S1A). Maternal
loss of CCC components leads to ventral enclosure failure; zygotic
loss results in failure of elongation due to defects in the junctional
proximal actin network (Costa et al., 1998; Kwiatkowski et al.,
2010; Maiden et al., 2013; Vuong-Brender et al., 2018).

We previously used a weak loss-of-function allele of hmp-1 to
look for synergistic, lethal enhancers of morphogenetic defects
during embryonic morphogenesis (Cox-Paulson et al., 2012; Lynch
et al., 2012). One of these is the single C. elegans slit-robo GTPase
activating protein (srGAP) homolog SRGP-1 (Zaidel-Bar et al.,
2010). srGAPs have an N-terminal, lipid-binding, extended F-BAR
domain (Coutinho-Budd et al., 2012; Guez-Haddad et al., 2015;
Sporny et al., 2017); a GTPase-activating protein (GAP) domain
that can downregulate Rho family GTPases (Foletta et al., 2002;
Guerrier et al., 2009; Liang et al., 2017; Mason et al., 2011;
Soderling et al., 2002; Waltereit et al., 2012; Wong et al., 2001;
Yamazaki et al., 2013; Yang et al., 2006); and a C-terminal SH3
domain that binds F-actin regulators (Carlson et al., 2011; Endris
et al., 2011).

Here, we use a combination of genetic, biochemical and imaging
approaches in C. elegans to demonstrate a role for SRGP-1 in
binding a closed conformation of the HMP-1 M domain to stabilize
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adherens junctions under mechanical tension during embryonic
morphogenesis.

RESULTS AND DISCUSSION
SRGP-1 binds HMP-1
SRGP-1 is a bona fide srGAP based on homology and structure-
function analyses ((Neukomm et al., 2011; Zaidel-Bar et al., 2010; see
Fig. 1C). SRGP-1 colocalizes with the CCC, and when SRGP-1::GFP
is overexpressed outward membrane bends form that contain CCC
proteins but not DLG/AJM complex proteins (Zaidel-Bar et al., 2010).
We also identified SRGP-1 in an HMP-1 co-immunoprecipitation/
mass spectrometry screen (Callaci et al., 2015). We verified this result
(Fig. 1A) and used a yeast two-hybrid assay to show that full-
length SRGP-1 can interact directly with full-length HMP-1 but not
HMP-2/β-catenin (Fig. 1B). We confirmed this interaction via protein
pull-down assays using His-SUMO-HMP-1 (Callaci et al., 2015) and
GST-SRGP-1 in bacteria. Using a series of deletions (for domain
maps, see Fig. 1C), we found that the HMP-1M domain appears to be
responsible for the interaction with amino acids 685-1059 of SRGP-1
(hereafter the ‘C terminus’; Fig. 1D, Fig. S1B).

SRGP-1 is maintained at the junction during morphogenesis
through its C terminus
We next assessed the necessity of the SRGP-1 C terminus for SRGP-
1 colocalization with HMP-1 in vivo. SRGP-1(ΔC)::GFP exhibits a
marked increase in cytoplasmic versus junctional signal compared
with full-length SRGP-1 (Fig. 1E,F). Both proteins contain an intact
F-BAR domain, and so, as expected, readily associate with and
follow the curvature of the membrane. Full-length SRGP-1::GFP and
HMP-1::mScarlet-I closely followed the curvature of the membrane
at junctions. In contrast, HMP-1 frequently no longer followed
SRGP-1(ΔC)::GFP into membrane bends (Fig. 1F, insets), as
reflected in a change in overlap at junctions in 1.5-fold embryos
(Manders overlap coefficient M2 with thresholding; GFP overlap
with mScarlet-I=0.82 for SRGP-1::GFP, n=57 junctions; M2=0.46
for SRGP-1(ΔC)::GFP, n=36). These data indicate that the SRGP-1
C-terminus is necessary for restricting SRGP-1 to junctions and for
normal association with HMP-1. Because some SRGP-1ΔC can
localize to junctions, we infer that additional interactions outside the
C terminus also promote accumulation of SRGP-1 at junctions.
We next determined whether the C terminus is sufficient to target

SRGP-1 to the CCC. Full-length SRGP-1::GFP expressed in the
srgp-1(gk441841) null background was robustly targeted to cell-
cell junctions throughout morphogenesis (Fig. 2A). In contrast,
SRGP-1(C term)::GFP failed to localize in the early embryo;
SRGP-1(C term)::GFP remained much more cytoplasmic in later
embryos, but localized to junctions during ventral enclosure and
elongation (Fig. 2B, yellow arrows).
We next assessed the effects of HMP-1 depletion on SRGP-1

junctional recruitment. SRGP-1::GFP was not depleted from induced
membrane tubulations in hmp-1(RNAi) embryos (Fig. 2C, right,
yellow arrowheads), but junctional SRGP-1 was greatly reduced (see
Fig. 2E for quantification), indicating that HMP-1 is required for
normal junctional recruitment of SRGP-1 during morphogenesis. In
contrast, hmp-1(RNAi) led to complete loss of junctional SRGP-1(C
term) at all stages (Fig. 2D,E), indicating that interaction of the SRGP-
1 C terminus with the CCC has a stringent requirement for HMP-1.

The HMP-1M domain is required for normal SRGP-1
recruitment
Our previous work showed that expression of a construct lacking
most of the HMP-1M domain [HMP-1(ΔVH2)::GFP] can rescue

viability, albeit weakly, in embryos carrying a C-terminal HMP-1
truncation, hmp-1(zu278) (Maiden et al., 2013). It remained
possible, however, that other parts of the HMP-1M domain
retained in zu278 mutants recruit other interactors. We confirmed
that the same M domain deletion can partially rescue hmp-1
CRISPR null ( jc48) homozygotes (Shao et al., 2019) from 100% to
35.3% embryonic lethality (Fig. 2G).

We next examined the effects of deletion of the HMP-1M
domain on SRGP-1 recruitment. srgp-1::mScarlet-I; hmp-1( jc48);
Ex[hmp-1(ΔVH2)::gfp] embryos retained detectable membrane-
localized SRGP-1::mScarlet-I in lateral epidermal cells (seam cells)
during elongation but at greatly reduced levels (Fig. 2F,H,I). Thus,
the HMP-1M domain appears to be important for recruiting or
maintaining SRGP-1 at the CCC during embryonic elongation.

Recruitment of the SRGP-1 C terminus depends on the
conformation of the HMP-1M domain
Our previous structural work (Kang et al., 2017) demonstrated that
HMP-1 possesses conserved salt bridges that are structural analogs
of salt bridges in mammalian αE-catenin (Barrick et al., 2018;
Li et al., 2015). Two arginines (R551 and R554) in the MIII
subdomain are predicted to stabilize the internal structure of the
HMP-1M domain, resisting its complete extension by forming salt
bridges with two residues (D386 and D497, respectively) in the MII
subdomain. We used CRISPR/Cas9 mutagenesis to mutate these
arginines to alanines. Limited proteolysis has been used to assess the
conformational openness of α-catenin (Heier et al., 2021; Pokutta
and Weis, 2000; Xu et al., 2020); limited proteolysis of HMP-1
similarly indicates that the D386A and D497A mutations led to an
open conformation of the HMP-1M domain (Fig. S2A,B). hmp-
1(R551/554A)::mScarlet-I mutants were viable and did not display
overt morphological defects under laboratory conditions. We then
constructed srgp-1(gk441841);hmp-1(R551/554A)::mScarlet-I
strains expressing srgp-1::gfp constructs. Whereas full-length
HMP-1::mScarlet-I colocalized precisely with full-length SRGP-
1::GFP (Fig. 3A, top), HMP-1(R551/554A) did not (Fig. 3A,
second row), reflected in a statistically significant decrease in
colocalization at junctions [Pearson’s r=0.53 for HMP-1::mScarlet-
I versus SRGP-1::GFP pixels above threshold, n=25 junctions;
r=0.49 for HMP-1(R551/554A)::mScarlet-I versus SRGP-1::GFP,
n=25; P<0.0001, unpaired Student’s t-test]. The SRGP-1 C
terminus is enriched at seam-seam junctions (Fig. 3A, blue
dashed line) compared with seam-non-seam junctions (Fig. 3A,
yellow dashed line) during elongation. Weak RNAi against let-502/
ROCK, an activator of actomyosin contractility, resulted in
increased recruitment of SRGP-1(C-term)::GFP to seam-non-
seam junctions (Figs S2C,D). Strikingly, junctional enrichment of
SRGP-1(C term)::GFP was completely abrogated in hmp-1(R551/
554A)::mScarlet-I embryos (Fig. 3A bottom row; quantified in
Fig. 3B). These results indicate that junctional recruitment of the
SRGP-1 C terminus requires the HMP-1M domain to be in a
partially closed conformation. Weak knockdown of let-502/ROCK
presumably leads to a decrease in the fraction of HMP-1 protein in a
fully extended state at seam-non-seam junctions, which are under
high tension during elongation (Costa et al., 1998; Cox-Paulson
et al., 2012; Vuong-Brender et al., 2017, 2018), thereby allowing
recruitment of the SRGP-1 C terminus.

Normal levels and mobility of HMP-1 at junctions require
SRGP-1 function
We next examined whether SRGP-1 is required for normal junctional
morphology. We could not detect a statistically significant effect on
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junctional tortuosity (total path length/Feret length) in srgp-
1(gk441841) embryos (wild-type ratio=1.24, n=43; gk441841
ratio=1.23, n=33; P>0.76, two-tailed Student’s t-test). We did find,
however, that in srgp-1(gk441841) mutants the average junctional
intensity of an endogenous HMP-1::GFP knock-in (Marston et al.,
2016) was measurably decreased compared with wild type (Fig. 3C).
HMP-1(R551/554A)::GFP showed a similar decrease in junctional
intensity (Fig. 3C).We next analyzed mobility of HMP-1 at junctions
in 1.5- to 1.75-fold embryos using fluorescence recovery after
photobleaching (FRAP; Fig. 3D). Loss of SRGP-1 led to a
statistically significant decrease in recovery half-life (t1/2 for wild

type=25.0 s; t1/2 for srgp-1=30.5 s; P<0.04, unpaired two-tailed
Student’s t-test, n=11 for each), indicating increased mobility of
HMP-1 in the absence of SRGP-1. These results suggest a reciprocal
role for SRGP-1 in organizing and stabilizing HMP-1 at junctions.

The SRGP-1 C terminus is required in CCC-sensitized
backgrounds
srgp-1(RNAi) in the hmp-1 weak loss-of-function mutant
hmp-1(fe4[S823F]) causes many embryos to arrest with defects
in gastrulation cleft closure and subsequent ventral enclosure
(Zaidel-Bar et al., 2010). We analyzed the remaining

Fig. 1. SRGP-1 and HMP-1 interact in vitro and in vivo. (A) Co-immunoprecipitation of HMP-1 and SRGP-1::GFP from mixed-stage embryos, larvae and
adults. ‘Non-specific’ refers to lysate bound to protein-G agarose beads without antibody present; ‘unbound refers to protein that did not immunoprecipitate.
(B) Yeast two-hybrid assay showing direct interaction between full-length HMP-1 and full-length SRGP-1 (blue) but not between full-length HMP-2 and full-
length SRGP-1 (brown). Brown color indicates no autoactivation in yeast transformed with single constructs. (C) Protein domain structures of SRGP-1 and
HMP-1 with relevant mutations indicated and deletion constructs used in this study. (D) Protein pull-down between full-length SUMO-HMP-1 (purple
arrowhead) or SUMO-HMP-1(ΔVH2) (purple arrow) and GST-SRGP-1(C term) (blue arrow). GST-SRGP-1(C term) interacts with full-length HMP-1, but not
SUMO-HMP-1(ΔVH2). Additional pull-downs with deletions are shown in Fig. S2. (E) Cytoplasmic versus junctional localization of SRGP-1 (mean±s.e.m.).
ns, not significant; *P<0.05, ***P<0.001, ****P<0.0001 (ANOVA with Tukey post-hoc test). (F) SRGP-1::GFP deletions lacking the C terminus do not retain
normal colocalization with HMP-1 at sites of membrane bending. Top: Full-length SRGP-1::GFP (green), HMP-1::mScarlet-I (red), and merge. Insets show
higher magnification views of a junction between a seam (lateral) and dorsal epidermal cell. Colocalization of HMP-1 and SRGP-1 occurs in SRGP-1-
induced membrane bends. Bottom: SRGP-1(ΔC)::GFP (green), HMP-1::mScarlet-I (red), and merge. Insets show higher magnification views. HMP-1 no
longer consistently colocalizes with SRGP-1::GFP(ΔC) in membrane bends. Asterisk indicates a tubulation without HMP-1. Scale bar: 10 µm.
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hmp-1(fe4); srgp-1(RNAi) embryos that survived beyond ventral
enclosure. hmp-1(fe4); srgp-1(RNAi) embryos arrested as they
approached the 2-fold stage of elongation with pronounced
dorsal folds (100% of embryos, n=21 embryos; see Fig. 3E;

Movie 1); thus, SRGP-1 also plays key roles during early stages of
embryonic elongation.

We were unable to create srgp-1(gk441841); hmp-1(fe4) double
mutants for rescue experiments, likely because fe4 is a maternal

Fig. 2. Junctional maintenance of SRGP-1 requires HMP-1. (A) SRGP-1(full-length)::GFP expression in mutants lacking endogenous SRGP-1. Scale bar:
10 µm. (B) SRGP-1(C term)::GFP expression in mutants lacking endogenous SRGP-1. During ventral enclosure, SRGP-1(C term)::GFP is not localized to
cell-cell junctions, or at the leading edge (white arrows). As the ventral midline seals and the embryo begins to elongate, SRGP-1(C term)::GFP localizes to
junctions (20 and 30 min, yellow arrows). Scale bar: 10 µm. (C) Left: Overexpression of SRGP-1::GFP in a wild-type background leads to strong junctional
expression (red arrowheads) and junction-associated membrane extensions (yellow arrowheads). Right: Depletion of HMP-1 by injection RNAi dramatically
reduces junctional localization of SRGP-1 but does not deplete full-length SRGP-1::GFP from apical membrane extensions (yellow arrowheads). (D) Left:
SRGP-1(C term)::GFP expressed in a wild-type embryo localizes to cell-cell junctions during elongation (white arrow). Right: SRGP-1(C term)::GFP is no
longer recruited and/or maintained at the junction in hmp-1(RNAi) embryos (red arrow). (E) Intensity profiles showing SRGP-1::GFP intensity along a 5 µm
line centered on the junction (red line in B indicates an example site of measurement) in control (purple) and hmp-1 RNAi (orange) backgrounds for full-
length SRGP-1 (left) and C terminus only (right). Dark lines indicate mean value; shaded areas indicate s.d. SRGP-1(FL)::GFP control: n=9 measurements;
hmp-1 RNAi: n=16. SRGP-1(C)::GFP control: n=7; hmp-1 RNAi: n=14. (F) In srgp-1::mScarlet-I embryos, SRGP-1::mScarlet-I accumulates at junctions
during elongation. Scale bar: 10 µm. (G) hmp-1( jc48); Ex[hmp-1(ΔVH2)::gfp)] embryos are viable and can appear largely wild type. (H) SRGP-1::mScarlet-I;
hmp-1( jc48); Ex[hmp-1(ΔVH2)::gfp)] embryos show reduced SRGP-1::mScarlet-I junctional accumulation, although small amounts of SRGP-1::mScarlet-I
can still accumulate at sites of cell-cell contact during elongation (white arrowheads). (I) HMP-1 intensity profiles (as in E) for wild type (WT) (purple) and
HMP-1ΔVH2::GFP (orange). WT, n=25 measurements; HMP-1ΔVH2::GFP, n=24.
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effect allele (J. Pettitt, personal communication) instead, we used
homozygotes for a hypomorphic allele of hmp-2/β-catenin,
hmp-2(qm39) (Lockwood et al., 2008; Zaidel-Bar et al., 2010) as
a sensitized background. hmp-2(qm39) embryos appeared largely
wild type during embryonic development, but later developed slight
body morphology defects that resolved during cuticle molts
(Fig. 4A). In contrast, double-homozygous srgp-1(gk441841);
hmp-2(qm39) embryos displayed 57.1% embryonic lethality,
arresting with dorsal humps during elongation (Fig. 4B).

We next performed rescue experiments using SRGP-1
fragments in srgp-1(gk441841); hmp-2(qm39) embryos.
SRGP-1(full-length)::GFP and SRGP-1(ΔGAP)::GFP were
capable of strong rescue, although full-length SRGP-1::GFP
rescued more effectively (Fig. 4C,D,G). Importantly,
srgp-1(gk441841); hmp-2(qm39); Ex[srgp-1(ΔC)::gfp] embryos
were indistinguishable from srgp-1(gk441841); hmp-2(qm39)
alone (Fig. 4E,G), indicating that the C terminus of SRGP-1 is
functionally important during elongation. The C terminus alone was

Fig. 3. Salt bridges within the
HMP-1M domain are required for
recruitment of the SRGP-1 C
terminus. (A) Top row: SRGP-1::GFP
colocalization with HMP-1::mScarlet-I.
Scale bar: 10 µm. Second row:
SRGP-1::GFP colocalization with
HMP-1R551/554A::mScarlet-I. Insets in
the first and second row are magnified
images of the junctions indicated by
boxes. Third row: SRGP-1(C-term)::
GFP colocalization with HMP-1::
mScarlet-I. Blue dotted line indicates
seam-seam junction, yellow dotted line
indicates seam-non-seam junction.
Bottom row: SRGP-1(C-term)::GFP
localization with HMP-1R551/554A::
mScarlet-I. (B) Violin plot of
percentage enrichment of SRGP-1(C)::
GFP at junctions. ****P<0.0001
(unpaired Student’s t-test). e, embryos;
n, junctions analyzed. (C) HMP-1::GFP
average intensity in wild-type (WT),
srgp-1(gk441841) and HMP-
1R551/554A::GFP backgrounds. WT:
n=21; srgp-1(gk441841): n=16;
HMP-1(R551/554A): n=27. ns, not
significant; **P<0.01, ***P<0.001
(ANOVA, Tukey post-hoc test).
(D) FRAP for HMP-1::GFP in WT and
srgp-1(gk441841) (n=11 for each
genotype). Central line represents
normalized mean intensity and shaded
area represents s.e.m. (E) DIC images
of representative hmp-1(fe4) and
hmp-1(fe4); srgp-1(RNAi) embryos
from ventral enclosure through
elongation. Scale bar: 10 µm.
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not sufficient to rescue lethality, however (Fig. 4F,G). Taken
together with its inability to support normal junctional localization
(see Figs 1 and 2), these data suggest that a key functional role for
the SRGP-1 C terminus is to target SRGP-1 to and maintain it at
the CCC.

SRGP-1 stabilizes cadherin-dependent adhesion during
epidermal morphogenesis
Here, we demonstrated the importance of the SRGP-1 C terminus in
binding the HMP-1 M domain, and, unexpectedly, that a partially
closed conformation of the M domain is necessary for junctional

Fig. 4. The SRGP-1 C terminus is required for embryonic elongation in an adhesion-sensitized background. (A) In hmp-2(qm39) homozygotes,
ventral enclosure and elongation proceed normally in almost all embryos. (B) Homozygous hmp-2(qm39); srgp-1(gk441841) embryos begin to
fail at 120 min, and embryos form dorsal humps (arrow). (C) srgp-1(gk441841); hmp-2(qm39); Ex[srgp-1::gfp] embryos are mostly rescued.
(D) srgp-1(gk441841); hmp-2(qm39); Ex[srgp-1(ΔGAP)::gfp] embryos appear largely wild type; some embryos die during elongation. (E) srgp-1(gk441841);
hmp-2(qm39); Ex[srgp-1(ΔC)::gfp] embryos die with dorsal humps during elongation (black arrow, 120 min). (F) srgp-1(gk441841); hmp-2(qm39);
Ex[srgp-1(C term)::gfp] embryos die similarly. Scale bar: 10 µm. (G) Quantification of rescue in srgp-1(gk441841); hmp-2(qm39) strains. In all cases,
GFP-expressing embryos were compared with their non-expressing siblings. Embryos expressing full-length SRGP-1::GFP or SRGP-1(ΔGAP)::GFP
have significantly less embryonic lethality than their non-expressing siblings, whereas embryos expressing SRGP-1(ΔC)::GFP and SRGP-1(C term)::GFP
are not significantly different from siblings. n values indicated on each bar for each genotype; n.s., not significant; *P<0.05 (Fisher’s exact test).
(H) Model for SRGP-1 function. SRGP-1 interacts with membrane lipids through its F-BAR domain (dark blue) and binds the M domain of HMP-1/α-
catenin through its C terminus. Tension causes conformational changes in, but not full extension of, the M domain of HMP-1/α-catenin that promote SRGP-1
binding.
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maintenance of SRGP-1 mediated via its C terminus. Junctional
SRGP-1 is in turn crucial for epidermal morphogenesis in sensitized
backgrounds.
Although roles for srGAPs outside of neural tissues are beginning

to be recognized (reviewed by Lucas and Hardin, 2017), roles of
srGAPs during epithelial morphogenesis are poorly understood. In
cultured mammalian cells, srGAP1 is recruited to junctions by
tyrosine non-phosphorylated cortactin, where it downregulates Rho
activity via its GAP domain (Liang et al., 2017). There is no
clear cortactin homolog in C. elegans (J.H., unpublished) and
the SRGP-1 GAP domain is relatively unimportant for its roles
in morphogenesis (Zaidel-Bar et al., 2010; present work). A
parsimonious model for SRGP-1 recruitment to the CCC during
embryonic elongation involves direct HMP-1 binding.
Given when C-terminal fragments of SRGP-1∷GFP localize to

junctions, increased interaction of the SRGP-1 C terminus with
HMP-1 appears to occur at a timewhen adherens junctions are under
increased, but not maximal, tension (Fig. 4H). This contrasts with
vertebrate vinculin. Vinculin is recruited to the CCC via α-catenin
under tension by exposing a binding site within α-catenin that is
normally buried within its M domain (Choi et al., 2012; Huveneers
and de Rooij, 2013; Yonemura et al., 2010). Maximal vinculin
binding to mammalian αE-catenin is favored by complete unfurling
of the αE-cateninM domain (Yao et al., 2014); salt bridge mutations
in the M domain of αE-catenin thus activate it for vinculin binding
(Choi et al., 2012; Huveneers et al., 2012; Ishiyama et al., 2013;
Yonemura et al., 2010). In contrast, we have shown here that similar
mutations in the HMP-1M domain lead to loss of SRGP-1
junctional recruitment via its C terminus. SRGP-1 may therefore
bind the HMP-1M domain in an intermediate conformation under
tension that precedes complete unfurling of its M domain. At higher
tension states, when the M domain is fully extended, HMP-1 may
recruit other binding partners. Rigorous testing of such a mechanism
awaits further biophysical experiments to interrogate the possibility
of such a ‘conformational clutch’.
In contrast to the SRGP-1 C terminus, full-length SRGP-1 is

retained at junctions in hmp-1 salt bridge mutants, but it is lost when
HMP-1 is absent or when the HMP-1M domain is deleted. Multiple
domains of SRGP-1 may therefore recognize different
conformational states of the HMP-1M domain. Alternatively,
another junctional protein with which SRGP-1 interacts may be
recruited in an HMP-1-dependent manner and is retained even when
the HMP-1M domain is more fully extended.
We showed previously that N- and C-terminal fragments of

SRGP-1 can bind in vitro, suggesting head-to-tail autoinhibition.
Moreover, overexpression of a C-terminal truncation of SRGP-1
leads to excessive membrane tubulations (Zaidel-Bar et al., 2010).
Here, we have shown that the SRGP-1 C terminus alone can
associate with junctions, but is insufficient for function, and that the
SRGP-1 F-BAR domain is necessary. An irenic model that
harmonizes these data is that HMP-1 recruits SRGP-1, leading to
highly local, restrained activation of the membrane binding
activities of SRGP-1 when embryonic elongation begins. SRGP-1
may therefore be similar to vinculin and talin, which undergo
autoinhibition in the cytosol that is thought to be relieved by
interactions with binding partners at adhesion sites (Bakolitsa et al.,
2004; Dedden et al., 2019).
In summary, our results identify previously unknown roles for

SRGP-1 during cadherin-dependent epithelial morphogenetic
events. It will be interesting to determine whether vertebrate
srGAPs can interact similarly with a component of the CCC. Future
experiments should continue to clarify how this multifunctional

family of proteins contributes to cadherin-dependent adhesion
during morphogenesis.

MATERIALS AND METHODS
Nematode strains and genetics
C. elegans strains were maintained using standard methods (Brenner, 1974).
Bristol N2 was used as wild type. Ten outcrosses to N2 were performed to
remove background mutations from the Million Mutation Project strain,
VC30226, which carries the srgp-1(gk441841) allele (Thompson et al.,
2013). See Table S2 for a full list of strains used in this study.

DIC imaging
Four-dimensional (4D) DIC movies were collected on either a Nikon
Optiphot-2 connected to a QiCAM camera (QImaging) or an Olympus
BX50 connected to a Scion CFW-1512M camera (Scion Corp.) using
Micro-Manager software (v. 1.42) (Edelstein et al., 2010, 2014). ImageJ
plugins (https://worms.zoology.wisc.edu/research/4d/4d.html) were used to
compress and view DIC movies.

Confocal imaging
SRGP-1::GFP; HMP-1::mScarlet-I embryos were dissected from adult
hermaphrodites and mounted onto 10% agar pads in M9 solution and
imaged essentially as described (Zaidel-Bar et al., 2010). For fluorescence
imaging, a Dragonfly 500 spinning disc confocal microscope (Andor),
mounted on a Leica DMi8 microscope, equipped with a Zyla camera and
controlled by Fusion software (Andor) was used to collect images using
0.5 μm slices with a 63×/1.3 NA glycerol Leica objective at 20°C.

FRAP
FRAP analysis was conducted on z-projections of 4D confocal movies
composed of four z-positions spaced 0.18 μm apart. Embryos were aged
between 1.5- and 1.75-fold. 4D movies were generated by photobleaching a
region of interest for 3 s and images were collected at 2 s intervals thereafter.
Photobleaching was performed using an Andor Mosaic DMD and imaging
was performed on a Leica Dmi8 microscope with a Dragonfly spinning disk
(Andor). Images were collected on a Zyla CMOS camera using Fusion
software (Andor). Recovery curves were analyzed via single-exponential
curve fitting using custom Jython scripts written for Fiji. Scripts are
available at https://worms.zoology.wisc.edu/research/microscopy/4d.html.

Intensity analyses
To compare intensity, mean HMP-1 junctional signal was measured by
tracing HMP-1::GFP junctional signal on z-projections of four focal planes
spaced 0.18 µm apart in embryos between 1.5- and 1.75-fold. Intensity
profiles were collected by drawing a 1-pixel-wide line between nuclei
during elongation. Colocalization of HMP-1 and SRGP-1 was performed in
Fiji using the Just Another Colocalization Plugin (JACoP; https://imagej.
nih.gov/ij/plugins/track/jacop.html) (Bolte and Cordelieres, 2006). Four
focal planes from 25 junctional segments were combined into single stacks
for each genotype. Maximum intensity z-projections were obtained, and
automated Costes thresholding within JACoP was visually confirmed in
each case.

CRISPR
HMP-1::mScarlet-I and SRGP-1::mScarlet-I worms were generated by
plasmid-based CRISPR/Cas9 (Dickinson et al., 2015) using repair
templates cloned using SapTrap cloning (Schwartz and Jorgensen, 2016).
Small substitution mutations were made by marker-free genome editing
(Arribere et al., 2014). Guides, homology arms primers and single-
stranded repair templates for all CRISPR/Cas9 editing can be found in
Table S1.

Microinjection
For transgenic lines, 10 ng/μl of the transgene of interest, in addition to
20 ng/μl non-coding DNA (F35D3) and 80 ng/μl rol-6(su1006), was
injected into the gonads of srgp-1(gk441841) young adults, as described
previously (Mello and Fire, 1995).
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Injection RNAi was performed as previously described (Walston et al.,
2004). dsRNAswere generated using an Ambion T7 and/or T3MEGAscript
kit; the template used was the srgp-1 feeding clone from a feeding library
(Kamath et al., 2003), and the template used for hmp-1 (yk1315a06) was
obtained from Dr Yuji Kohara (NEXTDB, http://nematode.lab.nig.ac.jp/).
‘Weak’ injection RNAi was accomplished by injecting young adults with
1 µg/µl dsRNA into the pseudocoelom and imaging embryos 18 h after
injection.

Protein expression and purification
GST- and SUMO-His-tagged proteins were expressed in BL21-Gold(DE3)
Escherichia coli cells and purified as described (Maiden et al., 2013;Mayers
et al., 2011). Cells were induced with 0.1 mM IPTG at 18°C for 16 h. Wash
and elution buffers were as follows: GST wash (1× PBS, 500 mM NaCl,
0.1% Tween-20 and 1 mM DTT), GST elution (50 mM, Tris pH 8.0,
0.3% glutathione, 150 mM NaCl), His wash (50 mM sodium phosphate,
pH 8.0, 300 mM NaCl, 0.1% Tween-20, 10 mM imidazole) and His
elution (250 mM imidazole, 100 mM NaCl, 10% glycerol, 50 mM HEPES,
pH 7.6).

DNA encoding wild-type full-length HMP-1 (aa1-927) and M region
(aa270-646) and DNA encoding 551/554A mutant proteins was cloned into
pMAL-c6t to make MBP-tagged fusion proteins. Fusion proteins were
expressed in Novagen Rosetta DE3 competent E. coli cells (Sigma-Aldrich,
70954) and purified as described by Kwiatkowski et al., (2010) and Hansen
et al. (2013). MBP-tagged proteins were bound to amylose-conjugated
beads. Bound beads were then equilibrated in cleavage buffer (20 mM Tris,
pH 8.0, 150 mM NaCl, 2 mM EDTA, 10% glycerol and 1 mM DTT) and
incubated with tobacco etch virus protease overnight at 4°C to cleave
proteins from the tag. Proteins were then purified by Mono Q ion-exchange
chromatography at 4°C, followed by S200 gel-filtration chromatography at
4°C. Purified proteins were eluted in 20 mM Tris, pH 8.0, 150 mM NaCl,
10% glycerol and 1 mMDTT, concentrated toworking concentrations using
a Millipore column concentrator and flash-frozen in liquid nitrogen.

Directed yeast two-hybrid assays
Yeast two-hybrid assays were performed as described previously (Lynch
et al., 2012). Either full-length HMP-1 or HMP-2 yeast two-hybrid plasmids
(Kwiatkowski et al., 2010) were transformed into Y2H Gold yeast singly or
with a plasmid encoding full-length SRGP-1 that was cloned into the
pGBKT7 vector (Clontech). Positive single transformants were tested for
autoactivation, and double transformants were patched onto SD/-Leu/-Trp/
X-α-gal/AurA plates. Colonies that grew and turned blue were considered
positive for a direct interaction.

Co-immunoprecipitation
C. elegans used for co-immunoprecipitations were grown in liquid culture as
previously described (Stiernagle, 2006). Co-immunoprecipitations were
carried out as previously described (Cox-Paulson et al., 2012). HMP-1 and
HMP-2 were co-immunoprecipitated using a rabbit anti-HMP-1 antibody
(Zaidel-Bar et al., 2010) as a control. Western blots were performed as
described previously (Zhang et al., 2016), blotting with rabbit anti-GFP or
rabbit anti-HMP-1 antibodies and using chemiluminescence to detect
proteins using an Odyssey Fc imaging system (LI-COR Biosciences).

Feeding RNAi
L4 worms were transferred to plates seeded with E. coli expressing dsRNA
from let-502 or L4440 (control) vectors overnight. The following day,
worms were cut open and their embryos were mounted, aged to 1.5 fold, and
imaged.

Pull-down assays
Pull-downs between GST-SRGP-1 and His-SUMO-HMP-1 fragments were
performed as described previously (Takahashi et al., 2015). Two replicates
were performed in each case. When testing GST-SRGP-1 (C term)
against His-SUMO-HMP-1 fragments, purified GST-SRGP-1 (C term)
was incubated individually with His-SUMO-HMP-1 fragments still
immobilized on Ni-NTA agarose resin for 1 h at 4°C. After washing five

times with buffer (50 mM HEPES, pH 7.4; 1 mM EDTA, pH 8.0; 0.1 M
KCl; 1 mM MgCl2; 12.5% w/v glycerol), His elution was then carried out.
Finally, eluates were run on SDS-PAGE gels and stained with Coomassie
Brilliant Blue to visualize proteins.

Limited proteolysis
Proteins were diluted to 12 μM in 20 mM Tris, pH 8.0, 150 mMNaCl and 1
mM DTT and incubated at room temperature in 0.05 mg/ml sequencing
grade trypsin (Roche Applied Science). Digestions were stopped with 2×
Laemmli sample buffer followed by boiling. Samples were run by SDS-
PAGE and then stained with 0.1% Coomassie Brilliant Blue R-250, 40%
ethanol and 10% acetic acid. Gels were scanned on a LI-COR Odyssey FC
scanner.

Statistical analysis
Fisher’s Exact Test (http://www.graphpad.com/quickcalcs/contingency1/)
was used to determine significance between rescue groups. Differences in
cytoplasmic fluorescence levels were determined using one-way ANOVA
with Tukey post-hoc testing for multiple comparisons or unpaired two-tailed
Student’s t-tests for single comparisons after measuring average junctional
and cytoplasmic signals in ImageJ. Significant difference in Pearson’s R for
colocalizations was assessed using the online Z calculator available at
https://www.calculator.net/z-score-calculator.html.
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Fig. S1. The Vinculin Homology domain 2 (VH2) of HMP-1/a-catenin is crucial for the 
interaction with SRGP-1. (A) C. elegans has a well-conserved cadherin-catenin complex.  
HMR-1/cadherin (light grey) forms calcium-dependent, homophilic bonds between cells, and its 
C-terminal tail binds HMP-2/b-catenin (light blue) in the cytoplasm.  HMP-2/b-catenin binds the 
N terminusthe HMP-1/a-catenin (cyan) which interacts with F-actin (dark grey) through its C-
terminal actin-binding domain (green). (B) GST-SRGP-1(C-term) (blue arrow) pulls down 
SUMO-HMP-1 constructs that contain the VH2 domain but not the SUMO tag alone (green 
arrowhead). 
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Fig. S2. Salt bridge mutations open the HMP-1 M-region. (A) Trypsin limited proteolysis of 
full-length wild-type and 551/554A mutant HMP-1. A stable fragment at 28kDa (orange arrow) is 
present with a minor stable fragment at 15kDa (yellow arrow). In the case of the 551/554A mutant 
protein, the 28kDa fragment is less stable and more of the smaller 15kDa species accumulates, 
indicating that the 551/554A mutant is more open and susceptible to trypsin digestion. (B) Limited 
proteolysis of wild-type and 551/554A mutant HMP-1 M domain.  The same fragments at 28kDa 
(orange arrow) a 15kDa (yellow arrow) are present. As with the full-length proteins, in the case of 
the 551/554A M domain the 28kDa fragment is less stable and more of the smaller 15kDa species 
accumulates. (C) Junctional enrichment of SRGP-1(C)::GFP at seam-seam and seam-non-seam 
junctions (n=34 for both groups). (D) Junctional enrichment of SRGP-1(C)::GFP at seam-seam and 
seam-non-seam junctions in control RNAi or let-502(RNAi) embryos. Seam-seam control, n=29; 
seam-non-seam control, n=29; seam-seam let-502, n=38; seam-non-seam let-502, n=38.  
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Table S1.  Primer sequences for CRISPR experiments performed in this study. See Materials and 
Methods for additional details. 

hmp‐1 C‐terminal 5’ 
Homology arm Forward 
Primer 

5’‐ggcacgtagctgccattgtc‐3’ 

hmp‐1 C‐terminal 5’ 
Homology arm Reverse 
Primer 

5’‐TAAACGACCGTTTATTCTTTGTTGATGGCGGCGATCAAGTTCTTC‐3’ 

hmp‐1 C‐terminal 3’ 
Homology arm Forward 
Primer 

5’‐TAGataatttatttcagttttattcatgtatcttcatacttttcc‐3’ 

hmp‐1 C‐terminal 3’ 
Homology arm Reverse 
Primer 

5’‐gaagcgaaaacatgggtgg‐3’ 

hmp‐1 C‐terminal sgRNA  5’‐GGGTCGTGATAGTGACGACG‐3’ 

hmp‐1 salt bridge sgRNA  5’‐CATCGACAACGTCACAGACT‐3’ 

hmp‐1 salt bridge repair 
template 

5’‐GAAAATGCGGCCAACTGTGAAACTGTCGACTGTGCTGCCGGATCGATACGTGGAGCT 
GCTCTCGCTGTCTGTGACGTTGTCGATGCTGAAATGGACTTCCTTCAGAACTCTGAATAC‐3’ 

srgp‐1 C‐terminal 5’ 
Homology arm Forward 
Primer 

5’‐CACTGAGAGATCAGCTTCAGTTGATG‐3' 

srgp‐1 C‐terminal 5’ 
Homology arm Reverse 
Primer 

5’‐TGGGCTGATGCTTGTCGCC‐3’ 

srgp‐1 C‐terminal 3’ 
Homology arm Forward 
Primer 

5’‐TGAtagttttggctgcgtct‐3’ 

srgp‐1 C‐terminal 3’ 
Homology arm Reverse 
Primer 

5’‐ggattttgtaaccgaacacttcc‐3’ 

srgp‐1 C‐terminal sgRNA  5’‐agacgcagccaaaactaTCA‐3’ 

Table S2.  Strains used in this study. 

Click here to download Table S2
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http://www.biologists.com/DEV_Movies/DEV200775/TableS2.xlsx


Movie 1.  Movies corresponding to still images in Figure 3E. Elongation in hmp-1(fe4) and 
hmp-1(fe4);srgp-1(RNAi) embryos visualized using 4d DIC microscopy. Scale bar = 10 µm. 
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