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DeepLabCut increases markerless tracking efficiency in X-ray
video analysis of rodent locomotion
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ABSTRACT
Despite the prevalence of rat models to study human disease and
injury, existing methods for quantifying behavior through skeletal
movements are problematic owing to skin movement inaccuracies
associated with optical video analysis, or require invasive implanted
markers or time-consuming manual rotoscoping for X-ray video
approaches. We examined the use of a machine learning tool,
DeepLabCut, to perform automated, markerless tracking in bi-planar
X-ray videos of locomoting rats. Models were trained on 590 pairs of
video frames to identify 19 unique skeletal landmarks of the pelvic
limb. Accuracy, precision and time savings were assessed. Machine-
identified landmarks deviated from manually labeled counterparts by
2.4±0.2 mm (n=1710 landmarks). DeepLabCut decreased analysis
time by over three orders of magnitude (1627×) compared with
manual labeling. Distribution of these models may enable the
processing of a large volume of accurate X-ray kinematics
locomotion data in a fraction of the time without requiring surgically
implanted markers.
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INTRODUCTION
Despite its utility for relating mechanism to functional outcome,
quantifying the movement of behaving rodents can be labor
intensive, costly and time consuming. Owing to extensive soft tissue
motion artifacts on rodent limbs, optical video tracking approaches
using traditional skin-based markers can produce very large joint
angle errors up to 39 deg (Bauman and Chang, 2010). In response
to this limitation, biplanar high-speed X-ray video has been
implemented to directly track the animal skeleton, either via
surgically implanted radio-opaque bone-based markers (Brainerd
et al., 2010), or by manual alignment (or rotoscoping) of 3D bone
models to each pair of video frames from two X-ray camera views
(Gatesy et al., 2010). Despite the accurate motion tracking that
these X-ray-based methods provide, they each also introduce new
limitations of their own. For example, surgically implanting
multiple small (sub-millimeter diameter) spheres into each
skeletal rigid body is highly invasive and not feasible for some
small bones where wound healing may be difficult (e.g. rat foot

bones). The surgical wounds created by the marker implantation can
introduce a large source of variability in the biomedical research
often performed on rats and mice. This added variability can make it
difficult to distinguish the effects of the treatment on the injury
model from the motion analysis technique. Additionally,
rotoscoping 3D bone models typically necessitates expensive µCT
scans of each animal that must be manually segmented before
beginning the highly labor-intensive process of aligning each bone
model by hand.

The recent introduction of a new machine learning tool for pose
estimation called DeepLabCut has reduced the analytical burden
inherent in markerless tracking for traditional optical video (Mathis
et al., 2018). Although others have deployed this new technique to
automate the process of tracking surgically implanted markers in X-
ray videos (Laurence-Chasen et al., 2020), the ability to identify
skeletal landmarks in X-ray video data without markers has yet to be
explored. Markerless identification of skeletal landmarks in X-ray
video would greatly decrease analysis time while preserving a non-
invasive approach and kinematics data quality. This could greatly
broaden accessibility to accurate and precise small animal
kinematics data.

The goals of this study were to: (1) assess the ability of
DeepLabCut to track skeletal landmarks of the rat hindlimb,
(2) quantify the time savings compared with manual tracking and
(3) develop and distribute the pre-trained DeepLabCut models to
track these landmarks in X-ray videos for other researchers to use.

MATERIALS AND METHODS
Model availability
The models described below, as well as their associated labeled
training data and processing code, can be accessed under the
name ‘xray_rat_hindlimb’ at github.com/njkirkpatrick/xray_rat_
hindlimb.

Animal models
Biplanar high speed X-ray videos (Fig. 1A; 45 kV, 100 mA,
100 frames s−1; Imagining Systems & Service, Painesville, OH,
USA) were recorded from a total of six adult male Lewis rats [Rattus
norvegicus (Berkenhout 1769)] performing treadmill locomotion in
accordance with protocols approved by the Georgia Institute of
Technology’s IACUC. Recordings of a reference object with a
known angle moving around the capture volume of our X-ray
motion analysis system report a mean error of 0.2 deg (a measure of
accuracy) and a variance of 0.8 deg (a measure of precision).
Treadmill position within the capture volume varied between
recording sessions, but the direction of gait for all trials was oriented
towards the left of the frame for both cameras (Figs 1A and 2B).

Data generation
Nineteen hindlimb skeletal landmarks were manually identified in
590 pairs of X-ray video frames taken from 15 videos across the sixReceived 11 May 2022; Accepted 23 July 2022
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animals (Fig. 2A,B). Training data videos were recorded on eight
different days. Owing to naturally occurring differences in treadmill
position on each day, collections on different days in this context
indicate that there were non-trivial changes in camera perspective
from one day to the next. Skeletal landmarks were identified in
video pairs within XMALab (Knörlein et al., 2016) to minimize
reprojection error between the two views.
The 19 skeletal landmarks were chosen for their visual clarity.

The pelvis is tracked with the pubic symphysis. Proximal limb
landmarks included the femoral head, greater trochanter, and lateral
epicondyle. For the lower limb segment, the lateral condyle of the
tibia, distal fusion of the tibia and fibula, and lateral malleolus of the
tibia are tracked. Landmarks on the paw are the caudalmost point of
the calcaneus bone, distal end of the first metatarsus and distal end
of the first phalanx.

Model training
For body part tracking, we used DeepLabCut (version 2.2.0.3)
(Mathis et al., 2018; Nath et al., 2019). Labeled videos from each of
the two X-ray cameras, as described above, were trained on separate
networks. The DeepLabCut default set of 95% of these frames was
then used for training. We used a ResNet50-based neural network
with default parameters for 314,000 training iterations for each
camera model in Google Colab (Mountain View, CA, USA) using
our custom fork of XROMMTools (Laurence-Chasen et al., 2020)
to convert XMALab data into a DeepLabCut-readable format (see
xray_rat_hindlimb GitHub).

We tested our models for consistency by training new models on
three separate occasions using a randomized shuffle to generate the
95% training set. For each camera model, we found the test error
averaged 5.48±0.70 pixels, and average train error was
2.94±0.11 pixels for the camera 1 network. For the camera 2
network, the test error was 5.56±0.52 pixels and the train error was
3.21±0.25 pixels. Both cameras have image sizes of
1920×900 pixels. We then used the DeepLabCut default p-cutoff
of 0.9 to condition the x,y coordinates for future analysis.
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Fig. 1. Schematics of X-ray video collection and skeletal landmark
tracking. (A) Configuration of the biplanar X-ray video system. Adapted from
Hetzendorfer (2017). (B) Flowchart of the process to train models on a new
experimental setup (solid line) and how to analyze trial videos after sufficient
training (dashed line). XMALab software is used to correct for fluoroscope
distortion as well as to convert and low-pass filter 3D coordinates.
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Fig. 2. Model performance relative to manually labeled skeletal
landmarks. (A) Locations of rat hindlimb skeletal landmarks used in model
training shown in an extended pose for visibility. (B) Sample raw machine
labels from a random frame pair; marker colors correspond to those
locations indicated in A. (C) Distribution of 3D point error between manually
labeled and machine labeled skeletal landmarks of testing dataset frame
pairs (n=30 frame pairs). Bars show quartiles with colors corresponding to
locations in A. Outliers indicated by circles. 3D points were low-pass filtered
at 7 Hz.
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This network pair was then used to analyze videos from similar
experimental settings.

Undistortion and 3D conversion
XMALab was used to undistort the rawX-ray videos and triangulate
machine label pairs of 2D pixel locations into 3D coordinates in lab
space. All 3D coordinates were low-pass filtered (7 Hz) to minimize
noise using XMALab’s built-in low-pass Butterworth filter.

3D point error
For frame pairs included in the testing dataset (n=30 frame pairs),
the distance between machine labeled 3D points and their manually
labeled counterparts was used as an error metric for the performance
of the models (Martin Bland and Altman, 1986). Standard deviation
was used throughout.

Joint angle analysis
3D joint angles for the hip, knee and ankle were computed between
respective sets of three skeletal landmarks (see Fig. 2A). Hip joint
angles were defined by labels from the pubic symphysis, femoral
head and lateral epicondyle of the femur. Knee joint angles were
defined by labels on the femoral head, lateral epicondyle and lateral
malleolus of the tibia. Ankle joint angles consisted of the lateral
tibial condyle, lateral malleolus and the distal end of the first
metatarsus.
To further evaluate the models, all 19 skeletal landmarks were

manually identified in one complete gait cycle (43 frame pairs;
Fig. 3A, Movie 1). These manual labels were not included in the
model training datasets. The root mean square error was computed
between manually labeled and machine labeled joint angles to
quantify the discrepancy between the machine labeling and manual
labeling techniques. The time required to perform this manual
labeling was monitored with a stopwatch and used to estimate time
savings.

RESULTS AND DISCUSSION
3D point error
For the 90 frame pairs randomly assigned to the testing datasets,
machine label-derived locations in 3D space deviated from
manually labeled counterparts by 2.4±0.2 mm (n=1710 skeletal
landmarks; Fig. 2C). The 3D point error of the training datasets was
1.9±0.1 mm (n=31,920 skeletal landmarks).

Full gait cycle comparison
Comparing 3D joint angles calculated from machine labels relative
to manual labels indicates higher accuracy at the hip and knee joints
compared with those of the ankle (Fig. 3A, Movie 1). Over the
complete gait cycle, a root mean square error of 1.03 deg was
observed for the hip angle and 0.33 deg for the knee, compared with
1.87 deg for the ankle. Machine performance diverged the most for
the ankle joint at the end of stance phase near toe off between 60 and
90% of the gait cycle.

Time savings
To demonstrate the type of high-throughput analysis afforded by
this method, 83 gait cycles collected on a single day from one rat
were analyzed (Fig. 3B). Connected to a GPU in Google Colab, our
DeepLabCut models were able to assign 19 labels per frame at a rate
of over 11 individual frames (1920×900 pixels) per second (209
landmarks labeled per second). For comparison, a highly trained
human took 2 min 24 s to identify those same 19 skeletal landmarks
in a single video frame. Extrapolating this average manual analysis

time, it would take a trained human over 11 days, 17 h and 25 min of
non-stop work to label the same 7014 frames that DeepLabCut
analyzed in 10.5 min (Fig. 3C). In other words, our trained
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Fig. 3. DeepLabCut allows for robust skeletal tracking without the
burden of manual labeling. (A) Representative data showing a direct
comparison of left hindlimb sagittal plane joint angles from manually labeled
landmarks (blue) and those identified by the models (orange) for one
complete gait cycle (n=43 frame pairs, 100 Hz). Root mean square error
(RMSE) over the entire gait cycle was computed to quantify the discrepancy
between labeling techniques. Vertical line indicates toe-off. A 7 Hz low-pass
filter was applied to all data. Labeled frames used for this graph can be seen
in Movie 1. (B) Representative model-derived sagittal plane joint angles from
83 gait cycles collected from a single animal during one data collection day.
3D points were low-pass filtered at 7 Hz. (C) Actual processing time for
DeepLabCut to label 7014 frames (3507 frame pairs, or 133,266 labels), and
the estimated time it would take a trained human to generate the same
dataset, indicating a 1627-fold difference in analysis time.
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DeepLabCut models were able to label skeletal landmarks at a rate
of 211.5 labels s−1, where a trained human could work at a rate of
0.13 labels s−1, representing a greater than 1600-fold improvement
in the rate of analysis.

Process overview
Based on the low variance of testing and training dataset errors
between the three models trained on independently shuffled training
data, we suggest a single brief retraining of our models until
performance plateaus on newly collected experimental data. Training
data generation can be expedited by analyzing new trial videos with
the our models first, before manually refining the labels in XMALab
(Fig. 1B, solid line). Instead of using DeepLabCut’s built-in labeling
tools, we recommend using XMALab for label refining in order to
capitalize on the reprojection error and trajectory graphing features to
quickly identify outlier frames that should be manually refined and
included in the retraining dataset. While creating the retraining
dataset, users should be careful to be consistent in the application of
themanual labels, and to provide no coordinates for any labels that are
not visible in the given frame. Other previous optical video
DeepLabCut projects have successfully performed retraining with
only 11 frames to update an existing model to an entirely new
viewpoint (case study 2, Mathis et al., 2018). In our experience,
DeepLabCut performs substantially better on X-ray video frames
when models are trained on each camera independently, rather than a
single model for both camera views simultaneously.
After briefly retraining the models, all experimental data can be

processed by DeepLabCut to generate machine labels. These labels
can then be reformatted using our fork of XROMMTools (Laurence-
Chasen et al., 2020) that allows for p-cutoff-based filtering of
identified points based on DeepLabCut’s likelihood scores. Next,
these data are imported into XMALab as distorted 2D coordinates.
Once in XMALab, any X-ray distortion can be corrected, and the
pairs of 2D pixel coordinates converted to 3D space, then low-pass
filtered to reduce jitter and exported for analysis.
Alternatively, some users may want to train new models from

scratch using our training data. This may be a good option if, for
example, new trial videos include prominently visible forelimbs in
the frame and our existing models erroneously label forelimb
landmarks. In that case, a pair of new DeepLabCut projects should
be created using our fork of XROMMTools (Laurence-Chasen
et al., 2020) with forelimb skeletal landmarks included in the list of
body parts for DeepLabCut to track. Including locations for
forelimb skeletal landmarks in additional training data can reduce
the incidence of DeepLabCut misidentifying forelimb skeletal
features for desired hindlimb landmarks.

Limitations
Although our DeepLabCut models generate 3D points accurate to
2.4 mm on average (test error), some researchers may require the
sub-millimeter accuracy provided by rotoscoping (Gatesy et al.,
2010). We posit that the ability to obtain multiple gait cycles from
an animal would afford a more accurate representation of average
behavior than that of any single gait cycle. Furthermore, the
elimination of the additional steps required for rotoscoping may
make our machine labeling method an appealing alternative.
Additionally, the models may be limited by the quality of the X-
ray exposure and ability of the animal to stay in frame, which should
be taken into consideration. We suspect that much of the error
observed in the labels of the distal limb landmarks in our models
was due to occlusion of the paws by our treadmill belt, which may
be site-specific.

Use of markerless tracking of skeletal features in X-ray video
frames may provide an advantage over implanted markers in the
case of machine labeling. In one recent study, DeepLabCut proved
to be unsuccessful in tracking surgically implanted, radio-opaque
markers in one of the three test cases analyzed (Laurence-Chasen
et al., 2020). The failure to track these markers in this study was
attributed to the non-cyclical nature of the behavior featured in the
examined X-ray videos. Repetitive behavior in trial videos can
certainly improve model performance, as a small number of training
frames can better represent the variety of the expected movements.
However, DeepLabCut has been used to track non-cyclical
movements in optical video (Labuguen et al., 2021). Accordingly,
the model’s insufficient performance in X-ray videos of non-
cyclical movements may have been due to the identical appearance
of each radio-opaque marker. The difficulty of tracking a novel,
non-cyclical behavior may be compounded by the lack of visual
distinction between each spherical tantalum marker, leading to a
scenario where DeepLabCut cannot sufficiently develop unique
classifications for each label. By tracking visually distinct skeletal
features instead of uniform spherical markers. DeepLabCut may in
fact have a greater likelihood of success in markerless X-ray video.

Comparative advantages
With a three order of magnitude reduction in analysis time and no
substantial decrease in accuracy, DeepLabCut using our models can
provide the expected quality of X-ray-based kinematics while
eliminating a critical rate-limiting step in the current analysis
pipeline for markerless X-ray analysis (Fig. 3B). Now, the limiting
factor is the amount of video data that can be recorded from a
particular animal. By empowering the investigation of more
behavioral data from more gait cycles, the strength of a larger
dataset could lead to a more accurate view of animal locomotor
behavior.
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Movie 1. Example comparison of manual and machine labeled frames for a complete gait 

cycle. Unfiltered machine labels (marked with x) compared to manual labels (marked with a 

dot). Landmarks in this gait cycle were used to compute the joint angles in Fig. 3A. Label colors 

are consistent with the locations identified in Fig. 2A. X-ray video recorded at 100 fps and 

played back once at 1.0x speed, then twice at 0.25x for clarity. 
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