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Identification and classification of cis-regulatory elements in the
amphipod crustacean Parhyale hawaiensis
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ABSTRACT

Emerging research organisms enable the study of biology that cannot
be addressed using classical ‘model’ organisms. New data resources
can accelerate research in such animals. Here, we present new
functional genomic resources for the amphipod crustacean Parhyale
hawaiensis, facilitating the exploration of gene regulatory evolution
using this emerging research organism. We use Omni-ATAC-seq to
identify accessible chromatin genome-wide across a broad time course
of Parhyale embryonic development. This time course encompasses
many major morphological events, including segmentation, body
regionalization, gut morphogenesis and limb development. In
addition, we use short- and long-read RNA-seq to generate an
improved Parhyale genome annotation, enabling deeper classification
of identified regulatory elements. We discover differential accessibility,
predict nucleosome positioning, infer transcription factor binding,
cluster peaks based on accessibility dynamics, classify biological
functions and correlate gene expression with accessibility. Using a
Minos transposase reporter system, we demonstrate the potential to
identify novel regulatory elements using this approach. This work
provides a platform for the identification of novel developmental
regulatory elements inParhyale, and offers a framework for performing
such experiments in other emerging research organisms.

KEY WORDS: ATAC-seq, Parhyale hawaiensis, RNA-seq, Evolution,
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INTRODUCTION
Advances in genomic techniques have facilitated genetic research
in emerging research organisms. Genome sequencing has
become substantially less expensive over time (https://www.
genome.gov/about-genomics/fact-sheets/DNA-Sequencing-Costs-
Data), enabling researchers to study genome composition.
Moreover, the establishment of genetic perturbation techniques,
such as RNAi and CRISPR-Cas9 mutagenesis, has enabled the
rapid characterization of gene function in a range of different
research organisms. RNAi knockdown has been applied to various
insects (Christian et al., 2015; Mito et al., 2011), chelicerates
(Sharma et al., 2013), flatworms (Rouhana et al., 2013; Srivastava
et al., 2014) and numerous other organisms to study gene function.
More recently, CRISPR-Cas9 mutagenesis has enabled both

targeted ablation and targeted transgenesis in organisms as
diverse as cephalopods (Crawford et al., 2020) and reptiles (Rasys
et al., 2019). Using these tools, it is now possible to identify and
perturb the function of genes across diverse organisms to understand
how genes and genomes evolve across the tree of life.

Although the study of gene function in diverse systems has grown
more tractable, the study of gene regulation has historically proven
difficult even in model organisms. Unlike protein-coding genes or
noncoding RNAs, which can often be predicted with gene sequence
alone, cis-regulatory elements (CREs) are composed of complex
assemblies of transcription factor binding sites which can be
computationally challenging to identify (Li et al., 2015; Wasserman
and Sandelin, 2004). These sites can change dramatically over
short periods of time; for example, in the context of the even skipped
stripe 2 enhancer across several Drosophila species, the position
of crucial transcription factor binding sites shifted in as short a
span as 1-2 million years divergence (Ludwig et al., 1998).
Such rapid evolutionary flexibility, although important for driving
short- and long-term evolutionary processes, makes the identification
of such elements in novel research organisms a considerable
challenge.

In recent years, novel techniques for identifying CREs have
been developed that rely on the fact that CREs often occur in
regions of accessible chromatin. The earliest, including DNAse I
hypersensitivity and Formaldehyde-Assisted Isolation of Regulatory
Elements (FAIRE-seq) enabled researchers to locate accessible
chromatin regions and discover novel regulatory elements in a
range of research organisms (Giresi et al., 2007; Lai et al., 2018;
Pérez-Zamorano et al., 2017). However, such techniques were
hampered by low signal-to-noise ratios, the requirement for very
large amounts of tissue and technically challenging protocols. In
2015, Buenrostro et al. published papers describing the Assay for
Transposase-Accessible Chromatin with next-generation sequencing
(ATAC-seq), a novel technique using a hyperactive version of the Tn5
transposase, as a way of identifying accessible chromatin regions
genome-wide (Buenrostro et al., 2015). In this paper, they
demonstrated that ATAC-seq performed comparably with previous
accessibility techniques, with reduced tissue requirements and
increased convenience and speed.

ATAC-seq has proved to be an effective technique for traditional
model systems, and has offered a true revolution for emerging
model systems. The low material input requirements of ATAC-seq
are of particular use in emerging research organisms, for which
generating the millions of cells required for previous techniques
would prove challenging. Researchers have applied ATAC-seq to
gar embryos in order to study the evolution of limb development
(Gehrke et al., 2015) and acoel flatworms and hydra to study
regeneration (Cazet et al., 2021; Gehrke et al., 2019), among
numerous other examples. Thus, ATAC-seq is now established as a
generalizable tool that is particularly well-suited to accelerating
work in emerging research organisms.
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In 2017, Corces et al. reported a further-improved version of
ATAC-seq, Omni-ATAC-seq, which provides several improvements
to the standard ATAC-seq protocol (Corces et al., 2017). In particular,
it has been reported to have a greater signal-to-noise ratio, decreased
mitochondrial read contamination and applicability to fixed and
frozen tissues, with only minor modifications to the buffers and
detergents used in the standard ATAC-seq protocol.
In this paper, we apply the Omni-ATAC-seq protocol to embryos

of the amphipod crustacean Parhyale hawaiensis, an emerging
research organism for the study of arthropod development,
evolution and regeneration (Paris et al., 2021 preprint; Stamataki
and Pavlopoulos, 2016; Sun and Patel, 2019). We identify dynamic
regions of open chromatin (‘peaks’) across a broad swath of
Parhyale developmental time. We comprehensively analyze our
Omni-ATAC-seq data to predict the position of nucleosomes along
the genome and infer the footprints of transcription factors bound to
peaks. Using fuzzy clustering (Kumar and E Futschik, 2007), we
partition our peaks into groups based on similar accessibility
trajectories, revealing groups of peaks with different transcription
factor footprint enrichment and nucleosome occupancy that are
active at different points in development. In addition, we use short-
and long-read RNA-seq to improve the Parhyale genome
annotation and investigate the relationship between accessibility
and gene expression over time during development.
Parhyale has served as a platform for foundational discoveries

about such processes as body plan evolution (Martin et al., 2016),
the evolution of arthropod limbs (Bruce and Patel, 2020) and the
evolution of regeneration (Konstantinides and Averof, 2014). By
facilitating the identification of regulatory elements in this research
organism, our work will enable other researchers to investigate the
complexities of gene regulatory evolution in these processes and
others. Furthermore, by enabling the assessment of cis-regulatory
elements in Parhyale, we open avenues to investigate fundamental
mechanisms of gene regulation in the understudied non-insect
crustacean clade.
Although this work primarily focuses on Parhyale, our methods

can provide examples of how one can perform thorough analyses of
ATAC-seq and RNA-seq data using existing tools to generate
hypotheses about gene expression dynamics and regulatory element
function. Such approaches can be applied to a diverse range of
organisms, and will facilitate deeper understanding of gene
regulation across the tree of life.

RESULTS
Omni-ATAC-seq identifies open chromatin across Parhyale
developmental stages
To identify developmental regulatory elements, we performed Omni-
ATAC-seq on duplicate libraries of 15 stages of Parhyale embryonic
development (Fig. 1A-C; Fig. S1A). We evaluated the quality of our
libraries using a variety of standard tests, such as fragment size
analysis and enrichment of Omni-ATAC signal at promoters (see
‘Omni-ATAC sequencing quality control’ in Materials and Methods
and Fig. 2A,B). Our analyses indicated that Omni-ATAC-seq
performed as expected in identifying regulatory elements genome-
wide, with low mitochondrial read contamination.
To assess whether our libraries were capable of capturing

significant variation over time, we performed principal component
analysis (PCA) on our libraries (Fig. 2C). PCA revealed that our
libraries were primarily separated along two principal components
(PCs), PC1 (60% of variation) and PC2 (18% of variation), with a
considerable drop in variation explained in other PCs (Fig. S2D).
PC1 appeared to be associated with developmental time, with earlier

developmental stage libraries showing a negative loading and later
developmental stages showing a positive loading. Within the PCA
plots, samples from the S21 and S22 time points appeared to be
more separated in PC2 relative to the other time points. A discussion
of this observation and its implications can be found in the
supplementary Materials and Methods and Figs S3 and S4C.

We used Genrich (https://github.com/jsh58/Genrich) to call
significant peaks (merged q-value between replicates<0.05) in
each of our 15 time points independently, and merged overlapping
peaks across time points using bedtools (Quinlan and Hall, 2010),
yielding 190,078 genomic regions which we used as our ‘peaks’ in
downstream analyses, including the ImpulseDE2 (IDE2) pipeline.
The dynamic accessibility of these peaks is illustrated in a heatmap
in Fig. 2D. Of these peaks, 163,227 (85.87%) were classified as
having statistically significant variation (padj<0.01) over our time-
course; 60,909 (37.32%) were classified as having transient
expression dynamics; and 88,231 (54.05%) were classified as
showing positively or negatively monotonic expression dynamics
(Fig. 2E). These results indicate that we were able to identify many
dynamically accessible regions across the Parhyale genome.

To identify regions of dynamically accessible chromatin, we used
the IDE2 pipeline (Fischer et al., 2018) (see Materials and Methods
for a brief summary of the software’s advantages). IDE2 produces a
fitted model of accessibility for each of the peaks used in the
analysis (Fischer et al., 2018) (see Fig. S4C,D for examples). We
used these model fits to summarize the global properties of the
dynamic peaks we identified. We observed that our model fits
tended to achieve maximum accessibility at early, middle and late
developmental stages (Fig. 2F). These time points also appeared to
be associated with peaks that showed strong loading in PCA
(Fig. S2G), indicating that early, middle and late time points are the
primary drivers of variation in our dataset.

These global analysis results indicate that our Omni-ATAC-seq
experiments captured information normally found in ATAC-seq
data, including strong enrichment at promoters. Overall, the low
mitochondrial read contamination, large library size and low
fraction of duplicated reads suggest that our Omni-ATAC-seq data
are of high quality. In addition, the results of the IDE2 differential
accessibility analyses indicate that the vast majority of accessible
regions in the Parhyale genome show dynamic accessibility over
developmental time.

Improving the Parhyale genome annotation using short- and
long-read RNA-seq
Although Omni-ATAC-seq signal showed enrichment across
annotated mRNA starts in a genome-wide analysis, careful
examination of individual genes and gene models indicated that
many of the MAKER gene annotations are fragmented (see
Fig. S5A). A more accurate genome annotation would improve
both genome-wide analyses and enable the precise classification
of candidate regulatory elements as promoters, exonic and intronic
regulatory elements, and intergenic regulatory elements. To
generate a more complete genome annotation, we performed
RNA-seq using two approaches: short-read sequencing using the
Illumina NovaSeq platform and long-read sequencing using Oxford
Nanopore technology. For four developmental stages (S13, S19,
S21 and S23), we generated triplicate RNA-seq libraries (Fig. 3A,B;
representative embryo images in Fig. S1B).

We assembled multiple transcriptomes from each of the
sequencing approaches (Fig. 3B; see Materials and Methods).
To generate a more complete genome annotation, we used the
Mikado pipeline to merge our assembled transcriptomes with
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the previously-generated Kao et al. (2016) transcriptome and the
MAKER genome annotation. The Mikado pipeline and others (e.g.
EvidentialGene) use a variety of metrics to compare transcripts from
different sources to determine the ‘best’ gene models for each gene
region in the genome (Gilbert, 2019 preprint; Venturini et al., 2018).
We evaluated the Mikado-merged transcriptome (hereafter ‘Mikado
transcriptome’) using BUSCO, and observed a score comparable
with the best of the individual transcriptomes (90.9% complete),
and a marked improvement compared with the MAKER annotation
(80.9% complete) (Fig. 3C).
To further evaluate the completeness of the genome annotation,

we examined individual genes and loci of interest. Using previous
Rapid Amplification of cDNA Ends (RACE) data, we observed that
the Mikado transcriptome has a more complete Hox cluster than the
MAKER annotation (Fig. S5A-C), including a more completeHox3
gene than has been previously reported. To more comprehensively
evaluate gene model completeness between transcriptomes,
we generated a custom script to compare transcriptome data

with previous RACE data for additional developmental genes (see
Materials and Methods). When we compared the completeness
measures between the Mikado transcriptome and the MAKER
genome annotation, we observed a marked improvement. Notably,
the Mikado transcriptome had a greater proportion of RACE genes
with promoter-peak overlap (Mikado 0.84>MAKER 0.71), as well
as a greater fraction of ‘single’ transcripts (Mikado 0.73>MAKER
0.55) (Fig. 3D).

To further evaluate the quality of the Mikado transcriptome as a
reference, we compared its performancewith theMAKER annotation
using a variety of metrics (Fig. 3E). The Mikado transcriptome
produced a larger number of total gene models (n=21,218) than are
found in the MAKER annotation (n=15,105). Using bedtools, we
attempted to assign a candidate promoter peak to each transcript
in each genome annotation (see Materials and Methods) and
observed that the Mikado transcriptome had a larger number
of transcripts with an assigned promoter (Mikado n=18,946;
MAKER n=11,909), further suggesting improved genome-wide

Fig. 1. Time-course ATAC-seq in P. hawaiensis embryos. (A) Overview of ATAC-seq protocol. Embryos were collected at early developmental stages and
raised to specific developmental time points. Duplicate libraries were generated by tagmenting five embryos each from a single clutch of sibling embryos. qPCR
analysis was used to determine the optimum number of additional cycles of PCR. Tagmented DNAwas cleaned and fragment analysis was performed to assess
library quality. Final libraries were pooled in equal concentrations, size-selected, and sequence on an Illumina NovaSeq short read sequencer. (B) Timeline of
developmental stages. RNA-seq libraries were also generated for time points marked with a star. (C) Representative embryo images from clutches used for Omni-
ATAC-seq. Embryos are stained with DAPI and mounted ventral-side up. A, anterior; P, posterior; L, left; R, right. Scale bars: 100 µm.

3

TECHNIQUES AND RESOURCES Development (2022) 149, dev200793. doi:10.1242/dev.200793

D
E
V
E
LO

P
M

E
N
T

https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.200793
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.200793
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.200793


gene completeness. We also observed stronger enrichment of Omni-
ATAC-Signal at promoters ofMikado genes comparedwithMAKER
genes (Fig. 3F,G), as well as improved performance using genome
annotation software (see Materials and Methods). Given these results
indicating an improved genome annotation, we used the Mikado
transcriptome as our reference for downstream analyses.
Using the Mikado transcriptome as a reference, we assigned

Omni-ATAC-seq peaks to a number of different spatial categories
(‘peak types’) along the genome (Fig. 3H; see Materials and
Methods). We observed approximately equivalent numbers of
peaks over gene bodies (34.4%: 6.2% exonic, 28.2% intronic)
and in intergenic regions (37.2%: 7% proximal intergenic, 30.2%
distal intergenic). We further partitioned the intergenic peaks
into proximal and distal segments, with distal intergenic peaks
representing those peaks >10 kb away from the nearest gene (see
Materials and Methods for rationale for this cutoff ). The majority of
intergenic peaks in our dataset were distal intergenic peaks (82%;
30.2% distal intergenic / 37.2% total intergenic peaks), indicating that
many intergenic regulatory elements could not have been identified
using previous approaches. The average distance of intergenic peaks
was 73,351 bp away from the nearest gene (Fig. S4B). Nearly a fifth
of regulatory elements (18.2%) were also located on contigs that did
not contain genes, and were classified as ‘unknown’.
As our peaks represent the merged combination of peaks across

individual time points, we also evaluated the proportion of peak

types from each time point (Fig. 3H). Peaks analyzed in this way
could reveal differences in the spatial distribution of peaks across
the genome over development. After normalizing for the number of
‘unknown’ peaks, the proportion of peaks belonging to intergenic
and promoter regions declined slightly as development progressed,
whereas the proportion of gene body peaks increased (Fig. S4E).
There appeared to be slightly more intergenic peaks than gene
body peaks at all developmental time points, and the ratio of
intergenic peaks to gene body peaks declined very slightly over time
(Fig. S4F). These data indicate that intergenic and gene body peaks
have different enrichment trajectories over time. As development
progresses, gene body peaks are increasingly enriched, and may
have a greater impact on gene regulation.

Inferring nucleosome positioning and transcription factor
footprints from Omni-ATAC-seq
ATAC-seq identifies regions of open chromatin. However, with
sufficient depth of sequencing, one can infer additional information
from the pattern of insertions of ATAC-seq adapters into the
genome. Using our Omni-ATAC data, we predicted the temporal
positioning of nucleosomes near Omni-ATAC peaks using
NucleoATAC and inferred the footprints of transcription factors
bound to accessible peaks using HINT-ATAC.

NucleoATAC enables the prediction of nucleosome positioning
from ATAC-seq data (Schep et al., 2015). We applied NucleoATAC

Fig. 2. Whole-genome analysis of ATAC-seq reveals enrichment of promoter signals, dynamic accessibility over developmental time. (A) Omni-ATAC
and RNA-seq signal enrichment at promoters. Annotated mRNA start positions are aligned and average signal across genomic positions is plotted for either
Omni-ATAC or RNA-seq signal. Axes reflect the average signal of RNA-seq or Omni-ATAC reads across all mRNA start positions in the genome. A strong
enrichment of RNA-seq signal is observed 3′ of mRNA start sites, whereas enrichment of Omni-ATAC-seq signal appears to be symmetric around mRNA start
sites. (B) Omni-ATAC and RNA-seq signal enrichment across gene bodies. Omni-ATAC signal is greatly enriched 5′ of gene bodies and slightly enriched across
genes, whereas RNA-seq reads are enriched across gene bodies, with an increase in enrichment towards the 3′ end of gene bodies. (C) PCA of Omni-ATAC
libraries. PCA loadings were assigned to the top 1000 variant peaks, where variance was measured as row variance across all libraries. PC1 (60% of variance)
appears to correlate with developmental time. PC2 (18% variance) appears to be associated with middle developmental time points. (D) Heatmap of Omni-ATAC
accessibility dynamics, generated from IDE2 model fits. Colors reflect a z-score calculated from IDE2, where red (high z) indicates increase in accessibility and
blue (low z) indicates decrease in accessibility. (E) Bar chart indicating number of peaks classified as significant, transient and monotonic by IDE2. (F) Bar chart
quantifying stage of maximum accessibility for significant IDE2 model fits. Peaks predominantly achieved maximum accessibility at the start and end of the time
course.
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to a window of ±500 bp around our Omni-ATAC-seq peaks at each
developmental stage. NucleoATAC depends on a stereotypical
signal of Tn5 insertion around nucleosomes referred to as a ‘V-plot’,
which resembles the fragmentation pattern around chromatin
subjected to chemical fragmentation. We observed across
developmental time points a clear V-plot signal generated by
NucleoATAC (example of V-plot from S21 libraries shown in
Fig. S8A).
Awell-established signal found across eukaryotes is the presence

of strongly positioned +1 and −1 nucleosomes around gene
promoters, and nucleosome depletion at RNA-Pol II binding sites
(referred to as nucleosome-free region; NFR) (Brogaard et al., 2012;
Radman-Livaja and Rando, 2010). We visualized NucleoATAC
signal and nucleosome occupancy around mRNA starts genome-
wide, and observed strong signals associated with +1 and −1

nucleosomes (Fig. 4A,B; Fig. S8B-D). We also observed a
depletion of nucleosomes and a decrease in NucleoATAC signal
between the +1 and −1 nucleosomes, which may represent NFRs.
This signal was observed consistently in each of our stage-specific
libraries (Fig. S8E,F). These data indicate that we were able to
identify the stereotypical nucleosome signal at promoters,
suggesting that NucleoATAC is able to infer nucleosome
positions within our dataset genome-wide.

Deeply sequenced ATAC-seq data also enables transcription
factor binding inference. We used HINT-ATAC to identify
transcription factor footprints in Omni-ATAC-seq peaks from
each developmental stage (Li et al., 2019) and evaluated the
enrichment of these transcription factor footprints across
developmental time. We used the JASPAR database of position
frequency matrices (PFMs) to comprehensively identify possible

Fig. 3. Time-courseRNA-seq ofParhyale embryos. (A) RNA-seq protocol overview. Triplicate libraries were generated for four developmental stages. (B) RNA-
seq transcriptome assembly and merging pipeline. Short-read, long-read and long-+short-read transcriptomes were generated for pooled developmental stages
matched to Omni-ATAC time points (S13, S19, S21, S23) using Trinity and StringTie2. Transcriptomes were also assembled using Trinity for short reads from a
limb developmental time course (seeMaterials andMethods). Assembled transcriptomes were thenmerged with additional transcripts from previous publications
into a Mikado transcriptome. (C) BUSCO scores for representative datasets and Mikado transcriptome. Overall, the StringTie2 short-+long-read transcriptome
(StringTie2 SL) performed comparably with the best Trinity transcriptomes. The Mikado transcriptome appeared to have a comparable BUSCO complement to
the other datasets with high BUSCO completeness. (D) Gene model completeness for Mikado transcriptome versus MAKER genome annotation based on a
dataset of 49 RACE genes. The Mikado transcriptome appears to have more complete gene models and less fragmentation. (E) Comparison of number of gene
models of different functional annotation categories between MAKER genome annotation and Mikado transcriptome. The Mikado transcriptome appears to
produce more annotated genes with a higher annotation quality. (F) Plot comparing RNA-seq signal pileups between MAKER mRNA starts and Mikado mRNA
starts. Axis represents mean signal at mRNA start sites for each dataset. (G) Plot comparing Omni-ATAC-seq signal pileups between MAKER mRNA starts and
MikadomRNA starts. (H) Categorization of Omni-ATAC-seq peaks in each stage-specific ATAC-seq library by their position relative toMikado genemodels. Distal
intergenic peaks are defined as those >10 kb away from the nearest gene, whereas unknown peaks were peaks that were located on a contig that did not have a
gene model.
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binding motifs (Fornes et al., 2020). We observed that HINT-
ATAC-enriched transcription factor footprints appeared to form
three groups based on the timing of highest enrichment: early, S21/
S22 and late (Fig. 4D,E). These results are consistent with the
general trends observed in PCA, which suggest that the early,
middle and late time points in development have the greatest
variation.
The data generated from these analyses enable the visualization

of chromatin accessibility, predicted nucleosome position, inferred
transcription factor binding and RNA-seq expression at individual
loci across around half of Parhyale development. The strengths of
these data are illustrated in Fig. 4C at the predicted promoter of the
Parhyale Engrailed-1 locus for stage S21. Thus, for any genomic
region of interest, one can develop a comprehensive prediction of
the local chromatin environment at each of the 15 time points in
our dataset.

Identifying gene regulatory programs from Omni-ATAC-seq
using fuzzy clustering
To assess the potential for our dataset to provide new biological
insights, we attempted to identify distinct gene regulatory programs
based on differential accessibility. We used the Mfuzz package to
perform fuzzy c-means clustering on the matrix of read counts
generated from our Omni-ATAC-seq peaks (Kumar and E Futschik,
2007). We determined that our peaks could be optimally partitioned
into nine clusters (see Materials and Methods).

We evaluated the differences between clusters through a variety
of approaches (Figs 5 and 6). Fig. 5D shows the standardized raw
accessibility scores of peaks in each of the nine clusters over time.
Our clusters appeared to show substantial differences in the timing
of their maximum accessibility, the GO terms associated with genes
located near peaks in each cluster and also the enrichment of binding
footprints for different transcription factor families. For example,

Fig. 4. Inference of nucleosome positioning and transcription factor binding fromOmni-ATAC-seq data. (A) NucleoATAC smoothed signal at mRNA starts
genome-wide. A clear pattern of peaks in the signal can be observed, suggestive of nucleosome positioning. Axis reflects mean signal across all mRNA starts at
stage S21. (B) Inferred nucleosome occupancy at mRNA starts genome-wide. Axis reflects mean signal across all mRNA starts at stage S21. Inferred
nucleosome annotations on A and B added based on observed signal. (C) Visualization of NucleoATAC, HINT-ATAC, Omni-ATAC and RNA-seq data at the
inferred Engrailed-1 promoter at stage S21. Deeper inference on Omni-ATAC-seq data allows insight into the broader chromatin landscape at developmental time
points included in this dataset. (D) Summary of standardized enrichment of JASPAR CORE position frequency matrices (PFMs) among HINT-ATAC identified
footprints across developmental stages. The top 25 most-enriched PFMs are displayed. Color is based on standardized enrichment, where minimum and
maximum enrichment within each row are set to 0 and 1, respectively. PFMs marked in blue had identical enrichment ratios within each group at all time points,
likely due to having highly similar PFMs. Overall, PFMs appeared to be enriched at early, late or middle developmental stages. (E) Summary of top 25 most-
enriched Drosophila PFMs from the JASPAR CORE database. Overall, PFMs appeared enriched at early, late or middle developmental stages.
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Fig. 5. Identification and classification of regulatory element clusters. (A) t-SNE plot of the top 10,000 most statistically significant peaks identified by IDE2,
colored by IDE2max fit. (B) t-SNE plot of the same points fromA colored byMfuzz cluster. (C) Distribution of peak position categories byMfuzz cluster. Clusters 1,
2 and 8 appeared to be enriched for ‘unknown’ peaks, whereas other clusters appeared to be enriched for distal intergenic peaks. (D) Standardized accessibility
plot for top 1000 peakswith strongestmembership in each of the nine clusters. Each library is plotted as a separate point along the line plot. Line color indicates the
cluster membership value for each peak in each plot, with dark red indicating strong cluster membership and blue indicating weaker cluster membership. An
asterisk in the Cluster 9 panel marks the decrease in accessibility observed commonly in Cluster 9 peaks, more clearly shown in the IDE2 model fits in Fig. S9B.
(E) Line plots showing Omni-ATAC accessibility (solid line, blue axis) and NucleoATAC signal (dashed line, black axis) for peaks in each cluster across time. Each
box contains a line plot summarizing each signal at all peaks within that cluster with respect to a given developmental Omni-ATAC-seq library. The center of each
line plot reflects the average signal at the center of all Omni-ATAC-seq peaks in that cluster at that developmental stage. Signal is visualized at 0.4 kb upstream
and downstream of peak centers. Within each signal type, the axes across line plots for each cluster are identical. Dotted lines around subsections of the plot
highlight regions of interest. Dotted blue lines indicate the time point during which peaks in a given cluster achieved both maximum accessibility and decreased
nucleosome occupancy. Dotted red lines indicate the time point during which peaks in a given cluster achieved both maximum accessibility and increased
nucleosome occupancy.
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Fig. 6. Functional annotation of clusters using GO enrichment and transcription factor binding prediction. (A) GO enrichment per cluster based on the
nearest gene for each peak. For each peak in each cluster, we identified the nearest gene and extracted theDrosophilaOrthoFinder gene name for that gene. We
performed GO enrichment using DrosophilaGO terms, using the list of all OrthoFinder gene names found in our genome as the background for the analysis. Bar
charts display fold enrichment for each GO term. Gray text represents GO terms that did not have a significant P-value (P<0.05) after false discovery rate (FDR)
correction. (B) HINT-ATAC enrichment per cluster for JASPAR CORE PFMs. For each cluster, we identified all unique transcription factor footprints across all 15
time points found within peaks of that cluster and performed enrichment relative to a randomly-selected background. We show the top 12 PFMs with the greatest
enrichment for each cluster that also had the highest enrichment in that cluster relative to other clusters. Colored boxes represent the transcription factor family of
each transcription factor in the clustermap. (C) JASPARmotif logos for select pairs of transcription factors between non-Drosophila and Drosophila transcription
factor with similar motifs as determined by STAMP alignment. For each cluster, two pairs of transcription factors are shown: a non-Drosophila transcription factor
(labeled in black) and aDrosophila transcription factor (labeled in red). In some cases, a strong similarity is observed between the non-Drosophila andDrosophila
PWMs. (D) HINT-ATACenrichment per cluster forDrosophila JASPARCOREPFMs. Some clusters had fewer than 12PFMs for which that cluster had the highest
enrichment.
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Cluster 9 appeared to be associated with peaks that decreased in
accessibility in the middle of development (Fig. 5D, asterisk), and
genes located near peaks in this cluster appeared to show GO
enrichment for cytoskeletal terms. For a fuller description of the
differences between clusters, see supplementary Materials and
Methods.
We also evaluated transcription factor footprint enrichment for

each cluster. Given that many JASPAR PFMs come from non-
arthropod sources, we used STAMP to align non-Drosophila to
Drosophila motif sequences based on similarity (Mahony and
Benos, 2007) (see Fig. S11). Selected pairs of motifs are shown in
Fig. 6C for each cluster (non-Drosophila labeled in black,
Drosophila labeled in red). For some pairs, we were able to
identify candidate Drosophila transcription factors that appeared
highly similar to non-Drosophila sequences. For example, in
Cluster 9, we observed strong enrichment for FKH family
transcription factors, the PFMs of which matched the br(var.4)
and slp1 PFMs. This suggests that peaks found in Cluster 9 may be
regulated by br(var.4) and slp1 binding in Parhyale.
Altogether, our results indicate that clustering Omni-ATAC data

using accessibility can identify groups of peaks with similar
accessibility trajectories, which can be further analyzed using
nucleosome occupancy, GO enrichment and transcription factor
footprint enrichment to understand possible biological functions
and genetic mechanisms behind differential accessibility.

Concordant and discordant expression and accessibility
dynamics appear across development
To understand the relationship between peak accessibility and gene
expression, we examined the relationship between the change in
accessibility of individual peaks and the change in expression of
nearby genes (Fig. 7). We used DESeq2 to evaluate the log2-fold
change of both expression (RNA-seq) and accessibility (ATAC-seq)
for all genes and peaks. Among our differential accessibility and
expression analyses, we observed both ‘concordant’ and ‘discordant’
relationships. Peak-gene pairs with concordant accessibility and gene
expression were those in which the sign of the log2-fold change in
expression and accessibility were in agreement – for example, peaks
for which an increase in accessibility was observed concurrently with
an increase in expression. Meanwhile, peak-gene pairs with
discordant accessibility and gene expression were those for which
an increase in accessibility was observed concurrently with a decrease
in expression, or vice versa.
We observed both classes of peak-gene pairs among all peaks, but

also among promoter peaks. Over time, the number of concordant
peak-gene pairs increased from 1888 at the S19 versus S13
comparison, to 5738 at the S21 versus S19 comparison, and then
decreased to 5240 at the S23 versus S21 comparison (Fig. S12D).
Meanwhile, the number of discordant peaks gradually increased
over time (761 to 2231 to 3115 peak-gene pairs) (Fig. S12D). These
trends were also observed for the promoter-only peaks. The gradual
increase in discordant peaks may indicate an increase in repressive
gene regulation as gene expression becomes refined over the course
of differentiation.
Overall, the classification of peaks as concordant or discordant in

accessibility and gene expression may provide downstream users of
this data with hypotheses about CRE function. Given that CREs
have recently been shown to function as both activating elements
and silencers, depending on tissue context (Gisselbrecht et al.,
2020; Halfon, 2020), we cannot directly map concordant peaks to
enhancers or discordant peaks to silencers. Without information
about higher-order chromosome contacts, it is also difficult to

precisely assign a given regulatory element’s function to a particular
gene of interest.

However, information about concordance and discordance of
peaks could be useful for researchers deciding which among
many peaks surrounding a gene of interest could be most fruitful
for reporter construction. To facilitate analysis of accessibility and
expression for peak-gene pairs of interest, we have included functions
enabling visualization of these two factors for arbitrary peak-gene
pairs, illustrated in Fig. S13. The visualization tool displays
accessibility and gene expression for user-selected Omni-ATAC
peaks and Mikado genes over RNA-seq stages (S13, S19, S21, S23),
fold change in accessibility and expression between adjacent time
points, significance of fold change as evaluated by DESeq2 and
concordance/discordance assignment at each time point.

Omni-ATAC-seq re-identifies known Parhyale regulatory
elements
To assess the practical usefulness of our Omni-ATAC-seq dataset,
we compared our Omni-ATAC-seq peaks to known regulatory
elements in Parhyale. A very limited set of regulatory elements
have been described in Parhyale: a muscle reporter, PhMS
(Pavlopoulos and Averof, 2005); a heat shock element, HS2a
(Pavlopoulos et al., 2009); an embryonic ubiquitous reporter,
PEB (Liubicich, 2007); and two reporter constructs for Parhyale
Opsin-1 and Opsin-2 (Ramos et al., 2019). We were unable to
locate any Omni-ATAC-seq peaks for the Parhyale Opsin
genes, likely owing to their late expression (outside of our
developmental time course) and very low cell number (a handful
of cells per eye). However, strong Omni-ATAC-seq enrichment
was observed at the PhMS, HS2a and PEB elements, as illustrated in
Fig. S14.

Each of these reporter constructs consists of the first exon
and intron of a gene. In each case, we observed an Omni-ATAC
peak overlapping the 5′ end of the gene. For the PhMS reporter
(Fig. S14B), previous work had identified a cluster of putative
basic helix-loop-helix (bHLH) transcription factor binding sites.
These sites were captured within our Omni-ATAC peak. The HS2a
reporter has been reported to contain two binding sites for heat
shock factor (HSF) proteins upstream of a minimal promoter
(PhHsp70), both of which are captured within our Omni-ATAC
peak (Fig. S14D). Finally, the PEB element appears to contain two
Omni-ATAC peaks. These results suggest Omni-ATAC is able to
identify the position of functional CREs, and has been able to
capture those regions important for CRE function.

Minos transposase reporter assays can reveal novel
promoters and distal enhancers
To assess the function of candidate regulatory elements identified
by Omni-ATAC-seq, we employed a Minos transposase reporter
assay (Fig. 8A). In this assay, we injectedMinos transposase mRNA
along with a transposon donor plasmid containing a reporter gene
construct that expressed DsRed to one- and two-cell embryos. Once
per day, from 3 to 10 days postfertilization (dpf), we screened for
DsRed expression on a Zeiss LSM780 confocal microscope.
We tested a variety of different reporters, summarized in Table 1
(see Materials and Methods for a discussion of candidate reporter
selection approaches and see supplementary Materials and Methods
and Fig. S16 and Fig. S17 for description of spontaneous expression
patterns observed).

Among the novel reporter constructs we tested, two showed
robust expression: pMi(Hsc70-4) and pMi(ne1)-Hsp70-p2. The
pMi(Hsc70-4) construct was constructed using the putative
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promoter peak of the Hsc70-4 gene (Fig. 8B,D). This reporter
showed strong expression in a cluster of neurons associated with the
eye beginning at ∼9 dpf (Fig. 8C). The expression pattern of these
neurons appears to be distinct from those observed using a synthetic
3XP3 enhancer, which has previously been used as a positive
marker of transformation Parhyale (Pavlopoulos and Averof, 2005).

Thus, it is possible to build new reporters from our Omni-ATAC
peaks using putative promoter peaks.

The second reporter that showed robust expression was the
pMi(ne1)-Hsp70-p2 construct, which contains the PhHsp70
minimal promoter along with a strong peak extracted from the
Hsp70 cluster, about 30 kb away from the location of the minimal

Fig. 7. Correlation between RNA-seq andOmni-ATAC-seq. (A) Correlation between log2-fold change RNA-seq and log2-fold change Omni-ATAC-seq at peak-
gene pairs in sequential pairwise comparisons of developmental stages. Only peak-gene pairs with a significant difference in expression and accessibility
between the two time points are plotted. Positive axis reflects higher expression or accessibility at the later developmental stage for each plot. Points colored in red
reflect concordant relationships between log2-fold change in RNA-seq and Omni-ATAC-seq; blue peaks reflect discordant relationships. Dotted line represents a
linear fit to all data in the plot. Pearson correlationR2 and Spearman correlation ρ for all points are displayed in each plot. ***P<0.001. (B) GO-term enrichment for
gene-peak pairs with concordant or discordant expression and accessibility log2-fold change for all peaks. Gene lists were extracted based on the nearest Mikado
gene to each peak. (C) Correlation between log2-fold change RNA-seq and log2-fold change Omni-ATAC-seq at all peaks in each developmental stage. Positive
axis reflects higher expression at the later developmental stage for each plot. Pearson correlation R2 and Spearman correlation ρ for all points are displayed in
each plot. ***P<0.001. (D) GO-term enrichment for gene-peak pairs with concordant or discordant expression and accessibility log2-fold change, for promoter
peaks.
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promoter (Fig. 8E,G). Hsp70-p2 drives strong expression in cells of
the embryonic yolk (Fig. 8F). Some yolk cells labeled by this
reporter moved dynamically around the yolk, whereas others
appeared static and showed spongiform morphology (Movie 1).
We observed defects in the development of the dorsal portion of the
embryo in mid-stage (∼6-7 dpf ) embryos injected with this
construct, which stereotypically displayed a separation between
the embryo proper and the eggshell (Fig. 8F, bottom panel, marked
with arrow). Although we were unable to establish a genetic line
using this construct, we observed strong and reproducible
expression in many embryos. This reporter is the first indication
that distal enhancers exist and can be identified in Parhyale.
Although it remains challenging to identify novel CREs in

Parhyale, our results suggest that functional regulatory elements can
be identified from our Omni-ATAC data. Among the numerous
peaks identified in our dataset, we expect that many will reveal
novel gene regulatory dynamics. Future work to identify such
elements will require the optimization of reporter expression and
transgenic strategies to increase the throughput and sensitivity of
reporter gene assays.

DISCUSSION
New genomic data enable deeper understanding of underlying
biology. This is especially true in emerging research organisms,
for which data and resources are limited. This work provides a

wealth of genomic resources for the amphipod crustacean
P. hawaiensis. In addition to providing Omni-ATAC-seq and RNA-
seq data for a broad developmental time course, our work generates
multiple new transcriptomes, an updated genome annotation, a
catalog of dynamically accessible chromatin regions and predictions
of nucleosome occupancy and transcription factor binding.
Moreover, our thorough analysis of regulatory element dynamics
through clustering, GO enrichment, predicted transcription factor
binding and correlations with RNA-seq present numerous hypotheses
for CRE function. Such data will support researchers in the
growing Parhyale community in efforts to identify and characterize
developmental regulatory elements, and provide the foundations for
more advanced approaches, including single-cell sequencing
techniques, which rely on high-quality reference datasets.

The Parhyale genome contains many distant and dynamic
regulatory elements
From our data, we were able to glean new information about the
global dynamics of gene regulation during Parhyale development,
as well as the composition of the Parhyale genome. We observed
that the vast majority of our peaks showed dynamic accessibility
over developmental time, and that peaks could have a variety of
different temporal dynamics, including transient increases and
decreases in accessibility alongside more absolute increases and
decreases. These results indicate that much of the Parhyale genome

Fig. 8. Minos transposase reporter assay identification of novel regulatory elements. (A) Minos transposase reporter assay and screening approach.
(B) Plasmid schematic for the pMi(Hsc70-4) reporter. (C) Expression of the pMi(Hsc70-4) reporter in neurons associated with the eye of a 9 days postfertilization
embryo. Bottom row shows amagnified image of the head region. A clear projection of the neurons can be seen. (D) The genomic region of the Hsc70-4 promoter
peak. (E) Plasmid schematic for the pMi(ne1)-Hsp70-p2 reporter. (F) Expression of pMi(ne1)-Hsp70-p2 reporter at 5 and 6 dpf showing strong expression in the
yolk. Arrowmarks aberrant morphology at the dorsal side of the embryo observed consistently in all embryos with fluorescent expression. (G) The genomic region
of the Hsp70-p2 peak relative to the HS2a element. The PhHsp70minimal promoter used in this construct is locatedwithin the HS2a element. Scale bars: 100 µm.
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undergoes dynamic changes in accessibility over developmental
time.
With an improved genome annotation, we were also able to

determine that many (∼37.2%) regulatory elements in Parhyale are
located in intergenic regions, and that among all elements at all
time points, elements located >10 kb away from the nearest gene
(distal intergenic peaks) were the largest group, followed by intronic
peaks. These results are notable, given that many of the currently
studied protostome genomes are small (for example, Drosophila
melanogaster is 180 Mb, Tribolium castaneum is 200 Mb and
Bombyx mori is 530 Mb). In such organisms, regulatory elements
tend to occur within short distances from promoters, and it is
common in such systems to attempt to build reporter genes using a
short window upstream of the promoter of a gene of interest.
Parhyale is an example of an arthropod with a large genome

(3.6 Gb, or ∼10% larger than Homo sapiens at 3.2 Gb). Given
the large genome size, and the large proportion of elements
located distant to genes, we expect that regulatory elements within
Parhyale may be located more distantly from gene promoters than
in other arthropods. Future attempts at building reporter genes in
this organism will need to account for the large number of distant
regulatory elements, which may be crucial to proper reporter
expression.
Our data are among the first to identify regulatory elements

genome-wide in a non-insect arthropod (Gatzmann et al.,
2018; Kissane et al., 2021), and also examine one of the largest
sequenced arthropod genomes available to date (Kao et al., 2016).
These data will enable other researchers to examine the relationship
between genome size and regulatory element composition across
more diverse taxa, and will be useful in developing a deeper
understanding of how genome organization affects gene expression
across the metazoans.

Combined short- and long-read transcriptomes can improve
genome annotations
Our work can also serve as a guide for other researchers working in
emerging research organisms. First, our work demonstrates the
utility of combining short- and long-read sequencing in generating
more accurate genome annotations for emerging research

organisms. Even with a small number of sequences (∼1.2 million
reads) generated using inexpensive Nanopore sequencing, we were
able to assemble a transcriptome with a moderate BUSCO score
(71%). Combining short reads and long reads (StringTie2 SL), we
were able to construct a transcriptome with both a high BUSCO
score (91.8%) and low rate of gene fragmentation.

Moreover, the completeness of the StringTie2 SL transcriptome
met or exceeded that of several of our Trinity-derived
transcriptomes. Examination of individual genomic regions in the
Parhyale genome indicates that Trinity generates numerous
spurious transcripts, which can be confounding for whole-genome
analysis (see Fig. S6 for examples). Thus, for other researchers with
access to a genome assembly, we would strongly recommend
performing both short- and long-read sequencing, and assembling
using multiple different assembly strategies to generate higher
quality genome annotations. For those without access to a high-
quality genome, we would caution against relying strictly on
transcripts generated from software such as Trinity, which, in our
system, generated many transcripts that did not appear to match with
previous RACE data. Filtering transcripts by expression values, as
well as employing transcriptome-merging pipelines such as Mikado
(in the case of a high-quality genome) and EvidentialGene (in the
absence of a genome), would likely help remove such spurious
transcripts.

Deep analysis of ATAC-seq data can reveal more than just
dynamic accessibility
Although the most direct analysis of ATAC-seq data can enable the
identification of dynamic regulatory elements, our work uses
additional tools to infer nucleosome positioning and transcription
factor binding from our ATAC-seq data. Using NucleoATAC,
we were able to recover clear signals of nucleosome positioning at
promoters, a quality observed in numerous organisms.
Using HINT-ATAC, we were able to predict transcription factor
binding across developmental stages. Such analyses enable a
glimpse of the possible chromatin landscape of the genome,
particularly in the absence of more direct and specific, but also more
time-consuming and expensive, approaches such as ChIP-seq or
CUT&RUN.

Table 1. Plasmids tested using Minos transgenesis

Plasmid Type Gene – Drosophila expression
Number
injected

Number
survived

Number of
DsRed or GFP+ Phenotype

pMi(gm) Promoter N/A – Parhyale muscle reporter PhMS 109 39 24 Green muscle expression
pMi(retn) Promoter retained – expressed in some neurons 240 104 5 No consistent phenotype
pMi(SVP) Promoter seven up – expressed in ventral neuroblasts 122 31 0 None
pMi(su-s-2) Pro+peak suppressor of sable – embryonic ubiquitous

expression
127 57 7 No consistent phenotype

pMi(Rx) Pro+peak retinal homeobox – expressed in various
neural tissues

74 28 0 None

pMi(Hsc70-4) Promoter Heat shock 70 complex protein 4 –

embryonic ubiquitous
212 99 22 Neurons associated with

the eye
pMi(En1) Promoter engrailed – parasegment stripes 71 33 0 None
pMi(En1)-p1 Pro+peak ‘’ 67 46 0 None
pMi(En1)-p1.5 Pro+peak ‘’ 70 51 0 None
pMi(En1)-p5 Pro+peak ‘’ 68 58 1 Faint expression domain
pMi(Sp69) Promoter Sp69 – leg gap gene 74 56 0 None
pMi(Sp69)-p1 Pro+peak ‘’ 50 30 0 None
pMi(Sp69)-p1.5 Pro+peak ‘’ 86 32 3 No consistent phenotype
pMi(Sp69)-p2.5 Pro+peak ‘’ 71 35 0 None
pMi(Sp69)-p3 Pro+peak ‘’ 241 121 8 Head, leg, gill
pMi(ne1)-Hsp70-p1 Pro+peak Hsp70 complex 45 26 0 None
pMi(ne1)-Hsp70-p2 Pro+peak Hsp70 complex 310 81 61 Yolk cells

N/A, not applicable; ‘’, same as previous row.
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In addition to performing inference, we were able to identify
clusters of peaks with potentially distinct biological functions using
fuzzy clustering. These clusters of peaks appeared to differ in their
accessibility dynamics, nucleosome positioning and enrichment of
transcription factor footprints, indicating that meaningful biological
differences can be gleaned from deeper analysis of ATAC-seq data.
For example, we observed strong enrichment in Cluster 9 for FKH
transcription factor footprints matching the PFMs for Drosophila
br(var.4) and slp1. The strongest peaks in this cluster appeared to
share a common decrease in accessibility during stages S21-S22,
and an enrichment for genes with GO terms related to cytoskeletal
function. This group of peaks appeared to show a decrease in
accessibility at a time point during which the embryo undergoes
a dramatic morphogenetic event in which it splits along the
midline (Browne et al., 2005). We hypothesize that FKH domain-
containing transcription factors may play a role in that important
morphogenetic event. Using our analyses as a starting point, other
Parhyale researchers may be able to make hypotheses about their
own developmental processes of interest.

Omni-ATAC-seq identifies old and new regulatory elements,
including enhancers
Our data were able to capture most of the previously-
identified Parhyale regulatory elements. In addition, we were able
to demonstrate that our data contain new regulatory elements.
Notably, we demonstrate the first identification of a distal regulatory
element, Hsp70-p2, located about 30 kb from the PhHsp70 minimal
promoter. These results are the first identification of an enhancer
separated by a large distance from a minimal promoter element in
this organism.
Our results demonstrate that Omni-ATAC-seq is able to identify

novel regulatory elements, and we expect that numerous new
reporter genes will be built from these data. Previous work relied on
examining candidate regulatory elements within individual
genomic regions, or attempting to build new reporters through
random integration events. With this dataset, it is now possible to
identify candidate regulatory elements for any gene of interest and to
screen for expression patterns using the Minos reporter system.
Moreover, by evaluating concordance and discordance of gene
expression and accessibility using this dataset, it is possible to
further refine the list of candidates for reporter construction based on
the potential of individual peaks to drive or repress gene expression.
We were unable to identify clear reporters from some of the

developmental genes we tested, such as Sp69; however, many peaks
near these genes remain to be tested. Future work to build new
reporters in Parhyalemay require the development of more efficient
transgenesis and screening strategies. For example, improving the
efficiency of CRISPR-mediated homologous recombination or
CRISPR-mediated non-homologous end-joining transgenesis could
enable researchers to insert a reporter near a candidate regulatory
region of interest. Moreover, future approaches will also need to
account for the numerous distant regulatory elements in the
Parhyale genome, which may be important for gene regulation.
Examining local DNA interactions using approaches such as Hi-C
or other chromatin conformation capture approaches will be
instrumental in identifying distant regulatory regions.
Together, these approaches have enabled the exploration of

chromatin dynamics and transcription factor binding in an emerging
model organism. Our work illustrates how a single, easily adapted
protocol can yield data amenable to deep analysis. We would
recommend that other researchers using ATAC-seq or similar assays
in emerging model organisms also take advantage of the additional

information that could be gleaned from deep analysis of their data,
which could provide further insights into how both local and global
changes to nucleosome occupancy and transcription factor binding
influence their biological processes of interest.

Conclusion
By combining Omni-ATAC-seq with RNA-seq across a broad
developmental time course, our work is able to identify and
classify numerous candidate CREs in the genome of the amphipod
crustacean P. hawaiensis. We demonstrate how deep analysis of
Omni-ATAC data can facilitate the identification of peaks with
distinct accessibility, nucleosome occupancy and transcription
factor footprint enrichment. We further classify peaks as
concordant or discordant regulatory elements by integrating
differential accessibility and differential expression, revealing
potential relationships between regulatory elements and nearby
genes. Moreover, we show the potential to identify novel reporter
genes using candidate promoters and enhancers from our data.

This work provides a substantial resource to the Parhyale
community, and should accelerate the study of gene regulation in
this emerging research organism. In addition, our work can serve
as a framework for other researchers deploying ATAC-seq and
RNA-seq approaches in emerging research organisms. Through
deep analysis of ATAC-seq data, combined short- and long-read
sequencing, and integration of accessibility and gene expression,
such researchers can identify regulatory elements with distinct
biological functions and advance the study of gene regulation in
their organisms of interest.

MATERIALS AND METHODS
Crustacean cultures
Parhyale hawaiensis of the Chicago-F isolate were raised at 25°C and fed a
diet of carrots, shrimp pellets and Spirulina flakes in Tropic Marin artificial
seawater with a salinity of 31-35 ppm in plastic tanks.

Embryo cultures
Embryos were collected using previously described protocols (Rehm et al.,
2009), staged using the Browne et al. (2005) staging guide, and raised at
27°C in a humidity-controlled incubator in filter-sterilized artificial
seawater. For ATAC-seq and RNA-seq experiments, clutches of 15 or
more embryos were collected and staged between S1 and S6, as these time
points are among the shortest and most morphologically identifiable during
early development.

Embryo staging
Two groups of five embryos each from a single clutch were used in the
ATAC-seq experiments, and three groups of five embryos each from a single
clutch were used in the RNA-seq experiments. Embryos of the correct stage
were selected based on morphological characteristics as described in the
Browne et al. (2005) staging guide, and any embryos with abnormal or
asynchronous morphology were discarded. Morphologically representative
embryos from the same clutch as used for the ATAC-seq were photographed
on ventral and lateral positions within 10 min of beginning the tagmentation
procedure. Any remaining embryos were boiled briefly and fixed using the
protocol described in Rehm et al. (2009) and DAPI stained to further
confirm staging. The process of staging embryos, imaging embryos, boiling
and mashing embryos for Omni-ATAC tagmentation were all performed
within a 30 min time interval for each developmental stage.

RNA-seq
Embryos for RNA isolation were homogenized in TriZol using a DWK Life
Sciences (Kimble) Biomasher II Closed System Disposable Tissue
Homogenizer, and RNA was isolated using the Zymo Direct-Zol
Miniprep Plus kit. RNA quality was assessed based on fragment analysis
using an Aligent 2100 Bioanalyzer. cDNAwas generated from RNA using
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the TaKaRa SMART-seq v4 Ultra Low-Input kit. cDNA was then
sequenced using the Illumina NovaSeq to generate short reads. Using the
Nanopore Direct cDNA barcoding kit (SQK-LSK109), cDNA was also
sequenced on a Nanopore MinION flow cell to generate long reads.

Limb development RNA-seq methods
A pool of embryos consisting of embryonic stages 19, 20, 22, 23, 25 and 28
were homogenized with DWK Life Sciences Kimble Kontes Pellet
Pestle Cordless Motor in Trizol and extracted using Trizol. PolyA+
libraries were prepared with the Truseq V1 kit (Illumina), starting with
0.6-3.5 mg of total mRNA, and sequenced on the Illumina HiSeq 2000
as paired-end 100 base reads, at the QB3 Vincent J. Coates Genomics
Sequencing Laboratory.

Limb development RNA-seq de novo transcriptome assembly
For the Trinity-limb (old) assembly, transcripts were assembled de novo
using Trinity r2013_08_14 (Grabherr et al., 2011) with parameters –JM
170G –CPU 10 –inchworm_cpu 6 –min_kmer_cov 2 –min_contig_length
49 –group_pairs_distance 700. Input RNA-seq reads were treated as paired-
ends. Output transcript assemblies shorter than 200 bp were discarded. The
remaining assemblies were screened for contaminants with BLASTX
(BLAST+ v2.2.26; parameters: -num_descriptions 50 -num_alignments 50
-evalue 1e-5 -lcase_masking -soft_masking true -seg yes) (Camacho et al.,
2009) against a database of all bacterial proteins downloaded from NCBI
(retrieved 2013-08-31), then against Swiss-Prot UniProt human sequences
(retrieved 2013-08-31) (The UniProt Consortium, 2019). All hits were
further required to cover a minimum of 40% of each assembled transcript
sequence. When filtering for human contaminants, a 98% identity threshold
was also required. For the Trinity-limb (new) assembly, transcripts were
assembled using Trinity v2.5.1 using standard settings.

Transcriptome assemblies
Using the Trinity (Haas et al., 2013) pipeline to assemble the short-
read sequences, we generated four developmental stage-specific de novo
transcriptomes (Trinity-S13 to Trinity-S23) and twomerged transcriptomes,
one de novo (Trinity-all) and one genome-guided (Trinity-GG). In addition,
we generated two transcriptomes with reads from several developmental
stages covering the time course of limb development [Trinity-limb (new)
and Trinity-limb (old)]. Although themerged transcriptomes were generated
from all four developmental stages (Trinity-all, Trinity-GG), they scored
lower compared with stage-specific transcriptomes when coding DNA
sequence completeness was assessed using BUSCO (Fig. 3D). One possible
explanation for this could be an increase in transcript assembly
fragmentation from de Bruijn graph assembly caused by the high
heterozygosity previously described of the Parhyale genome (Kao et al.,
2016). For long-read sequencing, we mapped the reads to the phaw_5.0
genome using minimap2 and assembled a transcriptome using StringTie2
(Kovaka et al., 2019; Li, 2018). We also used StringTie2 to generate a
combined transcriptome containing both short and long reads. Although the
long-read transcriptome (StringTie2 L) yielded a low BUSCO score, the
short-+long-read transcriptome (StringTie2 SL) scored comparably with our
other transcriptomes (Fig. 3D).

Short-read RNA-seq data was used to generate both de novo and genome-
guided transcriptomes using Trinity. For genome-guided assembly, reads
were mapped using HISAT2. Long-read RNA-seq data was mapped to the
most recent Parhyale genome (phaw_5.0) using minimap2 and assembled
using StringTie2. A combined transcriptome using both HISAT2-mapped
short reads and minimap2-mapped long reads was also generated
using StringTie2. See supplementary Materials and Methods (‘Trinity
transcriptome assembly parameters’ and ‘StringTie2 transcriptome
assembly parameters’) for additional information about assembly
parameters.

Mikado transcriptome
Short-read Trinity transcriptomes and the transcriptome from Kao et al.
(2016) were mapped to the phaw_5.0 genome using GMAP. Short-read
transcriptomes and long-read StringTie2 transcriptomes were merged using
the Mikado software along with a previous genome annotation generated by

Leo Blondel (Harvard University, MA, USA) (using MAKER). See
supplementary Materials and Methods for additional information about
Mikado parameters.

Gene model completeness analysis
To quantify the level of gene model fragmentation in our dataset, we
generated a series of manual gene annotations based on RACE sequences.
Among 143 previously-generated RACE transcripts, we selected 49 multi-
exonic transcripts that appeared to have a single promoter based on the
Omni-ATAC-seq data (Fig. S5D). For each of these RACE transcripts, we
manually annotated the extent of the first and last exon by comparing
RNA-seq read pileups to RACE data and the current genome
annotation. We also identified the Omni-ATAC-seq peak most likely to
capture the gene promoter, based on the strength of the peak (as
evaluated by the number of time points over which we observed a
statistically significant peak), as well as overlap to RNA-seq read data. We
used these manual annotations (see Table S2) to evaluate the gene models
from each of the different transcript sources (transcriptomes or gene
annotations).

For each of the 49 genes in our dataset, we evaluated whether any models
in each of the transcript sources in our dataset overlapped the promoter
peak (Fig. S5E). The ability to unambiguously identify promoters is
essential for downstream analyses, including building reporter constructs or
targeting CRISPR guides to the 5′-most end of genes. Among the transcript
sources, the Trinity de novo transcriptomes had the highest proportion
(0.96) of genes for which at least one model overlapped with the promoter
peak. However, the Trinity models we observed often (0.98, 48/49 RACE
genes examined for the Trinity-limb transcriptome) contained numerous
spurious transcript fragments in introns, exons and 3′ untranslated region
(UTR) (see Fig. S6 for summary statistics and examples). Among the
remaining transcript sources, the Mikado transcriptome had the highest
fraction of genes for which at least one model overlapped with the promoter
peak (0.84).

In addition, we assessed the degree of fragmentation of gene models
across the 49 RACE transcripts (Fig. S5D). For each gene, we determined
first whether any single gene model spanned the first and last exon,
representing a complete ‘single’ transcript. If there was not a single model,
we next assessed whether two separate models overlapped with the first and
last exon, or if all models only overlapped either the first or last exon. These
results together formed a measure of transcript completeness. Comparing
the different transcript sources, the StringTie2 SL transcriptome had the
highest fraction (0.76) of complete ‘single’ transcripts, with the Mikado
transcriptome having a slightly lower fraction of ‘single’ transcripts (0.73)
(Fig. S5E).

Functional annotation of transcripts
To assess the quality of the two genome annotations, we performed
automated functional annotations to assign gene names and functions. We
used two approaches: eggNOG and OrthoFinder (Emms and Kelly, 2019;
Huerta-Cepas et al., 2019). eggNOG is a rapid and lightweight genome
annotation software that assigns gene names, KEGG pathway information
and GO terms, among numerous other metrics, to gene models. OrthoFinder
facilitates the identification of orthogroups between provided peptide
libraries, enabling automated comparisons between gene lists in species of
interest.

We observed that the Mikado transcriptome included a greater number
of GO-term assigned genes, eggNOG named genes and eggNOG uniquely-
named genes than were found in the MAKER annotation (Fig. 3E). We
used OrthoFinder to assign orthogroups between the Mikado or
MAKER transcriptomes and the list of all D. melanogaster peptides
from the UNIPROT-SWISSPROT database. The Mikado and MAKER
transcriptomes produced similar numbers of orthogroups; however, the
Mikado transcriptome produced a greater number of 1:1 orthogroups, which
proved useful for downstream GO term enrichment analysis (summarized in
Fig. 3E; see Fig. S7 for further explanation of orthogroup size comparisons).
See supplementary Materials and Methods (‘eggNOG annotation’ and
‘OrthoFinder annotation’) for additional information about functional
annotation.
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ATAC-seq data
We performed conventional ATAC-seq as per Buenrostro et al. (2015) for
stages S13-S22. Data were used for benchmarking in comparison to Omni-
ATAC data, but were not used for downstream analyses.

Omni-ATAC-seq tagmentation
Tagmentation was performed using the reagents described in Corces et al.
(2017) Omni-ATAC-seq paper, with the following modifications. Instead of
the Illumina Nextera TD buffer, 2× Tagmentation Buffer from Wang et al.
(2013) was used. Homemade Tn5 enzymes were purified and received as a
gift from Jase Gehring (University of California, Berkeley, CA, USA;
California Institute of Technology, CA, USA) and assembled into Tn5
transposomes as per Picelli et al. (2014), using adapters purchased from IDT
with 5′ phosphorylation (Picelli et al., 2014). Before adding RSB+D,
embryos were washed 3× using 1× PBS. Embryos were mashed into a near-
uniform solution using the tip of a low-retention p10 pipette, and the pipette
was visually inspected for any remaining debris. We used the Qiagen
MinElute kit for purification and concentration of DNA.

Omni-ATAC-seq library preparation
Saturation PCR conditions for Omni-ATAC-seq libraries were performed
using a Roche Lightcycler 480 as per Corces et al. (2017). Optimal
conditions for additional amplification after pre-amplification were
determined based on the number of additional PCR cycles corresponding
to one-third of the maximum value, rounded up. Barcodes were added to
samples using primers supplied by QB3-Berkeley using PCR as described
in Corces et al. (2017). Following amplification, adapters were removed
from libraries using Ampure bead purification and analyzed using a
Bioanalyzer or Fragment Analyzer machine to assess library quality. Final
libraries were pooled together to have relatively equal proportions based on
additional qPCR quantification and size-selected using a Pippin Prep to
remove fragments greater than 1.5 kb in size. All libraries were sequenced
on one lane of each of Illumina NovaSeq SP 150PE and NovaSeq S1 150PE.
Adapters used for libraries are listed in Table S1.

Omni-ATAC-seq quality control
We employed a battery of standard tests used to assess the quality of
ATAC-seq data (Fig. S2A). Omni-ATAC-seq libraries were also
compared with previous ATAC-seq libraries, and had greater library size,
higher numbers of non-duplicated reads and lower amounts of
mitochondrial DNA contamination (Fig. S2B,C). Fragment size analysis
of Omni-ATAC-seq reads after mapping revealed distinct 1-nucleosome
and 2-nucleosome peaks, indicating that tagmentation was efficient
(Fig. S2E,F).

To determine whether our Omni-ATAC-seq data represented genuine
enrichment in accessible chromatin regions, we examined promoter
accessibility genome-wide. A hallmark of successful ATAC-seq
experiments is strong enrichment of reads in gene promoters (Yan et al.,
2020). We evaluated our ATAC-seq using the most recent phaw_5.0 gene
annotations (obtained from Leo Blondel, hereafter referred to as the
‘MAKER annotation’) at the start of annotated mRNAs and across
mRNA lengths, and compared our results with RNA-seq read pileups
(Fig. 2A,B). As expected, Omni-ATAC-seq signal is enriched
symmetrically at mRNA starts, whereas RNA-seq reads are enriched 3′
of mRNA starts. In addition, Omni-ATAC-seq data show greater enrichment
at promoters than over annotated mRNA regions, and decreased
enrichment outside of annotated mRNAs. These data suggest that our
Omni-ATAC-seq performed as expected in identifying promoter regions
genome-wide.

Adapter trimming was performed using Trim Galore, which leverages
Cutadapt and FASTQC (https://www.bioinformatics.babraham.ac.uk/
projects/fastqc/; https://www.bioinformatics.babraham.ac.uk/projects/trim_
galore/; Martin, 2011). FASTQC was also performed before and after
adapter trimming to confirm removal of sequencing and Tn5 adapters.
Percentage of reads remaining after deduplication was estimated based on
FASTQCmetrics. Library size was estimated by multiplying raw read count
by percentage of reads remaining after deduplication for each lane, and then

summing the two lanes. Reads were aligned to the phaw_5.0 genome as well
as the Parhyale chrM using Bowtie2, and percentage read mapping was
determined using Bowtie2 output (Langmead and Salzberg, 2012).
After peak calling, merged peaks were used to evaluate correlation
between replicates. Replicates were highly correlated, with a mean
Pearson correlation of 0.988 and a mean Spearman correlation of 0.936
(Fig. S2H,I).

Omni-ATAC peak calling
Aligned reads were quality-filtered with a q-value of 10 in samtools and used
for Genrich analysis. Genrich analysis was run on both duplicate libraries
simultaneously; Genrich performs peak calling on each peak individually,
and then merges the P-values of the replicates using Fisher’s method to
generate a q-value, obviating the need to calculate an irreproducible discovery
rate. Output .bedgraph-like files from Genrich were reformatted using a
custom Python script to be standard .bedgraph files, which were converted to
bigWig files using the bedGraphToBigWig executable from the University of
California, Santa Cruz Genome Tools software bundle. Output .narrowPeak
files from Genrich were converted into .bed files for ease of visualization in
Integrative Genomics Viewer using a custom Python script (https://github.
com/mezarque/Parhyale_Genome_Resources).

IDE2 concept and analysis
IDE2 differs from other software for differential expression analysis in that
it allows the investigation of trajectories of dynamic expression over large
numbers of time points. It does so by modeling a gene expression trajectory
as an ‘impulse’ function that is the product of two sigmoid functions
(Chechik and Koller, 2009; Yosef and Regev, 2011). This approach enables
the modeling of a trajectory of gene expression in three parts: an initial
value, a peak value and a steady state value, thus summarizing an expression
trajectory using a fixed number of parameters. With the ability to capture the
differences between early, middle and late expression values for each gene
in a dataset, IDE2 also enables the detection of transient changes in gene
expression or accessibility during a time course. Identifying differential
expression over large numbers of time points is difficult for more categorical
differential expression software such as edgeR and DESeq2, which
generally use pairwise comparisons between time points to assess change
over time (Love et al., 2014; Robinson et al., 2010).

Assigning spatial categories to Omni-ATAC peaks
We first assigned the nearest peak within 5 kb of the first 200 bp of each
gene (mRNA and ncRNA) as a promoter peak using bedtools closest. We
then assigned the remaining peaks into categories based on their position
relative to mRNA and ncRNA annotations. Peaks that overlapped with
mRNA and ncRNA annotations were assigned as exonic or intronic
regulatory elements. The remaining peaks – those which had not been
classified as promoters, and which did not overlap with genes – were
classified as intergenic peaks. The intergenic peaks were divided into two
categories: proximal and distal intergenic peaks. Proximal peaks were those
<10 kb away from the nearest gene, whereas distal intergenic peaks were
those >10 kb away from the nearest gene.We established this cutoff with the
rationale that peaks beyond this distance would be considerably more
difficult to isolate as single fragments combined with a promoter peak using
PCR, agnostic of their orientation with respect to the promoter element.
Such peaks could not have been easily identified using previous approaches,
and thus differ from ‘proximal’ peaks by their necessary identification using
genomic techniques.

Fuzzy clustering concept and analysis using Mfuzz
Fuzzy clustering differs from categorical clustering approaches, such as
hierarchical clustering and k-means clustering, in that it assigns a probability
for each element in the dataset to fall into each of the identified clusters. For
example, rather than a given peak falling in either cluster A or B exclusively,
a given peak might have a 95% chance of falling in cluster A and a 5%
chance of falling in cluster B.

The Mfuzz package allows the specification of two parameters: c, the
number of clusters to create from the data, and m, the stringency of the
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clustering. To determine the optimal number of clusters in our fuzzy
c-means clustering, we varied the c-value from 3 to 13, and evaluated the
quality of clustering using the cluster overlap metric provided by Mfuzz, as
well as the silhouette score metric (Fig. S10) (Kumar and E Futschik, 2007).
We determined that nine clusters yielded the highest mean silhouette score,
while avoiding clusters below the silhouette score average and minimizing
size variability between clusters. Fig. 5A plots with t-stochastic neighbor
embedding (t-SNE; implemented in scikit-learn) (Hinton and Roweis, 2003;
Van der Maaten and Hinton, 2008; Pedregosa et al., 2011) the top 10,000
most significant peaks called by IDE2, where each point is colored by its
IDE2 model max fit, while Fig. 5B illustrates the same clusters, colored by
their Mfuzz cluster. Fig. 5C indicates the spatial categories of peaks in each
cluster.

Differential expression and accessibility analyses
We performed differential expression analysis using IDE2 and DESeq2
using standard settings. To generate the Omni-ATAC-seq read count matrix,
we used bedtools multicov, using the merged Genrich peaks as our regions
of interest. For our IDE2 analyses using the Omni-ATAC-seq data, IDE2
model fits were extracted from the IDE2 output and used to visualize model
expression using a custom Python script (see supplementary Materials and
Methods; ‘DESeq2 parameters’ and ‘ImpulseDE2 analysis’). To generate
the RNA-seq read count matrix for DESeq2, we generated a
gene_trans_map file for the Mikado transcriptome, as would be available
for the Trinity RNA-seq analysis pipeline, and used the built-in Trinity
differential expression pipeline (align_and_estimate_abundance.pl,
abundance_estimates_to_matrix.pl) with Kallisto to generate a matrix
of read counts. To comply with the requirement for integer counts in
DESeq2 analysis, we rounded each value to the nearest whole number.

NucleoATAC nucleosome predictions
Quality-filtered reads from each biological duplicate were merged and
analyzed using NucleoATAC, with genomic regions set as ±500 bp
windows around Genrich peaks.

HINT-ATAC transcription factor footprinting
Quality-filtered reads from each biological duplicate were merged and
analyzed using rgt-hint footprinting. We used the JASPAR2020 database and
converted the position weight matrices from JASPAR format into a simple
matrix format expected by RGT-HINT using the R package ‘universalmotif’
and generated a ‘.mtf’ file to store database information (see supplementary
Materials and Methods). For enrichment analyses, we used bedtools random
to generate 13 million random 20 bp sequences, as this was the average
footprint size of genuine footprints detected by RGT-HINT in our data. This
set of random sequences was used as background for our enrichment analyses.
For cluster-specific enrichment analyses, we collated all unique transcription
factor footprints from all developmental stages for each cluster (e.g. all
footprints across S13, S14, etc. for all peaks in a given cluster) and compared
enrichment levels with our randomly generated background.

Candidate reporter selection approaches
Careful examination of developmentally important genes revealed that
many are surrounded by large numbers of peaks (>10) spread over large
genomic distances. To further filter our Omni-ATAC peaks, we identified
regions of sequence conservation to another amphipod crustacean, Hyalella
azteca (Poynton et al., 2018), using the VISTA sequence alignment software
(Ratnere and Dubchak, 2009) (Fig. S15A). Hyalella serves as a useful
comparison to Parhyale, as its genome size is smaller (1.05 Gb) but, as it is
also an amphipod crustacean, we expect that key developmental regulatory
elements might have some level of sequence conservation.

Among our Omni-ATAC peaks, we took two strategies to identify
candidate reporter elements. In the first approach, we identified all peaks
within 5 kb of mRNA starts. In doing so, we were able to identify a handful
of genomic regions in which wewere able to locate both a putative promoter
and a candidate proximal enhancer. We also identified several putative
promoters, which we tested in isolation. In the second approach, we
examined the genomic regions around important developmental genes of

interest. Many of the genes we examined showed very large numbers of
strong peaks, and were therefore intractable to thorough analysis. For the
purposes of this study, we focused on three regions: the region around the
Engrailed-1 gene, the region around the Sp-69 gene and the region around
the Heat shock protein 70 complex, where two previous cis-regulatory
elements (PhMS and HS2a) had been identified.

Minos transposon cloning
Minos transposon reporter plasmids were cloned using Gibson homology-
mediated cloning approaches and the New England Biolabs Gibson
Assembly or NEBuilder kits. As a base plasmid, we used the pMi(ne1)
plasmid, which contains the Hsp70 minimal promoter, a DsRed protein
sequence and an SV40 3′ UTR sequence, as well as two Minos inverted
repeats. For plasmids containing the Hsp70 minimal promoter, the insert
was integrated between the EcoRV and BglII restriction sites. For plasmids
containing an endogenous promoter, the insert replaced the sequence
between the EcoRV and NcoI restriction sites, thereby removing the Hsp70
minimal promoter. Cloned plasmids were Sanger sequenced to confirm a
full DsRed open reading frame (ORF) and inclusion of desired genomic
sequences.

Minos transposase assay
Minos transposase mRNAwas generated using the Thermo Fisher Scientific
mMESSAGE mMACHINE T7 or T7 ULTRA kit using NotI-digested
pBlueSK-MimRNA (Addgene plasmid #102535). mRNA and concentrated
DNAwere mixed into a final concentration of 1 µg/µl in a solution of 0.1%
phenol red in nuclease-freewater. One- and two-cell Parhyale embryos were
injected with ∼3-5 pl of injection mix using a borosilicate glass capillary
needle pulled using a Sutter P-80 or P-85 instrument. Embryos were raised
until hatching and examined once per day from 3 dpf until 10 dpf using a
Zeiss LSM780 confocal microscope to screen for DsRed fluorescence.
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Fig. S1. Embryo images for time course Omni-ATAC-Seq and RNA-Seq
A) Representative embryo images from Omni-ATAC-Seq libraries. Top row shows ventral view of DAPI stained

embryo. Bottom rows show ventral and lateral brightfield images of embryos shortly before tagmentation.
B) Representative embryo images from RNA-Seq libraries. Top row shows ventral view of DAPI stained embryo.

Bottom rows show ventral and lateral brightfield images of embryos shortly before RNA extraction.
(A: anterior, P: posterior, L: left, R: right; D: dorsal, V: ventral).
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Fig. S2. Omni-ATAC-Seq analysis pipeline and quality control metrics
A) Analysis pipeline for generating Omni-ATAC peaks and QC metrics from raw reads. Reads were quality and

adapter-trimmed using trim_galore, and trimmed reads were mapped to either the entire genome or to only the
mitochondrial chromosome (ChrM) to generate a conservative estimate of mtDNA contamination. Mapped reads
were further filtered using samtools (Q = 10) and read ends were shifted using Picardtools to reflect the mechanism
of Tn5 insertion. Shifted reads were passed to Genrich in ATAC mode using a q-value cutoff of 0.05. Files produced
by Genrich included stage-specific peaks and bedgraph-like read pileup formats.

B) Quality control metrics for Omni-ATAC-Seq libraries. Library size, percentage of reads remaining after deduplication
(%dedup), percentage of aligned reads (%aligned), and percentage of reads mapping to the mitochondrial genome
(%mtDNA) are displayed for individual Omni-ATAC libraries.

C) Metrics from B visualized for conventional ATAC-Seq libraries. Overall, Omni-ATAC seq shows similar or improved
performance on all metrics.

D) Percentage contribution to variance of each of the top 10 principal components from PCA in Fig. 2C.
E) Mapped fragment size distribution of Omni-ATAC-Seq reads. Two clear peaks are seen in the fragment size

distribution, reflecting proper sub-nucleosomal insertions.
F) Mapped fragment size distribution of conventional ATAC-Seq reads for 4 developmental stages: S19, S19+, S20,

S21. Fragment size peaks are less distinct as compared to Omni-ATAC-Seq libraries.
G) Plots of ImpulseDE2 model fits to the top 100 and bottom 100 peaks loading for PC1 and PC2 in figure 1C. PC1

appears to be associated with developmental time, while PC2 appears to be associated with peaks that show an
increase in accessibility in the middle of development.

H) Pearson correlation of mapped read counts in merged peaks between replicates for each developmental stage.
Replicate libraries show a high average correlation value (0.988).

I) Spearman correlation of mapped read counts in merged peaks between replicates for each developmental stage.
Replicate libraries show a high average correlation value (0.936). A lower correlation coefficient compared to
Pearson may suggest that strong outliers contribute to the high Pearson correlation measure.
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Fig. S3. Examining outlier effects of S21/S22 samples
A) Principal Components Analysis (PCA) of all libraries. Samples S21 and S22 appear highly separated in PC2

relative to other samples.
B) PCA of all libraries except S21 and S22 samples. The relative position of libraries in PC2 appears largely

unchanged, with early and late time points showing negative loading in PC2, and middle timepoints showing
higher loading in PC2. This suggests PC2 is not driven entirely by differences in the S21/ S22 samples.

C) ImpulseDE2 model max fit for all data (alldata, blue) or data excluding S21-S22 (noS21S22, orange). For each
peak, the developmental time of maximum accessibility was estimated, and the results are summarized as a
histogram. In the absence of S21-S22 samples, the same overall trend of early, middle, and late peak maximum
fit is observed.

D) Peak stability analysis. The 15 developmental stages were broken into 5 quintiles of 3 stages each (label in C).
For each peak, the IDE2 model max fit stage was calculated for alldata or noS21S22, and the shift in the model
max fit was evaluated. Peaks that moved more than 3 developmental stages (equivalent to 1 quintile shift) were
considered “unstable”. The majority of peaks from each quintile were considered “stable” in the absence of S21/
S22 data.

E) Fraction of stable peaks from analysis in (D). For each quintile, >80% of peaks were considered “stable”,
suggesting that most peaks have the same trajectory regardless of the presence of S21/S22 data. This suggests
that the remaining data are sufficient to reproduce the general accessibility trajectory of most peaks.
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Fig. S4. Peak category analyses and data visualization tools
A) Visualization of the genomic region around the Parhyale Engrailed-1 and Engrailed-2 loci using the Region Type 

Viewer found in the ParhyaleATACExplorer Jupyter notebook. Peak types are colored based on their identity. A 
1000bp padding has been added to the 5’ and 3’ widths of each element, for ease of visualization.

B) Distribution of peak-nearest gene distances for intergenic peaks. Most peaks are “distal intergenic”, or >10kb away 
(red dotted line) and could not have been identified easily using previous Minos reporter techniques. The average 
distance of intergenic peaks from the nearest gene is 73,351bp (blue dotted line).

C) Visualization of ImpulseDE2 model fits for all data (blue line) or noS21S22 data (orange line), plotted alongside raw 
accessibility values (points; stage S21 and S22 points are highlighted in orange), shown for the promoter peak of the 
Engrailed-1 gene. Using the ImpulseDE2 Model Comparisons section of the ParhyaleATACExplorer Jupyter 
notebook, users can visualize the two model fits for arbitrary peaks of interest.

D) Visualization of ImpulseDE2 model fits for all data within a selected genomic region (same as shown in A), filtered by 
“peak strength” = 15, or the number of peaks found within a merged peak, summed over time. IDE2 model fits can be 
visualized for all peaks within an arbitrary genomic address, or a specific set of labeled peaks when provided as a 
Python dictionary.

E) Fraction of intergenic, gene body, and promoter peaks across developmental time, normalized for the number of 
peaks after removing “unknown” peaks. The fraction of intergenic and promoter peaks appears to slightly decline, 
while the fraction of gene body peaks increases over time.

F) Ratio of gene body peaks to intergenic peaks over time. The ratio appears to decline very slightly over time. 
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Fig. S5.  Additional transcriptome and gene model evaluation metrics

A) Summarized completeness of RACE Hox gene models. Hox gene models for most genes are complete, including two 
isoforms each for Ubx, abd-A, and Abd-B. For Hox3, only a homeodomain sequence was isolated.

B) Summarized completeness of MAKER (phaw_5.0) Hox gene models. Many gene models show deviations from RACE 
sequences, including fragmentation, artefactual fusion of gene models, and extension of 5’ UTRs.

C) Summarized completeness of Hox gene models from Mikado transcriptome. The Mikado transcriptome appears to 
have more complete Hox gene models than the MAKER genome annotation. In addition, a complete Hox3 sequence 
was generated.

D) Model evaluation methods for gene model fragmentation. 49 RACE genes were selected based on the ability to 
unambiguously annotate a first exon, last exon, and promoter peak based on examination of all gene models, Omni-
ATAC-Seq peaks, and Omni-ATAC-Seq and RNA-Seq read pileups. For each transcriptome or genome annotation, 
for each RACE gene, all models were compared to manual annotation windows using bedtools. If a single model from 
all models in a given transcriptome overlapped with the first and last exon of the manual annotation, that RACE gene 
was classified as a “single” model for that transcriptome. If no single model overlapped both first and last exons, but 
models existed that overlapped either, the RACE gene was classified as “split” for that transcriptome. If gene models 
only overlapped with manually annotated first or last exons, then the RACE gene was classified as “first” or “last”. 
Finally, if no gene models overlapped, the RACE gene was classified as “no model”.

E) Summary of gene model evaluations from D for select transcriptomes. Overall, the Trinity-S21 transcriptome had the 
highest number of models that overlapped the Omni-ATAC promoter peak, and the Mikado transcriptome had the 
second highest. The StringTie2 SL transcriptome had the highest number of single gene models, and the Mikado 
transcriptome had the second highest. For both metrics, the Mikado transcriptome outperformed the MAKER genome 
annotation.

F) BUSCO evaluation for additional transcriptomes included in the dataset.
G) Fraction of gene models attributed to each transcriptome in the final Mikado transcriptome. Overall, the StringTie2 SL 

transcriptome produced the greatest number of transcripts evaluated as “best” by the Mikado pipeline. 
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Fig. S6. Additional transcriptome and gene model evaluation metrics

A) Fraction of Trinity-limb (old) gene models with spurious transcript fragments when compared with RACE data.
Fragments were observed overlapping with introns, exons, or both; some transcript fragments appeared to
contain erroneous splice junctions joining exons and introns, while others were strictly intronic.

B) Example of transcript fragments compared to RACE data at the Parhyale distal-less late 2 locus. This gene model
had two transcript fragments overlapping with known exons, but no single gene model spanning the entire locus.
Moreover, a large number of small 3’UTR-mapping fragments were observed, a signal that was frequently
observed across genes in the RACE dataset.

C) Example of transcript fragments compared to RACE data at the Parhyale scratch locus. Transcript fragments that
overlap with both intronic and exonic sequences are observed, as well as strictly intronic fragments. This gene
model was a particularly extreme example of transcript fragmentation observed among the genes in the RACE
dataset.
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Fig. S7. Additional transcriptome and gene model evaluation metrics

A) Orthogroup sizes grouped by number of Drosophila orthologs in each orthogroup for the MAKER genome
annotation and the Mikado transcriptome. The MAKER genome annotation, when annotated using OrthoFinder,
produces many gene models that are grouped into orthogroups with large numbers of putative orthologs when
compared to the results of using OrthoFinder on the Mikado transcriptome.

B) Orthogroup sizes grouped by number of Parhyale orthologs in each orthogroup for the MAKER genome
annotation and the Mikado transcriptome. As with the Drosophila measure, the number of orthogroups with large
numbers of orthologs is greater for the MAKER genome annotation.

C) Example of peptides spuriously classified as orthologs when comparing the MAKER genome annotation to the
Mikado transcriptome. OG0000000 is the single largest orthogroup identified by OrthoFinder when comparing the
Drosophila UNIPROT database to either the MAKER genome annotation or the Mikado transcriptome. In the
MAKER annotation, the largest orthogroup contains two unrelated Drosophila proteins (Sec8 and MED21), which
are grouped together along with 213 different Parhyale gene models scattered across the genome. Examination
of other orthogroups revealed a similar result, in which unrelated Drosophila proteins were grouped along with
numerous Parhyale gene models, impeding precise identification of orthologs between the species, and
suggesting problems in the quality of the MAKER gene models. In the Mikado annotation, the largest orthogroup
contains a single Drosophila protein (Rpn12) grouped along with 7 splice isoforms of a single Parhyale gene
model located on a single contig. Examination of other orthogroups derived from the Mikado transcriptome
revealed fewer obviously incorrect groupings than observed for the MAKER annotation.

Development: doi:10.1242/dev.200793: Supplementary information 

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Development: doi:10.1242/dev.200793: Supplementary information 

D
ev

el
o

pm
en

t •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Fig. S8. NucleoATAC quality control and signal over time

A) Insertion V-plot generated from NucleoATAC using reads from S21 libraries. A clear V-shaped pattern is observed,
as expected from read data fragmented along a nucleosomal distribution.

B) NucleoATAC raw signal at mRNA starts genome-wide. A strong +1 and -1 nucleosome position signal is observed. A
strong negative signal is observed at the expected nucleosome-free region (NFR). Overlaid windows in B-D were
drawn manually based on observed signal.

C) NucleoATAC smoothed signal at mRNA starts genome-wide. A strong +1 and -1 nucleosome position signal is
observed.

D) NucleoATAC occupancy at mRNA starts genome-wide. A strong +1 and -1 nucleosome position signal is observed.
E) NucleoATAC smoothed signal at mRNA starts genome-wide for all developmental stages.
F) NucleoATAC occupancy signal at mRNA starts genome-wide for all developmental stages. The occupancy value

calculated by NucleoATAC varies based on library size; in this plot, values are not normalized based on library size.
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Fig. S9. Identification and classification of regulatory element clusters

A) Standardized accessibility plot for top 1000 peaks with strongest membership in each of the 9 clusters. Each
library is plotted as a separate point along the line plot.

B) ImpulseDE2 model fits for the top 200 peaks with strongest membership in each of the 9 clusters.
C) Histogram of when all peaks in each cluster achieve their maximum accessibility as calculated by IDE2 max fit.
D) Line plots showing Omni-ATAC accessibility (dashed line, blue axis), NucleoATAC signal (dotted line, black axis),

and relative NucleoATAC histone occupancy (solid line, pink axis) for peaks in each cluster across time. Each box
contains a line plot summarizing each of the three signals at all peaks within that cluster with respect to a given
developmental Omni-ATAC-Seq library. The center of each line plot reflects the average signal at the center of all
Omni-ATAC-Seq peaks in that cluster at that developmental stage. Signal is visualized at 0.4kb upstream and
downstream of peak centers. Within each signal type, the axes across line plots for each cluster are identical.
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Fig. S10. Mfuzz clustering assessment
Note: cluster labels in this plot are for assessment purposes, and do not correspond to cluster labels used in other figures. 
A–I) Cluster overlap matrices generated my Mfuzz indicating percentage overlap between clusters.
J) Silhouette plots for different numbers of clusters. Dashed red line marks the average silhouette score. Asterisks mark
clusters with marginal silhouettes (silhouettes at or below the average). An arrowhead marks the thinnest silhouette, while
an arrow marks the thickest silhouette within each plot. All cluster numbers other than 9 and 13 showed marginal clusters
and large contrast between the thinnest and thickest silhouette widths.
K) Mean silhouette score by number of clusters.
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Fig. S11. Alignment of motifs in fuzzy clusters
A–I) Dendrograms generated from sequence alignment of JASPAR motifs using the online STAMP tool visualized using 
Interactive Tree of Life (iTOL). Top 12 most-enriched transcription factor binding sites from the entire JASPAR CORE 
database are in black for each dendrogram; up to top 12 most-enriched transcription factor binding sites from the 
Drosophila transcription factors in JASPAR CORE are in red for each dendrogram.
A’–I’) Select pairs of transcription factor binding sites with apparently similar sequences based on STAMP alignment. All 
JASPAR CORE TFs are in black; Drosophila TFs are in red.
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Fig. S12. Correlation between accessibility and gene expression at individual timepoints
A) Correlation between log mean RNA-Seq TPM and log mean Omni-ATAC-Seq accessibility at all peaks in each

developmental stage. Peaks colored based on highest and lowest quartiles of expression and accessibility. Dotted
line represents a linear fit to all data in the plot. Pearson correlation R2 and Spearman correlation ρ for all points
are displayed in each plot.

B) GO-term enrichment for gene-peak pairs with high accessibility and high expression (purple), high accessibility
and medium expression (coral), medium accessibility and high expression (blue), and medium accessibility and
medium expression (yellow), for all peaks. The threshold for “high” expression and accessibility were all values
above the 75th percentile, while “mid” expression and accessibility were all values below the 25th percentile.
Gene lists were extracted based on the nearest Mikado gene to each peak, and orthologous Drosophila names
were assigned to genes using OrthoFinder.

C) Correlation between log mean RNA-Seq TPM and log mean Omni-ATAC-Seq accessibility at promoter peaks.
D) Quantification of number of significant peak-gene pairs at each time point comparison in Fig. 7. Left plot quantifies

number of concordant and discordant peaks across all peak-gene pairs, while right plot quantifies peak-gene pairs
that were assigned as promoters.
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Fig. S13. Visualization of accessibility versus expression for arbitrary peak-gene pairs
A) Visualization of the genomic region around the Parhyale Engrailed-1 and Engrailed-2 loci. Text labels in plot

region were added manually after plotting.
B) Visualization of the average accessibility (red line) and raw accessibility values (red dots) for the promoter peak of

the Engrailed-1 gene (top). Visualization of the average gene expression (lavender line) and raw expression
values (lavender dots) of the nearest gene to the Engrailed-1 promoter peak (in this case, Engrailed-1, or
mikado.phaw_50.283864aG46)(bottom). Visualization of log2 fold change in accessibility (red bars) and gene
expression (lavender bars) for each pair of timepoint comparisons (S19 vs. S13, S21 vs. S19, and S23 vs. S21)
(middle). Asterisks in bar charts mark log2 fold changes called as statistically significant by DESeq2 (padj < 0.05).
Color of comparison labels indicates concordant or discordant relationships between accessibility and gene
expression (red for concordant, blue for discordant). When interpreting this visualization, it is important to note
that some comparisons may show high log2 fold change that is non-significant; usually, this is when the measured
values for a feature are very low. Additionally, statements about concordance and discordance should consider
whether both accessibility and expression log2 fold changes are significant. In the case of this example, the
comparisons at S19 vs. S13 would be considered truly “concordant” in our dataset, while the comparisons at S21
vs. S19 and S23 vs. S21 would not be considered concordant or discordant, as one or more features are not
significantly changing over time.

C) Visualizations as described in (B) for the Engrailed-1 gene and a distal intergenic peak located between
Engrailed-1 and Engrailed-2, nicknamed “En1_peak5”, position labeled in (A).

D) Visualizations as described in (B) for the Engrailed-2 gene and “En1_peak5”.
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Fig. S14. Omni-ATAC-Seq recovers previously identified regulatory elements
A) Expression of the PhMS reporter visualized using GFP in a juvenile Parhyale.
B) The PhMS genomic region. A strong Genrich peak overlaps with a predicted cluster of b-HLH binding sites.
C) Heat shock expression images from a transgenic Parhyale embryo carrying the HS2a element.
D) The HS2a genomic region. A peak covers the PhHsp70 minimal promoter and heat shock factor binding sites.
E) Expression of the PEB reporter, visualized in a dissected embryo using a DsRed antibody. Injected embryos

showed nearly full expression of this reporter in each germ layer (Liubicich 2007 PhD thesis).
F) The PEB genomic region. Two strong peaks overlap with the 5’ end of this reporter.
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Fig. S15. VISTA homology identification between Parhyale and Hyalella

A) Adult female Parhyale hawaiensis.
B) Adult female Hyalella azteca.
C) Pipeline for identification of orthologous genomic regions between Hyalella and Parhyale for VISTA sequence conservation

analysis.
D) Visualization of Genrich peaks, NucleoATAC nucleosome-free regions (NFRs), VISTA conservation,

Omni-ATAC-Seq signal, RNA-Seq signal, and Mikado gene models at the putative Sp69 promoter peak.
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Fig. S16. Spontaneous, non-reproducible expression patterns observed in Minos assays

A) Expression observed in one embryo injected with a plasmid containing the PhHsp70 minimal promoter and the
Sp69-p1 peak.

B) Expression observed in one embryo injected with a plasmid containing proximal promoter peak for the
odd-skipped gene along with an Hsp80 minimal promoter.

C) Expression observed in one embryo injected with a plasmid containing a putative minimal promoter for the abd-A
gene and an upstream peak (abd-A-peak1).

D) Expression observed in one embryo injected with a plasmid containing a putative minimal promoter for the abd-A
gene and an upstream peak (abd-A-peak13).

E) Expression observed in one embryo injected with a plasmid containing the putative Parhyale-retn promoter.
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Fig. S17. Expression observed from Sp69-p3 reporter
A) Plasmid map of the pMi(Sp69)-peak3 construct. The construct contains both the putative promoter peak of Sp69,

along with a distal peak (peak3).
B) Gill and claw expression observed in one embryo injected with this plasmid.
C) Leg expression observed in one embryo injected with this plasmid.
D) Head and antennal expression patterns observed in 5 embryos injected with this plasmid; embryo with strongest

expression pattern shown.
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Table S1. Illumina sequencing indices for Omni-ATAC libraries
Sample ID i7 (4000) i5 (4000) PE i5 (4000) SR Flowcell/MiSeq

S13A TACAGAGC CTTGGATG CATCCAAG

S13B AAGCGTTC GGAAGGAT ATCCTTCC

S14A AGTGACCT TTCTCTCG CGAGAGAA

S14B ACCATAGG AAGTCCGT ACGGACTT

S15A CTCGAACA ATGGTCCA TGGACCAT

S15B TGCGTAAC TGTCCAGA TCTGGACA

S17A AACAGTCC GATTGCTC GAGCAATC

S17B CTAAGACC GTTGTAGC GCTACAAC

S18A TGTTCCGT GTGAATCC GGATTCAC

S18B ACTCAACG ACTCCATC GATGGAGT

S19A GCCTTCTT TGAGGTGT ACACCTCA

S19B TGCTCTAC TCTTGACG CGTCAAGA

S19plusA GTACCACA GATACTGG CCAGTATC

S19plusB GCATTGGT ATCTTCGG CCGAAGAT

S20A CTGTGGTA ACATTGCG CGCAATGT

S20B TTACCGAC GTTGTTCG CGAACAAC

S21A TGACCGTT CATGGAAC GTTCCATG

S21B GCTAAGGA AACGTGGA TCCACGTT

S22A TAGCCATG CTGCACTT AAGTGCAG

S22B ACTTGGCT GTAGCATC GATGCTAC

S23A TGTCACAC GTGCTTAC GTAAGCAC

S23B GACACAGT CAACCTAG CTAGGTTG

S24A GTGGTATG ATCTCGCT AGCGAGAT

S24B ATGCGCTT GGACCTAT ATAGGTCC

S25A AGGAACAC ACGTTACC GGTAACGT

S25B TGGAAGCA TACTGCGT ACGCAGTA

S26A GTCGTTAC GGTACTAC GTAGTACC

S26B GAACCTTC AGCTTGAG CTCAAGCT

S27A TATGACCG TGTGAAGC GCTTCACA

S27B AACGCACA CGTTATGC GCATAACG
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Table S2. Manual annotation coordinates of 49 selected RACE genes
gene_name IGV_address Strand pro_peak_address exon1_address exon-1_address Trinity

fragments?
Fragment type

AbdominalBisoform1cloneJ7b11 phaw_50.282695a:24623698-24688129 + phaw_50.282695a:24622599-24624450 phaw_50.282695a:24,623,624-24,624,479 phaw_50.282695a:24,687,725-24,692,898 Yes Both
abdomminalAisoform2cloneK313 phaw_50.282695a:25629814-25736948 + phaw_50.282695a:25628608-25630296 phaw_50.282695a:25,627,088-25,630,363 phaw_50.282695a:25,736,469-25,741,275 Yes Both
Antennapedia5racecloneL18 phaw_50.282695a:26532519-26613138 + phaw_50.282695a:26532243-26532820 phaw_50.282695a:26,532,505-26,533,152 phaw_50.282695a:26,611,100-26,613,267 Yes Both
ash26F phaw_50.283875a:11478705-11507717 + phaw_50.283875a:11477924-11479069 phaw_50.283875a:11,478,677-11,480,112 phaw_50.283875a:11,507,570-11,508,560 Yes Both
betacateninmRNAcompletecds phaw_50.282639b:6484601-6538431 + phaw_50.282639b:6451035-6452617 phaw_50.282639b:6,451,925-6,452,777 phaw_50.282639b:6,537,263-6,541,062 Yes Both
col phaw_50.283865b:130292-293921 + phaw_50.283865b:127661-128803 phaw_50.283865b:130,178-130,591 phaw_50.283865b:296,755-299,392 Yes Both
DeformedcDNAcloneFLb2 phaw_50.282695a:27062438-27152191 + phaw_50.282695a:27061893-27063246 phaw_50.282695a:27,062,404-27,063,447 phaw_50.282695a:27,151,053-27,152,222 Yes Exon
deltaproteinmRNAcompletecds phaw_50.015400b:11871425-11889172 + phaw_50.015400b:11870888-11871925 phaw_50.015400b:11,871,436-11,871,564 phaw_50.015400b:11,890,317-11,891,420 Yes Intron
distallessEarlymRNAcompletecds phaw_50.282654b:30641259-30681459 + phaw_50.282654b:30640553-30642307 phaw_50.282654b:30,641,130-30,641,834 phaw_50.282654b:30,685,403-30,687,854 Yes Both
dpp phaw_50.015400a:5773544-5790898 + phaw_50.015400a:5772703-5774732 phaw_50.015400a:5,773,547-5,774,013 phaw_50.015400a:5,789,594-5,799,808 Yes Both
engrailed1 phaw_50.283864a:3322422-3404220 + phaw_50.283864a:3320702-3323202 phaw_50.283864a:3,321,545-3,323,280 phaw_50.283864a:3,403,484-3,411,112 Yes Both
engrailed2 phaw_50.283864a:3774988-3800052 - phaw_50.283864a:3799353-3800567 phaw_50.283864a:3,798,531-3,800,059 phaw_50.283864a:3,757,132-3,758,228 Yes Intron
eve2 phaw_50.283028b:9254180-9262623 - phaw_50.283028b:9262111-9262983 phaw_50.283028b:9,262,071-9,262,616 phaw_50.283028b:9,250,289-9,256,607 Yes Exon
extradenticleproteinexdgene phaw_50.283468a:8063095-8076889 + phaw_50.283468a:7799208-7800212 phaw_50.283468a:7,799,472-7,800,056 phaw_50.283468a:8,097,516-8,101,622 Yes Both
forkheadORF phaw_50.000135a:2643865-2644971 - phaw_50.000135a:2649799-2650196 phaw_50.000135a:2,649,559-2,649,662 phaw_50.000135a:2,642,441-2,645,164 Yes Exon
hes4 phaw_50.282654b:31719607-31734841 + phaw_50.282654b:31719410-31720007 phaw_50.282654b:31,719,607-31,719,748 phaw_50.282654b:31,732,919-31,736,371 Yes Both
homothoraxproteinhthgene phaw_50.283815b:16274653-16574076 - phaw_50.283815b:16604672-16607172 phaw_50.283815b:16,605,602-16,606,372 phaw_50.283815b:16,168,073-16,170,044 Yes Both
KNIRPS1kni1mRNAcompletecds phaw_50.283866:9026088-9035313 + phaw_50.283866:9025431-9026438 phaw_50.283866:9,026,082-9,026,813 phaw_50.283866:9,034,022-9,037,291 Yes Both
KNIRPS2kni2mRNAcompletecds phaw_50.283866:9982901-10018092 - phaw_50.283866:10018846-10019492 phaw_50.283866:10,017,879-10,018,098 phaw_50.283866:9,982,950-9,984,746 Yes Exon
Kruppel5raceclone5 phaw_50.004430:12895048-13017154 + phaw_50.004430:12893620-12894503 phaw_50.004430:12,893,830-12,895,369 phaw_50.004430:13,014,676-13,017,950 Yes Both
notchproteinmRNAcompletecds phaw_50.283815c:31626720-31812600 - phaw_50.283815c:31812314-31813325 phaw_50.283815c:31,812,341-31,812,602 phaw_50.283815c:31,625,065-31,629,214 No None
odd1 phaw_50.000289b:10469078-10470818 - phaw_50.000289b:10470131-10471455 phaw_50.000289b:10,470,089-10,470,823 phaw_50.000289b:10,469,064-10,470,057 Yes Exon
odd3 phaw_50.000289b:9790462-9792439 + phaw_50.000289b:9789912-9790964 phaw_50.000289b:9,790,460-9,790,970 phaw_50.000289b:9,791,530-9,795,846 Yes Exon
odd5 phaw_50.000289b:10003623-10007578 - phaw_50.000289b:10007157-10007887 phaw_50.000289b:10,007,151-10,007,894 phaw_50.000289b:10,001,868-10,005,067 Yes Both
opa1consensus phaw_50.000135f:28969563-29076765 + phaw_50.000135f:28968467-28970375 phaw_50.000135f:28,969,544-28,970,470 phaw_50.000135f:29,072,172-29,076,827 Yes Both
optixmRNAcompletecds phaw_50.283817f:8745320-8792652 + phaw_50.283817f:8744687-8746467 phaw_50.283817f:8,745,412-8,746,075 phaw_50.283817f:8,788,522-8,794,388 Yes Both
Par6 phaw_50.283823c:3497885-3548486 - phaw_50.283823c:3548118-3548740 phaw_50.283823c:3,548,186-3,548,556 phaw_50.283823c:3,492,657-3,499,147 Yes Both
Pax371proteinmRNAcompletecds phaw_50.000214e:5044320-5078499 - phaw_50.000214e:5078053-5078983 phaw_50.000214e:5,078,120-5,078,455 phaw_50.000214e:5,042,664-5,047,700 Yes Both
pdm phaw_50.283869d:4505837-4506191 + phaw_50.283869d:4420193-4421142 phaw_50.283869d:4,420,800-4,421,678 phaw_50.283869d:4,506,146-4,509,682 Yes Both
PhDlllate1 phaw_50.282654b:30431942-30563945 + phaw_50.282654b:30429539-30431011 phaw_50.282654b:30,430,577-30,432,821 phaw_50.282654b:30,563,597-30,569,176 Yes Both
PhDlllate2 phaw_50.282654b:30746554-30806154 + phaw_50.282654b:30745371-30747232 phaw_50.282654b:30,746,377-30,747,054 phaw_50.282654b:30,805,338-30,813,233 Yes Both
pnt3RACE phaw_50.282861b:41123311-41125508 - phaw_50.282861b:41129249-41130109 phaw_50.282861b:41,128,992-41,129,723 phaw_50.282861b:41,112,188-41,123,884 Yes Exon
proboscipedia5racecloneI192 phaw_50.282695a:27659540-27817538 + phaw_50.282695a:27657466-27658309 phaw_50.282695a:27,657,840-27,659,994 phaw_50.282695a:27,818,947-27,821,498 Yes Both
prosperoproteinmRNApartialcds phaw_50.283875a:6013042-6035299 + phaw_50.283875a:5998087-5999786 phaw_50.283875a:5,998,945-6,001,387 phaw_50.283875a:6,034,691-6,038,907 Yes Intron
rho5RACEvariant1 phaw_50.000203b:25395477-25496923 + phaw_50.000203b:25395456-25395780 phaw_50.000203b:25,395,472-25,395,662 phaw_50.000203b:25,496,406-25,503,322 Yes Both
rho5RACEvariant2 phaw_50.000203b:25265811-25496923 + phaw_50.000203b:25265169-25265874 phaw_50.000203b:25,264,762-25,265,904 phaw_50.000203b:25,496,405-25,503,316 Yes Both
runt2 phaw_50.283028b:1783456-1810535 - phaw_50.283028b:1809649-1811397 phaw_50.283028b:1,809,475-1,810,690 phaw_50.283028b:1,776,166-1,784,663 Yes Exon
scallopedproteinsdgene phaw_50.007301a:763757-786495 - phaw_50.007301a:920698-921986 phaw_50.007301a:921,178-921,537 phaw_50.007301a:762,031-762,973 Yes Both
scratchscrtmRNAcompletecds phaw_50.283869f:2146785-2165201 - phaw_50.283869f:2270072-2271735 phaw_50.283869f:2,270,060-2,271,025 phaw_50.283869f:2,146,761-2,150,484 Yes Both
Sexcombsreduced5racecloneE17c1 phaw_50.282695a:26769068-26862063 + phaw_50.282695a:26768486-26770008 phaw_50.282695a:26,861,434-26,862,081 phaw_50.282695a:26,768,947-26,770,207 Yes Both
shortgastrulationproteinmRNAcompletecds phaw_50.015400b:7523582-7867524 + phaw_50.015400b:7522832-7524249 phaw_50.015400b:7,523,573-7,525,453 phaw_50.015400b:7,866,925-7,867,874 Yes Both
slp1 phaw_50.283811:7718478-7720485 + phaw_50.283811:7718255-7718898 phaw_50.283811:7,718,433-7,720,788 phaw_50.283811:7,725,774-7,731,670 Yes Both
snail2proteinmRNApartialcds phaw_50.283864b:718097-721779 + phaw_50.283864b:713312-713863 phaw_50.283864b:713,632-713,751 phaw_50.283864b:717,219-721,810 Yes Both
snail3proteinmRNApartialcds phaw_50.283864b:30526-33704 + phaw_50.283864b:25948-26939 phaw_50.283864b:26,453-26,990 phaw_50.283864b:29,154-33,680 Yes Both
Sp69protein phaw_50.282861e:14546239-14663576 + phaw_50.282861e:14544573-14546375 phaw_50.282861e:14,545,862-14,546,358 phaw_50.282861e:14,667,910-14,675,477 Yes Both
spi5RACElargefragment3RACE phaw_50.000081a:2326730-2344027 + phaw_50.000081a:2243466-2244527 phaw_50.000081a:2,243,861-2,244,179 phaw_50.000081a:2,347,070-2,349,001 Yes Both
SuH phaw_50.283826:2280509-2340463 - phaw_50.283826:2416373-2417483 phaw_50.283826:2,416,066-2,416,895 phaw_50.283826:2,270,773-2,276,731 Yes Exon
unc4NPhsequence phaw_50.000135e:7542170-7621463 + phaw_50.000135e:7541550-7542771 phaw_50.000135e:7,542,144-7,542,554 phaw_50.000135e:7,644,646-7,649,912 Yes Exon
wnty phaw_50.283866:2773623-3090108 - phaw_50.283866:3089459-3090541 phaw_50.283866:3,089,558-3,090,096 phaw_50.283866:2773623-3090108 Yes Both
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Table S3. Software version numbers
Software name Version Usage

bamtools 2.5.1 Bam file manipulations

bedtools 2.28.0 or 2.30.0 Bed file manipulations

Bowtie2 2.3.0 or 2.3.4.1 Read alignment

BUSCO 3.0.2 Transcriptome and genome completion evaluation

cutadapt 2.4 Removing sequencing adapters from reads

deeptools 3.3.1 Visualization of data genome-wide

DESeq2 (R) 1.34.0 Differential accessibility/ expression analyses in pairwise comparisons

eggNOG-mapper 2.0.5 Automated gene function assignment

FASTQC 0.11.7 Library quality assessment

Genrich 0.6 Omni-ATAC peak calling

GMAP 2020-11-20 Aligning transcriptomes to genome for Mikado analyses

HISAT2 2.1.0 Aligning RNA_Seq reads to genome

igvtools 2.3.98 File format conversions for viewing in IGV

ImpulseDE2 (R) 0.99.10 Performing IDE2 analyses

JASPAR2020 (R) 0.99.10 Extracting PWMs from JASPAR

kallisto 0.43.1 Read abundance estimation for RNA-Seq

Mfuzz 2.54.0 Fuzzy clustering of peak accessibility

Mikado 2.3.0 Mikado transcriptome merging

minimap2 2.18-r1052-dirty Aligning long-read Nanopore sequences to Parhyale genome

NucleoATAC 0.2.1 Prediction of nucleosome positions using Omni-ATAC data

OrthoFinder 2.5.4 Orthology assignment between Parhyale and Drosophila

PicardTools 2.9.0 Deduplication of reads

Portcullis 1.1.2 Identifying valid splice junctions from RNA-Seq read data

Python 3.7 or 3.8.8 Interfacing with Jupyter notebooks and running Python scripts on a SLURM
scheduler

R 4.1.1 or 4.0.3 or 3.8 Performing IDE2, DESeq2 analyses; converting JASPAR files to RGT-HINT
format

RGT-HINT 0.13.1 Inference of transcription factor footprints

samtools 1.8 Quality filtering (q=10) and sorting of bowtie2-mapped reads

StringTie 2.1.7 Assembly of StringTie2 L and StringTie2 SL transcriptomes

Transdecoder 5.0.2 Generating peptide sequences for OrthoFinder, Mikado, and other analyses

trim_galore 0.4.4 Trimming reads used in all analyses

Trinity r2013_08_14 Assembling Trinity-limb (old) transcriptome

Trinity 2.5.1 Assembling Trinity-all, Trinity-gg, Trinity-S13, Trinity-S19, Trinity-S21,
Trinity-S23, Trinity-limb (new) transcriptomes

universalmotif (R) 1.12.1 Converting JASPAR PWMs to RGT-HINT compatible format

VISTA web VISTA Identifying sequence homology between Parhyale and Hyalella
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Supplementary Materials and Methods

S21-S22 sample outlier properties
For several metrics, the data we generated for samples at stages S21 and S22 appeared to show outlier effects, such as 
strong separation in PC2 of PCA analysis (Fig. 2C), a lower percentage of mapped reads (Supp. Fig. 2.1B), and lower 
inter-sample Spearman correlation (Supp. Fig. 2.1I). These data could be a reflection of variability in library quality, or 
could represent genuine biological differences with these samples. The shape of the PCA curve in Fig. 2C is consistent 
with a previously-described “horseshoe effect”, “Guttman effect”, or “arch effect” that is observed in microbial ecology 
datasets where a single strong gradient drives separation between samples in the dataset (Legendre and Legendre, 2012; 
Morton James T. et al.; Podani and Miklós, 2002). In the case of our dataset, we expect to find a single strong gradient – 
developmental time – which should separate out our samples.

To assess the degree to which PC2 in our data is driven by separation of S21/S22 samples, we removed the S21/
S22 samples from our dataset and performed PCA. We observed that the relative positions of the remaining libraries 
remains largely similar (Supp. Fig. 2.2A, B), with time points closer to the middle of development showing a positive 
loading in PC2, and time points closer to the beginning and end of development showing a negative loading. This 
suggests that the second major axis of variation in our dataset would remain a contrast between middle vs. terminal 
timepoints, even without the S21/S22 data, and that the relative positioning of the remaining data within PC-space is not 
entirely driven by S21/S22.

To further assess the degree of the S21/S22 samples’ outlying effects, we also performed ImpulseDE2 analysis to 
generate model fits without S21/S22 data. Doing so allowed us to determine to what degree the S21/S22 stages are 
necessary for driving the accessibility trajectory of individual peaks, and of the data more broadly. We performed IDE2 
with either all data, or the S21/S22 data removed prior to input into IDE2. This generated two sets of model fits to the
“cloud” of accessibility vs. time measurements: one that included the S21/S22 data, and one without. We evaluated, for 
each peak in our dataset, the time point at which the IDE2 model achieved maximum accessibility (the “IDE2 max fit”), 
and plotted both the “all” and “noS21S22” data as a histogram (Supp. Fig. 2.2C). The presence of peaks that achieve 
predicted maximum accessibility in the S21/S22 stages in the “no S21/S22” data is a result of how we calculate “max fit”, 
which does not require that there is a known accessibility value at a given timepoint; only that the time point during which 
the model fit is maximum is closest to the timing of that developmental stage. Overall, we still observed early, middle, and 
late enrichment of IDE2 max fit even when the S21/S22 data are removed. We do see a rightward shift in the middle 
timepoint histogram in the direction of later stages, although this may be expected given the absence of concrete 
accessibility values at S21/S22 in the “no S21/S22” data. This indicates that our data globally retain the general trends of 
early, middle, and late enrichment of accessibility in the absence of the S21/S22 data. Moreover, this suggests that, even 
without the S21/S22 data, the remaining data from early and late stages result in a model fit that still predicts maximum 
accessibility at middle developmental stages for many peaks.

To further measure the influence of the S21/S22 data in IDE2 model fit, we also evaluated the degree of change in 
the general accessibility of a peak when the S21/S22 stages were removed. This analysis aimed to assess whether 
removing S21/S22 data resulted in an IDE2 model with the same general trajectory as with all data, as opposed to the 
more stringent requirement of evaluating whether the exact developmental stage of the peak was changed. To perform 
this analysis, we grouped developmental stages into five quintiles, each representing three stages of development. We 
asked, for each peak in our dataset, whether that peak’s IDE2 max fit was “stable” when the S21/S22 data were removed; 
that is, if the quintile of the IDE2 max fit was altered when the S21/S22 data were removed (i.e. if a peak moved more 
than 3 developmental stages away from its original position), a peak was considered “unstable” (Supp. Fig. 2.2D, E). We 
observed that over 80% of peaks in each quintile remained “stable” after removing the S21/S22 data, suggesting that the 
vast majority peaks show the same general trajectory of accessibility even without the S21/S22 data. Peaks within the 
middle time points appeared to be more unstable than peaks at the terminal timepoints, which could be expected given 
that the S21/S22 timepoints constituted the middle-most timepoints in our dataset.

It is difficult to determine whether a change in accessibility trajectory for a given peak caused by the removal of 
S21/S22 data is indicative of technical differences in sample preparation, such as batch effects; biological variation, such 
as a potentially unknown mutant or sick embryo; or due to genuine wildtype biological processes that occur at the
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S21/S22 stages. These caveats acknowledged, a comparative analysis of the data in the absence of the S21/S22 stages
suggests that much of the global picture of development remains the same.

To facilitate future users of this dataset, we have included the model parameters calculated from IDE2 using both
the full dataset and the data with S21/S22 removed, as well as a Jupyter notebook (ParhyaleATACExplorer.ipynb) that
allows users to plot the raw accessibility data and IDE2 model fits with respect to time, so that downstream experiments
can consider the potential differences with the S21/S22 samples.

Trinity transcriptome assembly parameters
Trinity de novo transcriptome (all stages) was assembled with --max_memory 1500G and --CPU 32. Illumina NovaSeq
short reads were supplied as a sample file, where each sample had two read files for read1 and read2. Read files were
generated by first trimming transcripts using trim_galore, and then combining the val_1 reads with unpaired_1, and val_2
reads with unpaired_2 for each stage using cat. The same merged read files were used for stage-specific assemblies. For
the genome-guided assembly, in silico normalized reads generated by Trinity for read1 and read2 across all stages were
aligned to the genome using hisat2 --dta and then sorted using samtools. Trinity was run as Trinity --genome_guided_bam
<bam file> --genome_guided_max_intron 300000.

StringTie2 transcriptome assembly parameters
Nanopore reads, when generated, are partitioned into chunks in different folders in the output. Reads were compiled by
barcode. All reads were combined together into a single file and mapped to the genome using minimap2 -ax splice using
the phaw_5.0.fa genome file as a target. StringTie2 L assembly was run using stringtie -L <nanopore_reads.bam>, while
StringTie2 SL assembly was run using stringtie -mix <illumina_reads.bam> <nanopore_reads.bam>. Both StringTie2
assemblies used default settings.

Mikado setup parameters
Trinity transcriptomes were aligned to the phaw_5.0.fa genome using GMAP with --max-intronlength-ends=300000
--format=gff3_gene. All HISAT2 aligned read BAM files from Illumina RNA-Seq were fed into Portcullis using portcullis full
--force --copy --verbose -t 32. Due to yet-to-be-resolved errors in the Portcullis package, we manually converted some
assignments of the portcullis output using the following commands:

$ cat portcullis_out/2-junc/portcullis_all.junctions.tab |awk '!(($11=="?" && $14=="NA") || ($11=="?" &&
$13=="NA"))' > portcullis_out/2-junc/portcullis_all.junctions.cleaned.tab

$ portcullis filter --verbose portcullis_out/1-prep portcullis_out/2-junc/portcullis_all.junctions.cleaned.tab
The scoring parameters and other variables for the Mikado configure file are found in the “20210630_list.txt” file. We
applied penalties to the Trinity-based transcriptomes and bonuses to the StringTie2 transcriptomes based on our
observations that Trinity transcripts, when aligned to the genome, showed many apparently spurious short transcripts at
the RACE genes we examined.

For mikado configure, we used --mode permissive --scoring mammalian.yaml --copy-scoring mammalian.yaml -bt
uniprot_sprot.fasta. We reasoned that the large genome size of Parhyale would be appropriate to analyze using the
mammalian settings as opposed to the other available settings.

For the Transdecoder step, we ran the analysis with default settings. We omitted BLAST from our Mikado
pipeline, as the extremely large file size of our mikado_prepared.fasta file proved intractable to straightforward BLASTX
analysis. We estimated that it would take around 5 months to run using our current computing approaches. An updated
Mikado transcriptome could be generated by breaking up the mikado_prepared.fasta file into many smaller BLASTX
analyses, which could run much faster. The required files for further Mikado analyses are available in the GEO accession
data.

eggNOG annotation
We generated a .pep file of the final Mikado transcriptome or the MAKER genome annotation using Transdecoder, and
used emapper.py with default settings and -m diamond.
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OrthoFinder annotation
Using a .pep file generated from the final Mikado transcriptome or the MAKER genome annotation using Transdecoder,
we ran OrthoFinder to compare each transcript source to the database of all Drosophila melanogaster proteins found in
the UNIPROT database.

DESeq2 parameters
For differential expression and accessibility analyses, we performed pairwise DESeq2 runs for adjacent pairs of
developmental stages (e.g. S19 vs. S13, S21 vs. S19). Analysis was performed using standard settings. Peaks or genes
were considered differentially expressed when padj < 0.05.

ImpulseDE2 analysis
We performed ImpulseDE2 analysis using standard settings, using the matrix of reads generated from bedtools multicov
and used for DESeq2 analysis. For the Time parameter, we used the number of hours for each developmental stage, as
indicated in the Browne et al. Parhyale staging guide (Browne et al., 2005). The time points were: 72, 77, 80, 87, 90, 96,
104, 112, 120, 132, 144, 155, 168, 180, and 192 hours, representing stages 'S13', 'S14', 'S15', 'S17', 'S18', 'S19', 'S19+',
'S20', 'S21', 'S22', 'S23', 'S24', 'S25', 'S26', 'S27', respectively. We extracted the IDE2 model fits for each peak (available
at the GEO accession) as a .tsv file, used a custom Python function to plot accessibility trajectories (will be available at
the GitHub repository). To generate such plots, we recreated the accessibility plotting function from the ImpulseDE2
package in R as two Python functions, shown below:

def ImpulseFunction(t, vecImpulseParam):
return (1/vecImpulseParam[3]) * (vecImpulseParam[2] + (vecImpulseParam[3] - vecImpulseParam[2]) * (1/(1 +

np.exp(-vecImpulseParam[1] * (t - vecImpulseParam[5]))))) * (vecImpulseParam[4] + (vecImpulseParam[3] -
vecImpulseParam[4]) * (1/(1 + np.exp(vecImpulseParam[1] * (t - vecImpulseParam[6])))))

def ImpulseEvaluate(vecTimepoints, vecImpulseParam):
vecImpulseValue = [ImpulseFunction(i, vecImpulseParam) for i in vecTimepoints]
vecImpulseOutput = [i if i > 10^(-10) else 10^(-10) for i in vecImpulseValue]
return vecImpulseOutput

JASPAR2020 database
For RGT-HINT analyses, the software expects each motif as a simple matrix representing position weights at each base
for A, T, G, and C. This format is not readily available for the JASPAR2020 database, which utilizes the JASPAR format.
We downloaded the full JASPAR2020 CORE non-redundant database, split the database into individual JASPAR format
files for each transcription factor, and then converted that JASPAR format tile into a plain matrix file using the
“universalmotif” R package. We also utilized the metadata extracted from this package to generate an .mtf file as required
by RGT-HINT. All files for this type of analysis will be available on GEO at time of publication.

Description of Observed Differences in Clusters
We first assessed the spatial category distribution of each cluster compared to the global average (Figure 5C). Clusters 1,
2, and 8 appeared to be enriched for “unknown” regions, while clusters 3-7 appeared to show slightly greater proportions
of intronic elements than distal intergenic elements, counter to the global average. Cluster 8 is notable in that it is both the
smallest cluster, and the cluster where a majority of peaks are found in “unknown” regions. In addition, we used the IDE2
model fits for each cluster to evaluate the general accessibility dynamics of each cluster (Supp. Fig. 5.1B, C). Clusters 1
and 2 appear to be enriched for peaks that achieve high accessibility early in development and decrease in accessibility
over time. Clusters 3–6 appear to be enriched for peaks that achieve maximum accessibility at different timepoints along
developmental time. Cluster 7 appears to be enriched for peaks that show low accessibility early in development, and
increased accessibility late in development. Finally, clusters 8 and 9 showed a more striking pattern, with Cluster 8
composed of peaks that appear to have a pulsatile increase in accessibility around stages S21–S22, and Cluster 9
composed of peaks with an opposite pattern: those with a sudden pulsatile decrease around S21–S22. Thus, the 9
clusters identified in our analysis appeared to capture distinct patterns of accessibility throughout time.
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We further investigated the clusters identified by Mfuzz using additional metrics in order to understand the 
biological significance of these clusters. First, we investigated the relationship between accessibility dynamics and 
nucleosome positioning between clusters (Fig. 5E, Supp. Fig. 5.1D). For each developmental time point, we visualized 
Omni-ATAC accessibility (solid line, black axis) compared to NucleoATAC signal (dashed line, blue axis) for peaks 
belonging to each cluster. We observed that peaks belonging to Clusters 3–7 and 9 all appeared to have an inverse 
relationship between accessibility and NucleoATAC signal; this inverse relationship was most obvious at the time points 
during which these peaks achieved their maximum accessibility (Fig. 5E, blue dashed boxes). Moreover, these peaks all 
appeared to have a depletion of nucleosome occupancy at peak centers relative to the region around peaks (Supp. Fig. 
5.1D, solid line, pink axis). By contrast, peaks in clusters 1, 2, and 8 appeared to show a counterintuitive and opposite 
result: both high NucleoATAC signal and high nucleosome occupancy at timepoints during which those peaks achieved 
maximum accessibility (Fig. 5E, Supp. Fig. 5.1D, solid line, pink axis). As with the clusters that showed an inverse 
relationship between accessibility and occupancy, the clusters that showed a parallel relationship between accessibility 
and occupancy showed the strongest relationship at those timepoints during which they achieved maximum accessibility 
(Fig. 5E, red dashed boxes).

To assess the biological function of each of the 9 Mfuzz clusters, we performed GO term enrichment analysis. To 
assign functions to each peak, we extracted the Drosophila melanogaster gene assigned to the nearest gene for each 
peak, and performed GO enrichment analysis on the list of unique gene names associated with peaks from each cluster 
relative to the list of all OrthoFinder-assigned gene names in the genome. Fig. 6A illustrates the top 10 most-enriched GO 
terms for each of the clusters. While we were not able to identify significantly enriched GO-terms (FDR < 0.05) for 
Clusters 1, 2, and 8, Clusters 3–7 and 9 all showed enrichment of developmental GO-terms. These enriched GO-terms 
generally appeared to match the expected biological functions of peaks based on their accessibility dynamics. For 
example, Cluster 3 peaks, which generally achieve maximum accessibility during germ band elongation stages in 
development, showed enrichment for GO terms including head segmentation and neuroblast fate, two processes which 
take place during this developmental period. Meanwhile, Cluster 7 peaks appeared to be enriched for neuronal terms
(neuropeptide signaling pathway, synaptic target recognition, neuron recognition), potentially reflecting the function of 
genes near these peaks which achieve their maximum accessibility towards the very end of the developmental
time-course, during which much of the morphology of the organism has been specified, and the embryo begins to twitch 
inside the egg. Notably, Clusters 3–7 showed slightly greater enrichment of intronic peaks than distal intergenic peaks, 
suggesting that intronic peaks may be more likely to regulate developmental processes. These results resemble the 
observation from recent work showing that tissue-specific enhancers are enriched in intronic regions in various human cell 
types (Borsari et al., 2021).

To further investigate the clusters in our dataset, we examined the enrichment of TF footprints generated from 
HINT-ATAC in each of our clusters. For each cluster, we compiled all of the TF footprints predicted across developmental 
stages for all peaks within that cluster. We compared the enrichment of those TF footprints to our randomly generated 
background data, and examined all JASPAR CORE transcription factors, as well as the subset of JASPAR CORE 
transcription factors found in Drosophila.

We observed strong differential enrichment of different groups of transcription factors in each of our 9 clusters. 
Notably, particular families of transcription factors appeared enriched in several of the clusters. For example, Cluster 1 
and Cluster 2 appeared to have enrichment for footprints matching C2H2 zinc-finger transcription factors and 
homeodomain transcription factors. Clusters 4 and 7 showed enrichment for footprints matching beta helix-loop-helix
(b-HLH) transcription factors. Meanwhile, clusters 5, 8, and 9 showed strong enrichment for footprints of ethylene 
response factor (ERF), DM-type intertwined zinc-finger factor (DM IZF), and forkhead domain (FKH) transcription factor 
families, respectively.

Spontaneous Expression Patterns
In the course of our experiments, we observed numerous spontaneous expression patterns (Supp. Fig. 9). These 
expression patterns may represent rare integration events, or may reflect fortuitous insertions into regions of the genome 
with promiscuous regulatory sequences that facilitate expression.

One expression pattern observed from the Sp69-p3 enhancer appeared to be repeated in 5 embryos along the 
~300 we injected. This expression pattern was characterized by strong expression in the head, antenna 1, and antenna 2 
(Supp. Fig. 10). In the same set of experiments, we also observed three spontaneous expression patterns that appeared 
to differ amongst each other, labeling different regions of the limbs and gills. It is possible that the repeated expression 
observed from the Sp69-p3 enhancer represents a genuine expression pattern. We tested this hypothesis by raising three 
Sp69-p3 head-expressing animals to adulthood and mating the two adults that showed the strongest expression during 
development. However, none of the offspring of this cross showed obvious head expression, or any obvious DsRed 
expression elsewhere in the embryo.
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Movie 1. Yolk cells labeled by the Hsp70-p2 reporter Max intensity projection; frames taken 5 minutes apart.
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