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ABSTRACT
The study of cellular and developmental processes in physiologically
relevant three-dimensional (3D) systems facilitates an understanding
of mechanisms underlying cell fate, disease and injury. While cutting-
edge microscopy technologies permit the routine acquisition of
3D datasets, there is currently a limited number of open-source
software packages to analyse such images. Here, we describe
General Image Analysis of Nuclei-based Images (GIANI; https://
djpbarry.github.io/Giani), new software for the analysis of 3D images.
The design primarily facilitates segmentation of nuclei and cells,
followed by quantification of morphology and protein expression.
GIANI enables routine and reproducible batch-processing of
large numbers of images, and comes with scripting and command
line tools. We demonstrate the utility of GIANI by quantifying cell
morphology and protein expression in confocal images of mouse
early embryos and by segmenting nuclei from light-sheet microscopy
images of the flour beetle embryo. We also validate the performance
of the software using simulated data. More generally, we anticipate
that GIANI will be a useful tool for researchers in a variety of
biomedical fields.
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INTRODUCTION
The ability to routinely acquire multi-dimensional datasets
with modern microscopy techniques is transforming, among other
fields, cell biology, developmental biology and cancer research.
There has long been an acceptance that two-dimensional (2D)
cell cultures might not accurately recreate behaviours found in
complex three-dimensional (3D) in vivo environments (Duval
et al., 2017). Commonly used 3D culture formats include, but
are not limited to, populations of single cells in organotypic
matrices, spheroid models, tissue sections or whole embryos
and organisms.
However, the development of software for the quantitative

analysis of such data has not kept pace with imaging advances, and

there is now a pressing need for automated solutions (Meijering
et al., 2016). Manual annotation of such data is not feasible in a
reasonable time frame. Commercial packages, such as Imaris
(Bitplane) and Vison4D (Arivis) provide excellent visualisation
functionality and are also equipped with analysis tools. However,
licences for such software are expensive and they also rely on
proprietary file formats. Furthermore, the closed-source nature
of such software prevents detailed interrogation of specific
calculations and processes.

There are numerous excellent, freely available bioimage
analysis tools in the open source domain. However, their support
for 3D analysis is often limited – for example, several CellProfiler
(Lamprecht et al., 2007) modules are not yet compatible with 3D
images. In cases where 3D datasets are supported, analyses can be
challenging to execute for novice users, potentially requiring a
complex combination of commands frommultiple plugins [e.g. FIJI
(Schindelin et al., 2012) and Icy (de Chaumont et al., 2012)].
This can lead to undesirable compromises being made, such as 2D
slices from a 3D volume being analysed individually, blinding
the analysis to information in adjacent slices. Alternatively, 3D data
might be compressed into 2D via projection, which, consequently,
artificially reduces distances between objects and can lead to
spurious results. A number of very useful open-source MATLAB
(MathWorks, Cambridge, UK)-based tools have also been
implemented, most notably MINS, which has been effectively
used to analyse embryo datasets (Lou et al., 2014) and LOBSTER
(Tosi et al., 2020). However, these require the purchase of a
MATLAB licence.

We have therefore developed General Image Analysis of Nuclei-
based Images (GIANI; https://djpbarry.github.io/Giani), a generally
applicable open source tool, implemented as a plugin for the
widely-used image analysis platform FIJI. With an emphasis on
detection and segmentation of cells in 3D microscopy images,
GIANI has been implemented specifically with batch-processing in
mind. Although an understanding of fundamental concepts of
bioimage analysis is beneficial, GIANI’s user interface has been
implemented in a wizard format to facilitate use by non-specialists
(Fig. 1) and is fully documented (https://github.com/djpbarry/Giani/
wiki). Analysis protocols may be reproduced by loading a single
parameter file.

The utility of GIANI is illustrated here using three examples. In
the first, we generated a series of simulated datasets to evaluate the
accuracy of segmentations produced by GIANI using known
‘ground truths’. In the second proof-of-concept, we use a series of
mouse preimplantation embryo datasets, and demonstrate the ability
of GIANI to detect variations in morphology and protein expression
in different experimental conditions. Finally, to show that GIANI
can also be used on much larger datasets, we present segmentations
of nuclei from light-sheet microscopy images of the flour beetle
embryo. It should be noted that GIANI can be used to analyse 3D
images from a range of cellular and developmental contexts, and we
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anticipate that it will be a useful tool to automate quantification of a
wide variety of complex imaging data.

RESULTS
Software implementation
GIANI was written using Java 8 as a plug-in for FIJI (Schindelin
et al., 2012), making extensive use of the underlying FIJI and
ImageJ (Schneider et al., 2012) libraries. A number of other open-
source projects were leveraged. Reading of image data is facilitated
by interfacing to Bio-Formats (Linkert et al., 2010), making
GIANI compatible with a wide range of file formats (https://docs.
openmicroscopy.org/bio-formats/6.7.0/supported-formats.html).
Detection of nuclear blobs makes use of either TrackMate’s spot
detector (Tinevez et al., 2017) or FeatureJ (https://imagescience.org/
meijering/software/featurej). Segmentation of cells and nuclei takes
advantage of the marker-controlled watershed functionality in
MorphoLibJ (Legland et al., 2016) and 3D Image Suite (Ollion
et al., 2013). The browsing of results is based upon the 3D region of
interest (ROI) manager from 3D Image Suite. Complete source
code, documentation and test data are available online (https://
djpbarry.github.io/Giani).
The design philosophy behind GIANI is inspired by CellProfiler.

It is assumed that the user wishes to detect ‘primary objects’ of
some sort (typically cell nuclei), followed by the subsequent
segmentation of ‘secondary objects’ (typically cells) and then
wishes to measure either the morphology of, or the expression of a
fluorescent signal within, these objects. The principal difference in
the case of GIANI is that, in order to facilitate ease of use, the order
of steps in the pipeline is fixed, although some flexibility is present
where necessary (Fig. 2).

File formats
GIANI can accept as input any images that are readable by Bio-
Formats (Linkert et al., 2010), which, at the time of writing, can read
almost 160 different formats. It is expected that this data will be 3D
in nature, containing any number of different channels. As a
minimum requirement, in order to facilitate accurate segmentation,
these channels must contain some form of marker for both nuclei
and cells. The nuclear marker must be a volume marker, whereas the
cell marker can be either membrane localised or volumetric in
nature, although the former is preferred for more accurate
segmentation. In the example pipeline illustrated in Fig. 2, a
nuclear volume marker (DAPI) and cell membrane marker (E-
cadherin) are used.

Detection of nuclear centres
The nuclear channel is first subjected to one of two forms of blob
detection to estimate the centre of each nucleus (Fig. 2B). The first
option is Laplacian of Gaussian (LoG) blob detection, which
involves the application of an LoG filter to the image and then
identifying local extrema (Fig. 2B, left panels). This is implemented
in GIANI by using the spot detector of TrackMate (Tinevez et al.,
2017), which is based on LoG detection. The advantage of this
approach is that it is relatively fast and generic. The disadvantage is
it assumes the objects to be detected are approximately Gaussian in
nature, so will likely perform poorly for irregularly shaped nuclei.

For this reason, a second option is given for nuclear centre
detection, based on the eigenvalues Hessian matrix of the image
(Fig. 2B, right panels) – this is similar to the approach used for
nuclear detection in MINS (Lou et al., 2014). The Hessian is a
square matrix of second-order partial derivatives describing the

Fig. 1. Illustration of the GIANI graphical user interface. The GIANI parameter-setting wizard is shown on the left, with the preview result of this particular
processing step (nuclear centre detection) shown on the right.
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Fig. 2. See next page for legend.
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local curvature in the image. For a detailed explanation on how
Hessian eigenvalues can be used to detect blobs in images, see
Cautun et al. (2012). This is implemented in GIANI by using
FeatureJ, a sub-component of the ImageScience plugin (https://
imagescience.org/meijering/software/featurej). This approach has
the advantage of being capable of detecting ‘blobs’ of any shape,
such as irregularly shaped nuclei. The main disadvantage is that it is
much more computationally demanding than the simpler LoG
detector, so will take longer to run.

Suppression of noise and background
Prior to full segmentation of nuclei, Gaussian filtering is employed
to smooth any noise that may have been present in the input image
(Fig. 2C). To both enhance the nuclei and homogenise the image
background, the output of the Gaussian filtering operation is input
into a top-hat filter (Fig. 2D), implemented using MorphoLibJ
(Legland et al., 2016). Top-hat filtering can be computationally
expensive for large datasets, so GIANI includes an option to
downsize datasets by a specified factor prior to this step – the dataset
is then restored to its original size post-filtering.

Segmentation of nuclei
Nuclei are fully segmented using a marker-controlled watershed
approach (Fig. 2E). GIANI uses MorphoLibJ to achieve this, with
the previously detected nuclear centres serving as seeds and the
Euclidean Distance Transform of the nuclear centre mask,
calculated using the 3D ImageJ Suite (Ollion et al., 2013),
serving as the image to be flooded. In addition, the top-hat
filtered nuclei channel is thresholded (using one of FIJI’s in-built
thresholding algorithms, specified by the user) to act as a mask,
restricting the overall extent of the segmentation.

Segmentation of cells
Cells are segmented using the same marker-controlled watershed
approach (Fig. 2F), with the previously segmented nuclei serving as
seeds and the distance transform of the nuclei serving as the image to
be flooded. The Gaussian-filtered cell channel (Fig. 2C) is
thresholded to act as a mask in this case. The nature of the distance
transform used is dependent on whether a membrane marker or
volume marker is used to identify the cells. In the case of a volume
marker, a standard Euclidean Distance Transform is used. In the case
of a membrane marker, a modified distance transform is used, similar
to that described by Jones et al. (2005), where the distance between
adjacent voxels, d, is calculated based on a Riemannian metric
defined in terms of the image I and a regularisation parameter, λ:

d ¼ rI þ l

1þ l
: ð1Þ

It can be seen that as λ tends to infinity, d tends towards the
Euclidean distance.

Analysis of simulated embryos
To first validate the performance of GIANI, we generated a series of
189 ‘simulated embryos’ exhibiting different levels of signal-to-
noise ratio and cell density (Fig. 3A). Simulated data has the
significant advantage of having a known ‘ground truth’ (Fig. 3B).
That is, because the images are generated artificially, we know what
the ‘correct’ segmentation should look like. This permits us to
compare the segmentation results generated with any piece of
analysis software with the known ‘true’ values.

Cell count errors generally increased with increased cell density
and decreasing signal-to-noise ratio (Fig. 3C,F). However, this error
was equal to 1 or less in 82.0% of embryos analysed using GIANI’s
basic nuclear detection and 98.9% when using advanced detection
(Fig. 3I). GIANI detected the correct number of cells in 93.7% of
cases when using advanced detection. Nuclear localisation errors
also generally increased with increased cell density and decreasing
signal-to-noise ratio (Fig. 3D,G). The interquartile range (IQR) of
nuclear localisation errors was 654–788 nm using basic nuclear
detection and 639–674 nm for advanced nuclear detection (Fig. 3J).
The cell centroid localisation error was similar for both basic
and advanced nuclear detection, with IQRs of 1.87–2.61 μm and
1.78–2.56 μm for basic and advanced detection, respectively
(Fig. 3E,H,K).

To benchmark GIANI against other available software, we
analysed the same simulated embryos using Imaris (Fig. S1). We
found that while Imaris produced a lower nuclear localisation error
(IQR was 423–519 nm; Fig. S1F), it miscounted the number of cells
in each embryo (38.1% of embryos) far more often than GIANI did
(6.3%; Fig. S1E). We also performed a limited evaluation of
CellProfiler on a subset of the same simulated data, which resulted
in errors larger than those produced by GIANI (Fig. S2) – the
nuclear localisation error was 776–786 nm and cell localisation
error was 52.3–55.0 μm.

Analysis of mouse embryos
We subsequently applied GIANI to the analysis of two populations of
mouse preimplantation embryos at the morula stage (3 to 3.25 days
post fertilisation), one control (n=18) and one treated with a small-
molecule inhibitor (Gerri et al., 2020) (n=20). At this stage, two
distinct cell populations are discernible – inner and outer cells. In
subsequent cell divisions, a blastocyst is formed, whereby the inner
cells give rise to an inner cell mass (ICM), and the outer cells become
the trophectoderm (TE), a polarized epithelium that will form fetal
components of the placenta (Cockburn and Rossant, 2010).

At the morula stage, inner and outer cells display different
polarisation states, which influence their cell fate acquisition. The
outer cells acquire an apical domain, enriched with the atypical
protein kinase C (aPKC) (Plusa et al., 2005). In the polar outer cells,
aPKC prevents activation of downstream Hippo pathway kinases,
large tumour suppressor kinases 1 and 2 (LATS1/2) (Hirate et al.,
2013). Consequently, in outer cells, YAP1 accumulates in the
nucleus, where it promotes the expression of GATA3 (Ralston et al.,
2010). In contrast, in the apolar inner cells, the activation of the
Hippo pathway results in YAP1 cytoplasmic retention, thus
maintaining the inner cells in an unspecified state (Cockburn
et al., 2013; Frum et al., 2018; Hirate et al., 2013).

We therefore divided cells within each embryo into an ‘inner’ and
‘outer’ population (Fig. 4A,B). This division is based on the
distance of the detected nuclear centroid from the embryo centroid.

Fig. 2. Overview of the algorithms underpinning GIANI. All images
represent a single slice of a 3D stack and are for illustrative purposes only.
(A) An example dataset, consisting of a mouse embryo showing DAPI (blue)
and E-cadherin (red). GIANI can accept as input any image data that is
readable by Bio-Formats (Linkert et al., 2010). (B) Nuclear centres are first
approximated using one of two blob detectors – Laplacian of Gaussian (left) or
Hessian (right). (C) Gaussian filtering is used to suppress noise in the channels
used for nuclear and cell segmentation. (D) The nuclear channel is then
subjected to top-hat filtering to remove background; contrast has been
increased to illustrate the effect of the filter. (E) Nuclear segmentation is
achieved using amarker-controlled watershed approach, with the background-
subtracted image from D serving as the input and approximated centres from B
serving as the seeds. (F) Cell segmentation is achieved using the same
marker-controlled watershed approach, with the filtered image from C serving
as the input and nuclei segmentations from E serving as the seeds.
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Fig. 3. See next page for legend.
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A cell was classified as ‘inner’ if the following condition held true:

Di

Dm
, DT ; ð2Þ

where Di is the Euclidean distance of cell i from the embryo
centroid,Dm is the maximum Euclidean distance from any cell in the
same embryo to the embryo centroid and DT is an arbitrarily set
distance threshold. For the purposes of this study, we chose a value
of 0.5 for DT – it was found that modifying this value slightly
(±10%) did not significantly impact the results (data not shown).
The embryo centroid was calculated as the average of all nuclear
centroids.

GIANI shows differences in cell morphology and YAP1 and GATA3
expression within inner and outer cells in control embryos
We then applied GIANI to detect variations in morphology and
protein expression in mouse preimplantation embryos. We began
with a morphological analysis of cells in control embryos. No
significant difference was found between median nuclear volumes
in inner and outer cell populations (Fig. 4C; P=0.861, Wilcoxon
rank sum test). A difference in median cell volume between the two
populations was also identified, but it was not statistically
significant (Fig. 4D; P=0.069). However, a comparison of cell-to-
nucleus volume ratios revealed a significant difference between
median values, with outer cells having a proportionately greater
cytoplasmic volume than inner cells (Fig. 4E; P<0.001). We also
confirmed previous analysis of YAP1 translocation (Nishioka et al.,
2009), illustrating that nuclear localisation is significantly higher in
outer versus inner cells (Fig. 4F; P<0.001). Similarly, GATA3
expression was shown to be higher in outer compared to inner cells
(Fig. 4G; P<0.0001).

GIANI reveals differences in YAP1 and GATA3 expression in mouse
embryos after pharmacological treatment
To further demonstrate the utility of GIANI, we sought to analyse
GATA3 and YAP1 expression after treating mouse embryos with a
small-molecular inhibitor against aPKC, the upstream regulator
of YAP1 and GATA3. The aPKC inhibitor, CRT0276121, has
previously been confirmed to specifically inhibit aPKC in various
biological and cellular contexts (Aguilar-Aragon et al., 2018; Kjær
et al., 2013; Rodriguez et al., 2017). Specifically, in mouse
preimplantation embryos, aPKC inhibition has been recently shown
to efficiently abrogate YAP1 and GATA3 expression in outer cells
(Gerri et al., 2020).
Expression of GATA3 in the nucleus (normalised to DAPI

intensity to correct for diminished signal intensity with increasing
sample depth) was found to be similarly low in the inner cells of

both control and treated embryos (Fig. 4G; P=0.841). However,
GATA3 expression in outer cells was found to be significantly lower
in the treated embryos relative to the control group (P<0.002).
Normalised expression of GATA3 was also found to be
significantly higher in outer cells of control embryos relative to
their inner cells (P<0.001), while the same was not true of treated
embryos (P=0.171). In addition, differences in distribution are
evident between control and treated embryos, with two distinct
populations evident in both inner and outer cells in control
populations (Fig. 4G).

Although no statistically significant difference in nuclear YAP1
expression (normalised to cytoplasmic expression) between control
and treated cells were observed when comparing inner cells
(Fig. 4H; P=0.609), a large difference was observed in outer cells
(P<0.0001). Moreover, the nuclear/cytoplasmic YAP1 expression
ratio was still higher in the outer cells of treated embryos versus
inner (P<0.0001). Altogether, this demonstrates that GIANI allows
for the automated quantification of expression differences between
cells following perturbation.

Analysis of blastocysts
To illustrate that GIANI can be run successfully on later stage mouse
embryos, we analysed two examples of blastocysts (mouse embryos
just prior to implantation, ∼4 days post fertilisation) and compared
with results from Imaris. A qualitative assessment (in the absence of
ground truth segmentations) shows that the results produced by
GIANI are comparable to those obtained using Imaris (Fig. S3).

Analysis of larger datasets
Analysis of a large simulated dataset
To test GIANI’s ability to handle more complex datasets, we
generated a large simulated volume consisting of ∼2000 nuclei
(available to download from https://dx.doi.org/10.5281/zenodo.
5270244). We compared the segmentations generated by GIANI
with those generated by Imaris (Fig. 5). A qualitative assessment
shows that although both software successfully segment the vast
majority of cells, errors are apparent, particularly in cases where
nuclei are highly clustered (Fig. 5A).We attempted to quantify these
segmentation errors using a number of different metrics.

We first compared the distribution of localisation errors produced
by GIANI and Imaris (Fig. 5B). Although in both cases nuclei were
localised to within ∼1 μm or less of their true locations most of the
time, the localisation errors produced by Imaris were, overall,
marginally lower. But, Imaris had a greater tendency to produce
outliers (localisation errors above ∼2 μm).

We next looked for any link between localisation error and
nuclear density. To do so, we examined the relationship between the
localisation error for each successfully detected nucleus and the
distance between that nucleus and its nearest neighbour (calculated
as the distance between nuclear centroids; Fig. 5C). Although the
relationship between these two variables is highly non-linear, it is
apparent that, for both GIANI and Imaris, a trend exists –
localisation error increases as the distance between nuclei decreases.

Finally, we compared the ability of GIANI and Imaris to
successfully detect the simulated nuclei and investigated whether
nuclear density influenced the likelihood of successful nuclear
detection (Fig. 5D). We found that although both GIANI and Imaris
successfully detected the vast majority of nuclei, the sensitivity
(percentage of nuclei detected) was slightly higher for GIANI
(93.3% vs 89.0%). Therewas also a clear relationship between inter-
nuclear distance and likelihood of successful detection. Of the 85
nuclei that both Imaris and GIANI failed to detect, 95% were 10 μm

Fig. 3. Validation of GIANI using simulated embryo data. In each of the heat
maps, a single tile represents the average of three simulated embryos. The
GIANI settings used to produce this data are available to download from https://
doi.org/10.5281/zenodo.6205979. (A) A 2D slice of an exemplar 3D simulated
embryo. (B) The ground truth segmentation of ‘A’. (C–H) Absolute errors in cell
counts (Ec, calculated according to Eqn 3), nuclear centroid localisation error
(Enl) and cell centroid localisation error (Ecl) produced by GIANI for simulated
embryos with the indicated number of cells and signal-to-noise ratios (SNRs).
Results were obtained using either GIANI’s basic (C–E) or advanced
(F–H) nuclear detector. (I–K) Comparison of the overall distribution of errors in
cell counts, nuclear centroid localisation and cell centroid localisation for
GIANI’s basic and advanced nuclear detectors, across all SNRs and cell
numbers. Each dot represents a single simulated embryo. Box plots show the
median (line) and IQR, with the whiskers extending 1.5 times the IQR from the
25th and 75th percentiles

6

TOOLS AND RESOURCES Journal of Cell Science (2022) 135, jcs259511. doi:10.1242/jcs.259511

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce

https://journals.biologists.com/jcs/article-lookup/DOI/10.1242/jcs.259511
https://dx.doi.org/10.5281/zenodo.5270244
https://dx.doi.org/10.5281/zenodo.5270244
https://dx.doi.org/10.5281/zenodo.5270244
https://doi.org/10.5281/zenodo.6205979
https://doi.org/10.5281/zenodo.6205979
https://doi.org/10.5281/zenodo.6205979


or less from their nearest neighbour. Given that the longest
dimension of the simulated nuclei is ∼10 μm, two nuclei that are
less than 10 μm apart at their centres are likely to significantly
overlap. This suggests that a nuclear density of less than
approximately 1

x3 μm−3, where x is the longest dimension of the
nuclei, is necessary for reliable segmentation using GIANI.

Analysis of a dataset derived from light-sheet microscopy
To further emphasise the capacity of GIANI to analyse large
volumes of data, we tested it on a Tribolium castaneum

embryo dataset derived from light-sheet microscopy (available to
download from https://dx.doi.org/10.5281/zenodo.5270323), again
benchmarking against Imaris (Fig. 6). We obtained this data from
the Cell Tracking Challenge (Ulman et al., 2017) and, unfortunately,
the ground truth data available is very limited (annotations for
only three cells is provided). However, the intention here is to
demonstrate that GIANI is capable of segmenting large numbers of
nuclei in such data (∼5600 were detected) and the results are
comparable to those obtained using market-leading commercial
software (Imaris).

Fig. 4. GIANI reveals differences inmorphology and protein expression inmouse embryos.Unless otherwise stated, each dot represents a single cell. The
GIANI settings used to produce this data are available to download from https://doi.org/10.5281/zenodo.6206008. (A) Illustration of the division of embryo cells
into ‘outer’ (red) and ‘inner’ (green) subpopulations. The embryo centroid is indicated by thewhite square. The blue circle has radiusDm and indicates the distance
from the embryo centroid to the most distant nucleus centroid. The radius of the yellow circle is DT×Dm. (B) The number of cells in each embryo divided into outer
and inner sub-populations using a value of 0.5 forDT in control embryos. Each dot represents a single embryo (ncontrol=18). (C) Volume of nuclei in inner and outer
populations in control embryos. (D) Volume of cells in inner and outer populations in control embryos. (E) Ratio of cell-to-nuclear volume in inner and outer cells in
control embryos. (F) Nuclear/cytoplasmic ratio of YAP1 expression in control embryos. (G) Difference in expression profiles of nuclear GATA3 expression,
normalised to DAPI, in control and treated embryos (ntreated=20). (H) Difference in nuclear/cytoplasmic ratiometric expression profiles of YAP1 in control and
treated embryos. Box plots show the median (line) and IQR, with the whiskers extending 1.5 times the IQR from the 25th and 75th percentiles. n.s., not significant
(two-sample Wilcoxon tests).
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DISCUSSION
Alternative algorithms for nuclei detection
The accurate quantitative analysis of a multicellular image dataset,
such as an embryo, is dependent on the correct identification and
segmentation of nuclei. While GIANI presently employs generic
blob detectors for this purpose, which is similar to other previously-
described methods (Lou et al., 2014), other approaches could be

incorporated (Blin et al., 2019; Caicedo et al., 2019; Kostrykin et al.,
2019; Weigert et al., 2020; Yang et al., 2020). In particular, the
ability to load pre-trained neural networks, by leveraging
DeepImageJ (Gómez-de-Mariscal et al., 2021), for example, or
machine-learning classifiers trained with, for example, Weka
(Arganda-Carreras et al., 2017) or Ilastik (Berg et al., 2019), may
be added in a future release. However, it is already possible for Java

Fig. 5. Demonstration of GIANI with a large simulated dataset. The GIANI and Imaris settings used to produce this data are available to download from https://
doi.org/10.5281/zenodo.6206022. (A) Illustration of the segmentations produced by GIANI and Imaris on a large simulated dataset (available to download from
https://doi.org/10.5281/zenodo.5270244). The top row shows a single slice of each 3D volume, whereas the bottom row shows themagnified views of the boxes in
the top row images. Scale bars: 20 μm. (B) Distribution of localisation errors produced by both Imaris and GIANI in detecting the simulated nuclei. (C) Relationship
between localisation error for detected nuclei and the distance of each nucleus to its nearest neighbour. (D) Influence of distance of nuclei to their nearest
neighbour on successful detection. Box plots show the median (line) and IQR, with the whiskers extending 1.5 times the IQR from the 25th and 75th percentiles.
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developers to customise and extend GIANI – a template for doing so
is provided online (https://github.com/djpbarry/Giani/wiki).

Alternative thresholding strategies
One of the challenges associated with the imaging of 3D samples is
that slices deeper within the sample will be more prone to scattering
effects and therefor exhibit lower intensity. We modelled this
process in the generation of our simulated embryos – the simulation
process took into consideration depth of slices within a samplewhen
modelling fluorescence intensity. Finding a single global
thresholding strategy that does not under-segment the dimmer

cells while also not over-segmenting the brighter cells is
challenging.

There are strategies that could be employed to mitigate against
these factors. For example, some form of adaptive thresholding,
whereby the intensity threshold changes according to z-location,
could be used. However, while an optimal adaptive thresholding
strategy could be found for a given dataset (such as the simulated
data used in this study), implementing a universally-applicable
strategy would be difficult. One of the principal design aims of
GIANI was simplicity of use, which does not allow for the
incorporation of a variety of case-specific segmentation approaches.

Fig. 6. Demonstration of GIANI on a large light-sheet microscopy dataset. Illustrations of the segmentations produced by GIANI and Imaris on a Tribolium
castaneum embryo dataset derived from light-sheet microscopy (available to download from https://doi.org/10.5281/zenodo.5270323). Two different slices of the
3D volumes are shown, at ∼46 μm (A) and ∼247 μm (B), to illustrate the variation in nuclei morphologies at different depths. In each case, the top row shows the
relevant slice of each 3D volume, whereas the bottom row shows the magnified views of the boxes in the top row images. ∼5600 nuclei were detected in the full
volume. Scale bars: 20 μm. The GIANI and Imaris settings used to produce this data are available to download from https://doi.org/10.5281/zenodo.6206042.
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Future developments
Given the ongoing interest in studying cells in ‘native’ 3D
extracellular environments (Yamada and Sixt, 2019), future
extension to the capabilities of GIANI will include the ability to
analyse time-lapse data, as there is currently a lack of open source
tools for the quantification of 3D cell migration (Masuzzo et al.,
2016). The incorporation of additional functionality from
TrackMate [and MaMuT (Wolff et al., 2018) or Mastodon] will
be explored to facilitate 3D cell tracking.
Future development will also include the replacement of the 3D

ROI Manager interface for visualizing results with a new, custom-
built interface. At present, segmented objects are saved solely as
FIJI ROI files, but it is intended that support for other formats (such
as .stl, .ply, .obj and .x3d) will be added to allow the import of
objects into a variety of different software.
More generally, with a view to improving and optimising

performance, further use of ImgLib2 (Pietzsch et al., 2012) will
be incorporated in future releases. Taking advantage of GPU
acceleration is also an aim, most likely by exploiting CLIJ (Haase
et al., 2020). At present, the analysis of a single simulated embryo
used in this study (approx. 2.1 GB) takes between approximately 30
and 60 min, depending on the number of CPUs available (Fig. S4).

Conclusion
We have used GIANI to quantitatively analyse mouse embryos in
3D. This analysis has revealed differences in morphology and
protein expression between different experimental conditions.
Analysis of simulated ground truth data was used to confirm the
validity of these results. Further development of GIANI is planned,
with the specific aim of improving segmentations in noisy and dense
fields of view, common in 3D images of cells. Extension to
timelapse analysis is also planned. GIANI is freely available on
GitHub (https://github.com/djpbarry/Giani) and we anticipate that it
will be a useful resource for the community to perform routine,
automated quantification of complex imaging data.

MATERIALS AND METHODS
Simulated data generation
Simulated data sets were generated using an extension of a previously
described method (Rajasekaran et al., 2016). Simulated nuclei (ellipsoidal
with axis dimensions of ∼10.0×7.5×7.5 μm) were positioned as previously
described (Rajasekaran et al., 2016), then cell membranes were
approximated using a Euclidean Distance Map constructed around nuclei.
The simulated images were then convolved with a Gaussian point-spread
function, sub-sampled and noise added from a gamma distribution. The
complete code for simulated image generation is available on GitHub
(https://github.com/djpbarry/Embryo-Generator).

Metrics for segmentation quality assessment
We calculated the cell count error (Ec) as:

Ec ¼ jNg � Ngt j; ð3Þ
where Ngt is the actual number of cells present in a simulated embryo andNg

is the number counted by GIANI. Nuclear (Enl) and cell (Ecl) centroid
localisation errors were calculated based on the Euclidean distance between
the known ground truth centroids and the centroids of the segmentations
produced by GIANI.

Mouse zygote collection
Four- to eight-week-old (C57BL6×CBA) F1 female mice were super-
ovulated using injection of 5 IU of pregnant mare serum gonadotrophin
(PMSG; Sigma-Aldrich). At 48 h after PMSG injection, 5 IU of human
chorionic gonadotrophin (HCG; Sigma-Aldrich) was administered.
Superovulated females were set up for mating with eight-week-old or

older (C57BL6×CBA) F1 males. Mice were maintained on a 12 h light–
12 h dark cycle. Mouse zygotes were isolated in EmbryoMax FHM mouse
embryo medium (Sigma-Aldrich; MR-122-D) under mineral oil (Origio;
ART-4008-5P) and cumulus cells were removed with hyaluronidase
(Sigma-Aldrich; H4272). All animal research was performed in
compliance with the UK Home Office Licence Number 70/8560.

Mouse embryo culture
Mouse embryos were cultured in drops of pre-equilibrated Global medium
(LifeGlobal; LGGG-20) supplemented with 5 mg/ml protein supplement
(LifeGlobal; LGPS-605) and overlaid with mineral oil (Origio; ART-4008-
5P). Preimplantation embryos were incubated at 37°C and 5.5% CO2 and
cultured up to the day of analysis.

Inhibitor treatment
Inhibitor experiment was performed as previously described (Gerri et al.,
2020). Briefly, the aPKC inhibitor CRT0276121 (Cancer Research
Technology) was dissolved in DMSO to 10 mM stock concentration and
diluted to the optimal concentration of 8 μM in pre-equilibrated embryo
culture medium. Mouse embryos were incubated in pre-equilibrated
medium with 8 μM of CRT0276121 from four-cell to morula stage (3 to
3.25 days post-fertilisation). Control mouse embryos were developed in pre-
equilibrated medium where volume-matched DMSO was added.

Immunofluorescence
Embryos were fixed with freshly prepared 4% paraformaldehyde in PBS that
was pre-chilled at 4°C. Embryo fixation was performed for 20 min at room
temperature (RT) and then the embryos were transferred through three
washes of 1× PBS with 0.1% Tween-20 to remove residual
paraformaldehyde. Embryos were permeabilized with 1× PBS with 0.5%
Triton X-100 and then blocked in blocking solution (3% BSA in 1× PBS
with 0.2% Triton X-100) for 2 h at RT on a rotating shaker. Then, embryos
were incubated with primary antibodies (listed in Table S1) diluted in
blocking solution overnight at 4°C on rotating shaker.

The following day, embryos were washed in 1× PBS with 0.2% Triton X-
100 for 20 min at RT on a rotating shaker and then incubated with secondary
antibodies diluted in blocking solution for 1 h at RT on a rotating shaker in
the dark. Next, embryos werewashed in 1× PBSwith 0.2% Triton X-100 for
20 min at RT on rotating shaker. Finally, embryos were placed in 1× PBS
with 0.1% Tween-20 with Vectashield with DAPI mounting medium
(Vector Lab; H-1200) (1:30 dilution). Embryos were placed on μ-Slide 8-
well dishes (Ibidi; 80826) for confocal imaging.

Image acquisition
All images were acquired on a Leica SP5 laser scanning confocal microscope
using a Leica 1.3 NA 63× HCX PL APO CS glycerol objective and a voxel
size of approximately 0.1×0.1×1.0 μm in x, y and z, respectively.

Statistical analysis
All statistical analyses in this study were performed using RStudio (https://
www.rstudio.com). The tests performed in this paper are two-sample
Wilcoxon tests (also known asMann–Whitney) (Mann andWhitney, 1947);
no assumptions are made regarding the nature of data distribution. All box
plots show the median and inter-quartile range, with the whiskers extending
1.5 times the interquartile range from the 25th and 75th percentiles. Unless
otherwise stated, each dot in dot plots represents a single cell.
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Provoost, T., Meas-Yedid, V., Pankajakshan, P., Lecomte, T., Le
Montagner, Y. et al. (2012). Icy: an open bioimage informatics platform for
extended reproducible research. Nat. Methods 9, 690-696. doi:10.1038/nmeth.
2075

Duval, K., Grover, H., Han, L.-H., Mou, Y., Pegoraro, A. F., Fredberg, J. and
Chen, Z. (2017). Modeling physiological events in 2D vs. 3D cell culture.
Physiology 32, 266-277. doi:10.1152/physiol.00036.2016

Frum, T., Murphy, T. M. and Ralston, A. (2018). HIPPO signaling resolves
embryonic cell fate conflicts during establishment of pluripotency in vivo. eLife 7,
e42298. doi:10.7554/eLife.42298

Gerri, C., McCarthy, A., Alanis-Lobato, G., Demtschenko, A., Bruneau, A.,
Loubersac, S., Fogarty, N. M. E., Hampshire, D., Elder, K., Snell, P. et al.
(2020). Initiation of a conserved trophectoderm program in human, cow and
mouse embryos. Nature 587, 443-447. doi:10.1038/s41586-020-2759-x
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Fig S1. Accuracy of simulated nuclei detection and localisation by GIANI and Imaris. 

In each of the heat maps, a single tile represents the average of three simulated embryos. 

The GIANI and Imaris settings used to produce this data are available to download from 

https://doi.org/10.5281/zenodo.6206087. A: Absolute errors in cell counts (Ec) produced 

by GIANI for simulated embryos with the indicated number of cells and signal-to-noise 

ratios (SNR). B: Absolute errors in nuclear centroid localisation (Enl) produced by GIANI. 

C: Absolute errors in cell counts produced by Imaris. D: Absolute errors in nuclear centroid 

localisation produced by Imaris. E - F: Comparison of the overall distribution of errors in 

cell counts and nuclear centroid localisation GIANI and Imaris, across all SNRs and cell 

numbers. Each dot represents a single simulated embryo.
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Fig. S2. Accuracy of simulated nuclei and cell detection and localisation by GIANI and 

CellProfiler compared. The data shown in A - C is a subset of that shown in Fig 3F - H. In D - F, 

each tile represents a single simulated embryo, which was reduced in size to 512 x 512 x 112 

voxels prior to running the pipeline. A: Absolute errors in cell counts (Ec) produced by GIANI for
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simulated embryos with the indicated number of cells and signal-to-noise ratios (SNR). 

B: Absolute errors in nuclear centroid localisation (Enl) produced by GIANI. C: 

Absolute errors in cell centroid localisation error (Ecl) produced by GIANI. D: 

Absolute errors in cell counts produced by CellProfiler. E: Absolute errors in nuclear 

centroid localisation produced by CellProfiler. F: Absolute errors in cell centroid 

localisation error produced by CellProfiler. The CellProfiler pipeline used and raw data 

are available to download from: https://dx.doi.org/10.5281/zenodo.5286507.
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A

Raw Imaris GIANI

B

Fig. S3. Comparison of mouse blastocyst nuclear segmentations between GIANI and 

Imaris.. A single slice of (A) expanded and (B) hatching blastocysts are shown, together with 

the segmentations produced by Imaris and GIANI. Scale bars are all equivalent to 20 µm. The 

GIANI and Imaris settings used to produce this data, together with the raw image data, are 

available to download from https://dx.doi.org/10.5281/zenodo.5286670.
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Fig. S4. Execution time of GIANI is independent of cell number, but decreases with increasing 

CPU availability. A: The length of time taken by GIANI to analyse simulated embryos versus the 

number of cells in the embryo. Each point represents the execution time for a single embryo - 

approximately 20 embryos were analysed for each cell number. The blue line represents a moving 

average calculated with LOESS smoothing. The grey bands represent the 95% confidence interval. 

B: The length of time taken by GIANI to analyse simulated embryos consisting of 30 cells versus 

the number of available CPUs. Each point represents the execution time for a single embryo - 

approximately 20 embryos were analysed for each CPU number. The blue line represents a moving 

average calculated with LOESS smoothing. The grey bands represent the 95% confidence interval.

J. Cell Sci.: doi:10.1242/jcs.259511: Supplementary information

Jo
ur

na
l o

f C
el

l S
ci

en
ce

 •
 S

up
pl

em
en

ta
ry

 in
fo

rm
at

io
n



Table S1. Primary antibodies used in this study and the dilution at which 
they were used.

Antibody Supplier Catalogue Number Dilution
YAP1 Abnova 1:50
GATA3 R&D

H00010413-M01
AF2605 1:200

E-CADHERIN Life Technologies 131900 1:400
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