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Accessible analysis of longitudinal data with linear mixed
effects models
Jessica I. Murphy1,2,*, Nicholas E. Weaver1 and Audrey E. Hendricks1,2

ABSTRACT
Longitudinal studies are commonly used to examine possible causal
factors associated with human health and disease. However, the
statistical models, such as two-way ANOVA, often applied in these
studies do not appropriately model the experimental design, resulting
in biased and imprecise results. Here, we describe the linear mixed
effects (LME) model and how to use it for longitudinal studies. We
re-analyze a dataset published by Blanton et al. in 2016 that modeled
growth trajectories in mice after microbiome implantation from
nourished or malnourished children. We compare the fit and
stability of different parameterizations of ANOVA and LME models;
most models found that the nourished versus malnourished growth
trajectories differed significantly. We show through simulation that the
results from the two-way ANOVA and LME models are not always
consistent. Incorrectly modeling correlated data can result in
increased rates of false positives or false negatives, supporting the
need to model correlated data correctly. We provide an interactive
Shiny App to enable accessible and appropriate analysis of
longitudinal data using LME models.

KEY WORDS: ANOVA, Linear mixed effects, Longitudinal,
Microbiome, Mouse, Shiny app

INTRODUCTION
Longitudinal studies are often used in biomedical research to
improve our understanding of human conditions. Common
applications for mouse models in particular include studying the
effects of the gut microbiome on human health and disease (Blanton
et al., 2016; Britton et al., 2019; Feehley et al., 2019; Ridaura et al.,
2013; Tanoue et al., 2019), as well as studying working and long-
term memory in Alzheimer’s disease (Alamed et al., 2006;
Cracchiolo et al., 2007; Gajbhiye et al., 2017; Rosenzweig et al.,
2019). In these studies, subjects (e.g. mice) are randomly assigned
to a treatment group and a continuous outcome, such as growth, is
tracked across time. The goal of longitudinal studies is usually to
determine whether the trajectories of subjects over time vary by
treatment group.
Correlation between observations is inherent within longitudinal

studies due to the longitudinal and sometimes crossed or nested

study design. For instance, longitudinal measurements taken from
the same subject are likely to be more similar to each other than
measurements taken from different subjects. Experiments may also
have a crossed study design if time is considered categorical instead
of continuous and each subject is measured at the same time points.
In gut microbiome studies, experiments may have a nested design
whereby the fecal sample from a single donor is transplanted into
multiple mice (Blanton et al., 2016; Britton et al., 2019; Feehley
et al., 2019). Mice with transplanted microbiota from the same
donor are likely to have more similar (i.e. correlated) microbiota
profiles. Incorrectly modeled experimental structure can result in
biased and imprecise estimates, which can lead to inaccurate
conclusions (Cheng et al., 2010; Verbeke and Molenberghs, 2000).

Correctly modeling correlated data requires careful consideration.
In many longitudinal studies, a two-way ANOVA model is used
(Blanton et al., 2016; Ridaura et al., 2013; Tanoue et al., 2019), with
predictor variables for treatment group, time, and the interaction
between treatment group and time. A two-way ANOVA assumes
independent observations and thus does not account for correlation
from longitudinal or crossed/nested measurements. Repeated
measures ANOVA is also commonly used (Cracchiolo et al., 2007;
Rosenzweig et al., 2019), which does control for the correlation of
measurements due to longitudinal structure but not for the correlation
induced by crossed or nested designs. The linear mixed effects
(LME) model is a flexible method enabling correct modeling of both
longitudinal and crossed or nested correlation (Feehley et al., 2019).

Here, we describe the LME model and how to use it for
longitudinal studies.We also re-analyze a dataset fromBlanton et al.
published in Science in 2016 that investigated the growth
trajectories of mice supplied with fecal microbiota from nourished
and malnourished children (Blanton et al., 2016). Finally, we
provide an interactive Shiny App so others can easily implement an
appropriate statistical analysis for longitudinal studies.

RESULTS
Linear mixed effects models
A traditional linear model is defined by the following formula:

Y ¼ b0 þ b1x1 þ b2x2 þ . . .þ bpxp þ e; ð1Þ
where Y is the outcome variable, x1, …, xp are the predictor
variables, β0, …, βp are the regression parameters reflecting the
relationship between each xj and Y while controlling for the other
predictors, and ε is the random error.

When used for longitudinal models, trajectories by group are
often modeled using Eqn 2 below:

Y ¼ b0 þ b1 groupþ b2 timeþ b3 group� time þ e; ð2Þ
where group refers to the treatment group, time refers to the time
measurement (continuous), and group× time refers to the
interaction between treatment group and time. The model
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parameters are defined in Table 1. This equation is identical to a
two-factor ANOVAwith interaction. The group by time interaction
is usually the effect of interest in longitudinal studies and identifies
whether trajectories differ by group.
The random error term, ε, captures variation in the outcome, Y,

not explained by the model. In a linear model, the random error is
assumed to be independent and identically distributed with a mean
of zero and a constant variance σ2 from a normal distribution
½e � Nð0; s2Þ�. The ANOVA model is reasonably robust to
violations in the normality assumption, but not to violations in the
assumption of independence. The independence assumption is
violated if unaccounted correlation is present, which occurs in
longitudinal data and nested designs.
To account for correlation between observations, LMEs use

random effects to explicitly model the correlation structure, thus
removing correlation from the error term. Random effects can take
many functional forms (e.g. linear, quadratic) depending on the
structure of the data. Here, we focus on two commonly used random
effects: a random intercept and a random slope. For example, a
random intercept for subject allows the mean value (i.e. intercept) of
Y to differ between subjects whereas a random slope term allows the
rate of change (i.e. slope) between a predictor, such as time, and the
outcome to differ between subjects. A random slope in addition to a
random intercept allows both the rate of change and the mean value
to vary by subject. Random slopes are usually only used with
random intercepts.
A random slope, γi1, and intercept, γi0, model for subject i is

shown in Eqn 3 below:

Yi ¼ b0 þ b1 groupi þ b2 timei þ b3 groupi � timei þ gi0

þ gi1timei þ ei: ð3Þ
In this model, β0, β1, β2 and β3 are often referred to as fixed effects
because they are the same for all subjects. Random effects are
usually specified for the factor (i.e. categorical) variables with
multiple levels or categories within the experiment. The random
intercept term, γi0, represents subject-level deviations from the
population-level intercepts (e.g. β0 for the reference group and
β0 + β1 for the treatment group) and the random slope term
represents subject-level deviations from the population-level
slopes (e.g. β2 for the reference group and β2 + β3 for the
treatment group). For mouse models with a nested study design,
the factor variables are mouse (multiple mice nested within a single
donor) and donor (multiple donors per treatment group). The mouse
would be considered the nested random effect and the donor would

be considered the higher-level random effect (Schielzeth and
Nakagawa, 2013).

Autocorrelation between successive time points can be modeled
directly through the error term in LMEs. Instead of assuming
independent errors, an autoregressive (AR) correlation structure can
be specified [εt = φ εt−1 + Ztwith Zt � Nð0; s2Þ for time point t and
|φ| < 1]. This structure assumes that observations closer together in
time are more related than observations farther apart, which is often
true in longitudinal studies. Whereas random effects are used to
model the variation between different subjects, correlation
structures for the errors are used to model the variation within
subjects over an ordered structure, such as time.

After specifying a preliminary mean structure (Eqn 2), a
preliminary random effects structure (Eqn 3) and a residual
covariance structure, model reduction can be performed if
appropriate (Verbeke and Molenberghs, 2000). When in doubt or
if the structure of the data is unknown, the maximal model, which
includes a slope and intercept for each random effect consistent with
the study design, is commonly used (Barr et al., 2013; Schielzeth
and Forstmeier, 2009; Verbeke and Molenberghs, 2000; Cheng
et al., 2010). Then, the need for each slope and/or intercept can be
tested for inclusion in the model as further described (Matuschek
et al., 2017).

Re-analysis of the Blanton et al. dataset
Eight models were evaluated in the re-analysis of the Blanton et al.
dataset (Blanton et al., 2016). The models are described in the
following section, and the model parameters are defined in Table 1.
The maximal model (Model I) is specified below, where Y refers to
the outcome variable (growth), group refers to the treatment group
(undernourished versus healthy), time refers to the number of days,
and group× time refers to the interaction between treatment group
and time for subject i. The nested models (Models II-V) include a
subset of terms from the maximal model. The autocorrelation
models (Models VI-VIII) include error terms with autoregressive
correlation structures whereas the maximal and nested models
include independent errors.

Maximal model [ei ∼N(0, s2)]
Donor intercept and slope plus mouse intercept and slope random
effects:

Yi ¼ b0 þ b1 groupi þ b2 timei þ b3 groupi � timei

þ gD0i þ gD1i timei þ gM0i þ gM1i timei þ ei ðModel IÞ

Nested models [ei � Nð0; s2Þ]
Donor intercept plus mouse intercept and slope random effects:

Yi ¼ b0 þ b1 groupi þ b2 timei þ b3 groupi � timei
þ gD0i þ gM0i þ gM1i timei þ ei ðModel IIÞ

Mouse intercept and slope random effects:

Yi ¼ b0 þ b1 groupi þ b2 timei þ b3 groupi � timei
þ gM0i þ gM1i timei þ ei ðModel IIIÞ

Mouse intercept random effect:

Yi ¼ b0 þ b1 groupi þ b2 timei þ b3 groupi � timei
þ gM0i þ ei ðModel IVÞ

Table 1. Parameter definitions for linear mixed effects models

Parameter Definition

β0 Intercept
β1 Effect of treatment group (e.g. undernourished versus healthy)*
β2 Effect of time*
β3 Effect of the treatment group by time interaction
γD0 Random intercept for donor‡

γD1 Random slope for donor‡

γM0 Random intercept for mouse nested within donor‡

γM1 Random slope for mouse nested within donor‡

ε Residual random error
σ2 Residual variance
φ Autocorrelation coefficient

*Caution should be used when interpreting or analyzing the effect of time and
the effect of group given the interaction term.
‡The random effects are represented as subject-level deviations from the fixed
effects.
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No random effects:

Yi¼b0þb1 groupiþb2 timeiþb3 groupi � timei

þei ðModel VÞ
Autocorrelation models [εi,t = φεi,t−1 + Zi,t with Zi;t ∼ N(0, s2) for time
point t and |φ| < 1]
Mouse slope random effect:

Yi ¼ b0 þ b1 groupi þ b2 timei þ b3 groupi � timei
þ gM1i timei þ ei ðModel VIÞ

Mouse intercept random effect:

Yi ¼ b0 þ b1 groupi þ b2 timei þ b3 groupi � timei
þ gM0i þ ei ðModel VIIÞ

No random effects:

Yi ¼ b0 þ b1 groupi þ b2 timei þ b3 groupi � timei
þ ei ðModel VIIIÞ

To test if the study design used by Blanton et al. resulted in
correlation between observations within donor and mouse,
hypothesis tests of the random effect terms (i.e. tests of nested
models) were performed with a likelihood ratio test (LRT) as well as
a parametric bootstrap test. For both, each additional random effect
term significantly improved model fit, indicating that the maximal
model (Model I) is preferred out of the nested models (Table 2).
However, Model I produced convergence warnings for three out of
seven optimizers checked (bobyqa, Nelder_Mead and optimx.L-
BFGS-B), but the parameter estimates were consistent among the
optimizers that converged. Model II was significantly better than
Model III and did not produce any convergence warnings. Residual
profile plots of the nested models (Fig. S1) showed that Model V
had theworst fit followed byModel IV, withModels I-III having the
best fit.
Model fit improved when an autocorrelation structure was used

for the residual error (Model VIII versus V) and a random slope for
mouse was added (Model VI versus VIII). However, the addition of
a random intercept for mouse was unnecessary when accounting for
autocorrelation (Model VII versus VIII) given that the estimated
variance of the random intercept term was very close to zero.
Therefore, Model VI only contains a random slope for mouse
without a random intercept, which is still consistent with the study
design as growth was measured as change from baseline, thus
forcing the intercept to be zero for all mice.

The interaction effect estimate is smaller for the linear model
(Model V) and the autocorrelation models without a random slope
(Models VII and VIII) compared to the other models (Models I-IV
and VI) for which the estimates are fairly consistent. The standard
error estimates for the interaction effect vary more between models.
The standard error estimate of the interaction term is largest for the
maximal model (Model I) and smallest for the simpler models
(Models IV-V and VII-VIII) (Table 3).

The autocorrelation models fit the data better than the nested
models, with the simpler autocorrelation models (Models VII and
VIII) having similar log likelihoods to the maximal model
(Model I). Model VI, the autocorrelation model with a random
slope for mouse, had the best fit overall with the largest log
likelihood (Table 3). This ‘best’ model was chosen based on the
study design and model fit, not the P-value of the effect of interest.

Simulations
To compare the type I error and power of the models, data were
simulated for three different covariance scenarios: a random intercept
and slope for mouse (Model III), a random intercept for mouse
(Model IV), and no random effects (Model V). Across all simulation
scenarios, the model that matches the simulation scenario performs
best by maintaining the type I error and having higher power (Table 4
and Fig. S2). For instance, for the ‘mouse intercept and slope’
simulation scenario, the model that matches the simulation scenario
(Model III) is the only model that maintains the appropriate type I
error. The type I error is severely inflated forModels IV and V, which
do not include the slope random effect term. For the ‘mouse
intercept’ simulation scenario, Model IV, which matches the

Table 3. Stability of the effect of interest over different randomeffect and
correlation structures with model comparison

Model

Interaction effect*

φ Log likelihood‡b̂ s.e.m. P-value

Nested models
I −0.42 0.26 0.1500 — −1178.7
II −0.42 0.14 0.0058 — −1184.6
III −0.43 0.14 0.0051 — −1189.7
IV −0.40 0.05 <0.0001 — −1399.3
V −0.32 0.07 <0.0001 — −1518.6

Autocorrelation models
VI −0.42 0.15 0.0043 0.63 −1133.9
VII −0.35 0.09 1.8×10−4 0.92 −1175.6
VIII −0.35 0.09 1.7×10−4 0.92 −1175.6

*Significant interaction terms (P<0.05) are in bold.
‡A larger log likelihood indicates a better model fit.

Table 2. Assessment of random effect terms and autocorrelation structure in nested models

Models Term

Likelihood ratio test Parametric bootstrap test

Test statistic P-value Test statistic P-value

Nested models
I versus II Donor slope 9.85 0.0073 9.62 0.0010
II versus III Donor intercept 7.99 0.0047 7.72 0.0019
III versus IV Mouse slope 419 <0.0001 418 0.0010
IV versus V Mouse intercept 243 <0.0001 –* –

Autocorrelation models
VI versus VIII Mouse slope 85.0 <0.0001 – –

VII versus VIII Mouse intercept 3.6×10−7‡ 0.9995 – –

VIII versus V Autocorrelation 689 <0.0001 – –

*The parametric bootstrap function ‘PBmodcomp’was unable to compare models of different types (Model VI is a mixed effects model, Model V is a linear model,
Model VIII is an autocorrelation model, and Models VI-VII are mixed effects autocorrelation models).
‡Such a small test statistic strongly suggests that themore complexmodel (Model VII) is singular, or that the variance of the random intercept term is essentially zero.
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simulation scenario, has slightly more power than Models III and
V. But, the type I error is very conservative for all three models, even
the model that matches the simulation scenario (Model IV). Table S1
highlights the increased power for Model IV more clearly as the type
I error is no longer conservative for this larger sample size (n=40
independent mice). For the simulation scenario with no random
effects, Model V, which matches the simulation scenario, and Model
IV are both close to the expected value of 0.05, whereasModel III has
a slightly conservative type I error estimate. Consequently, Model III
also has slightly less power than Models IV and V.
To determine whether the small simulated sample size of eight

donors with five mice nested within each donor was affecting the
type I error estimates, a simulation analysis was performed for larger
sample sizes (Table 5). The nested model of five mice per eight
donors results in 40 mice, but mice within the same donor are
correlated (i.e. contain dependent information), resulting in an
effective independent sample size less than 40. Conversely, the
scenario with 40 donors, one for each mouse, provides independent
information for each mouse. Indeed, for the ‘mouse intercept’
simulation scenario, the type I error for Model IV is deflated for the
five mice per eight donors sample size, but is close to the expected
value of 0.05 when there are 40 independent mice. The over-
conservative type I error could be due to a failure in approximation
for the Wald test at small sample sizes (Verbeke and Molenberghs,
2000). For the ‘mouse intercept’ simulation scenario, Models III

and V, which do not match the experimental design of the
simulation scenario, have slightly and considerably deflated type I
error, respectively. Model III, which contains an unnecessary
random slope term, approaches the expected type I error as the
sample size increases. Model V, which does not include the
necessary random intercept term, has severely deflated type I error
across all sample sizes. For the ‘mouse intercept and slope’
simulation scenario, the type I errors for Models IV and V are
severely inflated across all sample sizes.

These results suggest that leaving out a necessary random effect
term will result in an inaccurate type I error even at large sample
sizes. This is seen with Models IV and V for the ‘mouse intercept
and slope’ simulation scenario and with Model V for the ‘mouse
intercept’ simulation scenario. Importantly, the direction of the bias
in the type I error can result in too conservative (i.e. too small type I
error) or anti-conservative (i.e. too large type I error) results. Models
that include an unnecessary random effect term, e.g. Model III in the
‘mouse intercept’ simulation scenario or Models III or IV in the ‘no
random effects’ simulation scenario, can result in deflated type I
error at smaller sample sizes. However, this bias decreases as the
sample size increases, ultimately resulting in the appropriate type I
error. These results suggest that the type I error is better controlled
when random effect terms are included, but may result in lower
power, as shown in Table 2. Regardless, as we discuss above and
show in Table 2, whether including random effect terms results in a

Table 4. Type I error and power for the group by time interaction effect

‘Mouse intercept and slope’ simulation scenario ‘Mouse intercept’ simulation scenario ‘No random effects’ simulation scenario

Effect
size

Mouse intercept
and slope
(Model III)

Mouse
intercept
(Model IV)

No random
effects
(Model V)

Mouse intercept
and slope
(Model III)

Mouse
intercept
(Model IV)

No random
effects
(Model V)

Mouse intercept
and slope
(Model III)

Mouse
intercept
(Model IV)

No random
effects
(Model V)

0%* 0.040
[0.036, 0.044]§

0.334
[0.325, 0.343]

0.314
[0.305, 0.323]

0.011
[0.009, 0.013]

0.019
[0.016, 0.022]

0.017
[0.014, 0.019]

0.028
[0.025, 0.031]

0.050
[0.045, 0.054]

0.049
[0.045, 0.054]

10% 0.05
[0.03, 0.06]

–‡ – 0.19
[0.16, 0.21]

0.26
[0.24, 0.29]

0.24
[0.22, 0.27]

0.26
[0.23, 0.29]

0.40
[0.37, 0.43]

0.40
[0.37, 0.43]

25% 0.08
[0.06, 0.1]

– – 0.92
[0.90, 0.93]

0.98
[1.00, 1.00]

0.97
[0.96, 0.98]

0.92
[0.90, 0.94]

0.99
[0.98, 0.99]

0.99
[0.98, 0.99]

50% 0.23
[0.21, 0.26]

– – 1.00
[0.99, 1.00]

1.00
[1.00, 1.00]

1.00
[1.00, 1.00]

1.00
[1.00, 1.00]

1.00
[1.00, 1.00]

1.00
[1.00, 1.00]

100% 0.72
[0.69, 0.74]

– – 1.00
[1.00, 1.00]

1.00
[1.00, 1.00]

1.00
[1.00, 1.00]

1.00
[1.00, 1.00]

1.00
[1.00, 1.00]

1.00
[1.00, 1.00]

*Type I error.
‡Power is only compared when Type I error was close to or below the expected level of 0.05.
§Square brackets indicate 95% binomial confidence intervals.

Table 5. Type I error by sample size for the group by time interaction effect

‘Mouse intercept and slope’ simulation scenario ‘Mouse intercept’ simulation scenario ‘No random effects’ simulation scenario

Sample
size
(n mice)

Mouse
intercept
and slope
(Model III)

Mouse
intercept
(Model IV)

No random
effects

(Model V)

Mouse
intercept
and slope
(Model III)

Mouse
intercept
(Model IV)

No random
effects

(Model V)

Mouse
intercept
and slope
(Model III)

Mouse
intercept
(Model IV)

No random
effects

(Model V)

5 mice
per 8
donors
(n=40)

0.040
[0.036, 0.044]*

0.334
[0.325, 0.343]

0.314
[0.305, 0.323]

0.011
[0.009, 0.013]

0.019
[0.016, 0.022]

0.017
[0.014, 0.019]

0.028
[0.025, 0.031]

0.050
[0.045, 0.054]

0.049
[0.045, 0.054]

40 0.047
[0.043, 0.051]

0.499
[0.490, 0.509]

0.314
[0.305, 0.323]

0.039
[0.035, 0.043]

0.051
[0.047, 0.055]

0.017
[0.014, 0.019]

0.038
[0.034, 0.042]

0.050
[0.046, 0.055]

0.049
[0.045, 0.054]

100 0.049
[0.044, 0.053]

0.499
[0.489, 0.508]

0.311
[0.302, 0.320]

0.044
[0.040, 0.048]

0.051
[0.047, 0.055]

0.016
[0.014, 0.019]

0.039
[0.035, 0.043]

0.047
[0.043, 0.051]

0.046
[0.042, 0.050]

1000 0.047
[0.043, 0.051]

0.496
[0.486, 0.506]

0.310
[0.301, 0.319]

0.047
[0.043, 0.052]

0.049
[0.045, 0.054]

0.014
[0.012, 0.016]

0.049
[0.045, 0.053]

0.051
[0.047, 0.056]

0.051
[0.047, 0.056]

*Square brackets represent 95% binomial confidence intervals.
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better model fit can be tested while defaulting to the maximal model
consistent with the study design (Schielzeth and Forstmeier, 2009).

EasyLME: a Shiny app
Because analyzing longitudinal data requires careful consideration
and the use of LME models is not always easily available, we
provide an interactive and user-friendly Shiny app (https://cran.r-
project.org/package=shiny) that allows others to implement and
choose an appropriate LME model more easily. The app, called
EasyLME, can be accessed through any web browser at https://
shiny.clas.ucdenver.edu/EasyLME/. To explore the app’s features,
users can upload their own data or use the demo data from Blanton
et al. Users can then select variables representing the structure of
their data, including an option to specify whether the model
contains nested random effects. Users can also select additional
covariates if desired. The app assumes that the response and time
variables are continuous and the grouping variable as well as the
random effects are factors. However, users should code categorical
covariates (e.g. sex) as characters (e.g. male/female); otherwise,
numerically coded covariates will be treated as continuous. For the
demo data, the random effect variables are ‘Mouse’ nested in
‘Donor’, as shown on the left-hand side of Fig. 1, because samples
from each donor were transplanted into multiple mice. Once the
variables have been chosen, the user can navigate through the output
tabs to see the various aspects of the analysis. This basic design of
the app was inspired by medplot, a Shiny app for longitudinal
medical data (Ahlin et al., 2015).
The app contains six tabs, as shown in Fig. 1: ‘Welcome’, ‘Data

Summary’, ‘Exploratory Plots’, ‘Model Results’, ‘Diagnostic Plots’

and ‘Fitted Lines’. The main page of the app is the ‘Welcome’ tab
with an ‘About’ section explaining the app functions followed by a
‘Getting Started’ section. The ‘Data Summary’ tab provides
univariate summaries of each variable selected by the user
grouped by the random effect variable (or by the higher-level
random effect if the data are nested). The data summaries help to
ensure that the appropriate variables are selected and can highlight
any extreme or missing values.

The ‘Exploratory Plots’ tab provides three visualizations helpful
to understand structure in the data. The scatterplot in figure 1 of the
app (Fig. S3) shows the relationship between the response variable
and time. This plot is useful for checking the assumption of linearity
between the response and time. The trendlines in figure 2 of the app
(Fig. S4) display the average response over time for the higher-level
factor (e.g. donor). This plot helps to visualize whether a random
intercept and/or random slope would be appropriate for the higher-
level random effect. It also shows the presence of missing data if
there are gaps in the lines or the lines stop short. If a user’s data are
not nested, this graph will just show the trendlines for the random
effect, without the need for averaging. The third figure in the
‘Exploratory Plots’ tab (Fig. S5) shows the trendlines for the nested
random effect (e.g. mouse) faceted by the higher-level random
effect (e.g. donor). This plot is helpful to visualize whether a
random intercept and/or random slope would be appropriate for the
nested random effect. If a user’s data is not nested, this plot will not
be displayed.

The ‘Model Results’ tab contains a comparison table for testing
nested models. The table contains coefficient estimates with
standard errors in parentheses, log likelihoods, and P-values from

Fig. 1. EasyLME Shiny app user interface featuring the ‘Fitted Lines’ tab. (A) Default variables for the Blanton et al. demo data. (B) Main tabs of the app.
(C) Drop-downmenu to select a specific model to visualize the fitted lines. (D) Plot of the original data and fitted lines for the higher-level random effect variable in
the maximal model (Donor Intercept/Slope+Mouse Intercept/Slope).
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likelihood ratio tests of the nested models. These results are similar
to those shown in Tables 2 and 3. If a user’s data are nested (e.g.
multiple mice per donor), the table compares the five nested models
listed above in the ‘Re-analysis of Blanton et al. dataset’ section. If
the data are not nested (e.g. one mouse per donor), the table only
compares Models III-V (mouse intercept and slope, mouse
intercept, and no random effects). All models are assumed to have
a simple residual covariance structure ½e � Nð0; s2Þ�; more
complex structures, such as autocorrelation, will be supported in
the next version of the app. A coefficient plot (Fig. S6) is also
provided below the table to allow a visual comparison of the 95%
confidence intervals of the fixed effect estimates for the different
models. Below the plot, the user can select a specific LME model
from the drop-down menu to see more detailed information, such as
the random effect estimates.
Convergence warnings, if any, for seven different optimizers are

provided in the ‘Model Results’ tab. For singular fit warnings, we
recommend the user choose a simpler model that excludes random
effect terms estimated to be at or very close to zero. The user could
also center and scale the continuous predictor variables to possibly
resolve convergence warnings. Other potential fixes, such as
increasing the tolerance level of the optimizer or using different
starting values for the parameters, are currently not provided in the
app but could be implemented directly within the lmer function (Bates
et al., 2015). In the next version of the app, the user will have the
ability to change the optimizer and refit the selected model if needed.
The subsequent ‘Diagnostic Plots’ tab provides visualizations to

compare model fits. Figure 4 of the app (Fig. S1) shows residual
profile plots in increasing order of model complexity. Models with a
large, nonconstant variability in the residuals over time indicate a
worse model fit, whereas models with a small, constant variability
in the residuals over time indicate a better model fit.
Lastly, given a selected model, the ‘Fitted Lines’ tab visualizes

the fitted line for each random effect factor (e.g. donor or mouse) as
seen in Fig. 1. If a user’s data are nested and the selected model
contains both random effects, then two plots will be displayed, one
for each of the nested and higher-level random effects (e.g. mouse
and donor). These plots are useful for visualizing how the inclusion
of a random slope and intercept versus just a random intercept
affects the model fit. The inclusion of a random intercept versus no
random effects can also be compared. If a user’s data are not nested
or the selected model just contains one random effect, then only one
plot will be displayed for the specific random effect variable.
All plots within the app are made with plotly (Sievert, 2020) and

are thus interactive and can be downloaded as a PNG. Specifically,
users can zoom the plots in and out, hover over data points to display

more information, and click on the legend entries to remove a group
of points from the plot (clicking again will add the points back).

DISCUSSION
Longitudinal data, and especially nested longitudinal data, are often
modeled incorrectly. ANOVA, although commonly used, does not
accurately account for correlation from repeated measurements or
nested structure. Here, we compare the LMEmodel with ANOVA in
a gut microbiome case study involving longitudinal mouse models.
In our re-analysis of data published by Blanton et al. (2016), we find
evidence that LME models based on the experimental design better
fit the data. Importantly, we show that results from the LME model
and ANOVA will not always produce consistent results in terms of
effect estimate, standard error and, subsequently, statistical
significance. Through simulations, we show that the type I error is
not well controlled when using an ANOVA model for longitudinal
data and can result in false positives or false negatives. We also
show that LMEs, with the inclusion of necessary random effect
terms to model the experimental structure appropriately, produce
unbiased type I error at sufficiently large sample sizes.

To allow easier implementation of LME models, we designed
EasyLME, a Shiny app to enable appropriate analysis of longitudinal
studies. The app’s easy-to-use features, such as the exploratory plots,
model tests/comparisons, and fitted lines, allow researchers to
choose the most suitable model for their data. Although the demo
data pertains to mouse models, the app is applicable to longitudinal
studies in general to identify group differences in trajectory for a
continuous outcome. For a more comprehensive open-source tool,
we recommend jamovi (https://www.jamovi.org/), which also
includes LMEs in the GAMLj module (https://blog.jamovi.org/
2018/11/13/introducing-gamlj.html).

Although the goal of the app is to make analyzing longitudinal
data with LMEs more accessible, consultation with a statistician is
still recommended in study design, analysis and interpretation of
results. We also recommend that, prior to analysis, users create a
data analysis plan that describes quality control, significance
thresholds and how the final model will be chosen (Cheng et al.,
2010; Michener, 2015; Simpson, 2015). Additionally, we advise the
user to consider both model fit and stability when selecting a model
(e.g. visualizations, nested model comparisons, as well as
convergence warnings). If the results and conclusions vary greatly
between the models, such as large changes in the effect size or
significance of the interaction term, we recommend reporting the
results from all models considered. Additional structure could still
exist within the data, such as autocorrelation, which would require
further investigation. Generalized additive models could potentially

Fig. 2. Study design for the Blanton et al. dataset. Fecal samples from children aged 6-18 months were orally transferred to five germ-free mice (M). The
analysis was restricted to the three healthy (H) and five undernourished (U) donor samples that produced >50% transplantation efficiency. The percentageweight
change of each mouse was recorded at 12 time points (t1-12): 0, 1, 3, 4, 7, 11, 14, 18, 21, 25, 28 and 32 days.
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be used to explain nonlinear patterns in the data given enough time
points (McEvoy-May et al., 2021).
Although LME models can be performed in other programs (e.g.

Stata, SAS, SPSS), R was used for this analysis because it is a
widely known, free and open-source platform. As such, we hope our
app will increase accessibility for applied researchers working with
longitudinal data.

MATERIALS AND METHODS
Blanton et al. dataset
The dataset used in this paper was obtained from a 2016 publication entitled
‘Gut bacteria that prevent growth impairments transmitted by microbiota
from malnourished children’ (Blanton et al., 2016). In the experiment of
interest, fecal samples from eight healthy and eleven undernourished
children aged 6 or 18 months were obtained. Each fecal sample was orally
transferred to five germ-free mice. The percentage weight change of each
mouse was recorded at 12 time points: 0, 1, 3, 4, 7, 11, 14, 18, 21, 25, 28 and
32 days. In the original study, the statistical analysis was restricted to eight
donor samples (three healthy, five underweight) that produced >50%
transplantation efficiency resulting in a total of 480 observations across all
time points, mice and donors. Forty-three observations were missing,
resulting in 437 observations. The study design for this dataset is shown in
Fig. 2.

Re-analysis of Blanton et al. dataset
Analysis of the Blanton et al. data with LME models was performed using
the nlme v3.1-149, lme4 v1.1-23 and lmerTest v3.1-2 packages in R v4.0.3
(Bates et al., 2015; Kuznetsova et al., 2017; R Core Team, 2020; https://cran.
r-project.org/package=nlme). The coefficients were estimated using
restricted maximum likelihood (REML) (Verbeke and Molenberghs,
2000) and the random effects terms were allowed to be correlated. The fit
of each model was measured using log likelihoods, with a larger log
likelihood indicating a better fit. The stability of the model estimates for
different optimizers was checked using the allFit function from the lme4
v1.1-23 R package (Bates et al., 2015). The estimates were considered stable
if they did not change substantially across the optimizers.

The LRT is an appropriate method for hypothesis testing of fixed effects
terms. However, the LRT can produce inaccurate P-values for random
effects because random effect estimates are tested against zero, which is on
the boundary of the parameter space (variance must be greater than or equal
to zero) (Verbeke and Molenberghs, 2000). As such, parametric bootstrap
methods (PBmodcomp function from the pbkrtest package) in addition to
LRTs were used to perform hypothesis tests of random effect terms
(Halekoh and Højsgaard, 2014). The PBmodcomp function can only be
used to compare models of the same type and thus could not be used to test
an LME model (Model IV) versus a linear model (Model V), an
autocorrelation model (Model VIII) versus a linear model (Model V), or a
mixed effects autocorrelation model (Models VI-VII) versus an
autocorrelation model (Model VIII). When completing hypothesis tests of
nested models, each model was refit using maximum likelihood (ML)
estimation. For all statistical tests, a significance threshold of P<0.05 was
used.

Model fit was visualized with residual profile plots. Residuals represent
the difference between the observed response value and the estimated
response value from the model. Models that do not fit the data well produce
estimates farther from the truth (i.e. larger residuals). Patterns or nonconstant
variability in the residuals over time can also indicate a poor model fit. In the
profile plots, where each line represents a single profile (i.e. mouse), the
residual trendlines of the best fitting models form a small, constant band
around zero.

Simulations
Data were simulated from a multivariate normal distribution (mvrnorm
function from theMASS package) for three different covariance scenarios: a
random intercept and slope for mouse (Model III), a random intercept for
mouse (Model IV), and no random effects (Model V) (Venables and Ripley,
2002). The simulation sample size consisted of four healthy donors and four

undernourished donors, with five mice per donor. The same twelve time
points used in Blanton et al. were used for simulations: 0, 1, 3, 4, 7, 11, 14,
18, 21, 25, 28 and 32 days. The simulation parameters for the fixed effect
estimates for treatment group, time, and time by treatment interaction from
Model III were used for all simulation scenarios because this model
produced the largest interaction effect. The interaction effect between
treatment group and time was varied to be 0, 10, 25, 50 and 100% of the
observed effect from Model III for the Blanton et al. data, while keeping
the simulation parameters for the group and time effect estimates the same.
The micewere assumed to be independent and the same variance matrix was
assumed for all mice within a simulation scenario.

LME models III, IV and V were fit to the simulated data using the default
optimizer, NLOPT_LN_BOBYQA, within lme4. Type I error and power
were calculated using 10,000 and 1000 simulation replicates, respectively.
Type I error was assessed for an interaction effect of 0. Because the
asymptotic properties of LME models may not be reached for small sample
sizes, type I error was also evaluated at larger sample sizes (n=40, 100,
1000), with one mouse per donor and an equal number of donors per
treatment group. All hypothesis tests were assessed at α=0.05.
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Fig. S1. EasyLME Diagnostic Plots Figure 5. Residual profile plots of model residuals vs time in increasing order of

model complexity. Each line represents a single profile of the random effect variable (here Mouse). These plots are useful to 

visually compare the different model fits. Models with a large, nonconstant variability in the residuals over time (e.g. the No 

Random Effects model) indicate a worse model fit, whereas models with a small, constant variability in the residuals 

over time (e.g. the Mouse Intercept/Slope, Donor Intercept + Mouse Intercept/Slope, and Donor Intercept/Slope + Mouse 

Intercept/Slope models) indicate a better model fit.  
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Fig. S2. Type I error and power for the group by time interaction effect. Graphical representation of Table 4 in

the main text for three different simulation scenarios: a random intercept and slope for mouse (Mouse Intercept/Slope), 

a random intercept for mouse (Mouse Intercept), and no random effects (No Random Effects). The interaction effect 

between treatment group and time was varied to be 0, 5, 10, 15, 20, 25, and 50% of the observed effect from the 

Mouse Intercept/Slope model for the Blanton et al. data. The Mouse Intercept/Slope, Mouse Intercept, and No 

Random Effects models were fit to the simulated data. Type I error and power were calculated using 1,000 simulation 

replicates. Type I error was assessed for an interaction effect of 0 shown here as single points. Power is shown as 

points connected by a line with a 95% shaded confidence band. All hypothesis tests were assessed at α = 0.05 shown

here as a horizontal dashed line. 

Disease Models & Mechanisms: doi:10.1242/dmm.048025: Supplementary information

D
is

ea
se

 M
o

de
ls

 &
 M

ec
ha

ni
sm

s 
• 

S
up

pl
em

en
ta

ry
 in

fo
rm

at
io

n



Fig. S3. EasyLME Exploratory Plots Figure 1. Scatterplot of the response variable (here Perc.Weight) vs time with observations

colored by the higher-level random effect variable (here Donor). This plot useful for checking the linearity assumption between the 

response variable and time. 

Fig. S4. EasyLME Exploratory Plots Figure 2. Average trends in the response variable (here Perc.Weight) over time colored by the

higher-level random effect variable (here Donor) and differentiated by the grouping variable (here Donor.Status). This plot is helpful 

to visualize if a random intercept and/or random slope would be appropriate for the higher-level random effect variable. Missing data 

can also be identified by gaps in the lines or truncated lines. If a user’s data is not nested, the plot will just show the trendlines for the 

random effect, without the need for averaging. 
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Fig. S5. EasyLME Exploratory Plots Figure 3. Trendlines in the response variable (here Perc.Weight) over

time faceted by the higher-level random effect variable (here Donor) and colored by the grouping variable (here 

Donor.Status). These plots are helpful to visualize if a random intercept and/or random slope would be appropriate for 

the nested random effect variable (here Mouse). If a user’s data is not nested, this plot will not be displayed. 
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Fig. S6. EasyLME Model Results Figure 4. Coefficient plot of the fixed effect estimates in

decreasing order of model complexity with 95% confidence intervals. This plot is helpful to 

visualize the information presented in the Model Results table. 
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Table S1. Type I error and power (N = 40) for the group by time interaction effect 

Mouse Intercept & Slope 

Simulation Scenario 

Mouse Intercept 

Simulation Scenario 

No Random Effects 

Simulation Scenario 

Effect 

Size 

Mouse 

Intercept 

& Slope 

(Model III) 

Mouse 

Intercept 

(Model IV) 

No Random 

Effects 

(Model V) 

Mouse 

Intercept 

& Slope 

(Model III) 

Mouse 

Intercept 

(Model IV) 

No Random 

Effects 

(Model V) 

Mouse 

Intercept 

& Slope 

(Model III) 

Mouse 

Intercept 

(Model IV) 

No Random 

Effects 

(Model V) 

0%* 
0.047 

[0.043, 0.051] 

0.499 

[0.490, 0.509] 

0.314 

[0.305, 0.323] 

0.039 

[0.035, 0.043] 

0.051 

[0.047, 0.055] 

0.017 

[0.014, 0.019] 

0.038 

[0.034, 0.042] 

0.050 

[0.046, 0.055] 

0.049 

[0.045, 0.054] 

10% 
0.06 

[0.05, 0.08] 
-** - 

0.36 

[0.33, 0.39] 

0.41 

[0.38, 0.44] 

0.24 

[0.22, 0.27] 

0.37 

[0.34, 0.40] 

0.40 

[0.37, 0.43] 

0.40 

[0.37, 0.43] 

25% 
0.12 

[0.10, 0.14] 
- - 

0.99 

[0.98, 0.99] 

0.99 

[0.98, 1.00] 

0.97 

[0.96, 0.98] 

0.98 

[0.97, 0.99] 

0.99 

[0.98, 0.99] 

0.99 

[0.98, 0.99] 

50% 
0.34 

[0.31, 0.37] 
- - 

1.00 

[1.00, 1.00] 

1.00 

[1.00, 1.00] 

1.00 

[1.00, 1.00] 

1.00 

[1.00, 1.00] 

1.00 

[1.00, 1.00] 

1.00 

[1.00, 1.00] 

100% 
0.85 

[0.83, 0.88] 
- - 

1.00 

[1.00, 1.00] 

1.00 

[1.00, 1.00] 

1.00 

[1.00, 1.00] 

1.00 

[1.00, 1.00] 

1.00 

[1.00, 1.00] 

1.00 

[1.00, 1.00] 

*Type I Error

**Power is only compared when Type I Error was close to or below the expected level of 0.05.
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