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Echolocating Daubenton’s bats call louder, but show no spectral
jamming avoidance in response to bands of masking noise during
a landing task
Michael Bjerre Pedersen*, Astrid Særmark Uebel, Kristian Beedholm, Ilias Foskolos, Laura Stidsholt and
Peter Teglberg Madsen

ABSTRACT
Echolocating bats listen for weak echoes to navigate and hunt, which
makes them prone to masking from background noise and jamming
from other bats and prey. As for electrical fish that display clear
spectral jamming avoidance responses (JAR), bats have been
reported to mitigate the effects of jamming by shifting the spectral
contents of their calls, thereby reducing acoustic interference to
improve echo-to-noise ratio (ENR). Here, we tested the hypothesis
that frequency-modulating bats (FM bats) employ a spectral JAR in
response to six masking noise bands ranging from 15 to 90 kHz, by
measuring the −3 dB endpoints and peak frequency of echolocation
calls from five male Daubenton’s bats (Myotis daubentonii) during a
landing task. The bats were trained to land on a noise-generating
spherical transducer surrounded by a star-shaped microphone
array, allowing for acoustic localization and source parameter
quantification of on-axis calls. We show that the bats did not
employ spectral JAR as the peak frequency during jamming
remained unaltered compared with that of silent controls (all
P>0.05, 60.73±0.96 kHz, mean±s.e.m.), and −3 dB endpoints
decreased in noise irrespective of treatment type. Instead,
Daubenton’s bats responded to acoustic jamming by increasing call
amplitude via a Lombard response that was bandwidth dependent,
ranging from a mean of 0.05 dB/dB (95% confidence interval
0.04–0.06 dB/dB) noise for the most narrowband noise (15–30 kHz)
to 0.17 dB/dB (0.16–0.18 dB/dB) noise for the most broadband noise
(30–90 kHz). We conclude that Daubenton’s bats, despite having the
vocal flexibility to do so, do not employ a spectral JAR, but defend
ENRs via a bandwidth-dependent Lombard response.

KEY WORDS: Chiroptera, Biosonar, Jamming avoidance response,
Lombard response, Acoustic interference

INTRODUCTION
Bats navigate and hunt under light-limited conditions using an acute
biosonar system (Griffin, 1958). By actively emitting powerful,
directional calls at ultrasonic frequencies, echolocating bats
generate echoes from their environment for auditory processing
to inform changes in motor patterns (Griffin and Galambos, 1940,
1941). Successful detection and processing of returning weak prey

echoes is critical for their foraging success and depends on the
outgoing source level (SL); the two-way transmission loss to the
target of interest and back (TL); and the target strength (TS) of
the ensonified target and the detection threshold of the receiving
auditory system (Au, 1993; Møhl, 1988). Noise with spectral,
temporal and spatial overlap will mask the returning echoes by
raising the detection threshold, if the noise exceeds the hearing
threshold of the receiver. Sources of such masking noise may be
physical (e.g. wind, rain), anthropogenic (e.g. traffic noise) or stem
from other animals (e.g. bats and insect). When acoustic signals
from other bats or prey inadvertently or deliberately reduce the
biosonar performance through interference, it is coined acoustic
jamming (Jones et al., 2021). Some bat species live in roosts
composed of thousands to millions of individuals where they are
probably subjected to intense jamming by echolocating
conspecifics, and indeed laboratory playback studies suggest that
jamming from bat calls directly reduces capture success of insect
targets (Corcoran and Conner, 2014).

One way to ameliorate the effects of jamming is the ‘jamming
avoidance response’ (JAR). It was first discovered in weakly electric
fishes which shift discharge frequency in response to both electrical
stimuli and nearby conspecifics (Bullock et al., 1972; Scheich,
1977). Inspired by this work, bat researchers began to investigate
whether bats similarly mitigate the effects of jamming by spectrally
shifting their echolocation calls in response to vocalizing
conspecifics to maintain echo-to-noise ratio (ENR) sufficient for
detection and processing.

The earliest work on biosonar performance in bats by Griffin
et al. (1963) demonstrated that bats have remarkable resilience to
masking noise during a wire avoidance task (with reduced
performance at higher noise bandwidths), but the study did not
address whether the bats exhibited any spectral JAR in response to
masking noise. Since the pioneering work of Griffin et al. (1963), a
wealth of more recent studies on both wild and captive bats report
that bats exhibit a spectral JAR when flying with conspecifics
(Chiu et al., 2009; Habersetzer, 1981; Ibáñez et al., 2004; Obrist,
1995; Ratcliffe et al., 2004; Surlykke and Moss, 2000; Ulanovsky
et al., 2004) and heterospecifics (Necknig and Zahn, 2011), and in
response to artificial playback noise (Bates et al., 2008; Gillam and
Montero, 2016; Gillam et al., 2007; Tressler and Smotherman,
2009). The overall magnitude of the spectral response reported in
these studies varies from 0.5 to 8 kHz measured as peak, maximum
and minimum frequency. Such spectral changes may indeed be a
result of JAR but, without knowledge about the range to the bat and
the pointing axis of its directional beam in relation to the recording
microphone, the low-pass filtering effects of frequency-specific
absorption and off-axis distortion on the recorded calls (Au et al.,
2012; Smith et al., 2019) could lead to similar spectral shifts in theReceived 17 December 2021; Accepted 2 March 2022
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absence of any JAR. More recent work has used acoustic tags,
which offer a recording aspect with consistent spectral distortion,
and/or microphone arrays with a sufficient number of receivers to
allow for acoustic localization and direction of beam pointing.
These studies have provided more mixed results, with some
showing a spectral JAR (Luo and Moss, 2017; Takahashi et al.,
2014) and others not (Amichai et al., 2015; Cvikel et al., 2015;
Götze et al., 2016). Rather than a decrease in spectral overlap, bats
may instead defend ENRs by increasing call intensity (Amichai
et al., 2015; Cvikel et al., 2015; Foskolos et al., 2022; Lu et al.,
2020; Luo et al., 2016) in the form of a Lombard response
(Lombard, 1911).
It is thus known (i) that the difficulty of a wire avoidance task

increases with total noise bandwidth (Griffin et al., 1963), (ii) that
bats can elicit a Lombard response when exposed to masking noise
(Foskolos et al., 2022; Lu et al., 2020; Luo et al., 2016) or
conspecific calls (Amichai et al., 2015), and (iii) that evidence for a
spectral JAR in echolocating bats is inconsistent. To understand
whether JAR plays a significant role in the response of the bat
biosonar system to noise, it is critical to quantify whether and how
echolocating bats spectrally respond to a well-defined task under
masking conditions with on-axis quantification of spectral call
parameters. In this study, we sought to meet these requirements
by training Daubenton’s bats [Myotis daubentonii (Kuhl 1817)]
to land on a spherical target that could also transmit six different
types of band-limited noise at the same intensity, either just
outside or overlapping to different degrees the frequency range of
the first harmonic of their approach calls. We chose Daubenton’s
bats because they can shift the peak frequency of their echolocation
calls by almost an octave as they transition from the approach to
the buzz phase (Fig. 1), thereby displaying the vocal plasticity
needed to employ an effective JAR under the experimental scheme
used here. We hypothesized that if a spectral JAR is exhibited by
the bats, low-frequency noise should elicit an increase in peak
frequency and high-frequency noise in turn should elicit a decrease
in peak frequency. Conversely, if a spectral JAR is not used to
improve ENRs, we hypothesized that the studied bats would instead
increase call amplitude (Lombard response) in response to
broadband masking noise. We show that when Daubenton’s
bats are faced with bands of masking noise, they perform
no spectral JAR, but instead exhibit a Lombard response by
increasing their SLs proportionally to the total bandwidth of the
masking noise.

MATERIALS AND METHODS
Animal husbandry and training
We used five wild-caught, adult, male Daubenton’s bats of
unknown age caught in Hobro, Denmark, with mist nets. The bats
were kept on a diet of mealworms (larval form of Tenebrio molitor)
and supplemented with vitamin-paste (NUTRI-CAL, Tomlyn, Fort
Worth, TX, USA). The bats were housed in a temperature- and
humidity-controlled roost at Aarhus University on a 12 h:12 h
inverted light:dark schedule. The mass of all five bats was
maintained between 7 and 9 g. Using operant conditioning, all
bats were trained in a dark (<<0.01 lx) anechoic room to land on a
transducer (HS-26, Sonar products, Driffield, UK; measured target
strength of −15 dB at 0.1 m) that could emit noise and was
protruding from a microphone array covered in anechoic foam
(Fig. 2). The bats were trained both when the target was silent and
when it was transmitting one of six calibrated noise signals of
varying bandwidth. Correct behavior (e.g. landing) was rewarded
with a mealworm, and incorrect behavior involved a short time-out

of ∼30 s and no food reward. Bats were trained for approximately
4 weeks to land on the target. Training was complete when they
could consistently perform the task at the highest noise levels.
Capture in the wild was made under permit MST-850-00064 and all
experiments were performed under permit 2016-15-0201-00989
issued by The Animal Experimentation Inspectorate under The
Ministry of Environment and Food of Denmark to Prof. Peter
T. Madsen. The bats were released back into the wild at the capture
site at the end of the experimental period.

Experimental design
Sessions were conducted in the morning from 09:00 h to 12:00 h.
All trials were performed in the 5×4×2.5 m anechoic testing
chamber at Zoophysiology, Aarhus University, Denmark.

The room was lined with acoustic foam, which is anechoic at
ultrasonic frequencies (measured reflectivity of −30 dB re. hard
wall from 10 to 100 kHz). The same foam covered a custom-built
star-shaped array with seven calibrated Knowles microphones
(FG-3329, Knowles Electronics, Itasca, IL, USA). The array had a
maximum horizontal aperture of 1.2 m, allowing for accurate
acoustic localizations at distances of 6–12 m (5–10 times aperture)
(Kyhn et al., 2009; Macaulay et al., 2017; Stidsholt et al., 2020).
One microphone was placed immediately below the target
transducer for on-axis quantification of calls. Calibration sweeps
played from an ultrasonic loudspeaker (Vifa, part #60108, Avisoft
Bioacoustics, Glienicke/Nordbahn, Germany) at known coordinates
with respect to the array resulted in differences between measured
and calculated transmission losses of <2 dB. The Knowles
microphone signals were amplified by a custom-built filtering and
gain box (1 pole, 1 kHz high-pass filter, 4 pole, 100 kHz anti-
aliasing filter, 30 dB gain; Aarhus University Electronics
workshop). All microphones were digitized in a multi-channel
analog-to-digital converter (USB-6356, National Instruments,
Houston, TX, USA) sampling at 400 kHz per channel, 16 bit.

The target transducer was connected to a battery powered
amplifier (Marchand BE01 Piezo Transducer Amplifier) and
transmitted calibrated flat (±2 dB) broadband noise at 1 m
distance in the following frequency bands (kHz): 15–30, 30–45,
30–55, 30–90, 55–90 and 70–90 (Fig. 3). Two bandwidths which
spanned the lower (30–45, 30–55 kHz treatments) and higher
(55–90, 70–90 kHz) were chosen to vary the ease with which a
spectral JAR would serve to uphold ENRs. The 15–30 kHz and
30–90 kHz noise-bands were included as negative controls for an
out-of-band noise induced Lombard response and a Lombard
response when spectral shifts were not possible, respectively. The
noise was equalized by correcting for the transfer function of
the HS-26 transducer as measured at 1 m distance. Daubenton’s bats
exhibit a clear Lombard response at broadband noise levels
exceeding 74 dB re. 20 µPa root mean square (RMS) at 1 m
(Foskolos et al., 2022). We therefore calibrated all noise bands to a
broad band SL of 72 dB re. 20 µPa RMS using a G.R.A.S.
microphone (46DP 1/8 inch, GRAS Sound & Vibration, Holte,
Denmark, www.gras.dk; sensitivity 156 dB re. 20 µPa V−1). This
level was a compromise between achieving as prominent a Lombard
response as possible and the highest noise level achievable for the
noise bands in the frequency range where the transducer was least
sensitive (70–90 kHz). Data acquisition and noise playback controls
were performed with a custom-written program (using Labview
v.2015f, National Instruments). Every morning, the noise playback
of each noise band was tested to ensure consistency in noise levels
over time, and the array microphones were calibrated before and
after completion of all trials.
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The bats were released from the hand of a blinded experimenter
4 m from the target at the start of each trial. A second experimenter
controlled the playback and triggered saving of the recording upon
successful completion of the landing task monitored by an infrared
camera (TV IP310PI, TRENDnet, Torrance, CA, USA). On each
experimental day, the bats were exposed to all the noise bands 3
times with blank no-noise trials following each noise exposure for a
total of approximately 36 trials per day and bat. If a bat either refused
to do the task or lost motivation on any given day, it was put into the
holding cage with access to food and water.

Data analysis
Acoustic localization and call selection
The PAMGuard click detectormodule (v.2.01.03, www.pamguard.org)
(Gillespie et al., 2009) was used to detect the onset of the bat calls on
each microphone and calculate time delay measurements using
cross-correlation between channels. Calls were then manually
marked from each trial. For trials where the bat had multiple
approach attempts before successfully landing, only the final
attempt was stored for future analysis. The call waveforms, and time
delay measurements were then imported into MATLAB R2018b
(MathWorks, Natick, MA, USA) using the public PAMGuard

MATLAB library (www.sourceforge.net/projects/pamguard). We
used the time delay measurements of each call to calculate the 3D
location with a simplex minimization algorithm (Nelder and Mead,
1965). From the 3D-coordinate, we could then calculate the range to
each microphone for subsequent parameter estimation. We selected
the five loudest calls from each trial from the microphone
immediately below the target transducer as approximate on-axis
calls. The microphone below the target transducer had the lowest
received noise level of the microphones in the vertical plane of the
target, allowing for the smallest interference of noise on parameter
quantification. The spectra of all calls recorded this way in no-noise
trials were remarkably stereotyped (Fig. S1), the flight paths towards
the target did not differ across treatments (Fig. S3), and the same
calls on all the surrounding microphones had evident low-pass
filtering from off-axis distortion (see below). These points taken
together lend credence to the use of this microphone for extraction
of on-axis calls.

Quantification of call parameters
Call filtering
Call parameter quantification is sensitive to noise. As the transducer
was embedded at the center of the microphone array, all
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Fig. 1. Example target approach of a Daubenton’s bat. (A) Time series of a control trial for one of the bats with an approach and buzz phase before landing.
(B) Spectrogram of the same trial. (C) Relative power spectrum of an approach call. Horizontal line denotes the half-power bandwidth (55.6–63.1 kHz).
(D) Relative power spectrum of a buzz call. Horizontal line denotes the half-power bandwidth (30.6–37.3 kHz). (E) Spectrogram of an approach call.
(F) Spectrogram of a buzz call. Peak frequency changes from ∼59 kHz during approach calls (C: peak frequency denoted by arrow, orange box in A) to ∼34 kHz
for buzz calls (D: peak frequency denoted by arrow, blue box in A). Spectrogram settings: sampling rate 400 kHz, FFT chunk 128 points, 97.5% overlap, Hann
window, FFT size 1024 points (zero padding); frequency resolution 3.1 kHz; time resolution 8 µs. Power spectrum settings: FFT size: 4000 points, bin width
100 Hz.
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microphones were recording high noise levels. To mitigate this
issue, we implemented a fast Fourier transform (FFT) filter to
remove noise prior to parameter extraction. We computed the power
spectrum of each call with a Tukey window and zero-padding up to
the FTwindow size (4000 points). To remove the noise, we used the
first 125 ms of the audio file for each trial to spectrally quantify the
noise as received on each microphone in the absence of bat calls. We
did this by computing the power spectrum of the noise (FFT size:
4000 points, bin width 100 Hz) and applying a 10-point (1 kHz
width) moving average to smooth out the noise, while preserving
the original amplitude. We then subtracted the smoothed noise
signal from the power spectrum of the bat call signal (in linear
units). Remaining peaks in the spectrum with a width of 1 bin
(100 Hz) and with neighboring bins of amplitude ≤0 were also
classified as noise and set to zero. All bins with a value ≤0 were set
to the minimum positive value of the spectrum to avoid results with
complex values in subsequent steps. Finally, the signal was
inversely Fourier transformed back into the time domain. This
signal contained only the bat call and was used for subsequent
analysis. The FFT filter which removes noise may also inadvertently
influence and change spectral call parameters. To test for this, we
bootstrapped (Efron, 1979) calls from no-noise trials by estimating

call parameters before and after layering artificial noise recorded on
the same day as the randomly sampled call. Individual bootstrap
replicates were performed by randomly sampling echolocation calls
without replacement from no-noise trials, estimating click
parameters from these, then layering noise on the signal
waveform and applying the FFT filter and re-estimating call
parameters. This was done with a signal-to-noise ratio (SNR) from
30 dB to 0 dBwith a step size of 1 dB and 1000 bootstrap samples at
each interval (Fig. S2).

Call parameter quantification
For each call, we defined the duration as the time interval between
the −10 dB endpoints relative to the peak of the Hilbert envelope
(the so-called D-duration). Received levels (RLs) were quantified as
the RMS amplitude over the −10 dB duration. Call intervals were
calculated as the time delay between the peak of the envelope of two
consecutive calls. The SNR was quantified as the difference
between the RMS received level and the RMS level of the first
125 ms of the sound file (in dB). A window length of 125 ms was
chosen as a compromise between a long averaging window to
mitigate the effects of potential transient peaks in the noise while
avoiding overlap with the bat calls. SLs were calculated from RLs
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by adding the transmission loss caused by spherical spreading
(20log10R, where R is the range in meters, with a reference distance
of 0.1 m) and the frequency-specific absorption (α, dB m−1). We
computed α for each bin in a power spectrum. The power spectrum
was calculated using an FFT size of 4000 (bin width 100 Hz) and α
was calculated for each bin [Bass et al. (1995), assuming an ambient
temperature of 22°C, and the αR factor was multiplied with the
linear spectrum, sensu Jakobsen et al. (2012). The concomitant
effects of absorption across all frequencies can then be evaluated as
the 10log10 of the sum of all frequency bins of the corrected power
spectrum (the ‘area’), divided by the sum of all frequency bins of the
uncorrected power spectrum. Evaluating absorption across all
frequencies is important for frequency-modulated (FM) bat calls
which span 10 s of kHz and thus is poorly represented by summary
frequencies such as peak or centroid frequency estimates. The
absorption factor on a dB scale was then added to the estimated SL.
We also estimated peak, centroid frequency (defined as the sum of
power per frequency bin multiplied by its corresponding bin divided
by total spectrum power) and the half-power (−3 dB bandwidth).

Noise level quantification
The broadband RMS noise level as received by the bat was
estimated from a known noise level of 72 dB re. 20 µPa RMS at 1 m
by using spherical transmission loss and correcting the call for
absorption as outlined in ‘Call parameter quantification’, above.
Transmission loss characteristics of the transducer have been

previously quantified (Foskolos et al., 2022) and were found to
follow spherical transmission loss even down to ranges of 10 cm.

Statistics
We investigated the relationship between peak frequency, SL and
noise bandwidth for the five loudest calls from each successful trial
of the landing experiment. We used mixed effects models to account
for autocorrelation of repeated measurements performed on the
same bat and experimental day (Littell et al., 1998), and to avoid
temporal autocorrelation such as acclimatization effects to noise
over time. Mixed effects models (linear model, family=Gaussian,
link=identity) were implemented using the lme4 package (v.1.1.2.6)
(Bates et al., 2015) in R (v.4.0.3, www.r-project.org/), with P-
values calculated using the Satterthwaite approximation for degrees
of freedom implemented in the lmerTest package, v.3.1.3
(Kuznetsova et al., 2017). We made three different mixed effect
models using (1) peak frequency, (2) SLs and (3) −3 dB spectral
endpoints as response variables and noise band and noise level as
fixed effects. Animal ID was treated as a fixed effect because of the
low number of levels (<10) (Zuur et al., 2007).

Peak frequency as a function of noise band and level
To test whether peak frequency varied with emitted noise type, we
modeled peak frequency as a function of noise band, animal ID and
the received noise level with date and trial number as nested random
effects on the intercept.
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Call amplitude as a function of noise band and level
The SL was modeled as a function of noise band, the
log10 of distance, animal ID and an interaction term between
noise band and emitted noise level [either 20 dB for silent
controls sensu Foskolos et al. (2022) or 72 dB during noise] to
allow for noise band-specific slopes, with date and trial number as
nested random effects on the intercept. Modeling noise level
with only two factors as opposed to a continuous variable
circumvents the confounding effects of call SL decreasing during
the approach phase while received noise level increases.
This simpler approach to noise modeling more readily allows
capture of the overall differences in potential SLs across noise
treatments as compared with silent controls. Differences
between slopes were calculated using the lstrends
function implemented in the emmeans package (v.1.5.5.1)
(https://CRAN.R-project.org/package=emmeans).

Half-power (−3 dB) spectral endpoints as a function of noise band
The spectral endpoints were individually modeled as a function of
noise band and animal ID with the date and trial number as nested
random effects on the intercept.

RESULTS
We recorded the vocalizations of five Daubenton’s bats landing on a
target emitting six different bandwidths of noise at the same source
output level of 72 dB re. 20 µPa RMS at 1 m. In total, 2294 trials
were carried out (Table 1).

We first tested the hypothesis that bats spectrally shift their calls
when faced with different bands of masking noise. Despite the
substantial potential for improving the ENR via the JAR (Fig. 1) in
response to the low- and high-frequency noise bands, we found that
none of them elicited a change in peak frequency with respect to
silent control trials [Fig. 4A,B linear mixed effects model (LMEM),

Table 1. Number of successful trials the bats completed with signal-to-noise ratios (SNR) and source levels (SLs) for the different treatments

Bat 1 Bat 2 Bat 3 Bat 4 Bat 5 SNRRL–NL (dB) SL (dB re. 20 µPa RMS)

Control trials 207 221 206 203 204 34.4±5.1 107±3.6
15–30 kHz 49 49 48 48 46 10.6±2.8 109±3.2
30–45 kHz 41 42 42 41 41 14.7±3.1 113±2.9
30–55 kHz 39 41 40 41 41 16.5±3.3 115.1±2.6
30–90 kHz 40 41 40 40 41 23±3.7 115.5±3.2
55–90 kHz 40 41 40 40 40 24.4±3.5 112±3.6
70–90 kHz 40 42 41 39 39 22.9±3.3 110±7
Total no. of trials 456 477 457 452 452

SNR of received calls and SLs are reported as means±s.d. Bat call SLs are referenced to 0.1 m. RL, received level; NL, noise level; RMS, root mean square.
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all noise band P>0.05 relative to control trials, Table 2, N=2294
trials].
The onset frequency of the half-power (−3 dB) bandwidth went

from a bimodal distribution during control trials and the narrowband
noise treatments, to a more truncated unimodal distribution for the
widest noise band treatments (Fig. 5). Across all treatments, the
half-power onset frequency decreased with respect to controls, and
the response magnitude varied from 0.8 to 4 kHz (LMEM, P<0.05,
Table S3). This shift in onset frequency arose as a passive
consequence of increased SLs in response to noise, as the same
truncated distribution appeared when comparing the 25% weakest
amplitude calls from control trials with the 25% loudest calls from
control trials (Fig. 6).
As no significant changes in peak frequency were observed for

any of the noise bands, and the half-power bandwidth changed
passively with call amplitude, we next tested our second hypothesis

that the bats would defend their ENR by SL adjustments. We found
that all bats increased their SL during noise exposure but to different
extents. SL increased from 107±3.6 dB re. 20 µPa RMS
(mean±s.d.) during control trials up to a maximum of
115.5±3.2 dB re. 20 µPa RMS in 30–90 kHz noise (Fig. 4A,C).
The slopes (dB/dB noise) of the Lombard response were:
15–30 kHz, mean 0.05 (95% confidence interval, CI 0.04–0.06);
30–45 kHz, 0.12 (0.11–0.13); 30–55 kHz, 0.15 (0.14–0.16);
30–90 kHz, 0.17 (0.16–0.18); 55–90 kHz, 0.1 (0.096–0.114); and
70–90 kHz, 0.06 (0.05–0.07). All slopes were significantly different
from each other (LMEM, P<0.05) except for 15–30/70–90 kHz and
30–45/55–90 kHz (LMEM, P>0.05, Tables S1 and S2).

To illustrate the sensitivity of spectral parameters to changes in
SNR, we added varying noise levels to calls from control trials to
reduce SNR in steps, allowing for examination of its effect on peak
frequency and −3 dB spectral endpoint estimation (Fig. 7A). Next,
to explore the low-pass filtering effects of changes in recording
aspect of the acoustic axis, we plotted the average power spectrum
of 1000 no-noise, on-axis calls recorded at approximately 1 m from
the array, and the same calls as received on three other microphones,
0.6 m apart from the on-axis microphone, amounting to a 31 deg
change in recording angle (Fig. 7B). Last, to demonstrate low-pass
filtering effects of recording range we imposed several levels of
absorption on the frequency-corrected spectrum of all on-axis no-
noise calls (Fig. 7C) corresponding to four different target ranges of
1–10 m. All changes in recording conditions elicited a distortion of
the apparent call spectrum through low-pass filtering effects,
leading to substantially lower peak frequencies and shifts of the
−3 dB spectral endpoints.

DISCUSSION
Echolocating bats must detect and process weak echoes to
successfully navigate and forage. The ability to do so may be
negatively affected by clutter (extraneous echoes not stemming from

Table 2. Statistical model for testing for changes in peak frequency

Covariates Estimate±s.e.m. d.f. t-value P-value

Intercept (Control
trials, bat 1)

60.73±0.96 839.71 63.327 <2×10−16

15–30 kHz 2.87±1.68 10,618.96 1.710 0.0874
30–45 kHz 1.44±1.64 10,477.13 0.877 0.3803
30–55 kHz 1.00±1.63 10,432.22 0.614 0.5392
30–90 kHz 0.55±1.63 10,427.90 0.339 0.7344
55–90 kHz 0.43±1.60 10,366.57 0.270 0.7875
70–90 kHz 2.80±1.58 10,328.09 1.781 0.0750
Bat 2 0.34±0.48 2272.65 0.713 0.4757
Bat 3 −0.71±0.47 2279.88 −1.500 0.1337
Bat 4 −2.25±0.48 2278.93 −4.695 2.83×10−6

Bat 5 −0.64±0.48 2274.78 −1.336 0.1818
NL −0.02±0.03 11,362.36 −0.701 0.4835

Model<–peakfreq∼noiseband+animal+noise level+(1|date/event).
Note that partial degrees of freedom arise as a consequence of the
Satterthwaite approximation in which they are derived.
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the target of interest) (Mao et al., 2016; Wheeler et al., 2016),
masking from ambient noise (Foskolos et al., 2022) and jamming
from sounds from prey or other bats (Corcoran and Conner, 2014).
Inspired by electrical fish and motivated by the apparent problems
that roosting and foraging bats may face when echolocating near

other bats, a wealth of studies have sought to investigate how bats
avoid jamming by spectrally shifting their call frequencies (Bates
et al., 2008; Chiu et al., 2009; Gillam and Montero, 2016; Gillam
et al., 2007; Habersetzer, 1981; Ibáñez et al., 2004; Necknig and
Zahn, 2011; Obrist, 1995; Ratcliffe et al., 2004; Surlykke andMoss,
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power spectra of the 25% lowest amplitude
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calls (dotted line). The peak of the power
spectrum is relatively more prominent at high
SLs. Horizontal bars indicate the −3 dB
bandwidths. (B) From the more prominent
peak follows a steeper relative fall off in
power, and with it a decrease in the half-
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amplitude calls. This shift is independent of a
spectral jamming avoidance response (JAR)
and follows as a passive consequence of
changes in call amplitude. Red line indicates
median.
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2000; Tressler and Smotherman, 2009; Ulanovsky et al., 2004).
However, recording on-axis calls at known ranges from free-flying
bats is difficult, both in the lab and in the wild. To accurately
quantify the spectral content of on-axis calls, the location of the bat
with respect to the receiver as well as the recording aspect to the
center of the directional sound beam must be known. When these
conditions are not met, it becomes difficult to ascertain what
constitutes a spectral JAR, and what is potentially caused by spectral
offsets from ambiguous recording range and aspect if the bat
changes its flight pattern or acoustic beam pointing with respect to
the recording microphone in response to noise (Fig. 7). While it is
certainly possible that some bat species employ JAR via distinct
spectral shifts in their vocal responses when faced with jamming, we
note that most studies on JAR in bats have not employed a
methodology that can exclude the possible effects of such low-pass
filtering due to longer ranges and off-axis distortion (Mogensen and
Møhl, 1979) in jamming situations compared with controls. Low-
pass filtering effects from either aspect (Fig. 7B) or absorption alone
(Fig. 7C) can change spectral parameters such as peak, band width
and maximum frequencies by tens of kilohertz and hence easily be
on a par with typical frequency shifts reported in JAR studies. It is
therefore paramount for spectral parameter estimation of calls that
the effects of call SNR, aspect and absorption are accounted for
when testing for JAR.
In an attempt to avoid these experimental confounds, we here

tested the hypothesis that bats, akin to electro-locating fish, avoid
jamming by spectrally shifting the peak frequency of their calls
away from band-limited noise. We did so by having Daubenton’s
bats land on a transducer target emitting noise of varying bandwidth
offering no spatiotemporal masking release (Fig. 3). However, as
the noise was band limited, substantial ENR improvement could be
attained through spectral shifts – for example, moving peak call
intensity out of the masking noise – provided that the decrease in
noise level attained from a spectral masking releasewas not matched
by an equivalent increase in detection threshold of the receiver in
different parts of the audiogram. Many frequency-modulating bats
(FM bats), including our study species, can indeed evoke such
significant spectral shifts in their calls as they go through the search,
approach or terminal buzz phases (Fig. 1). Despite this vocal
plasticity, we found that the peak frequencies of the approach calls
were remarkably stable for both controls and all bands of masking
noise (Fig. 4A,B), leading us to reject the hypothesis that
Daubenton’s bats defend ENR through a spectral JAR. While
peak frequency did not change across treatments, we found that the
half-power (−3 dB) spectral endpoints were significantly different
during noise exposure when compared with the no-noise control
treatment (Table S3). However, this shift was unidirectional
irrespective of the type of masking noise (Fig. 5; Table S3),
showing that it is not driven by an effort to reduce spectral overlap
with the masker. Instead, the same truncated distribution arises
when comparing the 25% weakest calls with the 25% loudest from
control trials (Fig. 6), suggesting that these spectral changes are
driven by changes in call spectra with SL. Because their relative
power is typically well below peak intensity, spectral endpoints are
very sensitive to changes in SL and particularly vulnerable to low
SNR, and we therefore caution against the use of spectral endpoints
when investigating spectral JAR.
The lack of a spectral JAR is surprising as Daubenton’s bats

routinely drop their peak frequencies by almost an octave during
buzzing (Fig. 1), probably through the concomitant effects of active
tension release of the vocal folds (Ratcliffe et al., 2013) and lower
driving pressures from the reduced call amplitude. Given the

substantial ENR benefits of a JAR towards masking-free frequency
bands, we speculate that the drop in peak frequency observed in
buzz calls cannot be employed for biomechanical reasons when
making approach phase calls where high SLs are required to render
high enough echo returns – a hypothesis worth testing in future
experiments.

Our rejection of the spectral shift JAR hypothesis is in support of
the growing notion that bats perhaps do not commonly employ a
spectral JAR to defend the ENR of returning echoes (Amichai et al.,
2015; Cvikel et al., 2015; Götze et al., 2016). The lack of a spectral
JAR also conforms with recent theoretical work which shows that a
spectral JAR does not alleviate a jamming problem from other bats
(Mazar and Yovel, 2020). However, how do bats then deal with
jamming or masking? In contrast to a lack of spectral JAR, we found
increasing SLs in response to the noise treatments (Fig. 4A,C;
Table S3). This Lombard response was dependent on noise
bandwidth with response magnitudes ranging from 0.05 dB/dB
noise for the 15–30 kHz band to 0.17 dB/dB for the 30–90 kHz
band, which is the frequency span of the first harmonic of the bat
call (Fig. 3). A stronger Lombard response when exposed to
broadband noise is consistent with Griffin et al.’s (1963) findings
that broadband masking tasks are harder for bats. The magnitude of
the Lombard response we observed is broadly similar to that of other
mammals (Brumm et al., 2004; Cynx et al., 1998; Lane and Tranel,
1971; Luo et al., 2016; Sinnott et al., 1975) and birds (Brumm et al.,
2009; Cynx et al., 1998; Schuster et al., 2012), which ranges from
0.05 to 0.7 dB/dB of noise. Thus, in spite of compensations to noise
being commonplace, they are typically well below perfect 1 dB/dB
compensation, resulting in reduced ENR and communication
ranges.

A Lombard response elicited by broadband noise has been
documented in bats before (Foskolos et al., 2022; Lu et al., 2020;
Luo et al., 2016). Additionally, noise that is band limited and does
not overlap has been shown to elicit a weaker Lombard response as
compared with broadband noise, which does spectrally overlap with
echolocation calls (Lu et al., 2020; Luo et al., 2016). We find
the same, more modest Lombard response to noise outside the
frequency span of echolocation calls (Fig. 4A,C). Curiously, the
Lombard response is of the same magnitude (i.e. not statistically
different) in 15–30 kHz noise (average slope of 0.05 dB/dB) as it is
in 70–90 kHz noise (average slope of 0.06 dB/dB; Tables S1 and
S2). This is in spite of 15–30 kHz noise being an octave below the
peak frequency (∼60 kHz) of the approach calls and terminating
4 kHz below the peak frequency of buzz calls (Fig. 1), whereas
70–90 kHz noise onsets within 10 kHz of peak frequencies typical
of approach calls (Fig. 3). If the higher frequency part of their
echolocation calls is necessary for echo-guided landing on the target
transducer, 70–90 kHz noise should, all else being equal, exert a
more adverse effect on echo detectability, but in spite of this, call
adjustments for the two noise bands are the same. This suggests
that the Lombard response is a rather simple reflexive adjustment
which serves to imperfectly defend ENR. It also implies that for
bats, the magnitude of the Lombard response is driven by
perceived loudness through the concomitant effects of total noise
bandwidth (see also Lu et al., 2020; Luo et al., 2016) and level
(Foskolos et al., 2022) and less by the actual spectral overlap with
the returning echo of interest. Thus, our results suggest that the
Lombard response is the result of a direct auditory assessment of
the noise load rather than an evaluation of the actual ENR of the
returning echoes.

For bats echolocating in the vicinity of other calling bats, the
alleviation of jamming effects may also occur through simple spatial
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avoidance, as exposure to loud calls from conspecifics is unlikely to
have a bearing on post-exposure performance (Hom et al., 2016;
Simmons et al., 2018). This resilience to performance reduction is
probably due to the lack of an apparent detection threshold shift
after noise exposure (Simmons et al., 2015). Additionally, bats can
reduce the extent of temporal overlap through timing changes of
outgoing acoustic signals. Such temporal jamming avoidance,
where bats desynchronize outgoing calls from those of nearby
conspecifics through changes in either call duration or calling
interval have been observed for several species (Obrist, 1995), and
in huge flocks, jamming may be effectively mitigated when bats on
average reduce calling rate (Beleyur and Goerlitz, 2019). Lastly,
actively increasing call amplitude through a Lombard response will,
when loud enough, incur added energetic costs for bats (Currie
et al., 2020). Given that spatial avoidance and desynchronization of
call timing probably incur no added energetic costs, a Lombard
response should thus be expected to serve as a last resort method of
defending ENR.

Conclusion
We show that Daubenton’s bats in a landing task do not exhibit a
spectral JAR, in spite of their vocal ability to adjust peak frequencies
by almost an octave in the transition from approach to buzz calls.
Instead, Daubenton’s bats partially defend ENRs through a
Lombard response. This response is dependent on total noise
bandwidth and appears to be at least partially decoupled from the
spectral overlap of noise with echolocation calls, suggesting that the
Lombard response is a reflexive change rather than a conscious
vocal adjustment to ENR changes. How bats deal with echolocation
calls of conspecifics or jamming signals from prey items is still not
fully resolved but given the growing body of evidence suggesting
that bats do not employ a spectral JAR, we posit that bats principally
ameliorate conspecific jamming (i) by spatial avoidance, thereby
reducing the jamming problem for both bats, (ii) through reduction
of temporal overlap via changes in call timing and duration when
possible and (iii) via an increase in call amplitude when acoustic
overlap is unavoidable.
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Fig. S1. Waterfall plot of all call power spectra from control trials. With the possible exception of a modest relative 

deemphasis of the spectral peak at ≈43 kHz at very high source levels, no significant changes occur in the spectrum across 

the range of source levels emitted in control trials (n = 5205). 
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Fig. S2. Median Δ peak frequency estimate before and after artificially layering noise. The efficacy of the FFT-filter 

noise removal remains high for 5 of the 6 noise-bands down to an SNR of ≈5 dB, but tapers off at ≈15 dB for the 55-90 

kHz noise. For all treatments, the median threshold for when deviations in estimated peak frequencies occur is well 

below average SNR (Fejl! Henvisningskilde ikke fundet.).  
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Fig. S3. Localized tracks of all flight paths. The bats directly approach the target (coordinates 

0,0) and the path chosen does not deviate from control across treatments. 
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Table S1. Statistical models for changes in Source level when exposed to masking noise.  

Model <- SL ~ noiseband + log10(distance) + animal + noise level:noiseband + (1|date/event) 

Covariates Estimate ± s.e.m. df t-value p-value

Intercept (15-30 kHz, bat #1) 102.99 ± 0.31 257.44 329.738 < 2·10-16 

30-45 kHz -1.08 ± 0.36 2177.49 -2.963 3.08·10-3 

30-55 kHz -1.67 ± 0.36 2177.52 -4.601 4.438·10-6 

30-90 kHz -2.48 ± 0.36 2177.88 -6.792 1.4231·10-11 

55-90 kHz -0.93 ± 0.36 2177.80 -2.585 9.8·10-3 

70-90 kHz -0.18 ± 0.37 2178.21 -0.485 0.62761 

log10(distance) 11.38 ± 0.15 10613.74 77.401 < 2·10-16 

Bat #2 -1.65 ± 0.16 2182.93 -10.484 < 2·10-16 

Bat #3 -1.15 ± 0.156 2185.28 -7.408 1.83·10-13 

Bat #4 -0.37 ± 0.16 2186.57 -2.363 1.822·10-2 

Bat #5 -0.98 ± 0.16 2184.99 -6.111 5.8162·10-10 

15-30 kHz : noise level 0.05 ± 0.005 2190.82 11.368 < 2·10-16 

30-45 kHz : noise level 0.12 ± 0.005 2179.00 24.793 < 2·10-16 

30-55 kHz : noise level 0.15 ± 0.005 2178.32 32.202 < 2·10-16 

30-90 kHz : noise level 0.17 ± 0.005 2179.50 36.473 < 2·10-16 

55-90 kHz : noise level 0.10 ± 0.005 2178.23 22.488 < 2·10-16 

70-90 kHz : noise level 0.06 ± 0.005 2178.36 12.364 < 2·10-16 

model.trends<-lstrends(mymodel, "noiseband", var="noiselevel") 

Contrasts Estimate ± s.e.m. df t-ratio p-value

15-30 kHz : 30-45 kHz -0.06 ± 0.007 2182 -9.814 <.0001 
2182 <.0001 

2182 <.0001 

2182 <.0001 

2183 0.8450 

2177 <.0001 

2177 

-15.186 

-18.325 

-8.033 

-1.183 

-5.319 

-8.438 <.0001 

2177 1.804 0.4631 

2177 8.463 <.0001 

2177 -3.121 0.0225 

2177 7.146 <.0001 

2177 13.734 <.0001 

2177 10.275 <.0001 

2177 16.822 <.0001 

15-30 kHz : 30-55 kHz 

15-30 kHz : 30-90 kHz 

15-30 kHz : 55-90 kHz 

15-30 kHz : 70-90 kHz 

30-45 kHz : 30-55 kHz 

30-45 kHz : 30-90 kHz 

30-45 kHz : 55-90 kHz 

30-45 kHz : 70-90 kHz 

30-55 kHz : 30-90 kHz 

30-55 kHz : 55-90 kHz 

30-55 kHz : 70-90 kHz 

30-90 kHz : 55-90 kHz 

30-90 kHz : 70-90 kHz 

55-90 kHz : 70-90 kHz 

-0.099 ± 0.007

-0.12 ± 0.007

-0.05 ± 0.007

-0.008 ± 0.007

-0.04 ± 0.007

-0.06 ± 0.007

0.01 ± 0.007

0.06 ± 0.007

-0.02 ± 0.007

0.05 ± 0.007

0.09 ± 0.007

0.07 ± 0.007

0.11 ± 0.007

0.04 ± 0.007 2177 6.709 <.0001 

Table S2. Contrasts in slopes across noise treatments. Results are averaged over the levels of: 
animal & noise level. P-values are adjusted  with the Tukey method for comparing a family of 6 
estimates.
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Table S3. Statistical models for changes in half-power onset  and terminal 
frequencies when exposed to masking noise.  

-3dB onset frequency ~ noiseband + animal + (1 | date/event)
Mean ± s.e.m df t-ratio p-value 

Intercept (Control 
trials, bat #1) 

71.32 ± 0.27 61.78 265.25 <2 · 10-16

15-30 kHz -0.83 ± 0.31 2232.31 -2.65 0.008 
30-45 kHz -3.98 ± 0.33 2285.20 -12.21 <2 · 10-16 
30-55 kHz -3.16 ± 0.33 2275.86 -9.58 <2 · 10-16 
30-90 kHz -3.17 ± 0.33 2275.77 -9.63 <2 · 10-16 
55-90 kHz -1.98 ± 0.33 2274.94 -5.99 2.4 · 10-9 
70-90 kHz -2.57 ± 0.33 1174.78 -7.79 1.05 · 10-14 
Bat #2 -0.55 ± 0.28 2270.12 -1.95 0.051 
Bat #3 -3.56 ± 0.28 2268.12 -12.7 <2 · 10-16 
Bat #4 -6.05 ± 0.28 2268.33 -21.23 <2 · 10-16 
Bat #5 -2.45 ± 0.28 2269.08 -8.607 <2 · 10-16 

-3dB terminal frequency ~ noiseband + animal + (1 | date/event)
Mean ± s.e.m df t-ratio p-value 

Intercept (Control 
trials, bat #1) 

56.98 ± 0.19 236.39 305.09 <2 · 10-16

15-30 kHz -0.68 ± 0.25 1439.42 -2.67 7.72 · 10-3 
30-45 kHz -2.29 ± 0.27 2282.71 -8.47 <2 · 10-16 
30-55 kHz -1.28 ± 0.27 2282.97 -4.68 3.02 · 10-6 
30-90 kHz -1.51 ± 0.27 2282.96 -5.51 3.95 · 10-8 
55-90 kHz -0.87 ± 0.27 2282.54 -3.17 1.53 · 10-3 
70-90 kHz -1.84 ± 0.27 2282.24 -6.72 2.25 · 10-11 
Bat #2 -0.45 ± 0.24 2270.33 -1.90 0.058 
Bat #3 -1.11 ± 0.24 2266.27 -4.74 2.22 · 10-6 
Bat #4 -2.01 ± 0.24 2267.72 -8.51 <2 · 10-16 
Bat #5 -1.03 ± 0.24 2268.46 -4.36 1.39 · 10-5 
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