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ABSTRACT
Clustering of cells based on gene expression is one of themajor steps
in single-cell RNA-sequencing (scRNA-seq) data analysis. One key
challenge in cluster analysis is the unknown number of clusters and,
for this issue, there is still no comprehensive solution. To enhance
the process of defining meaningful cluster resolution, we compare
Bayesian latent Dirichlet allocation (LDA) method to its non-
parametric counterpart, hierarchical Dirichlet process (HDP) in the
context of clustering scRNA-seq data. A potential main advantage of
HDP is that it does not require the number of clusters as an input
parameter from the user. While LDA has been used in single-cell data
analysis, it has not been compared in detail with HDP. Here, we
compare the cell clustering performance of LDA and HDP using four
scRNA-seq datasets (immune cells, kidney, pancreas and decidua/
placenta), with a specific focus on cluster numbers. Using both
intrinsic (DB-index) and extrinsic (ARI) cluster quality measures, we
show that the performance of LDA and HDP is dataset dependent.
We describe a case where HDP produced a more appropriate
clustering compared to the best performer from a series of LDA
clusterings with different numbers of clusters. However, we also
observed cases where the best performing LDA cluster numbers
appropriately capture the main biological features while HDP tended
to inflate the number of clusters. Overall, our study highlights the
importance of carefully assessing the number of clusters when
analyzing scRNA-seq data.
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INTRODUCTION
Recent advances in single-cell sequencing have enabled increased
resolution of biological and medical studies of cellular functions.
Single-cell RNA-sequencing (scRNA-seq) is widely used to
study cellular heterogeneity in cancer, developmental biology,
immunology and neurology (Tang et al., 2019). Clustering of cells
based on their gene expression profiles is one of the major steps in
scRNA-seq data analysis. For instance, the computational analysis
of scRNA-seq data for cell-type identification has mainly relied on
unsupervised clustering methods (Qi et al., 2019), such as distance-

based cluster optimization, density-based clustering, or graph-based
clustering methods (Petegrosso et al., 2019).

Single-cell clustering methods are mainly based on optimization of
the pairwise distance between cells (Petegrosso et al., 2019; Qi et al.,
2019), which is a challenging task due to the high dimensionality
of the data (Remesh and Pattabiraman, 2017). The choice of the
distance metric also affects the clustering result (Singh et al., 2013).
Bayesian clustering, which uses sampling-based inference methods
for clustering, can be used to address these challenges. Unlike
traditional distance optimization-based techniques, the Bayesian
approach uses soft cluster assignments, in which the data points are
assigned to each cluster according to their probability of uncertainty,
allowing a mixed cluster membership. Moreover, sampling-based
Bayesian clustering methods avoid distance calculation, allowing a
tractable way of dealing with high dimensional data. One such
Bayesian admixture model is latent Dirichlet allocation (LDA) (Blei
et al., 2003), which recently has been successfully adopted for
clustering of both scRNA-seq (Dey et al., 2017; duVerle et al., 2016;
Sun et al., 2018; Wang et al., 2021) and scATAC-seq (Bravo
González-Blas et al., 2019) data.

One key challenge in cluster analysis is the choice of cluster
resolution. This is inherently linked to one of the great advances of
single-cell sequencing, which is the discovery of previously
unknown cellular states or even new cell types. There are several
clustering methods available for scRNA-seq data analysis with
different parameters regulating the cluster resolution. For instance,
Seurat 4 (Hao et al., 2021) implements the shared-nearest neighbor
(SNN) graph-based clustering on PCA space with modularity
optimization and a user-selected parameter regulating the cluster
resolution (Butler et al., 2018). Similarly, Monocle 3 (Cao et al.,
2019) implements graph-based community detection algorithms
with a user-defined input resolution parameter. However, an
inappropriate choice of these parameters may impede the
discovery of novel cell states or types.

To address these challenges, in this study, we investigate the utility
of hierarchical Dirichlet process (HDP) (Teh et al., 2006) for
clustering scRNA-seq data as a non-parametric counterpart of LDA.
The HDP method has been applied, for example, to correct technical
variations for scRNA-seq data (Prabhakaran et al., 2016), to segment
gene regulatory networks (Wang andWang, 2013) and to cluster bulk
gene expression data (Wang andWang, 2013). Herewe apply HDP to
cluster scRNA-seq data and compare its performance to LDA. We
analyze in detail three publicly available scRNA-seq datasets,
including artificially mixed human immune cells, and two tissue-
specific subsets of kidney and pancreas cells from Tabula Muris
(Schaum et al., 2018), with high quality cell-type annotations.
Additionally, we also test the scalability of the methods with a large
dataset from human decidua/placenta (Vento-Tormo et al., 2018).We
specifically focus on the clustering resolution necessary to capture the
cellular heterogeneity using both intrinsic and extrinsic cluster quality
measures.Received 21 August 2021; Accepted 17 February 2022
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RESULTS
To study the performance of LDA and HDP clustering models
in identifying the cellular heterogeneity from scRNA-seq data, we
applied them to an artificial mixture of human immune cells
(Table S1), mouse kidney cells, and mouse pancreas cells (Schaum
et al., 2018). For each dataset, the cluster quality was measured
first intrinsically using the Davies-Bouldin index (DB-index)
and secondly extrinsically using the Adjusted Rand Index (ARI)
with the reference clusters from the original publications (see
Materials andMethods for details). In addition to DB-index, we also
tested the intrinsic cluster quality with Calinski-Harabasz
(CH-index) (Calinski and Harabasz, 1974), which overall gave
similar results as the DB-index (Fig. S1). Finally, the clustering
results of the best two k values based on the intrinsic DB-index
were visualized using the UMAP plots side by side with the
reference cell-type annotations from the original publications.
In each dataset, we ran HDP clustering with 20 repetitions and
a series of LDA clusterings with an increasing number of
clusters k from 2 to 20 (20 repetitions each) using the default
parameters. The run time for a single analysis on a 48 core
Ubuntu 16.04 EC2 cloud instance was ∼2-3 min for LDA in the
immune cells (∼1000 cells), pancreas cells (∼2000 cells) and
kidney cells (∼3000 cells), whereas the run time for HDP increased
from ∼6 min with ∼1000 cells to ∼15 min with ∼2000 cells and
∼28 min with ∼3000 cells (Table S2). LDA and HDP run times
for the decidua/placenta (64,000 cells) took 1.35 h and 4 days
respectively, and this data was not used for the full comparison
between LDA and HDP. The memory usage was similar between
LDA and HDP (Table S2).

LDAandHDPclustering performance in human immunecells
In the intrinsic evaluation of the human immune cell data, the two
lowest (best) DB-index values with LDA were obtained with k=3
(DB=2.3) and k=5 (DB=2.4) clusters (Fig. 1A), whereas for HDP
those were k=7 (DB=2.3) and k=9 (DB=2.4) (Fig. 1B).
In the extrinsic cluster evaluation, increasing the LDA cluster

number to k=5 resulted in an increasingly better quality in terms of
ARI, but larger cluster numbers did not affect the quality markedly
(Fig. 1C). The mean ARI values for two best DB-index informed
HDP clusterings (k=7 and k=9) had higher ARI values (∼0.6) than
those of LDA (<0.5 for k=3 and k=5) (Fig. 1D). Thus, the extrinsic
quality measures were in line with the intrinsic DB-index values,
suggesting that – judged by the reference clusters – HDP performed
slightly better than LDA in this dataset.
We next visually inspected the best performing clusterings

selected by DB-index with UMAP plots by comparing these to the
reference cell-type annotations (Fig. 1E-I). HDP with k=7 resolved
the main reference cell types (Fig. 1F), whereas LDA with k=5 did
not (Fig. 1G). Specifically, LDA with k=5 had one cluster
containing B cells, dendritic cells and lymphoblasts together,
whereas HDP with k=7 or k=9 was able to resolve these three cell
types to their own clusters. Overall, for this dataset, when comparing
with the reference clusters, the DB-index informed HDP was able to
predict a biologically more adequate clustering than DB-index
informed LDA.

LDA and HDP clustering performance in mouse kidney cells
In the intrinsic evaluation of the mouse kidney data (Schaum et al.,
2018), LDA with cluster numbers k=6 and k=12 showed the
minimum average DB-index values of 2.2 and 2.3, respectively
(Fig. 2A), indicating the highest intrinsic cluster quality. The HDP
clustering result partitioned the dataset into k=11 clusters with the

lowest average DB-index value of 2.6 followed by k=17 with
average DB-index value of 3.0 (Fig. 2B).

In the extrinsic comparison, LDA clustering with k=6 showed an
average ARI value of 0.60, which was close to the highest average
ARI value of 0.61 obtained with k=5 (Fig. 2C). The HDP clustering
(k=11) had an average ARI value of 0.67 (Fig. 2D), suggesting that,
in this dataset, the DB-index informed HDP with a higher cluster
number (k=11) may be useful in order to achieve a more detailed cell
state or subtype specific resolution than the DB-index informed
LDA with k=6.

Visual inspection with the reference cell-type annotations
indicated that LDA clustering with k=6 (best by DB-index)
resolved the kidney limb epithelial cells, duct epithelial cells and
partitioned the kidney tubule epithelial cells into two sub-clusters
(Fig. 2E,I). However, it did not separate a cluster of immune cells
(macrophages) from kidney cells, whereas LDA with k=12 did
(Fig. 2G,I). The HDP clustering with k=11 gave similar results as
LDA with k=12 (Fig. 2F), whereas HDP with k=17 added several
apparently sporadic clusters (Fig. 2H). Considering the DB-index
for the selection of an approximate cluster number, the HDP k value
(k=11) had the lowest DB-index value (Fig. 2B) and highest ARI
value (Fig. 2D), suggesting the utility of HDP in this dataset.
Additionally, these results suggest that the HDP-based k value may
be useful to guide the selection of the k value for LDA, when two
LDA k values have similar DB-index.

LDA and HDP clustering performance in mouse
pancreatic cells
We repeated the comparison of LDA and HDP using mouse
pancreatic cells (Schaum et al., 2018). In the intrinsic evaluation, the
LDA clustering with k=3 showed the lowest mean DB-index
value of 2.3, and with increasing k, k=7 displayed a local minimum
(DB-index=2.5) (Fig. 3A). Based on DB-index, HDP had worse
performance compared to LDA, with k=14 showing the lowest
average DB-index value of 3.4 (Fig. 3B), and k=17 showing the
second lowest average DB-index value of 3.6.

In the extrinsic cluster quality evaluation, increasing the LDA
cluster number from k=3 to k=7 increased ARI, but larger numbers
of clusters did not affect the quality markedly, producing average
ARI values in the range 0.67-0.72 (Fig. 3C). Similarly, the HDP
clustering with k=14 gave an ARI value of 0.67 (Fig. 3D). The
visual inspection with reference annotations suggested that LDA
with k=7, but not with k=3, was able to resolve most of the cell
subtypes present in the reference (Fig. 3E,G,I), whereas HDP with
k=14 and k=17 resulted in additional cell subsets (Fig. 3F,H).

Comparison of existing LDA clustering tools for
scRNA-seq data
While the main aim of our study was to compare LDA and HDP for
clustering scRNA-seq data, we also compared the Gensim
implementation of LDA with two existing LDA implementations
for scRNA-seq data, Celda (Wang et al., 2021) and DIMM-SC (Sun
et al., 2018). Since the computational times with DIMM-SC extended
to several weeks with the full datasets, we used the top 2000 most
highly variable genes for this comparison (Figs S2 and S3).
Especially with Gensim LDA and Celda, the best k values defined
by the lowest DB-index values were generally in line with the highest
average ARI values (Figs S2 and S3). On the other hand, while
Gensim resulted in better (lower) meanDB-index values compared to
the other two methods, Celda displayed higher extrinsic ARI values
in the two datasets. This was also reflected in the UMAP
visualization, where Celda resulted in coherent clustering of the
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Fig. 1. See next page for legend.
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cells (Figs S2 and S3). Overall, the Gensim LDA and DIMM-SC
showed a wider range of variability in the cluster quality values than
Celda for the repeated clustering runs (Figs S2 and S3).

Comparison of LDA, HDP and the Seurat SNN clustering
The Bayesian Dirichlet process mixture models such as LDA and
HDP are different from the clustering methods used in most of the
existing state-of-art single-cell clustering tools, such as the widely
used Seurat tool [20]. Seurat 4 clustering uses the graph-based
shared nearest-neighbor (SNN) algorithm, where the resolution
parameter (r) controls the resulting number of clusters. We
compared LDA and HDP with Seurat 4 [20] using the top 2000
most highly variable genes (Figs S4-S7). For the immune cell
dataset, the Seurat clustering resulted in the best intrinsic quality
(lower DB-index) when the resolution r was below 0.1, resulting in
k=5 or k=6 (Fig. S4). It also had the highest extrinsic cluster quality
defined by ARI value of 0.62, while the highest average ARI values
for LDA and HDP clustering were 0.54 (with k=8) and 0.61 (with
k=7), respectively. For the kidney, pancreas and early pregnancy
datasets (Figs S5-S7), Seurat, LDA and HDP clustering results had
relatively similar average DB-index values for the different cluster
numbers and resolution parameters, but Seurat resulted in slightly
better ARI values compared to HDP and LDA.

DISCUSSION
We have evaluated the clustering performance of Dirichlet process
mixture models LDA and HDP on three scRNA-seq datasets using
both intrinsic (Hassani and Seidl, 2017) and extrinsic (Amigó et al.,
2009) cluster quality measures defined by DB-index (Davies and
Bouldin, 1979) and ARI (Hubert and Arabie, 1985), respectively.
For each dataset, we also selected two best cluster numbers (k) based
on intrinsic DB-index for more detailed visual evaluation. The
intrinsic cluster quality provides general information about how
compact the data points are within the individual clusters and how
well the different clusters are separated. Because intrinsic quality
measures do not assess the biological relevance of the clusters, we
also considered extrinsic cluster quality and using UMAPs visually
compared the identified clusters to the clusters from the original
publications. Overall, our study showed that the relative
performance of LDA and HDP was dataset dependent and
highlighted the importance of carefully assessing the number of
clusters when analyzing scRNA-seq data.
The variation in DB-index and ARI values between repeated runs

of LDA and HDP indicated that the clustering results varied for
different runs of the same dataset. Therefore, average values over
multiple runs were used to produce robust results for the comparative
analysis. Further, we generally observed less variation in HDP runs
compared to LDA runs, suggesting that HDP could provide more
robust DB-index and ARI values.

Our comparison of LDA and HDP indicated that their
performance was dataset dependent. In the immune cell dataset
(Fig. 1), the DB-index informed HDP resulted in a more adequate
clustering than the DB-index informed LDA when evaluated
by both ARI and visual inspection with the original reference
annotations. This provided evidence that at least in some cases HDP
is a useful addition to the previously more widely employed LDA.
For the other two datasets (Figs 2 and 3), HDP did not offer a clear
advantage over LDA. In the kidney data, the DB-index informed
HDP performed well judged by ARI, but in the visual inspection it
did not provide conceivable advantage over the DB-index informed
LDA (Fig. 2). In the pancreas data, HDP suggested higher numbers
of clusters than LDA, while visual inspection suggested that these
may inflate the clustering (Fig. 3).

For the purpose of our comparisons, the cluster annotations from
the original studies were considered to provide adequate level of
resolution and quality to be used as a reference in the extrinsic
analysis and in the visual inspection of the best intrinsic DB-index
defined cluster numbers. A more in-depth biological interrogation
of the detailed clustering differences is outside of the scope of our
comparison. The overall biological interpretation of the resulting
cluster annotations typically demands integration with other
methods, such as protein level studies and spatial analysis (Dey
et al., 2017).

Recently, several single-cell specific implementations of
LDA clustering have become available (Dey et al., 2017; duVerle
et al., 2016; Sun et al., 2018; Wang et al., 2021), while the
implementations of HDP clustering for scRNA-seq are limited. We
extended our main HDP to LDA comparison to also include two
scRNA-seq specific LDA implementations, Celda (Wang et al.,
2021) and DIMM-SC (Sun et al., 2018). We observed that, based on
intrinsic DB-index analysis, Gensim LDA performed better than
Celda and DIMM-SC, whereas extrinsic ARI analysis supported the
coherence of the Celda results. Celda also showed less variability
between repeated runs than Gensim LDA and DIMM-SC.

The runtime andmemory usage of both LDA andHDP for datasets
with smaller numbers of cells (∼1000, ∼2000, ∼3000 cells) was
practical for repeated analysis runs. However, for the large dataset
(∼65,000 cells), the increased running time affected the practicality
of their use. Additionally, the inference method used in a given
LDA or HDP implementation also affects its run time. The Gensim
implementations of LDA and HDP use the variational inference
method (Blei and Jordan, 2006), which is easier to scale to high-
dimensional data than sampling-based inference methods such as
MCMC (Blei et al., 2017). The LDA tools Celda and DIMM-SC
implement the expectation maximation algorithm for model
parameter estimation and, in the context of this study, they
appeared computationally adequate, especially, when focusing on
the top 2000 most highly variable genes. Currently, BISCUIT
(Prabhakaran et al., 2016), the single-cell specific implementation for
HDP clustering, uses Gibb’s sampling as the inferencemethod. Gibbs
sampling typically runs extensive iterations before it converges to the
target posterior distribution, making it computationally expensive.
Accordingly, a single run of BISCUIT using only the top 2000 most
highly variable genes took more than three days, making the current
implementation impractical for extensive comparisons. Therefore,
further developments HDP specific to high dimensional scRNA-seq
data could enhance the current computational challenge.

We also compared the performance of LDA and HDP with the
graph-based SNN clustering implemented in the widely used
Seurat 4 tool as a comparator method to inspect how the LDA and
HDP clustering performed when evaluated with the existing

Fig. 1. Comparison of LDA and HDP clustering performance using
artificially mixed human immune cell scRNA-seq data. Intrinsic cluster
quality measure defined by DB-index for (A) LDA and (B) HDP clustering.
The x-axis shows the number of clusters k, and the y-axis indicates the DB-
index values (lower indicates better clustering). Extrinsic cluster quality
measure defined by ARI for (C) LDA and (D) HDP clustering. The x-axis
shows the number of clusters k, and the y-axis indicates ARI (higher
indicates better clustering). For A-D each run was repeated 20 times and the
top, middle and bottom lines show the maximum, mean and minimum
quality values, respectively. The UMAP plot of LDA clustering with (E) k=3
and (G) k=5. The UMAP plot of HDP clustering with (F) k=7 and (H) k=9.
(I) The UMAP plot showing the reference clustering with the cell-type
annotation from the original publications (Table S1).
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Fig. 2. See next page for legend.
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state-of-art clustering method. HDP and LDA model-based
clustering in general showed comparable results both in intrinsic
and extrinsic evaluation measures when compared to Seurat based
clustering. However, both LDA and HDP clustering resulted in
markedly higher variation in the clustering results for the repeated
runs compared to Seurat (Figs S4-S7).
Ideally, cluster analysis results from scRNA-seq data give

meaningful approximations of biological cell types or states. In
this regard, the nonparametric HDP clustering method, unlike the
LDA, automatically generates the number of clusters without a
predefined number of clusters (Limsettho et al., 2014; Teh et al.,
2006). Thus, HDP avoids the additional analysis of different
k values to select the optimal number of clusters. In addition to the
direct use of HDP clusters, HDP could also be used for exploratory
cluster analysis to visualize and explore the unknown cellular states
from scRNA-seq data and to help guide the choice a suitable
number of clusters as a starting point for more refined analysis. We
observed that LDA performed more robustly in the data that had
closely related cell types or states, and in these cases HDP may
inflate the cluster number. On the other hand, the tendency of HDP
to result in larger numbers of clusters than LDA may also open up
the possibility of finding novel cell types or states, which is of high
importance for both basic research as well as in the inference of
disease specific conditions.
The study was limited to compare the LDA and HDP model-

based clustering methods in only small to medium-sized single-cell
RNA-seq data due to the very long execution time (several days)
that it takes to run HDP models for large datasets. Additionally, the
LDA and HDPmodels have multiple prior concentration parameters
used as an input that can affect the clustering result. However,
coherent parameter tuning for multiple parameters at the same time
would have required extensive computational resources and was
beyond the scope of this manuscript. Therefore, we limited our
comparisons by fixing those concentration parameters to the default
values.
In conclusion, our results support the previous reports that

Dirichlet process based clustering models such as LDA and HDP
are useful additions for single-cell data analysis in general (Bravo
González-Blas et al., 2019; Kim et al., 2020; Sun et al., 2018) and
that the non-parametric HDP model is a useful addition to the
previously used LDA in particular.

MATERIAL AND METHODS
Sequencing data
We analyzed four publicly available scRNA-seq datasets, including
artificially mixed human immune cells, tissue specific subsets of kidney
and pancreas cells from Tabula Muris (Schaum et al., 2018) and human
decidua/placenta (early pregnancy) data (Vento-Tormo et al., 2018) with
high quality cell-type annotations. For the first dataset, we created
an artificial mixture of human immune cells from seven publicly

available scRNA-seq datasets from Gene Expression Omnibus (GEO):
GSE75748, GSE81861, GSE44618, GSE96562, GSE85527, GSE96564
and GSE89232 (Table S1). The pre-processed datasets provided by the
authors were downloaded from GEO together with their cell-type
information, which was used as a reference in our clustering analysis. For
the combined analysis, we converted raw counts and fragments per kilobase
million (FPKM) to normalized transcripts per million (TPM) expression
values, similarly as previously described (Pachter et al., 2011 preprint). The
final artificial mixture contained expression profiles of 1153 human immune
cells across 13,880 genes, including CD4+ memory cells, CD8+ memory
cells, B cells, dendritic cells, fibroblasts, and lymphoblasts.

The mouse kidney and pancreas datasets were from the publicly available
Tabula Muris study (Schaum et al., 2018). The unique molecular identifier
(UMI) count matrix provided by the authors was downloaded from GEO
with accession GSE109774. We selected the kidney (SMART-seq based)
and pancreas (droplet-based) cells, including a total of 2782 and 1961 cells,
respectively, with 23,433 genes for both datasets. The pre-processed UMI
count data for human early pregnancy data (droplet-based) (Vento-Tormo
et al., 2018) with 64,734 cells and 31,764 genes was downloaded from
ArrayExpress with the accession number of E-MTAB-6701. We used the
within cell UMI count library size normalization with scaling a factor of 106

(Satija et al., 2015).

LDA and HDP implementations
We used the python implementations for LDA and HDP originally designed
for topic modelling from the ‘Gensim’ package. The benefit of using
Gensim was that it has both LDA and HDP implemented in a single tool to
ensure direct comparability. Additionally, the variational inference-based
implementation of Gensim for LDA (Hoffman et al., 2010) and HDP (Wang
et al., 2011) enabled scaling to high-dimensional datasets (Rehurek and
Sojka, 2010). For the analysis, we used the normalized count data rounded
to their nearest integer values in a ‘bag-of-words’ representation (Zhang
et al., 2010) and default parameters (alpha=1 and eta=.01 for LDA; alpha=1,
gamma=1 and eta=.01 for HDP). With LDA, the number of clusters k was
varied from 2 to 20, whereas HDP does not have a predefined number of
clusters. The soft/mixed cluster assignments were transformed to hard
cluster assignments by assigning each cell to the cluster with the highest
cluster membership probability. In order to have biologically interpretable
clustering results, clusters with less than 15 cells were grouped as a separate
single cluster. For the visualizations of the clustering results, we used the
Uniform Manifold Approximation and Projection (UMAP) (McInnes et al.,
2018).

In addition to the main LDA and HDP model comparison, we also
compared the Gensim LDA implementation with two existing LDA
implementations for scRNA-seq data, Celda (Wang et al., 2021) and
DIMM-SC (Sun et al., 2018). Since the computational times with DIMM-
SC extended to several weeks with the full datasets, for this additional
analysis, we used only the top 2000 most highly variable genes. Again,
default parameters were used, and the number of clusters kwas varied from 2
to 20. Similarly, we attempted to compare the Gensim HDP implementation
with the existing HDP implementation for single-cell RNA-seq data,
BISCUIT (Prabhakaran et al., 2016). However, with BISCUIT, since the
computational time for only a single cluster analysis run for pancreatic data,
for example, with the top 2000 variable genes took more than 3 days, we
excluded it from further analysis.

Finally, we compared the Gensim implementation of LDA and HDP with
Seurat 4 SNN clustering (Hao et al., 2021). We used the 2000 most highly
variable genes and the default parameters. For LDA clustering, we
considered the number of clusters k ranging from 2 to 20 with 20
replicated runs for each k. The HDP clustering was also replicated 20 times
with default resolution parameters. In the sameway, we replicated the Seurat
4 SNN clustering 20 times with random seeding for multiple different
resolution parameters ranging from 0.008 to 0.6.

Measures of cluster quality
The cluster quality was assessed using both intrinsic and extrinsic cluster
quality measures. The intrinsic cluster quality measures involve
compactness and separation as a criterion for cluster evaluation (Hassani

Fig. 2. Comparison of LDA and HDP clustering performance using
mouse kidney cells (Schaum et al., 2018). Intrinsic cluster quality measure
defined by DB-index for (A) LDA and (B) HDP clustering. The x-axis shows
the number of clusters k, and the y-axis indicates the DB-index values (lower
indicates better clustering). Extrinsic cluster quality measure defined by ARI
for (C) LDA and (D) HDP clustering. The x-axis shows the number of
clusters k, and the y-axis indicates ARI (higher indicates better clustering).
For (A-D) each run was repeated 20 times and the top, middle and bottom
lines show the maximum, mean and minimum quality values, respectively.
The UMAP plot of LDA clustering with (E) k=6 and (G) k=12. The UMAP plot
of HDP clustering with (F) k=11 and (H) k=17. (I) The UMAP plot showing
the reference clustering with the cell-type annotation from the original
publication (Schaum et al., 2018).
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and Seidl, 2017), whereas the extrinsic cluster quality measures evaluate the
overall clustering in comparison with a reference clustering (Amigó et al.,
2009).

Davies-Bouldin index (DB-index) (Davies and Bouldin, 1979) was used
as an intrinsic cluster quality metric, which uses the intra-cluster variance
and inter-cluster separation to evaluate cluster quality. For a clustering result
which partition data points into k clusters, the DB-index is given by:

DB ¼ 1

k

Xk
i ¼ 1

max
j=i

Di þ Dj

dðci; cjÞ ;

whereDi is the average distance between all the data points in a given cluster
i to their cluster center ci and d(ci,cj) is the distance between the ith and jth

cluster centers. The smaller the DB-index, the better the compactness and
separation of the clusters.

Calinski-Harabasz (CH-index) (Calinski and Harabasz, 1974) was also
considered as another intrinsic cluster quality metric defined by the ratio of
the overall between-cluster variance to overall within-cluster variance. The
larger the CH-index, the higher the cluster quality.

Adjusted Rand Index (ARI) (Hubert and Arabie, 1985) was used as an
extrinsic cluster quality measure, which extends the Rand index (RI) (Rand,
1971) of the similarity between two clusters to adjust for chance. Here, ARI
was used as a measure of cluster accuracy by comparing the observed
clustering with the reference clustering. Given a clustering result X={X1,X2,
…,Xk} and the reference clustering Y={Y1,Y2,…Yl}, the ARI is given by:

ARI ¼
P

ij
nij
2

� �
� P

i
ai
2

� � P
j

bj
2

� �� �
=

n
2

� �

1

2

X
i

ai
2

� �
þ
X

j

bj
2

� �� �
�

X
i

ai
2

� �X
j

bj
2

� �� �
=

n
2

� � ;

where ai is the number of data points in cluster Xi, bj is the number of data
points in cluster Yj, nij is the number of overlapping data points in clusters Xi

and Yj, and n is the total number of data points. The higher the ARI value, the
higher the agreement between the clustering results, with value of 1 being
the maximum.
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Bravo González-Blas, C., Minnoye, L., Papasokrati, D., Aibar, S.,
Hulselmans, G., Christiaens, V., Davie, K., Wouters, J. and Aerts, S. (2019).
cisTopic: cis-regulatory topic modeling on single-cell ATAC-seq data. Nat.
Methods 16, 397-400. doi:10.1038/s41592-019-0367-1

Butler, A., Hoffman, P., Smibert, P., Papalexi, E. and Satija, R. (2018). Integrating
single-cell transcriptomic data across different conditions, technologies, and
species. Nat. Biotechnol. 36, 411-420. doi:10.1038/nbt.4096

Calinski, T. and Harabasz, J. (1974). A Dendrite Method for Cluster Analysis.
Commun. Stat. Simul. Comput. 3, 1-27. doi:10.1080/03610917408548446

Cao, J., Spielmann, M., Qiu, X., Huang, X., Ibrahim, D. M., Hill, A. J., Zhang, F.,
Mundlos, S., Christiansen, L., Steemers, F. J. et al. (2019). The single-cell
transcriptional landscape of mammalian organogenesis. Nature 566, 496-502.
doi:10.1038/s41586-019-0969-x

Davies, D. L. andBouldin, D.W. (1979). A cluster separationmeasure. IEEE Trans.
Pattern Anal. Mach. Intell. PAMI-1, 224-227. doi:10.1109/TPAMI.1979.4766909

Dey, K. K., Hsiao, C. J. and Stephens, M. (2017). Visualizing the structure of RNA-
seq expression data using grade of membership models. PLoS Genet. 13,
e1006599. doi:10.1371/journal.pgen.1006599

duVerle,, D. A., Yotsukura, S., Nomura, S., Aburatani, H. and Tsuda, K. (2016).
CellTree: An R/bioconductor package to infer the hierarchical structure of cell
populations from single-cell RNA-seq data. BMC Bioinformatics 17, 363. doi:10.
1186/s12859-016-1175-6

Hao, Y., Hao, S., Andersen-Nissen, E., Mauck, W. M., Zheng, S., Butler, A.,
Lee, M. J., Wilk, A. J., Darby, C., Zager, M. et al. (2021). Integrated analysis
of multimodal single-cell data. Cell 184, 3573-3587.e29. doi:10.1016/j.cell.2021.
04.048

Hassani, M. and Seidl, T. (2017). Using internal evaluation measures to validate the
quality of diverse stream clustering algorithms. Vietnam J. Comput. Sci. 4,
171-183. doi:10.1007/s40595-016-0086-9

Hoffman, M. D., Blei, D. M. and Bach, F. (2010). Online learning for Latent Dirichlet
Allocation. In Advances in Neural Information Processing Systems 23: 24th
Annual Conference on Neural Information Processing Systems 2010, NIPS 2010.

Hubert, L. and Arabie, P. (1985). Comparing partitions. J. Classif. 2, 193-218.
doi:10.1007/BF01908075

Kim, H. J., Yardımcı, G. G., Bonora, G., Ramani, V., Liu, J., Qiu, R., Lee, C.,
Hesson, J., Ware, C. B., Shendure, J. et al. (2020). Capturing cell type-specific
chromatin compartment patterns by applying topic modeling to single-cell Hi-C
data. PLoS Comput. Biol. 16, e1008173.

Limsettho, N., Hata, H. and Matsumoto, K. I. (2014). Comparing hierarchical
dirichlet process with latent dirichlet allocation in bug report multiclass
classification. In 2014 IEEE/ACIS 15th International Conference on Software
Engineering, Artificial Intelligence, Networking and Parallel/Distributed
Computing, SNPD 2014 - Proceedings, p. Institute of Electrical and Electronics
Engineers Inc.

McInnes, L., Healy, J., Saul, N. and Großberger, L. (2018). UMAP: Uniform
Manifold Approximation and Projection. J. Open Source Softw. 3, 861. doi:10.
21105/joss.00861

Pachter, L., Loir, P., Pachter, L. and Loir, P. (2011). Models for transcript
quantification from RNA-Seq. arXiv.

Petegrosso, R., Li, Z. and Kuang, R. (2019). Machine learning and statistical
methods for clustering single-cell RNA-sequencing data. Brief. Bioinform. 21,
1209-1223. doi:10.1093/bib/bbz063

Prabhakaran, S., Azizi, E., Carr, A. and Pe’er, D. (2016). Dirichlet process mixture
model for correcting technical variation in single-cell gene expression data. In 33rd
International Conference on Machine Learning, ICML 2016, pp. 1691-1715.
International Machine Learning Society (IMLS).

Fig. 3. Comparison of LDA and HDP clustering performance using
mouse pancreatic cells (Schaum et al., 2018). Intrinsic cluster quality
measure defined by DB-index for (A) LDA and (B) HDP clustering. The
x axis shows the number of clusters k, and the y-axis indicates the DB-index
values (lower indicates better clustering). Extrinsic cluster quality measure
defined by ARI for (C) LDA and (D) HDP clustering. The x axis shows the
number of clusters k, and the y-axis indicates ARI (higher indicates better
clustering). For (A-D) each run was repeated 20 times and the top, middle
and bottom lines show the maximum, mean and minimum quality values,
respectively. The UMAP plot of LDA clustering with (E) k=3 and (G) k=7.
The UMAP plot of HDP clustering with (F) k=14 and (H) k=17. (I) The UMAP
plot showing the reference clustering with the cell-type annotation from the
original publication (Schaum et al., 2018).

8

METHODS & TECHNIQUES Biology Open (2022) 11, bio059001. doi:10.1242/bio.059001

B
io
lo
g
y
O
p
en

https://doi.org/10.1007/s10791-008-9066-8
https://doi.org/10.1007/s10791-008-9066-8
https://doi.org/10.1007/s10791-008-9066-8
https://doi.org/10.1038/s41592-019-0367-1
https://doi.org/10.1038/s41592-019-0367-1
https://doi.org/10.1038/s41592-019-0367-1
https://doi.org/10.1038/s41592-019-0367-1
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1038/nbt.4096
https://doi.org/10.1080/03610917408548446
https://doi.org/10.1080/03610917408548446
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1038/s41586-019-0969-x
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1109/TPAMI.1979.4766909
https://doi.org/10.1371/journal.pgen.1006599
https://doi.org/10.1371/journal.pgen.1006599
https://doi.org/10.1371/journal.pgen.1006599
https://doi.org/10.1186/s12859-016-1175-6
https://doi.org/10.1186/s12859-016-1175-6
https://doi.org/10.1186/s12859-016-1175-6
https://doi.org/10.1186/s12859-016-1175-6
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1016/j.cell.2021.04.048
https://doi.org/10.1007/s40595-016-0086-9
https://doi.org/10.1007/s40595-016-0086-9
https://doi.org/10.1007/s40595-016-0086-9
https://doi.org/10.1007/BF01908075
https://doi.org/10.1007/BF01908075
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.21105/joss.00861
https://doi.org/10.1093/bib/bbz063
https://doi.org/10.1093/bib/bbz063
https://doi.org/10.1093/bib/bbz063


Qi, R., Ma, A., Ma, Q. and Zou, Q. (2019). Clustering and classification methods for
single-cell RNA-sequencing data. Brief. Bioinform. 21, 1196-1208. doi:10.1093/
bib/bbz062

Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods.
J. Am. Stat. Assoc. 66, 846-850. doi:10.1080/01621459.1971.10482356

Rehurek, R. and Sojka, P. (2010). Software framework for topic modelling with large
corpora. Proc. Lr. 2010 Work. New Challenges NLP Fram. 45-50.

Remesh, R. and Pattabiraman, V. (2017). A survey on the cures for the curse of
dimensionality in big data. Asian J. Pharm. Clin. Res. 10, 355-360. doi:10.22159/
ajpcr.2017.v10s1.19755

Satija, R., Farrell, J. A., Gennert, D., Schier, A. F. and Regev, A. (2015). Spatial
reconstruction of single-cell gene expression data. Nat. Biotechnol. 33, 495-502.
doi:10.1038/nbt.3192

Schaum, N., Karkanias, J., Neff, N. F., May, A. P., Quake, S. R., Wyss-Coray, T.,
Darmanis, S., Batson, J., Botvinnik, O., Chen, M. B. et al. (2018). Single-cell
transcriptomics of 20mouse organs creates a Tabula Muris.Nature 562, 367-372.
doi:10.1038/s41586-018-0590-4

Singh, A., Yadav, A. and Rana, A. (2013). K-means with three different distance
metrics. Int. J. Comput. Appl. 67, 13-17. doi:10.5120/11430-6785

Sun, Z.,Wang, T., Deng,K.,Wang, X. F., Lafyatis, R., Ding, Y., Hu,M. andChen,W.
(2018). DIMM-SC: A Dirichlet mixture model for clustering droplet-based single cell
transcriptomic data. Bioinformatics 34, 139-146. doi:10.1093/bioinformatics/btx490

Tang, X., Huang, Y., Lei, J., Luo, H. and Zhu, X. (2019). The single-cell
sequencing: New developments and medical applications. Cell Biosci. 9, 53.
doi:10.1186/s13578-019-0314-y

Teh, Y. W., Jordan, M. I., Beal, M. J. and Blei, D. M. (2006). Hierarchical
Dirichlet processes. J. Am. Stat. Assoc. 101, 1566-1581. doi:10.1198/
016214506000000302

Vento-Tormo, R., Efremova, M., Botting, R. A., Turco, M. Y., Vento-Tormo, M.,
Meyer, K. B., Park, J. E., Stephenson, E., Polański, K., Goncalves, A. et al.
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Fig. S1.Intrinsic cluster quality measures defined by DB-index and CH-index for LDA 
and HDP clustering results on the artificially mixed human immune cell data and the 
mouse kidney and pancreatic cell datasets. 
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Fig. S2.Comparison of single-cell specific LDA clustering tools in the mouse kidney 

dataset: (A) Gensim LDA, (B) DIMM-SC, and (C) Celda. The intrinsic cluster quality 

measure was defined by Davies-Bouldin index (DB-index) and the extrinsic cluster 

quality measure by Adjusted Rand Index (ARI). The x-axis shows the number of 

clusters (k = 2-20), and the y-axis indicates the DB-index values (lower indicates 

better clustering) and ARI values (higher indicates better clustering). For (A-C) each 

run was repeated 20 times and the top, middle and bottom lines show the maximum, 

mean and minimum quality values, respectively. The UMAP plot of Gensim LDA 

clustering with (D) k = 7 and (G) k = 13. The UMAP plot of DIMM-SC clustering with 

(E) k = 3 and (H) k = 6. The UMAP plot of Celda clustering with (F) k = 4 and (I) k = 

7. (J) The UMAP plot showing the reference clustering with the cell-type annotation 

from the original publications. The top 2000 most highly variable genes were used as 

input for the runs. 

 
 

 

Biology Open (2022): doi:10.1242/bio.059001: Supplementary information

B
io

lo
gy

 O
pe

n 
• 

S
up

pl
em

en
ta

ry
 in

fo
rm

at
io

n



 
 

  

Biology Open (2022): doi:10.1242/bio.059001: Supplementary information

B
io

lo
gy

 O
pe

n 
• 

S
up

pl
em

en
ta

ry
 in

fo
rm

at
io

n



Fig. S3. Comparison of single-cell specific LDA clustering tools in the mouse 
pancreas dataset: (A) Gensim LDA, (B) DIMM-SC and (C) Celda. The intrinsic 
cluster quality measure was defined by Davies-Bouldin index (DB-index) and the 
extrinsic cluster quality measure by Adjusted Rand Index (ARI). The x-axis shows 
the number of clusters (k=2-20), and the y-axis indicates the DB-index values (lower 
indicates better clustering) and ARI values (higher indicates better clustering). For 
(A-C) each run was repeated 20 times and the top, middle and bottom lines show the 
maximum, mean and minimum quality values, respectively. The UMAP plot of 
Gensim LDA clustering with (D) k = 3 and (G) k = 7. The UMAP plot of DIMM-SC 
clustering with (E) k = 3 and (H) k = 12 (clusters with less than 15 cells are 
collapsed). The UMAP plot of Celda clustering with (F) k = 3 and (I) k = 9. (J) The 
UMAP plot showing the reference clustering with the cell-type annotation from the 
original publications. The top 2000 most highly variable genes were used as input for 
the runs. 
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Fig. S4. Comparison of LDA, HDP and Seurat clustering based on intrinsic (Davies-

Bouldin index, DB-index) and extrinsic (Adjusted Rand Index, ARI) cluster quality 

measures on immune cell data: (A) LDA, (B) HDP, and (C) Seurat SNN.  The x-axis 

shows the number of clusters (k=2-20) for LDA and HDP and the resolution 

parameter r (from 0.008 to 0.6) for Seurat SNN. For Seurat, the average cluster 

numbers for the given resolution parameters are shown in brackets. The y-axis 

shows the maximum, mean and minimum values for DB-index (lower indicates better 

clustering) and ARI values (higher indicates better clustering) across 20 repeated 

runs.  
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Fig. S5. Comparison of LDA, HDP and Seurat clustering based on intrinsic (Davies-

Bouldin index, DB-index) and extrinsic (Adjusted Rand Index, ARI) cluster quality 

measures on mouse kidney cell data: (A) LDA, (B) HDP, and (C) Seurat SNN.  The 

x-axis shows the number of clusters (k=2-20) for LDA and HDP and the resolution 

parameter r (from 0.008 to 0.6) for Seurat SNN. For Seurat, the average cluster 

numbers for the given resolution parameters are shown in brackets. The y-axis 

shows the maximum, mean and minimum values for DB-index (lower indicates better 

clustering) and ARI values (higher indicates better clustering) across 20 repeated 

runs.   
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Fig. S6. Comparison of LDA, HDP and Seurat clustering based on intrinsic (Davies-

Bouldin index, DB-index) and extrinsic (Adjusted Rand Index, ARI) cluster quality 

measures on mouse pancreas cell data: (A) LDA, (B) HDP, and (C) Seurat 

SNN.  The x-axis shows the number of clusters (k=2-20) for LDA and HDP and the 

resolution parameter r (from 0.008 to 0.6) for Seurat SNN. For Seurat, the average 

cluster numbers for the given resolution parameters are shown in brackets. The y-

axis shows the maximum, mean and minimum values for DB-index (lower indicates 

better clustering) and ARI values (higher indicates better clustering) across 20 

repeated runs.   
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Fig. S7. Comparison of LDA, HDP and Seurat clustering based on intrinsic (Davies-

Bouldin index, DB-index) and extrinsic (Adjusted Rand Index, ARI) cluster quality 

measures on human early pregnancy data: (A) LDA, (B) HDP, and (C) Seurat 

SNN.  The x-axis shows the number of clusters (k=2-20) for LDA and HDP and the 

resolution parameter r (from 0.008 to 0.6) for Seurat SNN. For Seurat, the average 

cluster numbers for the given resolution parameters are shown in brackets. The y-

axis shows the maximum, mean and minimum values for DB-index (lower indicates 

better clustering) and ARI values (higher indicates better clustering) across 20 

repeated runs.   
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Table S1. Artificial mixture of human immune cells. 

 
Selected cells by 

Cell-type (n of cells) 

GEO accession (n of 

cells) 

Library 

preparation 

Sequencing 

platform 

Downloaded 

data format 

Fibroblast 

(159) 

GSE75748 (1810) 

 

 

Fluidigm C1 Illumina HiSeq 2500 TPM  

Lymphoblast  

(59) 

 

GSE81861 (1220) 

 

Fluidigm C1 Illumina HiSeq 2000 RPKM 

B-cell 

(174) 

 

GSE44618 (62) 

 

 

SMART-seq 1 Illumina HiSeq 2000 RPKM 

GSE81861(1220) 

 

Fluidigm C1 Illumina HiSeq 2000 RPKM 

CD4+ memory T cell 

(393) 

 

 

GSE96562 (149)  

 

SMART-Seq 1 Illumina HiScanSQ Raw count data 

GSE96568 (246) SMART-Seq 1 Illumina HiSeq 2500 Raw count data 

CD8+ memory T cell 

(263) 

 

GSE85527 (219)  Nextera XT 

DNA Library 

Preparation Kit 

(Illumina) 

Illumina HiSeq 2500 Raw count data 

GSE96564 (45) SMART-Seq 1 Illumina HiSeq 2500 Raw count data 

Conventional 

dendritic cell 

(105) 

 

GSE89232 (957) 

 

SMART-Seq 2 Illumina HiSeq 2500 TPM  
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Table S2. Running time and memory usage for Gensim LDA and HDP clustering. 

 

 Artificially mixed 

immune dataset 

Pancreas, Tabula 

muris  

 

Kidney, Tabula 

muris  

Decidua/placenta 

 # genes # cells # genes # cells # genes # cells # genes # cells 

13,000 1,153 23,000 1,961 23,000 2,782 23,000 64,734 

LDA 1.7 min/ 2.6 GB 2.8 min/ 4.2 GB 2.3 min/ 6.0 GB 1.35 hrs/208 GB 

HDP 5.7 min/ 2.7 GB  15.2 min/ 4.3 GB 28.1 min/ 6.1 GB 4 days/ 208 GB 
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