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Rectified random cell motility as a mechanism for
embryo elongation
Ido Regev1,2,*, Karine Guevorkian3,4,5,*, Anupam Gupta1,6,*, Olivier Pourquié4 and L. Mahadevan1,7,‡

ABSTRACT

The body of vertebrate embryos forms by posterior elongation from a
terminal growth zone called the tail bud. The tail bud is a source of
highly motile cells that eventually constitute the presomitic mesoderm
(PSM), a tissue that plays an important role in elongation movements.
PSM cells establish an anterior-posterior cell motility gradient that
parallels a gradient associated with the degradation of a specific
cellular signal (FGF) known to be implicated in cell motility. Here, we
combine the electroporation of fluorescent reporters in the PSM with
time-lapse imaging in the chicken embryo to quantify cell diffusive
movements along the motility gradient. We show that a simple
microscopic model for random cell motility induced by FGF activity
along with geometric confinement leads to rectified tissue elongation
consistent with our observations. A continuum analog of the
microscopic model leads to a macroscopic mechano-chemical
model for tissue extension that couples FGF activity-induced cell
motility and tissue rheology, and is consistent with the experimentally
observed speed and extent of elongation. Together, our experimental
observations and theoretical models explain how the continuous
addition of cells at the tail bud combined with lateral confinement can
be converted into oriented movement and drive body elongation.

KEY WORDS: Chick morphogenesis, Embryo elongation,
Rectified motility, Tissue expansion

INTRODUCTION
Most vertebrate species exhibit an elongated body axis. This
characteristic pattern is established during embryogenesis as the
tissues progressively form in an anterior-to-posterior direction.
Microsurgical ablation of the posterior presomitic mesoderm
(PSM), which contains the precursors of skeletal muscles and the
axial skeleton, severely reduces posterior elongation movements,
indicating that this tissue plays a major role in the control of
posterior elongation of the embryonic axis. Analysis of cell motility
in the chicken embryo PSM (Bénazéraf et al., 2010) shows that there

is an anterior-posterior gradient in the activity of cells. However,
locally, the motility inside the PSM of chicken and zebrafish
embryos is manifested by random, undirected, Brownian-like
cellular motion (Bénazéraf et al., 2010; Lawton et al., 2013).
These random, diffusive movements contrast with the oriented cell
intercalation movements controlling elongation of the anterior parts
of the embryo.Within the PSM, this motility gradient is downstream
of a chemical gradient of the secreted fibroblast growth factor
FGF, as shown schematically in Fig. 1A. FGF is known to play an
important role in cell motility (Delfini et al., 2005); indeed,
increasing FGF concentration in the PSM causes cell motility to
increase without any orientation preference (Bénazéraf et al., 2010),
reducing the speed of elongation. Earlier qualitative models focused
on the role of the motility gradient as a driving force for elongation
(Bénazéraf et al., 2010), but how this motility gradient is related to
elongation is still unclear.

The observation that at a local level cell motility is random and
undirected needs to be reconciled with the emergence of global
body elongation. As new cells enter the PSM, they are exposed to a
high concentration of FGF and become highly motile, but do not
move in an oriented manner. Owing to the confinement of motility
driven by the presence of relatively immobile and stiff lateral tissues
(Bénazéraf et al., 2017), the cells generate an effective mechanical
pressure. Thus, a potential mechanism for the rectification that leads
to the observed directional cell velocity and body elongation could be
this mechanical pressure. Because the expression of FGF is highest at
the posterior PSM and decreases away from it, there is a natural
reduction in motility anteriorly, consistent with observations.
Eventually, the effects of anterior adhesion dominate over motility
and this causes cellular condensation into somites.

To quantify these processes, here we use experimental
observations to measure the effective diffusivity of cells as well
as their advection speed as a function of their location relative
to the last formed somite. Our observations suggest a minimal
microscopic cellular description of a zone of proliferating cells
with high motility, which we use to develop both a quantitative
cellular model and an equivalent macroscopic continuum
theory, thus providing a theoretical and computational framework
for body elongation. These complementary approaches yield
simple expressions for the speed and scale of body elongation
that are consistent with our experimental measurements, with
potential implications for our understanding of outgrowth-driven
morphogenesis in other settings in which FGF-driven gradients in
motility and contractility drive the extension of the limb bud (Gros
et al., 2010) and the gut (Nerurkar et al., 2019).

RESULTS
Experimental observations
Our experiments were carried out with chicken embryos at
Hamburger-Hamilton (HH) stages 10-11 (Hamburger and
Hamilton, 1992), corresponding to the period when theReceived 10 January 2021; Accepted 25 January 2022
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elongation of the embryo is most substantial (Denans et al., 2015).
A time series of an elongating PSM is shown in Fig. 1B (see also
Movie 1). To measure the elongation rate, we registered the
movement of the embryo with respect to the last-formed somite at
the beginning of the experiment (t=0) as depicted by the black
dashed line in Fig. 1B, and tracked the advancement of the Hensen’s
node, Le(t) as a function of time. In Fig. 1C, we see that Le(t)
increases linearly with time, with a mean elongation rate V=(2.8
±0.3)×10−2 μm/s (averaged from five embryos).
To evaluate the role of cell motility on overall body elongation,

we then examined the movement of cells by electroporating the
PSM cells with fluorescent reporters that label cell nuclei
specifically (Hatakeyama and Shimamura, 2008), as shown in
Fig. 1D (see also Movie 1). As a first approximation, the motion of
the cells can be considered two-dimensional in the anterior-
posterior and medio-lateral directions because the relative dorso-
ventral depth of the PSM is small. In the reference frame of the last-
formed somite at t=0, during a fixed acquisition time of 4 h,
posterior cell trajectories showed a larger net displacement than the
anterior ones, consistent with prior experiments (Bénazéraf et al.,
2010). To quantify the variations of cell motility along the body
axis, we divided the PSM into three regions (anterior, middle and
posterior), as shown schematically in Fig. 1E, and obtained the

mean square displacement (MSD) of the cells given by < Δr2(t)>,
where DrðtÞ ¼ jrðtÞ � rð0Þj defines the distance that the cell travels
in a lag time t, as shown in the inset of Fig. 1F (Qian et al., 1991;
Wirtz, 2009).

Decomposing the motion into a random diffusive term and an
oriented drift term, we write the MSD as:

kDr2ðDtÞl ¼ 4DDt þ v2Dt2; ð1Þ
where D is the effective cell diffusivity and v is the local population
drift velocity (Qian et al., 1991). This model for cell dynamics is in
accordance with previous findings for chicken (Bénazéraf et al.,
2010) and zebrafish (Lawton et al., 2013) PSM elongation. Fig. 1F
shows the mean MSD curves of the three regions (anterior, middle,
posterior) defined in Fig. 1E and the fit to Eqn 1 (black dashed
curve). From the fits, we obtain DPost=(3.5±0.7)×10

-2 μm2/s,
DMid=(2.1±0.4)×10

-2 μm2/s, DAnt= (1.4±0.3)×10-2 μm2/s,
vPost=(2.0±0.2)×10

-2 μm/s, vMid=(1.1±0.1) ×10-2 μm/s and
vAnt=(0.6±0.1)×10

-2 μm/s (mean±s.e.m.). These estimates confirm
the presence of a motility gradient of cells along the AP axis. [Note
that one might argue that the ‘drift’ v could be the result of a
persistent random walk rather than a drift. However, this kind of
dynamics will not show a gradual change in the slope of 〈Δr2(t)〉 as
is observed here.]

Fig. 1. Axis elongation and cell diffusion in chicken embryo. (A) Schematic of an embryo at HH stage 10. Cell motility decreases from posterior to anterior, in
correlation with a decrease in FGF concentration. A gradient of cell density (green) opposite to the motility gradient is shown in the schematic embryo. (B) Time
series of an elongating embryo. The black dashed line shows the reference point for tracking the posterior elongation. Le(t) is the distance over which theHensen’s
node advances over time. Scale bar: 200 µm. (C) Elongation of the PSM, as a function of time. The slope gives the average elongation rate
V ¼ ð2:8+ 0:3Þ � 10�2 mm=s (n=5, mean±s.e.m.). (D) Electroporated cells inside the PSM. Anterior cells advance a shorter distance than the posterior cells for
the same duration of time (here 4 h). Scale bars: 200 µm (whole PSM); 25 µm (zoomed tracks). (E) Schematic of the PSM showing the three regions considered
for MSD analysis shown in F, as well as the depiction of the neighboring tissues. New stem cells are generated by division of the progenitor cells inside the tail bud
(TB), and move into the PSM. The movement of cells in the PSM is limited by the neural tube medially, the somites anteriorly and the lateral plate laterally. (F)
Average MSD from five embryos (1000 cells) for the anterior (Ant.), middle (Mid.) and posterior (Post.) regions of the PSM. Dashed lines are fits to Eqn 1. Inset
shows a sketch of random motion.
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Our observations quantify how the cells move in space and time
along the PSM.When new cells are added close to the tail bud (TB),
they are highly motile but move in random directions; as they move
further away from the zone of proliferation in the TB, on average
they gradually slow down and stop moving.
Next, we provide microscopic and macroscopic chemo-

mechanical mathematical and computational models based on the
observed gradient in motility and the confinement due to the more
rigid lateral tissues, and show that they explain the observed
rectified cell motility and the resulting posterior body elongation.

Microscopic cellular model
We start with a simple cellular model built to mimic the
experimental observations in a two-dimensional setting with cells
surrounded by three confining lateral walls and a free boundary
corresponding to the TB. Our simplifying assumptions, which are
used in both cellular and continuum models, are that the width of
the PSM is constant, which is known to be approximately true
for the region in which cells are motile (Bénazéraf et al., 2017),
and that the cells cannot escape from the PSM owing to the
constraints imposed by the somites anteriorly, the lateral plate
laterally and the neural plate medially. In the discrete model,
we model individual cells as soft, elastic, disks that move randomly
in a manner analogous to a Brownian particle, recognizing that
the cause of random movement is not related to the temperature
of the environment but instead corresponds to the random activity
(motility) of the cell (Berthier and Kurchan, 2013; Mallory et al.,
2014). The equation of motion for an overdamped cell with
coordinate r i(t), assuming that inertial effects are negligible, is:

g _ri ¼ � @U

@ri
þ ziðtÞ; ð2Þ

where γ is the viscous friction coefficient experienced by each cell,
UðriÞ is a potential that prevents cell-cell overlap, and ζi(t) is
random force. The viscous friction is a result of the interaction of
cells with their environment and with each other. The repulsive
interaction between cells of diameter a guarantees that two cells
cannot occupy the same position; a simple form that suffices for this
is given by:

UðxÞ ¼ 1

2

X

j

X

i=j

uij; ð3Þ

uij ¼ kðjxi � xjj � aÞ2; jxi � xjj , a ð4Þ
and

uij ¼ 0 ; jxi � xjj � a: ð5Þ
Note that in our simulations the cell-cell excluded volume
interactions are conservative and thus collisions are elastic but
overdamped. The random force ζi(t) is assumed to have zero-mean
and normally distributed with Gaussian statistics such that:

kzi;aðtÞl ¼ 0 ð6Þ
and

kzi;aðtÞzi;bðt0Þl ¼ 2Mgdðt � t0Þdab; ð7Þ
where M is the single-cell activity/motility and ζi,α are the x or y
components of ζi.
We also assume that the microscopic diffusivity of a (Brownian)

cell is related to the activity by the relation D ¼ M
g
, i.e. that the

fluctuation-dissipation theorem is valid and tantamount to assuming
that the time scales on which we consider the system are long
compared with the time scales for individual cell movements. We
simulate the dynamics of the cells following Eqns 1-7 in a domain
that has one free boundary at the PSM at which new cells are
injected with the same initial activity; at each time step, we turn off
the activity (and thus decrease the fraction of motile cells) with a
probability which changes exponentially with time, to mimic the
gradual decrease in the activity of the cells owing to a reduction in
FGF concentration anteriorly, following:

Pr ¼ 1� e�t=t ; ð8Þ

where τ is the slowest time scale associated with kinetics of
degradation of FGF, which initiates once the cell enters the TB. We
will assume that the initial FGF level and τ are both constant, which
is approximately true in the experimental setup for the observed
times of 4 h. At the posterior-end corresponding to the TB, we
assume that cells move as the body elongates owing to a constant
rate at which they are added in the space that is not occupied by other
cells (Fig. 2A,B). The movement of the cells from the TB to the
PSM region is limited by the available space in the PSM. In our
model, if there is no free space, no cells are added, so the rate of
adding cells is limited by the motion of the TB, the diffusion and
advection of cells away from the TB and the maximal cell packing
density ρ0 [the ratio of the area covered by the cells (disks) to the
total PSM area]. We do not include cell division in our model,
because it has been shown that interfering with cell division in the
PSM does not affect the tailbud elongation considerably during the
time scale of our analysis (Bénazéraf et al., 2010).

The TB boundary is modeled as a wall of immobile cells attached
to their neighbors by elastic springs with spring constants, kchain=2k,
and allowed to move posteriorly as a result of the mechanical
pressure exerted by the motile cells anterior to it. Our simulations
show that after an initial transient state, the motion of the wall
reaches a steady state whereby cells added at a constant rate cause
the wall to move at a constant velocity (Movie 2). The quasi-one-
dimensional dynamics manifest in the simulations arises because of
the impermeable boundary conditions in the direction perpendicular
to the direction of elongation.

The fraction of motile cells is much larger near the moving
wall, and as one moves anteriorly, this density falls off quickly
because of the decrease in FGF activity. Changing FGF activity by
changing τ, and thus varying the probability with which each
individual cells stops moving (and therefore the total fraction of
moving cells), changes the velocity and motility profiles (see
Fig. 2C,D).

To understand these numerical results qualitatively, we note that a
new cell can be added next to the (moving) boundary (x=a, y∈[0,
Ymax]) only when there is a gap of order of the size of one cell a (see
Fig. 2B). Thus, our model is a cellular analog of the Brownian
ratchet introduced in the context of molecular polymerization
(Peskin et al., 1993). In the PSM region where the internal tissue
resistance to cell motion dominates any external resistance, as in our
simulations, the rate of elongation is limited by thewaiting time for a
gap to open that allows for the addition of a cell of size a, i.e.

Ta � 1

r0D
. Here, D is the activity-driven diffusivity of a single cell

(consistent with Eqn 1). In this limit of diffusion-limited elongation
(Ta≪τ), the speed of elongation scales as a/Ta, i.e.:

V � ar0D : ð9Þ
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Similarly, the length scale over which the fraction of motile cells
falls off exponentially is:

L � ar0Dt : ð10Þ
We note that the other limit, i.e. τ≪Ta corresponding to adding cells
that are not active, will lead to a jammed state and is not relevant
here. In Fig. 2C,D, we show the decay in the speed of the cells and
the effective diffusivity as a function of the distance from the TB for
different values of τ. In the inset, we see that the rescaled elongation
velocity and cell diffusivity using the relations shown in Eqns 9
and 10 as a function of location from the wall is consistent with
our simple scaling arguments. However, as can be noticed from the
ordinate in the inset of Fig. 2C, the wall velocity in our simulations,
V � r0Da � v, is a consequence of the collective effect of
elongation driven by the addition of multiple cells. To test that
this is indeed the case, we varied both cell diffusivity D and
maximal cell packing ρ0 and confirmed that the overall elongation
rate V ¼ r0Da (see Fig. S3) is consistent with experimental results
(Fig. S4).

Macroscopic continuum theory
Although the multicellular model for the dynamics of PSM
elongation provides a qualitative and quantitative model by
accounting for cell addition at the TB and gradual decay in motility
driven by FGF degradation, an effective coarse-grained description of
the process would be even more useful. There are a few reasons for
this: they crystallize the processes at play in terms of the laws of
conservation of mass and momentum of an active fluid, and
characterize the parameter dependences in terms of dimensionless
parameters and scaling laws, both of which have the feature of being

generalizable beyond the specific case of body elongation. With this
in mind, we now provide an effective macroscopic one dimensional
continuum theory that links the density of motile cells ρ(x, t) and the
velocity field v(x, t) ofmotile cells as a function of location x in a fixed
lab frame. A hydrodynamic description of the diffusion, advection
and degradation of motile cells can then be written in terms of the
equations for mass and momentum balance (in the viscously
dominated limit) as:

rt þ ðrvÞx ¼ ðDrxÞx �
1

t
r ð11Þ

sx ¼ ð�pþ hvxÞx ¼ jv : ð12Þ
The first equation describes the variations in the density of actively

motile cells that also gradually decay at a rate τ, whereas the second
equation characterizes how the stresses associated with the active
pressure generated by the random motility of the cells causes the
tissue to respond and push the TB. Here, η is the viscosity of the PSM
and ξ is the viscous friction associated with motion of the elongating
PSM relative to the surrounding tissues (endoderm, ectoderm,
neural tube and lateral plate). We note that these friction coefficients
define a characteristic viscous screening length lξ∼(η/ξ)1/2 that we
assume is of the order of a few cell sizes, i.e. lξ∼a.

The equations need a closure relation for the pressure; a minimal
relation assumes that the active pressure is proportional to the
density of motile cells p∼αρ, consistent with both our microscopic
model, with a � M, and also consistent with earlier simulations of
active Brownian particles (Mallory et al., 2014). Although other
relations of the form p∼αρq are plausible, we choose to stay with a
minimal model here.

To complete the formulation of the problem, we need to specify
some boundary conditions for the free-boundary problem

Fig. 2. Microscopic cell-based simulation. (A,B) Schematic view of the presomitic mesoderm used as a basis for cellular simulation. Yellow and gray spheres
representmotile and immotile cells, respectively. The green spheres form a connectedwall, which represents the border of the TB, andmove in response to pressure
applied by themotile cells. Thewall velocity isVand the cell diameter is a. (C,D) Velocity andmotility profiles for different activity decay rate τ values are calculated as
in the experiments, by fitting to Eqn 1. Insets: Scaling x by L, 〈v〉 by V and 〈D〉 by D, shows that the curves collapse onto each other, demonstrating that L is the
relevant length scale over which cells are motile. Here, we used D¼2:5, k=100, a=1 and γ=50 in simulation units. See section 2 in the supplementary information.
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associated with the moving TB assuming the domain of interest to
be x∈[s(t),∞), with the boundary of the TB being s(t). Motile cells
enter the domain at a rate proportional to the difference between
their local density and the maximum cell density ρ0, so that the cell
flux isRðr0 � rðsÞÞ, whereR is the injection rate of cells from the
progenitor zone into the TB. This flux must be balanced by
diffusion and advection of cells from the boundary, i.e.

Rðr0 � rðsÞÞjx¼sðtÞ ¼ ½�DrxðsÞ þ rðsÞ_s�jx¼sðtÞ; ð13Þ
which is reminiscent of a generalized Stefan-like condition in
moving boundary problems in solidification. It is also necessary to
satisfy force balance at the moving boundary so that:

½�arþ hvx�jx¼sðtÞ ¼ �F; ð14Þ
where F is the resisting pressure exerted by the tissue ahead of the
TB, and vðsÞ ¼ _s. In the cellular simulation, this force is a result of
the dynamic friction between the wall cells and the substrate and
thus depends on the velocity; here, we have assumed a more general
form. Far from the TB, we assume that due to degradation of FGF,
the density and velocity of motile cells vanishes so that:

rð1Þ ¼ 0; vð1Þ ¼ 0: ð15Þ
Together, Eqns 11 and 12, along with the above boundary
conditions (Eqns 13-15), determine the spatiotemporal evolution
of the density and velocity fields in the elongating embryo as well as
the speed of elongation of the embryo itself.
To understand the dependence of the solution of Eqns 11

and 12 on the problem parameters, we can rewrite the equations
in a form that depends on five dimensionless variables:

P1 ¼ a

L
;P2 ¼ ar0

jV 2t
;P3 ¼ h

ar0t
;P4 ¼ F

ar0
;P5 ¼ D

RVt
:

Here Π1 is the ratio of the cell size a and the elongation length

scale L ¼ Dt

a
, Π2 is the ratio of the maximum active stress αρ0 and

the external viscous friction ξVL∼ξV2τ, and Π3 is the ratio of the
internal viscous stress ηV/L and the active stress αρ0. We note

that the parameter P2P3 ¼ h

j

1

ðD=aÞ2t2 ¼ l2j=L
2, where lξ is the

viscous screening length defined ealier (after Eqn 12). Finally, there
are two dimensionless parameters associated with the boundary
conditions Π4, which is the ratio of the external stress at the PSM
boundary F and the active stress αρ0, and Π5, which is the scaled
ratio of the internal cell diffusivityD and the rate of addition of cells
at the PSM boundary R.
By rescaling all the velocities by the interface velocity V, all the

lengths by elongation length scale L=Vτ, and the density by the
maximal close packing density ρ0, the dimensionless form of
Eqns 11-15 can be written in terms of the dimensionless variables
~t ¼ t=t, ~t ¼ t=t and ~r ¼ r=r0 as:

~rt þ ð~r~vÞ~x ¼ P1~r~x~x � ~r ð16Þ
and

�P2~r~x þP2P3~v~x~x ¼ ~v; ð17Þ
along with the boundary conditions:

1� ~rðsÞ ¼ �P5~r~xðsÞ þ
P5

P1
~rðsÞ~vðsÞ ð18Þ

� ~rðsÞ þP3~v~xðsÞ ¼ �P4 ð19Þ

and

~rð~x ¼ 1Þ ¼ 0;~vð~x ¼ 1Þ ¼ 0: ð20Þ

For parameter values, we assume that
D � Dðx ¼ sðtÞÞ � 0:09mm2=s, the typical degradation time
scale τ≈1−2×104 s, the viscosity of the PSM η∼104−105 Pa · s
and the friction coefficient ξ≈1012−1013 Pa · s/m2 measured using
the micropipette aspiration technique (Guevorkian et al., 2010)
(see section 1 in the supplementary information). This yields
Π1≈0.005−0.08 and Π2Π3=0.03−10.

Using the following parameter values Π1=0.01, Π2=2, Π3=1,
Π4≈0.005, Π5=0.003, we solve the initial boundary value problem
(Eqns 17-21) using a finite difference method. In Fig. 3B,C, we see
that our calculated profiles for the velocity v(x) and diffusivity
DðxÞ ¼ DrðxÞ=r0 compare well with the experimentally observed
profiles, and are suggestive of a simple exponential law (see also
Fig. S5). In Fig. 3B, we show that the system evolves into a steady
state following a short transient (insets), with an active zone near the
TB that moves at constant speed. Both the cellular motility (Fig. 3B)
and diffusivity (Fig. 3C) decay towards the anterior where the FGF
degrades. Comparing our numerical results for the moving average
of cell velocity 〈v〉 and the rescaled diffusivity D ¼ Dr=r0 with the
experimentally determined values as a function of position
relative to Hensen’s node (see Materials and Methods) we see
that the profiles compare well. Furthermore, on converting the
results to dimensional values, we can estimate the active stress
αρ0≈5−50 Pa, qualitatively similar to measurements on amniote
embryos (Zhou et al., 2009; Serwane et al., 2017). From the
simulations, we can also estimate the typical length associated
with motility decay L∼1200 μm and the length scale lξ∼1800 μm
associated with friction, which are of the same
order as the experimental estimates, L=Vτ∼260−520 μm and
lj ¼

ffiffiffiffiffiffiffiffi
h=j

p
�100�500 mm, 3-15 times the cell size.

A sensitivity analysis of our continuum model (see section 3 in
the supplementary information) shows that the parameters Π1, the
ratio of the cell size to the elongation length scale that arises from
activity, and Π3, the ratio of viscous stresses to the active stress,
affect the velocity and motility profile significantly. The other
parameters, Π2, Π4 and Π5, have a negligible effect on our
results over a range relevant for our problem (for the range of
parameter values used, see Table S3; for the associated results, see
Figs S6-S8). The dependence of the length scales corresponding to
the typical motility and velocity profiles as a function of the
dimensionless parameters Π1 and Π3 is shown in Fig. S10.

DISCUSSION
In vertebrate embryos, posterior structures are formed sequentially
by a combination of cell proliferation and cell motility that together
leads to body elongation. Although it has long been observed that
the elongation process involves the posterior displacement of the
TB, the physical mechanisms underlying this have not been clearly
elucidated. Here, we have quantified this process experimentally
and theoretically and shown that it occurs as a result of two effects:
the addition of motile cells at a boundary (the TB) and confinement
both laterally and anteriorly. These two effects lead to the
rectification of random cell diffusivity, which generates the forces
underlying elongation and the emergence of characteristic velocity
and activity/diffusivity length scales. Simple cellular models and a
one-dimensional continuum framework capture the essence of the
behavior in terms of a pair of fundamental dimensionless parameters
that characterize the ratio of the active driving stress to the internal
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and external viscous stresses, and are consistent with a narrow
boundary layer of activity near the TB, in agreement with
observations. Natural extensions of the models include adding the
effects of dimensionality, such as the lateral growth in the absence of
FGF decay (Bénazéraf et al., 2010), two-dimensional compressive
stresses that generate vortical flows near the TB (Xiong et al., 2020),
and the gradients in viscosity from the anterior to the posterior
region (Mongera et al., 2018). Such multidimensional models could
also be modified to describe other embryonic outgrowths processes
that exhibit graded diffusive behavior of cells downstream of FGF
signaling, such as the budding of vertebrate limbs (Gros et al., 2010)
and the onset of gut elongation (Nerurkar et al., 2019).

MATERIALS AND METHODS
Chicken embryo preparation and electroporation
Fertilized chicken eggs were obtained from a commercial provider (Les
Couvoirs de l’Est, Willgottheim, France) and incubated at 37°C in a
humidified incubator. After 24 h, HH stage 4-5 embryos were mounted on
filter paper and transferred ventral side up to 35 mm agar/albumen petri
dishes for injection (Chapman et al., 2001). Electroporation of the PSMwas
performed using H2B-mCherry or H2B-Venus nuclear markers as described
previously (Bénazéraf et al., 2010). Electroporated embryos were returned to
incubator and left to grow to HH stage 10-11 before imaging.

Time-lapse imaging and track analysis
The imaging procedure used here was similar to a previously described
procedure (Czirók et al., 2002; Rupp et al., 2003). Briefly, the embryos were
transferred to custom-made six-well observation chambers containing agar/
albumin gel, and positioned ventral side up. The time-lapse imaging was

performed at 37°C using a motorized upright microscope (Leica DMR,
Leica Microsystems) with a 10× objective (N.A. 0.3) and a CCD digital
camera (QImaging Retiga 1300i) at a rate of 10 frames/h. At each time point,
brightfield and fluorescent images of the embryo were taken at three various
fields to cover the total length of the PSM. Post-acquisition processing was
performed on images as described previously (Czirók et al., 2002; Rupp
et al., 2003) to obtain a 2D time series. Cell tracking and trajectory analysis
was performed on fluorescent images using custom-made MATLAB
(MathWorks) routines. Trajectories were analyzed on 4-h long movies. To
account for cell position modification due to tissue drift, we divided our
movies to 1 h segments. The location of each cell was defined with respect to
the node at the beginning of each 1 h trajectory. For each cell trajectory, the
MSD was calculated and adjusted with Eqn 1 to obtainD and v. Further, the
moving average filter, Smooth (MATLAB), was used for the plots of D and
v as a function of position to obtain Fig. 3.

Discrete cell simulations
The discrete cell simulations were performed by discretizing Eqn 2 using
the Euler–Maruyama method and integrating in time. In the initial state, all
the particles are arranged in a square lattice (particles are slightly perturbed
from the lattice) in a region that has dimensions of 80a×160a. At a given
time, the particles can be at x∈[0,Xmax], y∈[0,Ymax], where Xmax is the
position of the rigid boundary and Ymax=160a is the lateral width. We use
reduced, dimensionless units in which all energies are given in terms of a
typical energy w: U*=U/w, all lengths in terms of the typical cell size a,
r*=r/a and masses in terms of a mass unit M, m*=m/M. Using these
fundamental units, we can also reduce the effective temperature, i.e. the
active random motility M� ¼ M=w, time t� ¼ t

ffiffiffiffiffiffiffiffiffiffiffi
w=M

p
=a, fraction

ρ*=Na3/V (V is the volume) and any other physical quantity of interest,
where E�; r�;m�;M�; t� and ρ* are all dimensionless.

Fig. 3. Macroscopic continuum model.
(A) Schematic showing half of the PSM in the
neighborhood of the TB, the position of which
is s(t). (B,C) Experimentally measured velocity
v(x) and diffusivity D(x) profiles (calculated
using Eqn 1) as a function of distance from the
TB compares well with the results of our
continuum theory obtained by solving Eqn 11
and 12 for v(x) and DðxÞ¼DrðxÞ=r0
(continuous lines). The insets show the
velocity (B) and the diffusivity (C) at the free
boundary of the TB as a function of time;
following a short initial transient, we see that
the speed and diffusivity reach a steady state.
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S1 Viscosity measurement

We used the micropipette aspiration technique to measure the viscosity of
the PSM following the same approach as in [1]. Explants of the presomitic
mesoderm (PSM) were prepared with the procedure described in [2]. At
a constant aspiration pressure, ∆P , the explant advances in the capillary
as is shown in Fig. S1(A). The viscosity, η, is related to the flow of the
explant inside the capillary via the expression η = Fa/3πL̇, where Fa is the
aspiration force given by Fa = R2

p∆P (here we do not consider the effect

of the surface tension), where Rp is the radius of the pipette, and L̇ is the
constant flow velocity corresponding to the slope of the aspiration curve in
Fig.S1(B). This yields an estimate for the viscosity given by η ∼ 104 Pa.s.
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Fig. S1. Pipette aspiration to measure the viscosity of the PSM. (A) 
Timelapse of the aspiration of the middle section of a PSM explant (B) 
Aspiration curve corresponding to (A).

S1.1 PSM friction with the walls

To evaluate the friction coefficient between the PSM and the surrounding 
tissues (neural tube, lateral plate, ectoderm and endoderm), we use an ex-
vivo approach where an explant of PSM is forced to move inside an uncoated 
glass capillary under the action of an external aspiration force (Fig. S2(A)). 
The non-specific adhesion between the explant and the glass capillary mimics 
the friction between the PSM and its surrounding in-vivo.

The friction coefficient of the tissue with the walls is measured by prob-
ing the advancement of the PSM explant inside the capillary at a constant

aspiration pressure, ∆P . As before, the aspiration force is Fa = πRp
2∆P . 

The friction force is Ff = 2πRpLexpkv, where k is the friction coefficient and

Lexp is the length of the explant. Balancing Fa with Ff gives:
Rp∆P
Lexp

= 2kv.
We perform the experiment on explants of PSM with variable sizes and
from the slope of the fitted line in Fig. S2(B), obtain k = (1, 8± 0.4)× 108

N.s/m3, where we note that k is depth-integrated parameter. Therefore, the
bulk friction coefficient ξ scales as ξ ≈ k/w, where w ≈100 µm is the width
of the PSM, giving ξ ∼ 1012 N.s/m4.
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Fig. S2. Friction coefficient measurement. (A) Sliding of a PSM explant 
inside a capillary under a constant aspiration force. (B) The slope gives an 
average k from several experiments.

D k a γ τ ρ0

0.1, 0.5, 2.5 100 1 50 50, 100, 200 0.16, 0.24, 0.32, 0.4

S3

Table S1. The list of parameters for our microscopic-model to solve Eq. [2-8] 
of the main text.
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L(µm) Lv(µm) lξ(µm) V (µm/s) D(µm2/s)

1280 1400 1800 0.026 0.08

Fig. S3. Microscopic cell-based simulation: Elongation of PSM as a 
function of rescaled time for different value of D and ρ0. These results are 
obtained by solving Eq. [2-8] of the main text.

S2 Microscopic cell-based simulations

We carried out several simulations with various values of the cell diffusivity 
D = 0.1, 0.5,& 2.5 and maximal cell packing ρ0 = 0.16, 0.24, 0.32,& 0.4. In 
Fig. (S3) we plot the position of TB (Le) vs rescaled time (aρ0Dt), where t 
is simulation time and a is the cell size. All the curves from the microscopic 
model simulation with different D and ρ0 values collapse to the dashed line 
with slope 1. This indicates that the elongation rate V = aρ0D, consistent 
with the simple scaling estimate in the main text (Eq. 9, Main Text).

In Fig. (S4) we show the drift velocity v(x) and diffusivity D(x) profiles 
from the microscopic model for τ = 50 that was shown in the main text 
Fig.2C-D, x-axis of the mmicroscpoic model is rescaled by the appropriate

S4

Table S2. The list of extracted scales from the experimental data and the 
continuum model. We are reporting the estimate of diffusivity D, decay 
lengthscale of motility L, decay length scale of the drif velocity Lv, length 
scale set by the ratio of viscous to friction dissipation lξ and velocity-scale 
V in the dimensional form.
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Fig. S4. Microscopic cell-based simulation: Experimentally mea-sured 
velocity v(x) and diffusivity D(x) profiles (calculated using Eq. [1], open 
circles) as a function of distance from the TB compared to the rescaled 
numerical results of our-agent based model (black line with dots). These re-
sults are obtained by solving Eq. [2-8] of the main text.

length scale 25.6µm, i.e., x = 25.6xSimulation (from microscopic model L = 
50 and from the experimental data L ∼ 1280µm), and y-axes are rescaled 
by maximal velocity (∼ 0.026µm/s) and maximal diffusivity (∼ 0.08µm2/
s), respectively, obtained from the experimental data and is compared it 
against the actual experimental points. xSimulation is in the microscopic 
simulation unit. Given that the simulation data comes from a minimal 
microscopic model with simplistic interaction potentials, the profiles agree 
reasonably well.

Table S1 summarizes all the parameter values used for our microscopic-
model to solve Eq. [2-8] of the main text.
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Run Π1 Π2 Π3 Π4 Π5

R1 0.01 2 1 0.003 0.005
R2 0.1 2 1 0.003 0.005
R3 0.01 2 10 0.003 0.005
R4 0.01 20 1 0.003 0.005
R5 0.01 0.2 1 0.003 0.005
R6 0.01 2 1 0.0 0.005
R7 0.01 2 1 0.003 0.001
R8 0.01 2 1 0.003 0.05
R9 0.01 100 100 0.003 0.05
R10 0.1 10−3 100 0.003 0.05

Table S3. The list of dimensionnless parameters, scaled cell size Π1 = a L,
scaled active stress Π2 = αρ0

ξV 2τ
(active stress/external friction), scaled in-

ternal viscosity Π3 = η
αρ0τ

, and the parameters corresponding to boundary

condition Π4 = F
αρ0

, Π5 = D
RV τ . These parameters are used for the sensitiv-

ity analysis of our macroscopic model.

S3 Macroscopic continuum model

In Table S2, we are reporting the estimate of diffusivity D, decay lengthscale
of motility L, decay length scale of the drif velocity Lv, length scale set by
the ratio of viscous to friction dissipation lξ and velocity-scale V in the
dimensional form.

Table S3 shows the range of dimensionless parameter values used in
solving the eq (16)-(20), with the aim of the sensitivity of the results to these
choices. R1 corresponds to the reference case used to fit the experimental
data; the remaining set has one parameter which has been changed with
respect to the set R1 for sensitivity analysis of our macroscopic model.

In Fig. S5, we show that an exponential profile (dashed red line) for both
the velocity and the diffusivity fits well with the experimental data and the
model in the posterior region close to the TB, with some expected deviation
in the anterior region (run R1 of Table S3, Eq. [16-20]). The characteristic
decay length for the diffusivity is L = 1280µm, while that for the velocity
is Lv = 1400µm.
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Fig. S5. Macroscopic continuum model: Log-lin fit for velocity and 
diffusivity profile along AP for run R1 of Table S3. These results are obtained 
by solving Eq. [16-20] of the main text.
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Fig. S6. Macroscopic continuum model: The velocity and diffusivity 
profile for varying scaled cell size (Π1) and scaled internal viscosity (Π3) run 
R2, R3 of Table S3. These results are obtained by solving Eq. [16-20] of the 
main text.
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Fig. S7. Macroscopic continuum model: The velocity and diffusivity 
profile for varying scaled active stress (Π2) run R4, R5 of Table S3. These 
results are obtained by solving Eq. [16-20] of the main text.

S3.1 Dependence of solution on the dimensionless parame-
ters

In Fig. S6, we see that the spatial profile of diffusivity and velocity becomes 
flatter with an increase in the scaled cell size Π1 (run R2 of Table S3). A 
similar trend is observed for the increase in the scaled internal viscosity Π3 
(internal viscosity/active stress) for run R3 of Table S3.

In Fig. S7, we plot the spatial profile of velocity and diffusivity as a 
function of the scaled active stress Π2 = 20 & 0.2 (active stress/external 
friction) (run R4, R5 of Table S3 (Eq. [16-20])). Overall the change in the 
scaled external friction coefficient does not have a significant effect and the 
velocity and diffusivity profile is within the error-bars of the experimental 
data.

In Fig. S8, we show the effect of boundary conditions on the spatial 
profile of diffusivity and velocity associated with variations in Π4,Π5 run 
R6, R7, R8 of Table S3 (Eq. [16-20]). Overall we see that the change in
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Fig. S8. Macroscopic continuum model: The velocity and diffusivity 
profile for varying boundary conditions (Π4) and viscosity (Π5) for run R6, 
R7, R8 of Table S3. These results are obtained by solving Eq. [16-20] of the 
main text.
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Fig. S9. Macroscopic continuum model: Plot of Diffusivity D and 
DΠ3vx/ρ0 vs distance from the TB to compare the density of motile cells 
ρ(x) and velocity gradient vx(x) for run R9 (top panel) and R10 (bottom 
panel) of Table S3. These results are obtained by solving Eq. [16-20] of the 
main text.

boundary conditions does not affect the profile significantly and the velocity 
and diffusivity profile is within the error-bars of experimental data.

In Fig. S9, we plot the diffusivity D(x) = ρ(x)D/ρ0 and DΠ3vx/ρ0 

profiles for two extreme values of scaled active stress Π2 = 100 & 10−3

(active stress/external friction) (run R9-R10Table S3). These plots will give 
us a comparison between the two contrbution in LHS of Eq. [17], i.e., density 
of motile cells ρ(x) = D(x)ρ0/D and Π3vx. From Eq.(17) one can deduce 
that for very large values of Π2 the friction term will be relatively small, 
and therefore the density ρ(x) will track Π3vx as can be clearly seen (Run 
R9, top panel Fig. S9). For small values of Π2, all the terms in Eq. (17) 
are comparable to each other and so there is no simple relation linking the 
density and the velocity gradient (Run R10, bottom panel Fig. S9).
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S3.2 Phase Diagram

For the range of parameters where we find a good agreement of the macro-
scopic model with experimental results, i.e., run R1 of Table S3, we have 
seen that the parameters Π1 and Π3 affect the velocity v(x) and motility 
ρ(x) profile significantly. In Fig. S10 we show a phase diagram of the length 
scale corresponding to the exponential fall in the density of motile cells L 
(top panle) and the length scale corresponding to the exponential fall in 
the drift velocity Lv (bottom panel) as a function of Π1 and Π3. To extract 
these length scales, we used an exponential fit similar to Fig. S5. The overall 
trend is that with an increase in scaled cell size Π1 and Π3 the length scales 
for motility and velocity increase. The colorbar in the phase diagram is the 
lengthscale in µm.
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Fig. S10. Macroscopic continuum model: Phase diagrams for the 
decay lengthscale of motility (top panel) and decay lengthscale of drift ve-
locity (bottom panel) as a function of Π1 and Π3. The colorbar shows the 
lengthscale in µm. These results are obtained by solving Eq. [16-20] of the 
main text.
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Movie 1. Video of the movement of cells by electroporating the PSM cells with 
fluorescent reporters specifically labeling cell nuclei in an elongating PSM.

Movie 2. Video of the cell movement in an elongating PSM from the microscpic cellular 
simulation. On the left we have rigid somites where cells get reflected, on the right, we 
have an elastic chain, representing the Tailbud, which is moving due to active pressure 
applied by the motile cells. The top and the bottom side has periodic boundary conditions. 
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