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The impact of metabolic plasticity on winter energy use models
Kevin T. Roberts*,‡ and Caroline M. Williams

ABSTRACT
Understanding the energetic consequences of climate change is
critical to identifying organismal vulnerabilities, particularly for
dormant organisms relying on finite energy budgets. Ecophysiological
energy use models predict long-term energy use from metabolic rate,
but we do not know the degree to which plasticity in metabolism
impacts estimates. We quantified metabolic rate–temperature
relationships of dormant willow leaf beetles (Chrysomela
aeneicollis) monthly from February to May under constant and
variable acclimation treatments. Metabolic rate increased as
diapause progressed, and acclimation to variable conditions altered
both metabolic intensity and thermal sensitivity. However,
incorporating these two types of metabolic plasticity into energy use
models did not improve energy use estimates, validated by empirical
measurements of energy stores. While metabolic rate–temperature
relationships are plastic during winter, the magnitude of inter-
individual variability in energy stores overshadows the effects of
incorporating plasticity into energy use models, highlighting the
importance of within-population variation in energy reserves.

KEY WORDS: Climate change, Diapause, Metabolic intensity, Snow
cover, Thermal sensitivity, Ecophysiological model

INTRODUCTION
Understanding the energetic impact of climate change is an important
aspect of global change biology, which can reveal critical patterns of
vulnerability that temperature alone cannot detect (Dillon et al., 2010;
Fitzpatrick et al., 2019). Ecophysiological energy use models predict
energy use by mapping body temperature (often estimated from
microclimate temperature) onto energetic expenditure using
metabolic rate–temperature relationships (Kearney and Porter, 2020;
Sinclair et al., 2016, 2013). However, these models assume that
metabolic rate–temperature relationships are static, an assumption that
is clearly violated given the large amount of phenotypic plasticity that
occurs in response tomicroclimate variation or developmental change
(Sinclair, 2015; Sinclair et al., 2016). The impact of plastic variation
in metabolic rate–temperature curves on energy use modelling has not
been well explored, which may give rise to misleading energy
estimates, or overlook important periods of energetic drain. Here, we
examined the importance of incorporating metabolic plasticity into
winter energy use models in dormant overwintering insects.

Energy conservation is particularly relevant to insect fitness in
winter, when finite energy stores must sustain life and also fuel
subsequent reproduction (Hahn and Denlinger, 2011; Sinclair,
2015). To conserve limited energy stores, many insects overwinter
in diapause – a programmed dormancy characterized by arrested (or
slowed) development and metabolic suppression (Koštál, 2006;
Wilsterman et al., 2021). Insect metabolic rate during diapause is a
fraction (varying from 10% to 85%) of active metabolic rate of
comparable developmental stages (Hahn and Denlinger, 2011;
Ragland et al., 2009). Metabolic rate changes dynamically as
diapause progresses (Koštál, 2006), reaching a minimum several
weeks after onset (Toxopeus et al., 2021), followed by a gradual
increase towards the time of diapause termination, usually in spring
(Gray et al., 1995; Lester and Irwin, 2012).

Metabolic rate–temperature relationships during winter can be
altered in two main ways: (1) by changing the intercept, which
represents overall metabolic intensity, or (2) by changing the slope,
representing thermal sensitivity (Terblanche et al., 2009). Both
metabolic intensity and thermal sensitivity change as a result
of phenotypic plasticity, including developmental plasticity (e.g.
by proceeding through stages of diapause) and acclimation or
acclimatization to winter microclimates (Gray et al., 1995; Lester
and Irwin, 2012; Williams et al., 2012b). Variable winter
microclimates lead to decreased thermal sensitivity, while warmer
winter microclimates lead to decreased metabolic intensity,
both leading to energetic savings in energetically demanding
environments (Sgolastra et al., 2010; Williams et al., 2015, 2012b).
Developing a general method to incorporate these widespread
patterns of phenotypic plasticity into energy use models may
improve our ability to accurately predict winter energy use.

Chrysomela aeneicollis (Schaeffer 1928) populations in the
Sierra Nevada mountains are an important model system for
understanding the physiological and genetic basis of responses to
climate change (Dahlhoff et al., 2019, 2008; Rank and Dahlhoff,
2002). Freeze-tolerant adults overwinter in diapause in the soil,
often beneath snow, for up to 8 months of their 1 year life cycle
(Boychuk et al., 2015). Snow cover modifies the thermal
environment of soil by buffering from cold air temperatures (Pauli
et al., 2013), providing a relatively warm and stable thermal
environment for overwintering insects that can impact energetics
and fitness (Irwin and Lee, 2003). Ecophysiological energy use
models suggest that energetic costs of winter decrease across
elevation, and that snowy years are more energetically demanding
than dry years as a result of longer winter periods (Roberts et al.,
2021), but previous energy use models used a single metabolic
rate–temperature curve with no plasticity taken into account. In this
study, we addressed twomain objectives: first, we empirically tested
how metabolic rate–temperature relationships of C. aeneicollis
change throughout dormancy and in response to thermal
acclimation to ecologically relevant microclimates associated with
winter snow. Second, we used ecophysiological models to assess
how these modifications will impact energy use estimates, by
predicting energy use using different metabolic rate–temperatureReceived 31 August 2021; Accepted 24 January 2022
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curves. We then compared these predictions with actual energy use
derived from empirical measurements of energy reserves.

MATERIALS AND METHODS
Beetle collection and acclimation treatments
Beetles were collected in August 2018 from Mosquito Flat
(3067 m) in the Rock Creek Drainage (37°26′25.8″N, 118°44′
46.0″W) in the Eastern Sierra Nevada Mountains in CA, USA.
Beetles were then housed in incubators (MIR-154-PA incubators,
Panasonic Scientific, Wood Dale, IL, USA) in the laboratory at a 20/
4°C 12 h:12 h day:night cycle until they entered dormancy,
following protocols in Roberts et al. (2021). Once beetles entered
dormancy (determined by cessation of feeding in the presence of
food; between 21 September and 11 October 2018), they were
housed in 50 ml conical tubes filled to around 40% with coconut
husk substrate, and moved to an incubator held at 1°C in constant
darkness. On 1 November 2018, the beetles (N=120) were
haphazardly divided between a constant and variable acclimation
treatment in separate incubators under constant darkness. The
constant treatment simulated conditions beneath the snow (constant
1°C), while the variable treatment simulated uncovered ground
(−2.5/−1/0/−1°C in a 6/6/6/6 h cycle). Temperature regimes were
selected to mimic late-winter conditions, based on temperature
measurements from plots subject to an experimental snow
manipulation (Roberts et al., 2021). Beetles were kept in these
acclimation treatments, with moisture being added monthly to keep
the substrate from drying (around 2–5 ml per month), until their
respiration rates were measured.

Measuring respiration rates
To capture changes in the metabolic rate–temperature relationship
through the end of dormancy, oxygen consumption rate ( _VO2

T ) was
measured using a Sable Systems FoxBox respirometer (Sable
Systems International, North Las Vegas, NV, USA) stop-flow
respirometry system once a month from February to May, following
protocols from Roberts et al. (2021). We chose these time points to
best reflect metabolic rate through the transition out of the coldest
portion of dormancy. Briefly, at each time point a subset of 15
beetles from each acclimation treatment (constant and variable)
were individually placed into a 10 ml syringe and flushed with CO2-
and H2O-free air, generated using a Drierite–Ascarite–-Drierite
column, and then incubated at −1, 4 or 9°C for 48 h, or 20°C for
24 h before oxygen consumption was measured. The order of
temperature exposures for the three lowest temperatures was
randomized, but always finished with the 20°C measurement to
prevent any downstream impacts of prolonged exposure to warm
temperatures on respiration rate. Beetles were given a minimum of
48 h to recover between each measurement, during which time they
were returned to their acclimation treatment following Lake et al.
(2013). All measurements were taken at room temperature, with
each syringe being removed from a given incubator within 20 s of
the measurement being taken. _VO2

T was calculated from oxygen
measurements by integration of the area under the curve in Expedata
(Sable Systems International), then corrected for air left in the
syringe and divided by time spent in the syringe [ _VO2

T=(5 ml/
3 ml)/time] (Lighton, 2018). After each beetle was measured at all
temperatures, beetles were weighed then frozen for biochemical
analysis.

Fitting metabolic rate–temperature curves
All analyses were performed in R 4.0.2 (http://www.R-project.org/)
unless otherwise specified. _VO2

T was log-transformed (loge) prior

to analyses to approximate a linear relationship with temperature.
Metabolic rate–temperature curves were fitted to the data using a
linear mixed effect model with the lmer function from the lme4
package. We used a Kenward–Roger approximation in the lmerTest
package to approximate degrees of freedom and P-values (Bates
et al., 2015; Kuznetsova et al., 2017). Model selection was done by
starting with a full factorial model and eliminating terms using a
backwards reduced Kenward–Roger degrees of freedom method
with the lmerTest package, which eliminates fixed effects via
marginal contrasts of degrees of freedom (Table S1). The initial
model included _VO2

T as the dependent variable and month,
measurement temperature and acclimation treatment as fixed
effects, and mass as a covariate, along with their interaction
terms. As _VO2

T measurements were repeated measures, beetle
identity was included in the model as a random effect. The final
model included month, measurement temperature, acclimation
treatment, mass and the interaction of acclimation treatment and
temperature as fixed effects, and individual as a random effect
(Table S2). Once the best fit model was chosen and significant terms
were identified, we then made models that identified the slope and
intercepts of monthly values and treatment independently. Slopes
and intercepts were extracted and used to approximate thermal
sensitivity and metabolic intensity in energy use models.

Ecophysiological energy use models
We compared the performance of three ecophysiological energy use
models. The first model was from Roberts et al. (2021), based on a
single metabolic rate–temperature curve. We refer to this as the
‘base’model, and all models were modified from this starting model
(Eqn 1):

loge _VO2
¼ S � t þ b; ð1Þ

where S indicates thermal sensitivity, t indicates temperature and b
represents metabolic intensity. The second model incorporates a
stepwise monthly increase in the intercept, simulating the gradual
increase in metabolic intensity that we documented between months
in the respiration rate measurements, with an intercept of −1.952 and
a slope of 0.173.We determined the rate of change in the intercept by
fitting a linear regression to the intercept of the metabolic rate–
temperature relationship as a function of month (February–May), and
used the slope of this regression as a scaling factor in the static model.
We refer to this as the ‘dynamic’ model (Eqn 2):

loge _VO2
¼ ðS � tÞ þ ðbT � T þ bÞ; ð2Þ

where T is month of measurement, and bT is the monthly rate of
change in metabolic intensity. The third model incorporated the
impact of plasticity in response to acclimation treatment (see Results).
The empirical metabolic rate–temperature relationship from Roberts
et al. (2021) was measured in beetles maintained under constant
acclimation conditions. Using the base model as the basis, we
modified both S and b by the amount that they were modified in the
variable compared with constant acclimation treatment in the present
study.We refer to this as the ‘acclimation’model, and it was used only
in predictions of energy use in the variable acclimation treatment
(Eqn 3):

loge _VO2
¼ ðS þ SaÞ � t þ ðbþ baÞ; ð3Þ

where Sa refers to the difference in thermal sensitivity and ba the
difference in metabolic intensity between the two acclimation
treatments.
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Hourly oxygen consumption throughout the winter was
calculated using Eqns 1–3, using temperatures (t) from the
constant and variable acclimation treatments. Monthly energy use
was calculated by summing hourly oxygen consumption, and
converted to lipid consumed assuming 2 l oxygen per 1 g lipid
metabolized (Schmidt-Nielsen, 1997), giving rise to monthly lipid
use estimates under each model, for each acclimation treatment.

Empirically validating model estimates
We quantified lipid (triacylglyceride) stores of beetles (15 per
month per treatment) using thin-layer chromatography coupled to a
flame ionization detector (TLC-FID, Iatroscan MK-6s TLC-FID
Analyzer, Shell-USA, Spotsylvania, VA, USA), with cholesterol as
an internal standard (Roberts et al., 2021; Williams et al., 2011). We
tested whether lipid stores changed through time by ANOVA in
which month, acclimation and their interaction were included as
independent variables and lipid stores as the dependent variable.
To validate model predictions of lipid use against these empirical

measurements of lipid stores, we subtracted the monthly lipid use
estimates for each model (Eqns 1–3) from the average February lipid
stores for constant and variable acclimation separately, giving us
predicted monthly lipid stores. We expressed cumulative model
errors (over the entire period of February to May) as the absolute
difference between lipid stores of individual beetles in May and
predicted lipid stores in May under each model, separately for
constant and variable incubators. Model accuracy was compared
between models using ANOVAwith absolute errors as the response
variable and model as the predictor, separately for each acclimation
treatment.

RESULTS AND DISCUSSION
Plasticity in the metabolic rate–temperature relationship
Beetle metabolic rate–temperature relationships changed through
time, and in response to thermal acclimation. Beetle metabolic rate
increased between February andMay, resulting in a gradual increase

in metabolic intensity with no corresponding change in thermal
sensitivity (F3,108=32.27, P<0.0001; Fig. 1; Table S2). A similar
increase of metabolic intensity during diapause development has
been observed in pine beetles (Lester and Irwin, 2012), gypsy moths
(Gray et al., 1995) and solitary bees (Sgolastra et al., 2010) but not
goldenrod gall flies (Irwin et al., 2001), and occurs during the
transition from diapause to post-diapause quiescence (Hahn and
Denlinger, 2011; Lester and Irwin, 2012; Ragland et al., 2009). We
thus consider it likely that the increase in metabolic rate through
time results from developmental plasticity due to diapause
progression (Koštál, 2006), although we cannot rule out some
influence of other factors that change through time over winter (e.g.
long-term low temperature acclimation). Paralleling our results of
no change in thermal sensitivity, thermal sensitivity remains
consistent throughout diapause in gypsy moth eggs (Gray et al.,
1995), but increases towards the end of diapause in fall webworm
pupae (Williams et al., 2015), suggesting that changes in thermal
sensitivity throughout diapause may be less important and
consistent than changes in overall metabolic intensity.

Beetles acclimated to variable temperatures had higher metabolic
intensity than beetles acclimated to constant conditions
(F1,237=9.74, P=0.0020; Fig. 2C; Table S2), and lower thermal
sensitivity (F1,332=5.48, P=0.0198; Fig. 2B; Table S2). Variable
winter temperatures also resulted in lower thermal sensitivity in
overwintering larval Lepidoptera (Williams et al., 2012b). Thermal
regimes approximated soil temperatures below snow (constant) or
with snow removed (variable) at a high elevation site in the Eastern
Sierra Nevada mountains (Roberts et al., 2021), so it is likely that
natural variation in snow cover would elicit a plastic response in
metabolic rate of these beetles.

Impact of metabolic plasticity on long-term energy use
Beetle lipid stores decreased linearly through time (F3,102=2.87,
P=0.040; Table S3), and did not differ between constant and
variable acclimation treatments (F1,104=0.008, P=0.93, Fig. 3A,B;
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Fig. 1. Developmental plasticity in metabolic rate–temperature relationships inChrysomela aeneicollis. (A) Metabolic rate (estimated using rate of oxygen
consumption, _VO2

T ; μl O2 h−1) as a function of temperature for beetles measured in February, March, April and May, as indicated. (B) Thermal sensitivity
(S; slope) and (C) metabolic intensity (b; intercept) of the metabolic rate–temperature relationships in A. Data shown were combined from variable and constant
treatments as the effect of time did not differ by treatment. Error bars in B and C denote standard errors on the parameter estimates. Significance: ***P<0.001 from
a linear fixed effects model.
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Table S3). All models predicted energy use accurately, with
estimates falling within the 25th to 75th percentile of empirically
measured beetle lipid stores, with the exception of the constant
acclimation treatment in May (Fig. 3A). This illustrates that the base
model used in Roberts et al. (2021) predicts energy use accurately
under laboratory, as well as field, conditions. Neither the dynamic
model nor the acclimation model, incorporating population-level
plasticity in response to acclimation, improved the accuracy of

model estimates of whole winter energy use relative to the base
model used in Roberts et al. (2021) (F2,84=0.33, P=0.72; Fig. 3C,D;
Table S4). Thus, incorporating population-level plasticity in
metabolic rate (as a result of acclimation or developmental
plasticity due to diapause progression) did not improve
population-level estimates of energy use from February to May.
This suggests that ecologically relevant magnitudes of plasticity
will not compromise population-level estimates of energy use.
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Fig. 2. Plasticity in metabolic rate–temperature relationships as a result of thermal acclimation in C. aeneicollis. (A) Metabolic rate data ( _VO2
T ; μl O2 h−1)

from beetles that overwintered in variable (temperatures between −2.5 and 0°C daily) and constant (1°C) acclimation treatments, with monthly measurements
pooled. (B) Thermal sensitivity (S; slope) and (C) metabolic intensity (b; intercept) of the metabolic rate–temperature relationships in A. Error bars in B and C
denote standard errors on the parameter estimates. Significance: ***P<0.001, **P<0.01, *P<0.05 from a linear fixed effects model.
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energy use estimates from energy use models incorporating
no plasticity (‘base’ model), developmental plasticity
(‘dynamic’ model) and acclimation plasticity (‘acclimation’
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The mismatch between predictions of the dynamic model and
empirical energy reserve estimates was striking. The dynamic
model predicted accelerating rates of energy use throughout
diapause, as a result of the observed increase in metabolic
intensity, but we did not see any increase in rates of empirical
lipid depletion throughout diapause (if anything, rates of lipid
depletion slowed as diapause progressed, particularly in the
constant conditions). This may have occurred as a consequence of
a physiological shift that decoupled oxygen consumption and lipid
use (e.g. switching to an alternative fuel source). This underlines the
hazards in using thermal performance curves measured over short
time scales to estimate long-term responses (Kingsolver and
Buckley, 2017; Sinclair et al., 2016). It is possible that our ability
to detect differences in energy use that correlate with changes in the
metabolic rate–temperature curves would be improved by an
individual-based approach, which would require measuring
metabolic rate and energy reserves repeatedly on individual
organisms (e.g. by qNMR; Guglielmo et al., 2011), but these
experiments are technically challenging with small insects at
present.
The magnitude of plasticity that we observed between months or

acclimation treatments was dwarfed by the magnitude of variation in
individual energy stores. The largest magnitude of plasticity in our
experiment was developmental (presumably due to diapause
progression) and, in the constant acclimation treatment, the
difference in predicted energy use resulting from developmental
plasticity was 0.04 mg (base versus dynamic model; Fig. 3A).
However, there was large individual variation in observed lipid
stores (s.d.=0.15 mg), swamping the magnitude of plasticity. Based
on observed levels of variability, the magnitude of difference
between model estimates would have to exceed∼0.18 mg of lipid in
order to detect a statistically significant effect (power analysis;
power=0.8, n=15, α=0.05). To detect the observed predicted
difference in energy use between the base and dynamic model in
the constant environment (0.04 mg lipid), we would need a sample
size of 112 per treatment (or 7.5 times what was used in this study).
The mean (±s.d.) mass of beetles was 15.7±3.9 mg, and mean lipid
content was 0.42±0.21 mg, making the standard deviation 25% of
the mean. This is well within the 20–38% variance seen in across
four other species of overwintering beetles (Lehmann et al., 2020;
Watanabe and Tanaka, 2000) and the 20–41% variance in
lepidopterans (Marshall and Sinclair, 2012; Williams et al., 2015,
2012b, 2011), indicating that individual variability is worth
considering across insect taxa. The large degree of variation
among individuals in lipid stores is likely to have more profound
impacts on energetic stress in winter than the magnitude of plasticity
that we observed. Individual lipid stores are vital in determining an
organism’s fasting endurance in winter (Trondrud et al., 2021), and
may provide an interesting avenue for future research.
The degree of metabolic plasticity that we observed may be more

impactful in natural thermal environments, which exhibit greater
variation in winter energetic demands than did our two acclimation
treatments (i.e. as a result of a wider range of temperatures or longer
overwintering periods). Energy use estimates from models
incorporating developmental plasticity (increase in metabolic
intensity) would be particularly sensitive to warm temperatures
because of the non-linear relationship of metabolic rate with
temperature (Jensen’s inequality; Ruel and Ayres, 1999) combined
with the observed increase in metabolic intensity. This could have
large impacts on overwinter energy use, wherewarm temperatures at
the end of winter can heavily influence energy expenditure (Roberts
et al., 2021). Adding the developmental plasticity to model

estimates of winter energy use from Roberts et al. (2021) led to
an average increase of 24.3% or 0.149 mg lipid, and when including
thermal acclimation therewas an 11.0% or 0.064 mg increase. As an
∼0.18 mg lipid difference is needed to detect an effect given
intraspecific variability in lipid stores, acclimation plasticity will
have negligible impacts, but developmental plasticity may come
close to causing detectable differences in energy use in more
ecologically relevant thermal regimes.

The energetic costs of winter are a critical and understudied
aspect of understanding biotic responses to climate change
(Fitzpatrick et al., 2020; Sinclair, 2015; Williams et al., 2012a).
Metabolic rate–temperature relationships in dormancy are plastic,
changing as a result of developmental plasticity and thermal
acclimation. We developed a novel method to incorporate these
types of plasticity into energy use models in a generalizable way, but
this did not improve our model estimates relative to empirical lipid
quantifications. We instead found that individual variation in lipid
stores far overshadowed the effects of plasticity on energy use. This
suggests that estimating winter energy use based on a single
metabolic rate–temperature relationship may give us reasonable
energy use estimates, and that individual variability in lipid stores is
a critical component that is often overlooked, but may provide
valuable insight that will help us to understand the energetic impacts
of environmental change.
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Table S1. Model selection process for fitting V̇ O2 using a backwards reduced Kenward-Roger 
degrees of freedom method with the lmerTest package in R. The top three interaction terms were 
dropped based on F value reduction, leaving the final model of V̇ O2 as a dependent variable and 
month, acclimation, temperature, and the interaction of temperature and acclimation as fixed 
effects and individual as a random effect. 

Eliminated SumSq MeanSq NumDF DenDF F value p-value 
Temp:Acclim:Month 1 0.338 0.1127 3 323.75 1.2143 0.3045 
Acclim:Month 2 0.2484 0.0828 3 102.35 0.8916 0.4482 
Temp:Month 3 0.4099 0.1366 3 326.51 1.4708 0.2223 
Month 0 9.0374 3.0125 3 105.61 32.2718 <0.0001 
Mass 0 3.8236 3.8236 1 107.84 40.9613 <0.0001 
Temp:Acclimation 0 0.5118 0.5118 1 329.28 5.4832 0.0198 

Table S2. Linear mixed effect model results in an analysis of deviance table from type iii Walf 
F tests with Kenward-Roger degrees of freedom. 

F Df Df.res p-value 
351.4558 1 119.9 <0.0001 

2721.3077 1 330.63 <0.0001 
9.7375 1 236.93 0.002029 

32.2687 3 108.28 <0.0001 
40.9553 1 110.54 <0.0001 

(Intercept) 
Temperature 
Acclimation 
Month 
Mass 
Temp:Acclimation 5.4822 1 331.93 0.019802 

Table S3. ANOVA model results for lipid from each individual used for respirometry. Lipid 
data are triacylglyceride abundance quantified via TLC-FID (thin layer chromatography with 
flame ionization detector). 

SumSq Df F value p-value 
3.03246 1 113.4859 <0.0001 
0.22967 3 2.865 0.04015 
0.00021 1 0.0078 0.92966 
0.00388 3 0.0484 0.98584 

(Intercept) 
Month 
Acclimation 
Month:Acclimation 
Residuals 2.83243 106 
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Table S4. ANOVA results from comparing error from model estimates of May lipid levels per 
model. 

SumSq Df F value p-value 
(Intercept) 0.02668 1 1.0117 0.3173 
Model 0.01774 2 0.3364 0.7153 
Residuals 2.29449 87 
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