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From heterogeneous morphogenetic fields to homogeneous
regions as a step towards understanding complex tissue dynamics
Satoshi Yamashita1,*, Boris Guirao2 and François Graner1,*

ABSTRACT
Within developing tissues, cell proliferation, cell motility and other cell
behaviors vary spatially, and this variability gives a complexity to the
morphogenesis. Recently, novel formalisms have been developed
to quantify tissue deformation and underlying cellular processes.
Amajor challenge for the study of morphogenesis now is to objectively
define tissue sub-regions exhibiting different dynamics. Here, we
propose a method to automatically divide a tissue into regions where
the local deformation rate is homogeneous. This was achieved by
several steps including image segmentation, clustering and region
boundary smoothing.We illustrate the use of the pipeline using a large
dataset obtained during the metamorphosis of the Drosophila pupal
notum. We also adapt it to determine regions in which the time
evolution of the local deformation rate is homogeneous. Finally, we
generalize its use to find homogeneous regions for cellular processes
such as cell division, cell rearrangement, or cell size and shape
changes. We also illustrate it on wing blade morphogenesis. This
pipeline will contribute substantially to the analysis of complex tissue
shaping, and the biochemical and biomechanical regulations driving
tissue morphogenesis.
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INTRODUCTION
During tissue development, morphogenesis is accompanied by
cellular processes such as cell division, cell rearrangement, cell size
and shape changes, apical constriction and apoptosis. The cellular
processes are coordinated together, yielding collective cell
migration and local deformation of each tissue region, resulting in
convergent extension or epithelial folding. Furthermore, the local
deformations of different tissue regions are coordinated too,
resulting in large-scale tissue morphogenesis. Coordinations
between invaginated mesoderm and covering ectoderm (Rauzi
et al., 2015; Perez-Mockus et al., 2017) and between invaginated
midgut and elongated germ-band (Collinet et al., 2015; Lye et al.,
2015; Dicko et al., 2017) of the Drosophila embryo, between
contracting wing hinge and expanding wing blade in Drosophila
pupa (Etournay et al., 2015; Ray et al., 2015), or between
invaginated neural plate and covering epidermal ectoderm of

Xenopus embryo (Brodland et al., 2010), provide examples of how
mechanical force generated in one region can drive large-scale
deformation in adjacent regions. In these cases, the regions which
behave differently are easily distinguished by specific gene
expressions.

However, many tissues were found to be heterogeneous but
without obvious boundary between such regions, leaving analysis
limited to arbitrary regions drawn as a grid parallel to tissue
axes, or regions expressing already known differentiation maker
genes.

Measured tissue deformation rate showed a large heterogeneity
(accompanied by a heterogeneity in cellular processes such as cell
proliferation rate, cell division, cell rearrangement and change of
cell shape) and smooth spatial variations across the tissue in
Drosophila notum in a developing pupa (Bosveld et al., 2012;
Guirao et al., 2015) (Fig. 1A,B), Drosophila wing blade (Etournay
et al., 2015), blastopore lip of Xenopus gastrula (Feroze et al., 2015),
chick gastrula (Rozbicki et al., 2015; Firmino et al., 2016), mouse
palatal epithelia (Economou et al., 2013) and mouse limb bud
ectoderm (Lau et al., 2015). Recent formalisms have enabled us to
measure and link quantitatively cellular processes with tissue
deformation (Blanchard et al., 2009; Guirao et al., 2015; Etournay
et al., 2015; Merkel et al., 2017). These studies have shown that
cellular quantities also vary smoothly across the tissue. In addition,
the causal relationship between cellular processes and tissue
deformation is not always trivial, making it difficult to identify
regions that actively drive morphogenesis and that are passively
deformed by adjacent regions.

To study the spatial regulation of morphogenesis at a tissue scale,
we developed a new multi-technique pipeline to divide a tissue into
sub-regions based on quantitative measurements of static or
dynamic properties of cells or tissues. Our tissue segmentation
pipeline consists of two steps and an optional third step: first, a fast
tissue segmentation attempted several times with random seeding,
then merging these multiple tissue segmentations into a single one,
then, if necessary, smoothing the resulting region boundaries
(Fig. 1C). In contrast to other image segmenting methods like the
watershed algorithm, this method is designed to accept any kind of
quantity of biological interest, not only a scalar but also a vector, a
tensor, and combination thereof. Here, we have applied it to the
morphogenesis of Drosophila pupa dorsal thorax and wing blade.
They were divided based on the tissue deformation rate or how the
cellular processes contribute to the tissue deformation. The sub-
regions obtained showed distinctive patterns of deformation and
cellular processes with higher homogeneity than those along tissue
axes. Interestingly, the tissue segmentations based on the local
tissue deformation rate and on the cellular processes included some
similar regions, suggesting that the cellular processes were regulated
similarly inside the regions, therefore resulting in homogeneous
tissue deformations inside those regions.
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Paris-Diderot, F-75205 Paris Cedex 13, France. 2Institut Curie, PSL Research
University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.

*Authors for correspondence (satoshiy83@gmail.com;
francois.graner@univ-paris-diderot.fr)

S.Y., 0000-0002-1271-4911

1

© 2021. Published by The Company of Biologists Ltd | Development (2021) 148, dev199034. doi:10.1242/dev.199034

D
E
V
E
LO

P
M

E
N
T

mailto:satoshiy83@gmail.com
mailto:francois.graner@univ-paris-diderot.fr
http://orcid.org/0000-0002-1271-4911


RESULTS
Development of automatic tissue segmentation algorithm
Image segmentation by region growing algorithm
Finding distinctive and homogeneous regions inside the
heterogeneous tissue is achieved by segmenting the geometrical
space while keeping the points inside each region as similar as
possible to each other in the property space. Here, we call ‘property
space’ any morphogenesis quantification measured in the tissue,

whereas ‘geometrical space’ refers to the two-dimensional space of
cell patch positions inside the tissue.

Given a set of objects, collecting similar objects to divide them
into groups is generally a task of cluster analysis. However, the cell
patches distribute both in the property space and geometrical space.
On the assumption that expression patterns of genes responsible for
morphogenesis make connected regions, and to study physical
interactions between the regions, we aimed at getting connected
regions. The initial tissue segmentation first defines a metric of
similarity between cells, and then a tissue is divided into regions
containing similar cells. A watershed algorithm is a widely used
tool in general image segmentation and biology such as cell
segmentation and segmentation of computed tomography data, but
it requires the property space to be scalar and a clear boundary
between regions. An alternative image segmentation tool, called
region growing (Adams and Bischof, 1994; Ma et al., 2010)
(Fig. 2A), was inspired by a study segmenting mouse heart based on
cell polarity (Le Garrec et al., 2013).

To validate the algorithm, we first tested segmentation on a
simple example, namely the change in cell patch areas from 12 to
32 h after puparium formation (APF) (Fig. 2B). The overall change
in cell patch areas defines the total tissue growth, whereas spatially
heterogeneous changes in cell patch areas result in local
deformation, changes in tissue region proportions and overall
tissue shape change. Technically speaking, the change in cell patch
areas is a scalar field, defined as the trace of the tissue deformation
rate tensor. The region growing succeeded in finding expanding
regions in posterior, lateral posterior and lateral parts, and a
shrinking region in the anterior part.

However, the results varied dependent on the initial seeds. In
contrast to a segmentation of immunostained images, where a true
segmentation is well defined, the morphogenetic properties vary
continuously with space, making it difficult to determine and
validate the resultant segmentations. The silhouette, a measurement

Fig. 1. Morphogenesis of Drosophila pupa notum and overview of tissue
segmentation pipeline. (A,B) Heterogeneity of tissue morphogenesis.
Drosophila notum at 12 h APF, with arbitrary regions drawn from a grid (A), and
at 32 h APF showing the heterogeneous deformation of previous regions using
cell tracking (B). Cell patches are shown with blue and white check pattern.
(C) Pipeline of the tissue segmentation. (1) Iteration of fast tissue segmentation
with random seeding, using region growing algorithm. (2) Merging multiple
tissue segmentations of step 1 into a single objective tissue segmentation,
using label propagation algorithm on a consensusmatrix. (3) Smoothing region
boundaries resulting from step 2, using cellular Potts model.

Fig. 2. Tissue segmentation by region growing algorithm. (A) Process of region growing algorithm. The number of points (six in the shown example) are
chosen randomly as initial seeds of regions, and the regions are expanded by collecting points similar to the seeds from their neighbors. Once the field is
segmented, the seeds are updated to region centroids in the geometrical space and means in the property space, and the expansion of the regions is performed
again from the new seeds. Cell patches expansion/contraction rates are represented by size of white/gray circles. The seeds are shown by colored squares, where
the color represents an expansion rate of the regions. The regions are colored lighter for visibility. This update of the seeds and the regions are iterated until it
reaches a convergence. (B) Four example results of region growing. (C) Histogram of silhouette value: blue for control segmentations, orange for region growing.
Dotted vertical orange lines show silhouette values of the four examples shown in B. For clarity, in this figure and others, frequency axis units are not included.
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of region homogeneity (the silhouette of an object would be 1 if
it was similar to all objects in the same cluster, and −1 if it was
more similar to objects in other clusters), differed from one
segmentation to the other (Fig. 2C). To assess the significance of the
homogeneity, we compared it with the average silhouette of
randomly made control segmentations. Some of the region growing
results had a low silhouette, even lower than that of half of the
control segmentations (Fig. 2C), which means they were lacking
any significance.
Because of the random initial seeding, we do not know which

results should be compared with gene expression patterns or fed
forward to a study of mechanical interactions between the regions.
For practical applications, we need a single segmentation result for a
given morphogenetic property.

Defining a single tissue segmentation using label propagation on a
consensus matrix
To obtain a single tissue segmentation, we turned to consensus
clusterings. In fact, as resultant segmentations of the region growing
were dependent on randomly given initial values, we ran multiple
trials and merged multiple segmentation results into a single one.
Given multiple partitions, the consensus clustering returns the
partition which is the most similar to all of the initial partitions. We
tried several consensus clustering algorithms, and found the ‘label
propagation on a consensus matrix’ (Lancichinetti and Fortunato,
2012; Raghavan et al., 2007) returning regions similar to the results
of the region growing.
The label propagation on a consensus matrix converted multiple

tissue segmentations into a weighted graph in which weight of an
edge represented a frequency of segmentations in which incident
vertices (points) belonged to the same region (Fig. 3A). Then labels

on the vertices were propagated according to the weight so that
the same label was assigned to points which were frequently
included in the same region among the given multiple region
growing segmentations.

The label propagation returned results similar to the region
growing segmentations (Figs 2B and 3B). Also, the label
propagation results were more similar to each other than results of
region growing, assessed with adjusted Rand indices (ARI), a
measurement of similarity between two partitions (ARI of identical
partitions would be 1). ARI were 0.50±0.21 (mean±s.d.) among the
results of the region growing and 0.97±0.02 among the results of the
label propagation. They showed similar average silhouette values,
similar to median of those of region growing results, but smaller
than the highest value of the region growing results (Fig. 3C). The
average silhouette of the label propagation result was higher than
those of 99.95% of the randomly made control segmentations.

However, a consensus clustering algorithm ignores original
properties of objects in principle and divides the objects only based
on how they were divided among given partitions, and thus it might
return disconnected regions and a zigzag boundary between them.
Some segmentations in Fig. 3B also included disconnected regions,
marked in gray.

Smoothing of tissue segmentation results by cellular Potts model
For the cases of a complex boundary and disconnected points, we
prepared an optional step to smooth the boundary and remove
disconnected points when needed. To smooth the consensus region
boundaries, we employed the cellular Potts model, which simulates
dynamics of a cellular tissue by calculating energies of cells from
their geometry, trying to decrease the total energy. In our application
for boundary smoothing, the energy was lower when the region

Fig. 3. Tissue segmentation by label propagation on a consensus matrix. (A) Process of label propagation algorithm. Multiple clusterings (upper) are
converted to a consensus matrix, which gives weights to a complete graph on the objects being clustered (lower). Edges with weights less than a given threshold
are removed. All objects are initially assigned labels different to each other and then, one by one in random order, each label is updated to the most frequent one
weighted by edges incident to the object until it reaches a convergence. (B) Four example results of label propagation on the same consensus matrix.
(C) Histogram of silhouette value: blue for control segmentations, orange for region growing, red for label propagation. Scale circle: 0.02 h−1.
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boundary was shorter and the homogeneity was higher (Fig. 4A).
Resultant regions were evaluated by homogeneity and circularity
(Bosveld et al., 2016), which represents the smoothness of the
boundary. Parameters for the cellular Potts model were screened so
that the circularity was higher than a given value and the
homogeneity was as high as possible. The result was not affected
greatly by extending the duration of the simulation, and thus we
stopped the simulation when it was appropriately smoothed.
This smoothed boundaries and removed disconnected cell

patches (Fig. 4B,C) while keeping the average silhouette value
higher than those of 99.5% of the randomly made control
segmentations (Fig. 4D). As the cellular Potts model
implementation includes the Metropolis update, i.e. choosing a
pixel randomly and updating the pixel by probability according to a
change of the energy, resultant smoothed segmentations varied
among different trials even with the same parameters and initial
segmentation. We therefore iterated the cellular Potts model
smoothing 50 times and integrated its results using the label
propagation algorithm again.
This gave a pipeline of the region growing, the label propagation

and the optional cellular Potts model to divide a field of property
(scalar, tensor, or any kind of value with metric) into regions. The
resultant regions are homogeneous, where points in each region are
more similar to each other than to points in other regions.

Verification of the method against simulated data
We tested whether our method can segment a simulated tissue using
a normal cellular Potts model. We prepared a 2D tissue model in
which two types of cells with different surface tensions were
assembled (Fig. 5A). The tissue was geometrically compressed in
the horizontal direction and extended in the vertical direction, so
that the cells retained their area but they are vertically elongated
(Fig. 5B). Because of the surface tension, the cells tried to minimize
their perimeter, and thus they were rearranged and rounded (Fig. 5C;
Movie 1). The tissuewas split in a 4×7 grid, and the deformation and
cellular processes after the compression were measured in each cell
patch. The measured deformation and cellular processes were
averaged among 12 simulations. The cells were rearranged similarly
between the two types of cells (Fig. 5D; Movie 1). However, when
we tried the segmentation based on the cell rearrangement, the cells

were successfully distinguished (Fig. 5E). When the tissue was
segmented into three regions, it included a small and disconnected
region after the first label propagation and smoothing (Fig. 5F,G).
The cell rearrangement rate was slightly higher among the cells with
lower surface tension (Fig. 5H). In general, lower surface tension
would allow larger fluctuation, and the larger fluctuation might have
facilitated the faster cell rearrangement. The two regions obtained
showed a significantly high homogeneity (Fig. 5I). With these
results, we confirmed that our method could properly identify
groups of cells with different mechanical properties based on their
behavior.

Tissue segmentation based on tissue morphogenesis
We now turn to property spaces better representing tissue
morphogenesis. In Guirao et al. (2015), tissue deformation rate
(G) and underlying cellular processes, cell division (D), cell
rearrangement (R), cell shape change (S) and cell delamination (A)
were quantified into tensors. The tensors were obtained from the
change of texture averaged over 20 h from 12 h APF to 32 h APF or
over 2 h at each time point. By comparing the tensors, for example,
one can check whether cell divisions and cell rearrangements
elongated tissue in the same direction or attenuated each other. In
the same way, by comparing the tensors of deformation rates with a
unit tensor which has the same direction of elongation as tissue
deformation rate, one can estimate an amplitude of the tissue
deformation rate and how much the cellular processes contribute to
the tissue deformation in both terms of contraction/expansion
(isotropic deformation) and narrowing/elongation (anisotropic
deformation) (Guirao et al., 2015). They are scalar values and
denoted by G// for the tissue deformation rate, D// for cell division,
R// for cell rearrangement, S// for cell shape change and A// for cell
delamination. For the sake of clarity, we call the tissue deformation
rate and the cellular processes averaged over the whole 20 h from 12
to 32 h APF ‘time-average’ tissue deformation rate and cellular
processes.

The effective contributions averaged over the whole tissue
showed dynamic time evolution (Fig. S1), with a large peak of cell
division and cell shape change at around 16 h APF, a second small
wave of cell division at around 22 h APF, and a gradual increase
of cell shape change and cell rearrangement. The effective

Fig. 4. Boundary smoothing by cellular Potts model. (A) Process of cellular Potts model. A pixel is randomly chosen and changes its belonging region if it
decreases boundary length and/or increases homogeneity (marked by red). (B) Result of label propagation with a disconnected region shown by gray color.
(C) Result of boundary smoothing by cellular Potts model. (D) Histogram of silhouette value: blue for control segmentations, orange for region growing, red vertical
line for label propagation, black vertical line for regions smoothed by cellular Potts model. Dotted blue line shows threshold for the highest 0.5% of the control
segmentations. Scale circle: 0.02 h−1.
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contributions also showed large variance across the tissue at each
time point. Therefore, we included the time evolution in the property
space. Assuming that there are two regions in a tissue where the
tissue expands, the first region expands during 14-17 h APF and the
second region expands during 25-28 h APF, resulting in similar size
changes, then the two regions cannot be distinguished by the time-
average expansion rate. To distinguish them, we compared a
property at each time point and summed up its difference through
the whole time. When two cell patches always behaved similarly,
then the difference at each time point is small and so the total
difference is small too, whereas cell patches with deformations
occurring at different times are separated at each time point and thus
the total difference gets large. In contrast with time-average, we call
the sum of difference at each time point ‘time-evolution’.

Tissue segmentations based on tissue deformation rate and effective
contributions of cellular processes
We first divided the tissue based on time-average and time-
evolution of tissue deformation rate. The similarity was given by
Euclidean distance of tensors. The notum was divided into anterior-
middle-posterior and medial-lateral regions by both the time-
average and time-evolution, whereas the middle regions were
smaller and the middle lateral region extended medially in the
segmentation based on time-evolution (Fig. 6A-D).
Next, we divided the tissue based on time-average and time-

evolution of cellular processes. The amplitude of tissue deformation
rate and effective contributions of cellular processes were combined
in a vector, and their similarity was given by Euclidean distance of
vector. In contrast to the segmentations based on the time-average
and time-evolution of tissue deformation rate, the segmentations
based on time-average and time-evolution of the cellular processes
were dissimilar to each other (Fig. 6E-H). The segmentation based
on time-evolution of cellular processes included a posterior region,
a large anterior region, a neck-notum boundary region, lateral
posterior region, a middle boundary region and a lateral region
(Fig. 6H).

Although a change in the minimum circularity for the boundary
smoothing did not affect the segmentation based on the time-
average tissue deformation rate (Fig. S2A), the shape of the
boundary changed dependent on the minimum circularity for
the segmentations based on the other three property spaces
(Fig. S2B-D). The cellular Potts model returns regions with
circularity higher than the given minimum value if it is the most
homogeneous segmentation.

We also tried dividing the tissue into various numbers of regions
(Fig. S3). In many cases, an increase of the number of the regions
resulted in subdividing the regions already obtained. In addition,
when the number was too large, some results of the first label
propagation included small regions similar to one observed in the
segmentation of simulated data (Fig. 5F). Those small regions were
absorbed into surrounding regions during the smoothing by cellular
Potts model. Then the final label propagation tried to integrate
regions smaller than the final segmentation, returning small and
sometimes disconnected regions (Fig. S3, third column, from third
to bottom rows; fourth column, sixth and bottom rows), again
similar to the simulated data (Fig. 5G). Thus, the existence of small
regions suggest that it is oversegmented.

Correspondence between segmentations based on cellular
processes and tissue deformation rate
Both of the segmentations based on time-evolution of tissue
deformation rate and effective contributions of cellular processes
included the large anterior region, the middle boundary region, the
lateral posterior region and the posterior region, although the
anterior and posterior regions were divided into medial and lateral
sub-regions in the segmentation based on the tissue deformation
rate. Fig. 7A-D shows overlap between segmentation based on
time-evolution of cellular processes (Fig. 6H) and the
segmentations based on time-average tissue deformation rate,
time-average cellular processes and time-evolution of cellular
processes (Fig. 6B,D,F) or a conventional large grid parallel
to tissue axes. The middle lateral and posterior lateral regions in

Fig. 5. Segmentation of simulated tissue. (A) Initial configuration
of the model tissue. The cells with lower surface tension were
colored gray, and the cells with higher surface tension were colored
yellow. Cell perimeters were colored green. (B,C) Tissue after the
compression (B) and after the simulation (C). (D) Cell
rearrangement in each cell patch after the compression. Pale blue
line outlines the cell patches. Magenta bars represent direction and
rate of assumptive tissue deformation caused by the cell
rearrangements. Scale bar and circle indicate deformation rate:
0.2 h−1. (E) Segmentation into two regions based on the cell
rearrangements. It is a result of the first label propagation, but it did
not need smoothing. (F,G) Segmentation into three regions based
on the cell rearrangements, after the first label propagation (F) and
the boundary smoothing (G). The regions were colored for visibility.
(H) Plot of the assumptive deformation rate caused by the cell
rearrangements. Eigenvalue of the tensor for the cell
rearrangements represents a rate of tissue elongation by the cell
rearrangement, and it is plotted against time after the compression.
Gray line and yellow line show the average rate among the cells
with lower surface tension and higher surface tension, respectively.
Error bars represent s.d. (I) Histogram of average silhouette value
of control segmentations divided into two regions. Red vertical line
shows silhouette value of label propagation result in E. Dotted blue
line shows threshold for the highest 5% of the control
segmentations.
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the segmentation based on time-evolution of tissue deformation
rate, and the middle boundary region and lateral posterior
regions in the segmentation based on time-evolution of
cellular processes, overlapped each other (Fig. 7C). We also
evaluated the overlap between the segmentations by ARI (Fig. 7E).
Despite the difference between the anterior sub-regions, the
segmentations based on time-evolution of tissue deformation
rate and cellular processes overlapped each other more than the
others.

Homogeneity of the obtained regions
Next, we evaluated the homogeneity of the obtained regions. The
time-evolution of tissue deformation rate was similar among cells
inside regions of the segmentations based on time-average and time-
evolution of tissue deformation rate, except the middle-lateral region

identified based on the time-average tissue deformation rate (Fig. 8A,
B). On the other hand, the large grid segmentation showed large
heterogeneity in the posterior regions (Fig. 8C). The average
silhouette value of the segmentation based on the time-evolution of
deformation rate was higher than that of 99.5% of the control
segmentations (mean silhouette for label propagation, 0.0568; for
smoothed regions, 0.0600; the maximum of the smallest 99.5% of
control mean silhouettes, 0.0425) (Fig. 8D). The mean silhouette of
the segmentation based on time-averaged tissue deformation rate was
also higher than 95% of the control segmentations (mean silhouette
for label propagation, 0.0336; for smoothed regions, 0.0260; the
maximum of the smallest 95% of control mean silhouettes,−0.0098).
However, the mean silhouette of the conventional grid segmentation
was close to the median of the control segmentations (mean
silhouette, −0.0694).

Fig. 6. Segmentations based on tissue deformation and
underlying cellular processes. (A-H) Segmentations based on
time-average tissue deformation rate (A,B), time-evolution of
deformation rate (C,D), time-average effective contributions of
cellular processes (E,F) and time-evolution of cellular processes
(G,H). First column (A,C,E,G) shows results of the first label
propagation and second column (B,D,F,H) shows results of
boundary smoothing. For each cell patch, direction of elongation is
represented by a bar, and the effective contributions of cellular
processes are indicated by relative directions of deformation rate
between the tissue and each cellular process. For quantification and
representation of tissue deformation rate and cellular processes, see
Materials andMethods andGuirao et al. (2015). Scale bar and circle:
0.02 h−1.

Fig. 7. Correspondence between segmentations based on cellular processes and deformation rate. (A-D) Overlays of segmentations, in which
segmentation based on time-evolution of deformation rate is shown by cyan lines, whereas segmentations based on time-average deformation rate (A), time-
average cellular processes (B), time-evolution of cellular processes (C) and large grid (D) are shown by magenta lines. (E) Adjusted Rand indices of A-D. Scale
bar: 0.02 h−1.
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Also, the time-evolution of cellular processes was homogeneous
inside the regions of the segmentation based on time-evolution of
cellular processes, but not in segmentation based on time-average of
cellular processes nor in the grid (Fig. 8E-G). The mean silhouette
value of segmentation based on time-evolution was higher than
99.995% of control segmentations (mean silhouette for label
propagation, 0.147; for smoothed regions, 0.1448; the maximum
of the smallest 99.995% of control mean silhouettes, 0.124),
whereas that of segmentation based on time-average was smaller
than 5% of control segmentations (mean silhouette for label
propagation, 0.0125; for smoothed regions, −0.0385; the maximum
of the smallest 95% of control mean silhouettes: 0.0241) (Fig. 8H).
Our tissue segmentation is designed to divide a tissue into regions

homogeneous in a given property space, and the homogeneity
of either tissue deformation rate or cellular processes in
the segmentations based on each property demonstrated that the
pipeline worked (Fig. 8B,F). However, it does not ensure the
homogeneity of the regions in other property spaces that are
different from the property space on which our segmentation was
performed. Fig. S4 shows heat maps of silhouette values measured
in different property spaces. Even though the homogeneity in the
regions differed among the different property spaces, the
segmentations based on time-evolution of tissue deformation rate
and cellular processes showed higher homogeneity than the others
also in the property spaces of deformation rates owing to cell
divisions, cell rearrangements and cell shape changes.

Effective contributions of cellular processes inside the regions
We projected the regions divided based on the time-evolution
of cellular processes onto the actual cell map, and found that

the anterior and posterior regions corresponded to scutum and
scutellum, and the middle boundary and lateral posterior regions
covered the scutum-scutellum boundary (Fig. 9). This result
demonstrates that the obtained regions corresponded to the
anatomical features, and cells were behaving differently between
the anatomical regions. Note that the segmentations based on time-
averaged tissue deformation rate or cellular processes did not match
the anatomical features, indicating that the cells in the anatomical
regions are actually regulated temporally.

Fig. 10 shows plots of the average effective contributions of
cellular processes in each region of the segmentation based on time-
evolution of cellular processes. The second peak of cell division was
observed only in the posterior regions and the middle boundary
region, consistent with previous studies providing maps of the
number of cell divisions (Bosveld et al., 2012; Guirao et al., 2015);
however, we also found a small first peak of cell division in the
lateral posterior region. Plots of average cellular processes also
differed from each other among regions in the segmentation based
on tissue deformation rate, but this was less distinctive than in the
large grid segmentation (Fig. S5). Distances between the plots
in Fig. 10 were 0.65±0.16 and those for the segmentation based on
tissue deformation rate were 0.63±0.20, larger than those for the
large grid segmentation (0.44±0.14). This result demonstrates that
cellular processes in the obtained segmentations were more
distinctive than those in the conventional grid.

Application to the morphogenesis of the wing blade
To demonstrate the generality of our method in dividing a tissue, we
performed the same segmentation and analysis in the Drosophila
pupa wing blade. During 15-32 h APF, the wing blade is elongated

Fig. 8. Homogeneity in the obtained regions. (A-C) Heat map of silhouette value measured with time-evolution of tissue deformation rate in segmentations
based on time-average deformation rate (A), time-evolution of deformation rate (B) and large grid (C). (D) Histogram of silhouette value: blue for control
segmentations, orange for region growing. Red vertical line shows silhouette value of label propagation results. Black vertical line shows silhouette value of
regions smoothed by cellular Potts model. Dotted blue line shows threshold for the highest 0.5% of the control segmentations. Gray and cyan vertical lines show
silhouette value of segmentation based on time-averaged deformation rate and large grid, respectively. (E-G) Heat map of silhouette value measured with time-
evolution of effective contributions of cellular processes in segmentations based on time-average cellular processes (E), time-evolution of cellular processes
(F) and large grid (G). (H) Histogram of silhouette value: blue for control segmentations, orange for region growing. Red vertical line shows silhouette value of label
propagation results. Black vertical line shows silhouette value of regions smoothed by cellular Potts model. Dotted blue line shows threshold for the highest 0.05%
of the control segmentations. Gray and cyan vertical lines show silhouette value of segmentation based on time-averaged cellular processes and large grid,
respectively.
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in the proximal-distal direction by a contracting wing hinge
connected to the wing blade proximal side, whereas its distal side
is anchored to the cuticle via Dumpy (Etournay et al., 2015; Ray
et al., 2015). The wing hinge contraction also narrows it in the
anterior-posterior direction and induces shear strain in wing blade
proximal anterior and posterior regions (Fig. 11A,B). We performed
tissue segmentation for the wing blade based on time-evolution of
tissue deformation rate (Fig. 11C) and cellular processes (Fig. 11E),
which divided it into four regions. In both cases, the wing blade was
divided into anterior, middle, posterior and distal regions. All
regions showed positive silhouette values (Fig. 11D,F), and their
averages were significantly higher than the average silhouette values
of control segmentations (Fig. 11G,H). Like the notum, dividing the
wing blade into a larger number of regions also subdivided already
obtained regions (Fig. S3). Plots of the effective contributions of
cellular processes also showed distinctive patterns between the
regions: the cell division showed a small contribution in the anterior
region, the cell rearrangements dominated the tissue deformation
around 26 h APF in the anterior and posterior regions, and the cell

shape changes showed two peaks around 17 and 22 h APF in the
distal region (Fig. 11I). Projection of the four regions onto the cells
showed a difference between the regions and interveins – the
posterior region roughly corresponded to the proximal posterior
intervein and the boundary between the anterior and distal regions
corresponded to the L3 vein (Fig. S6).

DISCUSSION
This study demonstrates that the pipeline of the region growing, the
label propagation on the consensus matrix and the boundary
smoothing by cellular Potts model could divide a deforming
heterogeneous tissue into homogeneous regions based on any
prescribed quantity. Using this segmentation method, we divided
the developing dorsal thorax and wing ofDrosophila pupa based on
their morphogenesis, and found regions with a distinctive tissue
deformation rate and underlying cellular processes.

The tissue segmentation based on morphogenesis differs from
conventional image segmentation and cell segmentation algorithms
in terms of quantity and supervision. Marking a human in a picture,

Fig. 10. Effective contributions of cellular processes
inside the regions. Plots show the time-evolution of
effective contributions of cellular processes averaged in
each region. Numbers on the plots indicate the regions
(see top panel). Scale bar: 0.02 h−1.

Fig. 9. Projection of the segmentation onto
the notum cells. (A,B) The segmentations
based on time-evolution of cellular processes
were projected. The segmentation was projected
onto the notum cells at 12 h (A) and 32 h APF
(B), where regions were indicated by colors. The
regions corresponded to scutum (pale blue and
green), scutellum (red), scutum-scutellum
boundary (dark blue and purple) and invaginated
notum-neck boundary (yellow). The anatomical
regions were identified according to positions of
macrochaetae (orange circles in B). Scale bar:
50 μm.
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an organ in a histological image or dividing cells in a microscopic
image had been done manually, and thus results of the watershed
algorithm or the artificial neural network could be supervised and
corrected with the manual segmentations. On the other hand, the
segmentation based onmorphogenesis is hardly ever done manually
for several reasons. First, the morphogenesis was quantified as
multiple tensor fields with time evolution, and thus it is hard
to visualize them in a 2D image for manual segmentation. Second,
it is not easy to evaluate whether a given region actually
corresponds to genetical/mechanical regulation of morphogenesis.
Therefore we looked for a method which divides a tissue based
on any prescribed quantity and returns regions with smooth
boundaries. Region growing is a conventional and simple method
of image segmentation, and only requires a property space to be
metric. The varying results of the region growing were given to the
label propagation and cellular Potts model to produce a single tissue
segmentation, and the result was evaluated by region homogeneity
boundary smoothness.
The notum segmentations based on time-evolution of tissue

deformation rate and effective contributions of cellular processes
returned similar regions corresponding to the scutum, scutellum and
the boundary between them. Using the tissue deformation rate, the
scutum and scutellum regions were divided into medial and lateral
sub-regions. As the vector of effective contributions ignores the
direction of deformation, the two sub-regions could be interpreted
as regions of similar underlying cellular processes but deforming in

different directions. However, the middle boundary region and the
lateral region given by the cellular processes both overlapped with
the middle boundary region given by the tissue deformation rate,
and could be interpreted as regions with different cellular processes
but of similar tissue deformations. The wing blade was divided into
anterior, middle, posterior and distal regions based on both the
tissue deformation rate and cellular processes, but the regions did
not match the wing veins pattern.

Silhouette analysis showed that the segmentations based on time-
evolution of deformation rate and cellular processes included
regions homogeneous in various property spaces, whereas the
conventional grid segmentation included heterogeneous regions.
This method has some limitations. It cannot segment a small region;
but such region might disappear during the boundary smoothing,
resulting in disconnected regions in a final segmentation. Also, it is
hard to determine the number of regions. We only know that a tissue
might be oversegmented when it includes the small region. In a
practical application, the tissue shall be segmented into various
numbers of regions with various minimum circularities, and one of
them can be chosen by comparing it to gene expression patterns,
analyzing cell behaviors inside each region or other characteristics
of interest.

In conclusion, we built a method to divide a tissue based on any
prescribed property space. This allows the study of spatial regulation
of various processes, where the property space should be chosen for
the process of interest. For example, to study spatial regulation of

Fig. 11. Segmentation of Drosophila wing
blade into four regions. (A,B) Deformation
of a wing blade from 15 h (A) to 32 h APF (B).
Scale bar: 50 µm. Same representation as
Fig. 1A,B. Cell patches are shown with blue
andwhite check pattern. (C,D) Segmentation
based on time-evolution of tissue
deformation rate (C) and its heat map of
silhouette value (D). Scale bars: 0.04 h−1 (E,
F) Segmentation based on time-evolution of
cellular processes (E) and its heat map of
silhouette value (F). (G,H) Histogram of
average silhouette value of control
segmentations for the property spaces of
tissue deformation rate (G) and cellular
processes (H). Red vertical line shows
average silhouette values of label
propagation results. Black vertical lines show
average silhouette values of smoothed
regions. Dotted blue lines show threshold for
the highest 0.05% (G) and 0.005% (H) of the
control segmentations. (I) Plots of effective
contributions of cellular processes averaged
in each region of 1-4 in D. Scale bar: 50 µm in
B. Scale bar and circle in C and D: 0.04 h−1.
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cell division orientation, the property space may be prepared from,
instead of the local deformation rate and cellular processes, the
tensor field of cell division and known regulating factors such as cell
shape, localization of planar cell polarity proteins and tension on
cell-cell interface, and then resultant regions can be compared with
gene expression patterns. Also, this method is not dependent on how
the morphogenesis was quantified, and one can include rotational
movement by anti-symmetric strain rate tensors, or 3D deformation
by using voxels instead of pixels.

MATERIALS AND METHODS
Quantification tools
This section describes in detail the quantification tools. Morphogenesis data
result from the quantification of local tissue deformation rate and underlying
cellular processes as described in Guirao et al. (2015). The similarity
between two tensors is quantified by the standard Euclidean metric. The
homogeneity of a quantity within a given region, i.e. the similarity between
measurements of this quantity within a region, is measured by silhouette, a
standard tool of cluster analysis. For a measurement of similarity between
tissue segmentations, we use the Rand index, which indicates how well two
data clusterings agree.

Quantification of tissue deformation and cellular processes
Quantification of local tissue deformation and underlying cellular processes
was performed as previously described (Guirao et al., 2015). Briefly,
Drosophila nota expressing GFP-tagged E-cadherin were imaged. The
notum movies were split in a grid (with patches about 20 μm wide) at the
first frame (Fig. 1C), 12 h after pupa formation (APF). The local
deformation rate and the cellular processes were measured in each cell
patch through the development, as described below.

Epithelial cell contours were detected automatically using a watershed
algorithm, cells were tracked, adjacencies between cells were listed and
relative positions of adjacent cell centers were recorded. The tissue
deformation rate, denoted by the symmetric tensor G, was obtained from
changes of relative positions between neighbor cells over 20 h from 12 h
APF to 32 h APF, or over 2 h at each time point when recording the time
evolution. The tissue deformation rate G was then decomposed into cell
shape change S and deformation accompanied by change of cell adjacency,
which was further divided into cell divisionD, cell rearrangementR and cell
delamination A, which are symmetric tensors too.

In a collection of cells in which the total deformation is driven completely
by the four fundamental cellular processes, the tensors are in a balance
equation,

G ¼ Dþ R þ Sþ A: ð1Þ

The scalar product of two tensors Q and Q0 in dimension d is defined as:

Q �Q0 ¼ 1

d
TrðQQ0T Þ; ð2Þ

and the unitary tensor uG that is aligned with G is given by

uG ¼ G

ðG �GÞ1=2
: ð3Þ

As the scalar product (Eqn 2) is a bilinear operation, multiplying uG by a
tensor, the operation :uG : Q ! Q== retains the balance between the tissue
deformation rate and the cellular processes in Eqn 1 while converting them
to scalar magnitudes:

G== ¼ G � uG
¼ ðDþ R þ Sþ AÞ � uG
¼ D � uG þ R � uG þ S � uG þ A � uG
¼ D== þ R== þ S== þ A==:

ð4Þ

The scalarG== represents the local magnitude of tissue morphogenesis, and
D==, R==, S==, and A== represent the effective contributions of the cellular
processes to the tissue morphogenesis. When a cellular process produces an

anisotropic deformation in the same direction as that of tissue, e.g. cells
divided in the same direction as tissue elongation, the scalar product
between them returns a positive value, whereas it returns a negative value
when a cellular process counteracts tissue deformation.

Metric
Similarity of morphogenesis between different cell patches was defined as
follows. For expansion/contraction of an area (isotropic deformation),
similarity was given by difference in expansion/contraction rates.

Similarity of anisotropic deformation was given by a distance between
two tensors Q and Q0,

dðQ;Q0Þ ¼ Qxx �Qyy

2
�Q0

xx �Q0
yy

2

� �2

þ ðQxy �Q0
xyÞ2

( )1=2

: ð5Þ

For tensors with time-evolutionQðtÞ andQ0ðtÞ, distance was given by a sum
of the distance at each time point,

jQ�Q0j ¼
ð
dðQðtÞ;Q0ðtÞÞdt; ð6Þ

as an analogy to distance between functions.
For the composition of cellular processes, the tensors of cellular processes

were converted to effective contributions and combined into a vector
(G==;D==, R==, S==, A==). A distance between two vectors was given by
Euclidean distance, the square root of the sum of the square of the
differences between corresponding elements, and a distance between
vectors with time-evolution v(t) and v′(t) was given by a sum of the distance
at each time point,

jv� v0j ¼
ð

vðtÞ � v0ðtÞk kdt: ð7Þ

Silhouette and bootstrap
Silhouette quantifies clustering results, indicating how well an object
resembles other objects inside its own cluster (Rousseeuw, 1987). Assuming
that n objects {p1, p2,…, pn} are partitioned into k clusters {C1, C2,…, Ck},
for an object pi∈CI, we can compute the average distance a( pi) from pi to
all other objects in CI. For J≠I, we can also compute the average distance
d( pi,CJ) from pi to all objects inCJ, and select the smallest of those, denoted
by b( pi)=minJ≠Id( pi, CJ). The silhouette value s( pi) is obtained by
combining a( pi) and b( pi) as follows:

sð piÞ ¼ bð piÞ � að piÞ
maxfað piÞ; bð piÞg : ð8Þ

By this definition, − 1≤s( p)≤1, where s( p) large and close to 1 indicates
that p is similar to other objects in the same cluster, whereas negative s( p)
indicates that there is another cluster with objects more similar to p than
objects in the cluster containing p.

We took the average silhouette value over all points (cell patches) as a
measurement of homogeneity of a given segmentation. For a significance
test, tissue was segmented randomly (see below) 20,000 times into a given
number, and we got thresholds above which the highest 5%, 0.5% or 0.05%
of the average silhouettes were found. The average silhouette of given
regions was compared with those of the control segmentations with the same
number of regions.

Adjusted Rand index
For a measurement of similarity between tissue segmentations, we use the
Rand index, which indicates howwell two data clusterings agree; its value is
0 if the clusterings entirely disagree and 1 if they entirely agree. Its corrected-
for-chance version, the ARI, is a more meaningful quantity: it is the Rand
index compared with its value expected for the random case, and its value
can be negative.

We computed the ARI with the permutation model (Hubert and Arabie,
1985). Given two clusterings A={A1, …, Ak} and B={B1, …, Bm} of N
elements, the contingency table τ=(nij)k×m is made where nij ¼ jAi > Bjj.
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The Rand index between A and B, RI(A, B) is

RIðA;BÞ ¼
2
P

ij
nij
2

� �
�P

i
ai
2

� �
�P

j
bj
2

� �
þ N

2

� �
N
2

� � ; ð9Þ

where ai ¼
P
j
nij and bj ¼

P
i
nij, and for the random case the expected

Rand index E½RIðA;BÞ� is

E½RIðA;BÞ� ¼
P

i
ai
2

� �
N
2

� �
P

j
bj
2

� �
N
2

� � þ 1�
P

i
ai
2

� �
N
2

� �
0
BB@

1
CCA

� 1�
P

j
bj
2

� �
N
2

� �
0
BB@

1
CCA: ð10Þ

Finally, the ARI(A, B) is

ARIðA;BÞ ¼ RIðA;BÞ � E½RIðA;BÞ�
1� E½RIðA;BÞ� : ð11Þ

Tissue segmentation pipeline
The pipeline was implemented by custom Matlab scripts, in three steps
(Fig. 1C). The Matlab scripts are available at GitHub (https://doi.org/10.
5281/zenodo.4270726). Also, see supplementary Materials and Methods
for pseudo codes of the scripts.

Region growing tissue segmentation
The initial tissue segmentation first defines a metric of similarity between
cells, and then a tissue is divided into regions containing similar cells. This
approach was inspired by a study segmenting mouse heart based on cell
polarity (Le Garrec et al., 2013). On the assumption that expression patterns
of genes responsible for morphogenesis make connected regions, and to
study physical interactions between the regions, we aimed at getting
connected regions.

The algorithm ‘Region growing’ (Adams and Bischof, 1994; Ma et al.,
2010) is an image segmentation method using a process similar to k-means
clustering, starting from randomly given seeds (corresponding to ‘means’ in
k-means clustering), segmenting an image with the seeds followed by
update of the seeds within the regions, and iterating this process until
convergence (Fig. 2A). The tissue segmentation is carried out by growing
regions from the seeds collecting pixels adjacent to the growing regions, and
so the resultant regions are connected.

Initial seeds were randomly chosen from data, and regions were expanded
by adding a pixel (cell patch) adjacent to a region and the most similar to the
seed of the region in the property space one by one until all pixels were
assigned to one of the regions. The seeds were updated to pixels closest to
centroids of the regions, averages of the regions in the property space were
given as a property of the seeds, and then regions were expanded again from
the seeds. These region expansions and seed updates were iterated until
convergence was reached.

Preparation of control segmentations
The control segmentations were made using an algorithm similar to the
region growing but ignoring the similarity between points. From randomly
given seeds, regions were expanded by adding a pixel adjacent to a region,
where the added pixel was chosen randomly from all adjacent pixels, until
all pixels were assigned to one of the regions. Therefore any obtained region
is connected.

Label propagation on a consensus matrix
Tomerge multiple segmentation results into a single one independent on the
metric, we used a label propagation algorithm on a consensus matrix, which

takes multiple partitions and returns a consensus partition which is the most
similar to all partitions (Lancichinetti and Fortunato, 2012; Raghavan et al.,
2007).

For a division of n points, 50 independent trials of region growing were
converted to a consensus matrix, the entry of which at i-th row and j-th
column indicates a frequency of partitions in which i-th point and j-th point
were in the same cluster. The entries lower than a given threshold were set to
0. The label propagation started by assigning a different label to each point.
Then the label of randomly chosen i-th point was updated to one that was the
most weighted by the consensus matrix, where ij element gave the weight to
a label of j-th point. The label update was iterated until convergence. The
threshold for the consensus matrix was scanned between 20 and 80% so that
a resultant partition contained the same number of regions as the initial
partitions.

Cellular Potts model for boundary smoothing
To smooth the consensus region boundaries while preserving region area
and homogeneity, we used the cellular Potts model, in which a cellular
structure is numerically simulated in a square lattice, where each cell is a set
of pixels. The system energy depends on cell shapes, and the pattern is
updated in an iteration to decrease the energy, with some fluctuation
allowance (Graner and Glazier, 1992). In the simplest and most-common
two-dimensional form, the energy H arises from total perimeter length P
(with line energy J) and constraint on each region area A (with
compressibility λ); decreasing it results in smoother regions with
preserved area A0, removing small protrusions and disconnected regions.
In this study, we also included the silhouette s to account for the region
homogeneity, with a weight coefficient h:

H ¼
X
regions

½JP þ lðA� A0Þ2 � hs�: ð12Þ

The coefficients J, λ, and h were screened as described below.
When updating the label for a randomly selected pixel a, a target label was

randomly selected from neighbors of a, and then Hamiltonian change was
calculated. The label of a was updated to the target label with probability
minð1; e�DH=T Þ, whereDH denotes change ofH by the change of label of a,
and T is the fluctuation allowance. In the present application, the updates of
labels were iterated 50 times. For resultant regions, a circularity C was
calculated, where it was defined as C=4π×area/perimeter2 (Bosveld et al.,
2016). The parameters J, λ, h and Twere screened for resultant regions with
the highest homogeneity and circularity larger than a given threshold value.
The screening was performed in a pairwise testing manner on a grid, and the
grid was converged to the highest homogeneity. With the screened
parameters, the boundary smoothing was iterated 50 times, and the results
were integrated again by the label propagation on a consensus matrix
algorithm.

Cellular Potts model for tissue compression simulation
For the simulation of cells in a compressed tissue, the cellular Potts model
was implemented by custom Matlab scripts, which are available at GitHub
(http://doi.org/10.5281/zenodo.5016684). It is simulated on a torus surface
so the cells made a periodic pattern. The initial configuration was prepared
by the Voronoi tessellation from 600 randomly scattered points. The points
were randomly selected from 864×150 pt2 plane in a sequential manner so
that all points were at least 10 pt away from the others. Cells on the left side
were assigned the low line energy Jsoft=1 and cells on the right side were
assigned the high line energy Jstiff=4. All cells were assigned the same
compressibility λ=1. For the compression, the initial configuration was
transformed into a 480×270 image. Then dynamics of the cells was
simulated for 975,000 updates.

To be processed by the tools developed in Guirao et al. (2015), images of
the cells were projected on a plane and converted to cell segmentation. As all
pixels belonged to one of the cells in the cellular Potts model and the cells
were not separated by boundary (watershed) pixels, we first labeled the
pixels with ‘perimeter’ or ‘inner’, where the perimeter pixels were adjacent
to different cells and the inner pixels were enclosed by the perimeter pixels.
Then the perimeter pixels were re-labeled one-by-one to inner so that all
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inner pixels were connected in each cell, all perimeter pixels were adjacent
to inner pixels of the same cell, and no inner pixel was adjacent to inner pixel
in different cells. The labels were updated as much as possible, and
remaining perimeter pixels were taken as the boundary.
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Etournay, R., Popović, M., Merkel, M., Nandi, A., Blasse, C., Aigouy, B.,
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Sugimura, K., Graner, F. and Bellaïche, Y. (2015). Unified quantitative
characterization of epithelial tissue development. eLife 4, e08519. doi:10.7554/
eLife.08519

Hubert, L. and Arabie, P. (1985). Comparing partitions. J. Classif. 2, 193-218.
doi:10.1007/BF01908075

Lancichinetti, A. and Fortunato, S. (2012). Consensus clustering in complex
networks. Sci. Rep. 2, 336. doi:10.1038/srep00336

Lau, K., Tao, H., Liu, H., Wen, J., Sturgeon, K., Sorfazlian, N., Lazic, S.,
Burrows, J. T. A., Wong, M. D., Li, D. et al. (2015). Anisotropic stress orients
remodelling of mammalian limb bud ectoderm. Nat. Cell Biol. 17, 569-579.
doi:10.1038/ncb3156

Le Garrec, J.-F., Ragni, C. V., Pop, S., Dufour, A., Olivo-Marin, J.-C.,
Buckingham, M. E. and Meilhac, S. M. (2013). Quantitative analysis of polarity
in 3D reveals local cell coordination in the embryonic mouse heart. Development
140, 395-404. doi:10.1242/dev.087940

Lye, C. M., Blanchard, G. B., Naylor, H. W., Muresan, L., Huisken, J.,
Adams, R. J. and Sanson, B. (2015). Mechanical coupling between endoderm
invagination and axis extension in Drosophila. PLoS Biol. 13, e1002292.
doi:10.1371/journal.pbio.1002292

Ma, Z., Tavares, J. M. R. S., Jorge, R. N. and Mascarenhas, T. (2010). A review of
algorithms for medical image segmentation and their applications to the female
pelvic cavity. Comput. Methods Biomech. Biomed. Engin. 13, 235-246.
doi:10.1080/10255840903131878

Merkel, M., Etournay, R., Popović, M., Salbreux, G., Eaton, S. and Jülicher, F.
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Fig. S1. Variance of e↵ective contribution of cellular processes at each time point. Plots 
show time evolution of e↵ective contribution of cellular processes in the Drosophila no-
tum and standard deviation of them.
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Fig. S2. Boundary smoothing with various minimum circularities. The Drosophila no-tum was divided 
based on time-average tissue deformation rate (A), time-evolution of tissue deformation rate (B), time-

average cellular processes e↵ective contributions (C), and time-evolution of cellular processes e↵ective 
contributions. They were smoothed with the minimum circularity C ranging from 0.35 to 0.55. Some of 
them were colored for visibility.
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Fig. S3. Segmentations in di↵erent number of regions. Dorsal thorax (first to fourth columns) and 
wing blade (fifth and sixth columns) were divided into 3-9 regions. First column: segmentations 
based on time-average tissue deformation rate. Second column: segmentations based on time-

evolution of tissue deformation rate. Third column: seg-mentations based on time-average cellular 
processes e↵ective contributions. Fourth col-umn: segmentations based on time-evolution of 
cellular processes e↵ective contributions. Fifth column: segmentations based on time-evolution of 
tissue deformation rate. Sixth column: segmentations based on time-evolution of cellular processes 
e↵ective contribu-tions. The tissues were divided into 3 to 9 regions (from top to bottom rows). The 
regions were colored for visibility. When the number was too large and a result of the initial label 
propagation included a too small region, the small region tended to disap-pear in the cellular Potts 
model smoothing, and thus the final label propagation tried to integrate regions fewer than the final 
segmentation, sometimes resulted in undesired dis-connected regions (third column bottom row and 
fourth column sixth row). For dividing the dorsal thorax into three regions based on time-evolution 
of tissue deformation rate and wing blade into seven regions based on time-evolution of cellular 
processes e↵ective contributions, it failed to screen the parameters (the screening algorithm pursued 
to a too low temperature which would freeze any change in the cellular Potts model, second column 
first row and sixth column fifth row).
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Fig. S4. Heat maps of silhouette value. First row: segmentation based on time-average tissue 
deformation rate. Second row: segmentation based on time-evolution of tissue deformation rate. 
Third row: segmentation based on time-average cellular processes e↵ective contributions. Fourth 
row: segmentation based on time-evolution of cellular processes. Fifth row: conventional 
segmentation of large grid parallel to tissue axes. First column: silhouette values measured in the 
property space of time-evolution of de-formation rate. Second column: silhouette values measured by 
time-evolution of cellular processes. Third column: silhouette values measured by time-evolution of 
cell divisions. Fourth column: silhouette values measured by time-evolution of cell rearrangements. 
Fifth column: silhouette values measured by time-evolution of cell shape changes.
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Fig. S5. Plots of cellular processes in the segmentations based on time evolution of tissue deformation 
rate and the conventional large grid. (A, B) The tissue segmentation based on time-evolution of tissue 
deformation rate (A) and plots of cellular processes e↵ective contributions averaged in each region (B). 
The numbers indicate the regions. (C, D) The large grid (C) and plots of cellular processes in each region 
(D). Scale bars in A and C indicate deformation rate 0.02 h� 1 

with colors for tissue and cellular 
processes.
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Fig. S6. Projection of the segmentation onto the wing blade cells. The segmentations based on 
time evolution of cellular processes were projected. (A, B) The segmentation was projected onto 
the wing blade cells at 15 hr (A) and 32 hr APF (B), where the regions were indicated by 
colors. Scale bars indicate 50 µm.
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Movie 1. Cell rearrangements and cell shape changes after tissue compression. The cells 
with low and high surface tension were colored gray and yellow respectively. The cellular
Potts model was run on an image of 480⇥ 270 lattice and included 600 cells. The movie
is 7 fps and there were 5000 updates between the frames.

Development: doi:10.1242/dev.199034: Supplementary information
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1 Pseudo codes for tissue segmentation algorithms

In below pseudo codes show algorithms of the automatic tissue segmentation. Mat-
lab custom functions and framework developed for this study are available at GitHub
(http://doi.org/10.5281/zenodo.3626111). For details of the functions and framework,
see its README file and comments in the codes.

1.1 Region growing algorithm

Algorithm 1 shows a pseudo code of the region growing image segmentation in Matlab-
like syntax. It divides a bitmap image stored in a data object dataMap. In the al-
gorithm, a number of regions, a limit to update the seeds, and a metric are given as
parameters. With the parameters, supporting objects seedList, meanList, regionsList,
meter, and seeder are allocated and initialized. The seedList, meanList, and region-
sList are instances of data object with a property var representing seeds and means
of regions and regions, shared among the supporting objects. The meter is an object
measuring distance between the mean of region and a point adjacent to the region. A
method measure returns the distance measured by the given metric. The seeder is an
object choosing seeds of regions. Methods initalSeeds and initialMeans return indices of
randomly chosen points and their values. Once the dataMap was divided into regions,
methods newSeeds and newMeans return indices of points at center of the regions and
mean values of the regions. A method initalQueue returns an array where its element
represents a point adjacent to one of the seeds and holds the region and distance to the
region’s mean value. Inside a loop, a point in the queue with the smallest distance to the
region’s mean value is added to the region, and points adjacent to the point, returned
by a method neighborsOfPoint of dataMap, are added to the queue.

In our tissue segmentation, a Matlab custom function run region growing() iterates
this algorithm for given time, returning a stack of resultant partitions.

1.2 Label propagation on a consensus matrix

Algorithm 2 shows a pseudo code of the label propagation. It divides N objects into
clusters based on an N ⇥ N consensus matrix M whose rows and columns correspond
to the objects, and an element mij represents the frequency at which the i-th and j-
th objects were included in a cluster among given clustering results. A parameter tM
indicates a threshold value, where elements in M smaller than tM are ignored in the
label propagation.

In the tissue segmentation, 50 results of region growing were converted to the con-
sensus matrix and given to a Matlab custom function run label propagation() imple-
menting the label propagation. The number of resultant regions is influenced by tM ,
and thus a Matlab custom function run cm thresholding lp() screens tM values so that
run label propagation() returns the same number of regions with the given partitions.

Development: doi:10.1242/dev.199034: Supplementary information
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Algorithm 1: Region growing algorithm
input : dataMap to be segmented and parameters.
% seedList, meanList, regionsList, allocatedList, meter, and seeder are
supporting objects and variable initialized with the parameters.

seedList.var = seeder.initalSeeds;
meanList.var = seeder.initalMeans;
while loop counter is smaller than limit do

% Initialize partition, allocated list, queue.
regionsList.var(:) = false;
allocatedList(:) = false;
queue = seeder.initalQueue;

while queue is not empty do
point = queue(1);
if allocatedList.var(point.index) == false then

% Grow region to the point.
regionsList.var(point.index, point.region) = true;
allocatedList(point.index) = true;
% Enqueue neighbors of the point.
array = dataMap.neighborsOfPoint(point.index);
for neighbor in array do

neighbor.region = point.region;
neighbor.distance = meter.measure(neighbor);
queue = cat(1, queue, neighbor);

% Remove the allocated point from queue.
queue(1) = [];
% Sort queue.
[values, indices] = sort([queue.distance]);
queue = queue(indices);

else
queue(1) = [];

% Check convergnence.
lastMeanList = meanList.var;
seedList.var = seeder.newSeeds;
meanList.var = seeder.newMeans;
if isequal(lastMeanList, meanList.var) then

break;

return regionsList.var
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Algorithm 2: Label propagation
input : Matrix M and threshold tM .

% Cut elements in M smaller than the tM .
M(M < tM ) = 0;
% Make labelArray representing labels on N vertices.
labelArray = (1:N)’;

flag = true;
while flag do

flag = false;
% Enumerate vertices in random order and update their label.
for i = randperm(N) do

% Make labelMatrix representing labels on vertices.
labelMatrix = labelArray == 1:N;
% Choose label most weighted by edges incident to the i-th vertex.
,indices= max(sum(M(:,i) .⇤ labelMatrix),1));
if labels(i) = indices(1) then

% Update label of the i-th vertex.
labelArray(i) = indices(1);
flag = true;

% Convert labelArray to a matrix.
labelMatrix = labelArray == 1:N;
indices = any(labelMatrix,1);
partition = labelMatrix(:,indices);

return partition
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1.3 Cellular Potts model

Algorithm 3 shows a pseudo code of the cellular Potts model. It simulates a deforma-
tion of regions (partition of dataMap) by giving small fluctuations. In the algorithm,
an array of function handles, coe�cients to combine the functions results, the system
temperature, and the number of label updates are given as parameters. With the regions
and parameters, supporting objects analyser and dict are allocated and initialized. The
functions in the array calculate system energy with analyser and dict. For each fluctua-
tion, one of points at regions rim returned by analyser rim points is selected randomly,
and a label of neighboring points is also selected randomly and copied. Connectedness of
a region is checked locally, with a coordinate of neighboring points returned by dataMap
coordinates.

In the tissue segmentation, a Matlab custom function run CPM smoothing() imple-
ment this algorithm with energy functions combining area constraint, surface tension,
and total silhouette value. The coe�cients and temperature influence resultant regions,
and thus a Matlab custom function run CPM fitting() screens the parameters so that
run CPM smoothin() returns smoothed regions with a circularity larger than the given
value and the total silhouette value as large as possible.
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Algorithm 3: Cellular Potts model with region homogeneity
input : Partition, dataMap, and parameters
% regionList, analyser, dict, H functions, coe�cients, T , and counter are
supporting objects and variables initialized with the parameters.

% Calculate the system energy.
H = 0;
for k = 1:length(H functions) do

fh = H functions(k);
H = H + fh(analyser,dict) ⇤ coe�cients(k);

% Update labels for given times.
while true do

% Select a point randomly.
rim = analyser.rim points;
rim = find(rim);
if isempty(rim) then

% There is only one region.
break;

i = ceil(rand() ⇤ length(rim));
i = rim(i);

% Select a label from neighbors of the point.
neighbors = dataMap.neighborsOfPoint(i);
j = ceil(rand() ⇤ length(neighbors));
j = neighbors(j);
if any(regionsList.var(i,:) & regionsList.var(j,:)) then

% The i-th and j-th points are in a region.
continue;

% Check connectedness.
m = zeros(3,’logical’);
x0 = dataMap.coordinates(i).x - 2;
y0 = dataMap.coordinates(i).y - 2;
for k = neighbors do

x = dataMap.coordinates(k).x - x0;
y = dataMap.coordinates(k).y - y0;
m(y,x) = any(regionsList.var(i,:) & regionsList.var(k,:));

array = m([1,2,3,6,9,8,7,4]);
brray = m([2,3,6,9,8,7,4,1]);
if sum(array ⇠= brray) > 2 then

continue;

% Get a change of energy.
oldLabel = regionsList.var(i,:);
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regionsList.var(i,:) = regionsList.var(j,:);
newH = 0;
k = 1:length(H functions)

fh = H functionsk;
newH = newH + fh(analyser,dict) ⇤ coe�cients(k);

dH = newH - H;

% Adapt the change when possible.
p = exp(-dH / T);
if p > rand() then

H = newH;
counter = counter - 1;
if counter < 1 then

break;

else
regionsList.var(i,:) = oldLabel;

return regionsList.var
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