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Kinematics of sea star legged locomotion
Olaf Ellers, Melody Khoriaty and Amy S. Johnson*

ABSTRACT
Sea stars have slower crawling and faster bouncing gaits. Both speed
and oscillation amplitude increase during the transition from crawling
to oscillating. In the bouncy gait, oscillating vertical velocities precede
oscillating horizontal velocities by 90 deg, as reflected by clockwise
circular hodographs. Potential energy precedes horizontal kinetic
energy by 9.6 deg and so they are nearly in phase. These phase
relationships resemble terrestrial running gaits, except that podia are
always on the ground. Kinetic and potential energy scale with body
mass as Mb

1.1, with the change in kinetic energy consistently two
orders of magnitude less, indicating that efficient exchange is not
feasible. Frequency of the bouncy gait scales with Mb

−0.14, which is
similar to continuously running vertebrates and indicates that
gravitational forces are important. This scaling differs from the Hill
model, in which scaling of muscle forces determine frequency. We
propose a simple torque-stabilized inverted pendulum (TS-IP) model
to conceptualize the dynamics of this gait. The TS-IP model
incorporates mathematics equivalent to an angular spring, but
implemented by a nearly constant upward force generated by the
podia in each step. That upward force is just larger than the force
required to sustain the underwater weight of the sea star. Even though
the bouncy gait is the rapid gait for these sea stars, the pace of
movement is still very slow. In fact, the observed Froude numbers
(10−2 to 10−3) are much lower than those typical of vertebrate
locomotion and are as low or lower than those reported for slow-
walking fruit flies, which are the lowest values for pedestrian Froude
numbers of which we are aware.

KEY WORDS: Gait, Asterias forbesi, Biomechanics, Inverted
pendulum, Froude number

INTRODUCTION
A gait is a pattern of motion characteristic of a range of speeds. Gaits
typically change abruptly to a different gait at specific transition
speeds (Alexander, 2003). The preferred or typical gait used at a
certain speed uses less energy than alternative gaits that could be
used at that speed (Hoyt and Taylor, 1981; Alexander, 1995;Minetti
and Alexander, 1997; Saibene and Minetti, 2003; Snaterse et al.,
2011; Andrada et al., 2020). Although gaits are rarely studied
in underwater legged locomotors, there is a large literature on the
kinematics of gaits in terrestrial legged locomotors and several well-
established paradigms that are often used to frame kinematic,
biomechanic and energetic arguments about terrestrial legged
locomotion. While some terrestrial legged locomotors such as
horses have several gait patterns such as walk, trot, canter and gallop

(Nauwelaerts et al., 2015), terrestrial gaits have often been viewed
through a dual kinematic characterization and contrast of walking
versus running gaits.

In terms of models, an inverted pendulum model has been applied
towalking gaits and a bouncing, spring-mass model has been applied
to running gaits (reviewed in Dickinson et al., 2000), both of which
are characterized by oscillations in the center of mass. More recently,
the spring-loaded inverted pendulum (SLIP) model has been used to
unify walking and running gaits under one model in contrast to the
inverted pendulum model, which can only be applied to walking
(Andrada et al., 2020). The need to incorporate hydrodynamics into
spring-mass models for underwater legged locomotion was identified
by Martinez et al. (1998), which motivated the modification of the
SLIP model for crabs locomoting underwater (underwater spring-
loaded inverted pendulum: USLIP) (Calisti and Laschi, 2017;
Chellapurath et al., 2020).

In terms of speeds, among terrestrial legged locomotors, walking
is a slower gait and running is a faster gait. Although it is quite
possible to run slowly or to walk quickly, the fastest speeds cannot
be achieved with a walking gait. The difference in speed between
gaits can be considerable. For example, compared with walking,
long distance runners approximately double their speed and
sprinters approximately quadruple their speed. Speeds associated
with novel gaits have also been considered in underwater legged
locomotors. Some octopi accelerate into a bipedal gait (Huffard
et al., 2005), and a fast underwater punting gait has been identified
in crabs (Martinez et al., 1998), hippopotami (Coughlin and Fish,
2009) and crocodiles (Farlow et al., 2018). Brittle stars move rapidly
by using their flexible arms to locomote using rowing and reverse
rowing among other gaits (Arshavskii et al., 1976; Astley, 2012).

We focus here on sea stars, whose mode of locomotion has broadly
been described as a crawl (Jennings, 1907; Cole, 1913; Brusca and
Brusca, 2003; Montgomery and Palmer, 2012; Montgomery, 2014).
In addition to the crawling gait, a second, faster oscillatory gait has
been recently identified in the sea star Protoreaster nodosus (Ellers
et al., 2014) and subsequently inAsterias forbesi and Luidia clathrata
(Ellers et al., 2018; Johnson et al., 2019). We have also observed
this bouncy gait in Asterias rubens, Asterias amurensis, Pisaster
giganteus and Acanthaster planci. Sea stars locomote using
numerous pressurized cylindrical tube feet, or podia, and the way
in which those podia are used changes from the crawling to the
bouncy gait. Heydari et al. (2020) created a model of podial function
that has coordination among podia as an emergent property as speed
increases from the crawling to the bouncing gait. Because different
gaits can be used at some overlapping speeds, speed alone cannot be
used to distinguish between gaits; it has to be considered in
conjunction with other variables. In general, gaits can be considered
as specific kinematic patterns and, in this paper, we describe several
kinematic parameters for the sea star’s gaits.

One kinematic feature of gaits is the frequency of the repeated
motion. For terrestrial locomotors ranging in size from mice to
horses, stride frequency f scales with mass Mb as f /M�0:14

b
(Heglund et al., 1974), which is consistent with the hypothesis thatReceived 3 May 2021; Accepted 7 October 2021
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gait frequency is controlled by the physical dimensions of a
pendulum driving the oscillatory motion, as described by Alexander
and Jayes (1983). In that hypothesis, gravitational forces are
important in driving the motion, and the kinematics and dynamics
can be described using the Froude number, which is the ratio of
inertial to gravitational forces; gait transitions occur at specific
Froude numbers. In contrast, oscillatory frequency of the limbs of a
wide range of swimming seabirds, cetaceans and pinnipeds scaled
with mass as f /M�0:29

b (Sato et al., 2007, 2010), supporting
the hypothesis first suggested by Hill (1950), whereby muscle
characteristics explain this scaling relationship.

In addition, phase relationships in energy and velocities are
frequently used to characterize gaits. The phase relationship of kinetic
energy and potential energy determines the potential for exchange
between these two energies and is one way of distinguishing between
walking and running gaits. In a perfect pendulum, the change in
kinetic energy and potential energy are exactly out of phase and of
equal magnitude such that all the energy can be perfectly recovered in
each swing, with no energy loss. Similarly to a pendulum, kinetic
energy and potential energy fluctuate out of phase and are of similar
magnitude during the terrestrial walking gait; however, the kinetic
energy–potential energy phase relationship and energy recovery is
imperfect. In human walking, for example, Cavagna and Legramandi
(2020) found a maximum energy recovery of 66%. Among the
highest energy recoveries reported are, surprisingly, for waddling
penguins (80%); Griffin and Kram (2000) found that the penguin’s
waddling gait achieved this remarkable efficiency by causing
the kinetic energy and potential energy to fluctuate more
completely out of phase and to be of more similar magnitude. In
contrast, in stealthy walking in cats, low energy recovery between
kinetic energy and potential energy was a consequence of a less
efficient phase relationship between these two energies (Bishop et al.,
2008). In running, these energies fluctuate in phase; for example,
Cavagna et al. (1964) reported a phase shift between kinetic and
potential energy of, at most, about 10 deg. The phase relationship
between vertical and horizontal velocities, shown on plots called
hodographs, can also be used to characterize gaits. In particular,
counter-clockwise hodographs are characteristic of walking, whereas
clockwise hodographs are characteristic of running (Usherwood,
2010). Experimental hodographs have not previously been examined
for underwater legged animal locomoters, althoughCalisti and Laschi
(2017) have produced theoretical limit cycles, based on the USLIP
model, whose projections are hodographs.

In this paper, we kinematically characterize the crawling and
oscillatory gaits of the sea star Asterias forbesi. Some kinematic
variables we consider are: speed, frequency, kinetic and potential
energy changes, phases between vertical and horizontal velocities (i.e.
hodographs), and phases between kinetic and potential energy. We
measure changes with mass of the kinematic variables: frequency,
speed, vertical position, and kinetic and potential energy. We further
measure changes with mass of the morphological variables: density,
underwater weight and podial leg length. To obtain these kinematics,
we tracked synchronized side and bottom videos of 54 individuals of
the sea star A. forbesi, ranging inmass over three orders of magnitude.

List of symbols and abbreviations

A total cross-sectional area of all actively lifting podia
az vertical acceleration
(az)j,s observed vertical acceleration, sth sea star, jth run
DFT discrete Fourier transform
Ep potential energy
�Ep mean potential energy
ΔEp change in potential energy
Ep,amp potential energy amplitude
Ekh horizontal kinetic energy
�Ekh mean horizontal kinetic energy
ΔEkh change in horizontal kinetic energy
Ekh,amp horizontal kinetic energy amplitude
Ekz vertical kinetic energy
Ek,total total kinetic energy
ΔEk,total change in total kinetic energy
Ek,amp,total total kinetic energy amplitude
f frequency
Fxya horizontal force due to experimental observed axy
ð�Fxya Þs mean rmsðFxya Þ for a sea star s
Fza vertical force due to experimental observed az
ð�Fza Þs mean rmsðFza Þ for a sea star s
Fz resultant vertical force (Fzp � Fzgb )
Fzgb underwater vertical force (gravity minus bouyancy)
ð�Fzgb Þs mean underwater vertical force for a sea star s
Fzp upward podial forces
Ft force tangent to the arc of a pendulum
Fr Froude number
Frz underwater Fr, using vertical accelerations
Frxy underwater Fr, using horizontal accelerations
g acceleration due to gravity
ge effective gravity
J number of runs
l length
Mb body mass of animal
MPB mass of pendulum bob
Mf mass of displaced fluid
(Mb)s mass of the sth sea star
ΔM sea star mass minus mass of displaced water
P podial hydrostatic pressure
ΔP difference in pressure across the ampullar wall
R radius of curvature of the ampullar wall
ΔR ampullar wall thickness
rms root mean square
s sea star number
S total number of sea stars
SLIP spring-loaded inverted pendulum model
TS-IP torque stabilized inverted pendulum model
t time
U speed
USLIP underwater spring-loaded inverted pendulum model
vx, vy velocity in the x and y directions, from bottom videos
vz,side velocity in the z direction, from side videos
vx,side velocity in the x direction, from side videos
vxy speed in the horizontal plane
vxyz magnitude of the 3D velocity vector
x, y, z axes in the right-handed coordinate system
X independent variable
Y dependent variable
�z mean z displacement over an entire video
Δz vertical location relative to a reference height
θ angle of pendulum rod to vertical
κ coefficient of added mass
λ step length
ρ sea star density
ρPB pendulum bob density
ρf fluid density
σ podial muscle stress

τ period in air
τu period of an underwater pendulum
υ sea star volume
φj phase shifts for each of j runs for a given sea star
�f phase shift mean for all the runs of a given sea star
ω angular frequency
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We calculated Froude numbers associated with the sea star oscillatory
gait and we evaluate whether gravitational forces, as in Alexander and
Jayes (1983) or muscle forces, as in Hill (1950), drive the scaling of
frequency with mass. Finally, we developed a version of a simple
inverted pendulum model that is consistent with the observed
kinematics of the sea star oscillatory gait and provides some insight
into the dynamics of the gaits.

MATERIALS AND METHODS
Animal collection and maintenance
Adult Asterias forbesi (Desor 1848) were hand-collected in
rocky intertidal and shallow subtidal areas adjacent to Basin
Point, Harpswell, ME (43.74°N, −70.04°W) and the Rockland
Breakwater, Rockland, ME (44.11°N, −69.08°W). Sea stars were
maintained in recirculating seawater aquaria at 12–13°C and
30–33 ppt salinity and were fed weekly with mussels and
barnacles. Sea stars were acclimated in these aquaria for at least
2 weeks prior to locomotion trials.

Locomotion trials
A subset of 54 sea stars were individually filmed in runways with
recirculating sea water maintained at 12–13°C and 30–33 ppt.
Sea stars were filmed over 6 weeks during the summer of 2015 and
7 weeks during the summer of 2017.
Two runways were used, with cross sections: (1) 15 cm wide by

10 cm deep and (2) 36 cm wide by 15 cm deep. Locomoting sea
stars were filmed at 30 fps (resolution 1920×1080 pixels) with two
Nikon 5200 SLR cameras equipped with SanDisk Extreme Pro95
MB s−1 SDXC I V90 C10 U3 memory cards. The lines of sight of
the cameras were normal to the bottom and side of the runway, and
the lines of sight intersected with the side camera line of sight
being 1 cm above the bottom surface and the bottom camera line of
sight being centrally located in the bottom of the tank. The
bottom camera was equipped with a Nikon DX AF-S Nikkor 10–
24 mm 1:3.5–4.5G ED lens, the side camera was equipped with a
Nikon DX AF-S Nikkor 18–55 mm 1:3.5–5.6G VR lens. Cameras
were synchronized using wireless WR-T10 and WR-R10
controllers.
Camera synchronization was checked by filming the sudden

blocking of a laser light beam by a falling object. This blockage
resulted in the disappearance of a laser spot in both the side and
bottom videos; the difference (side–bottom) of the frame number in
which the disappearance of that light spot was detected in the two
views was determined; difference in total frames in the video of each
view was also calculated. The average difference in frame in which
the laser spot disappeared was −0.67±2.5 (mean±s.d.) frames and
the average difference in total frames was −0.66±2.2 frames (n=100
side and bottom pairs). In addition, we checked the synchronization
of the cameras during the filming of the sea stars by comparing the
total frames in paired side and bottom videos for all videos used in
this study; the average difference in total frames for these video pairs
was −0.14±1.9 frames (n=128 side and bottom pairs).
As a final synchrony check on the sea star videos, we used

unfiltered x-position data from the side videos and unfiltered
x-position data from the bottom videos to calculate x-velocity from
the two views (see Fig. 1 for the coordinate system). We used cross-
correlation between those two x-velocities to determine phase shifts
between the x-position as seen from the side camera and the
x-position as seen from the bottom camera. Mean phase shift among
all films (n=128) was 0.021±0.059 radians (1.2±3.4 deg; mean±s.d.),
with the side videos preceding the bottom videos on average by that
amount. A sign test (P<0.001) shows that side camera tended to start

before the bottom camera to a statistically detectable extent. On
average, this imposes a 1 deg phase shift and limits the ability to
detect phase shifts in kinematic variables to phase shifts greater than
1 deg.

We ensured movement from right to left from the point of view of
the cameras in the following way. The movement was encouraged
by gentle poking with a blunt rod or by inverting the sea stars and
allowing them to right themselves. Sea stars can move with any arm
or interarm leading and the leading region can change continuously
or spontaneously. For a given run, and before starting to film, we
noted the leading region of the sea star and gently rotated the
moving sea star so that the leading region was oriented toward
the left end of the runway from the point of view of the cameras. At
the end of each run, two square layout miters (Shinwa, Japan) were
placed in the tank to scale the videos.

Kinematic variables
The right-handed coordinate system we used is shown in Fig. 1.
Only portions of runs in which the sea stars moved in the positive
x-direction without touching the walls of the tank were analyzed.

Sea star movement was tracked using Tracker Video Analysis and
Modeling Tool 5.1 (https://physlets.org/tracker/). The mouth and
the highest point on the top of the sea star were used as tracking
points for the bottom and side videos, respectively.

A total of 128 matched bottom and side videos of 54 sea stars
were analyzed (1–6 videos per sea star); the average duration of
videos was 39±18 s (mean±s.d.; range: 10–107 s).

Time and position data from Tracker were smoothed using
30-point moving averages as a low-pass filter. The moving average
was applied to the time array and to the position array (see
supplementary Materials and Methods section 1 for further details).
Such averaging results in arrays that are shorter than the originals by
29 points, with equal amounts of information being lost from both
ends of the arrays. The time interval between points is nevertheless
maintained and is equal to the sampling interval, i.e., the frame
interval of the video recording. The smoothed time-array was then
renumbered starting at zero.

This moving average filter preserves the motion at the main
underlying frequency of the bouncy gait and rejects high frequency
noise while maintaining much, or most, of the amplitude of the
major low frequency motions of the sea stars (see supplementary
Materials and Methods section 2 for further details; Figs S1–S5).

The moving average filter does not introduce any phase distortion
into the signal. Therefore, it is possible to calculate phase shifts from
the filtered data. Nevertheless, because some kinds of filters do
introduce phase distortion, we used unfiltered data and cross-
correlation analysis to determine the phase shifts between the

�z

�x

�y

Direction of travel

Fig. 1. The coordinate system is right handed, and oriented with the
positive x-axis in the direction of travel.
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horizontal speed and the vertical velocity and between the kinetic
and potential energy.
Calculating velocities and accelerations, indeed calculating any

higher derivatives from raw data, has the effect of increasing the
importance of higher frequencies in the signal (see supplementary
Materials and Methods section 3 for further details; Eqns S1–S3,
Figs S2D, S4, S5). This problem becomes more severe the higher
the derivatives. For this reason, when calculating accelerations, we
used a slightly less aggressive (not moving average) low pass filter
with a 1 Hz cut off on the position data, implemented in
Mathematica (Wolfram) before calculating the accelerations as a
function of time for each video.
Finally, velocity squared data, such as kinetic energy, also

increases the importance of higher frequencies (see supplementary
Materials and Methods section 4 for further details; Eqns S4–S7).
Therefore, as a sensitivity analysis, we present in the supplementary
Materials and Methods, an alternative fitted scaling equation of the
kinetic and potential energy that is produced with 1 Hz low pass
filtered position data.
With the exception of acceleration and phase calculations,

calculations were done on the smoothed, renumbered time and
position signal. In particular, smoothed time and position data
were used to calculate position changes and velocity components
(vx,vy, vz). Horizontal speed vxy was calculated at each time from the
velocity components vx and vy. Vertical velocity vz was calculated
from the side videos and vx and vy were calculated from the bottom
videos. For purposes of perspective error analysis, vx,side was also
calculated from the side videos.
Vertical displacement Δz was calculated as:

Dz ¼ z� �z; ð1Þ
and �z is the mean over an entire video. As a variable to examine
scaling of vertical displacement relative to mass, we also calculated
rms(Δz), where rms is the root mean square (RMS). The RMS is a
convenient measure of signal size especially when there are a few
frequencies all contributing to the overall signal size (see
supplementary Materials and Methods section 5 for further
details; Eqns S8,S9). The range in Δz can be used as a proxy for
podial leg length; for this purpose we calculated 2

ffiffiffi
2

p
rmsðDzÞ.

Assessment of perspective error in side videos
Fractional perspective error in the side videos was estimated as:

vx � vx;side
0:5ðvx þ vx;sideÞ
����

����: ð2Þ

Across 128 matched side and bottom videos and 54 sea stars, the
mean fractional perspective error was 0.10±0.0035 (mean±s.e.m.).
A plot of vx,side as a function of vx is expected to have a slope of 1 in
the absence of perspective error; the observed mean of the slopes is
1.02±0.0078 (R2=0.94±0.0044).

Speed, frequency and gait
Frequency spectra of horizontal plane speed oscillations were
estimated using the Fourier function in Mathematica, which
performs a discrete Fourier transform (DFT). Frequency
resolution equals frame rate divided by the number of frames in a
video. Across the 128 video pairs the mean frequency resolution
was 0.03 Hz, with a range from 0.1 to 0.01 Hz. We report
amplitudes only from frequencies f where 0.1 Hz≤f≤1 Hz.
Amplitudes from higher frequencies are negligibly small and
amplitudes from lower frequencies represent longer term changes in

behavior such as changes in gait. The fundamental frequency was
taken to be the frequency with the largest speed amplitude over the
time interval analyzed, which was the whole length of each video
except when moving windows were analyzed.

Such moving windows were used in determining the relationship
between the mean vxy in a time interval and the amplitude of the
fundamental frequency for portions of a given video. This is useful for
determining changes in the amplitude of the fundamental frequency
as gait changes. For this purpose, DFTs and moving averages were
performed on 5 s or 45 s windows starting every second. Such
analyses from three characteristic videos are shown in the results.

Mass and density
Mass
Mass was obtained for 86 sea stars, including for the subset of 54
used in kinematic analyses. Mass was measured using an Ohaus
Adventure digital precision balance Model AX423 (precision:
±0.001 g). Underwater weights were obtained by hanging each sea
star from a force beam into a bucket of seawater using a Kyowa force
transducer model LVS-20GA, a DPM-911B strain amplifier, micro
1401 Cambridge Electronic Design AtoD converter and Spike II
version 7.14 data acquisition software (precision: ±0.001 g).
Masses (three to five measurements per sea star) and underwater
weights (one to five measurements per sea star) were determined.

A sea star of mass Mb displaces a fluid of mass Mf generating an
underwater vertical force due to gravity and buoyancy Fzgb :

Fzgb ¼ ðMb �Mf Þg ¼ DMb g; ð3Þ
where ΔMb is the difference in sea star and displaced masses and g
is the gravitational acceleration. The ΔMb can be determined
experimentally by dividing the underwater weight in Newtons by g.

Density
The definition of density implies that:

r

rf
¼ Mb

Mf
; ð4Þ

where ρ is sea star density and ρf is fluid density. For our experiment
we used a sea water density of 1025 kg m−3, which corresponds to
seawater at 13°C and 33 ppt. Combining Eqn 3 and Eqn 4 gives an
equation for calculating density from the measured Mb and ΔMb:

r ¼ Mb rf
Mb � DMb

: ð5Þ

Eqn 5 is equivalent to:

DMb

Mb
¼ 1� rf

r

� �
; ð6Þ

which gives a ratio for expressing the fraction of mass not supported
by buoyancy.

Eqn 6 is an alternative to using an effective gravity ge (Martinez
et al., 1998; Chellapurath et al., 2020) where, using Eqns 3 and 6:

ge ¼
Fzgb

Mb
¼ DMb

Mb
g ¼ 1� rf

r

� �
g: ð7Þ

We prefer using Eqn 6 because it makes explicit that g is a
constant, whereas ge depends on the assumption of constant density.
It has been our experience that the density of benthic animals often
scales with mass making the use of an effective gravity potentially
misleading.
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Energies
Data from the side videos were used to calculate the change in
potential energy ΔEp and data from the bottom videos were used to
calculated the change in kinetic energy associated with the
component of velocity in the horizontal plane ΔEkh relative to
respective mean energies in each video.
The change in potential energy was calculated as:

DEp ¼ ðEp � �EpÞ; ð8Þ
where the potential energy Ep is:

Ep ¼ DMbgDz: ð9Þ
Change in horizontal kinetic energy was calculated as:

DEkh ¼ ðEkh � �EkhÞ; ð10Þ
where:

Ekh ¼ 1

2
Mb v

2
xy: ð11Þ

To compare temporal patterns of these energies, they were plotted
as functions of time for three characteristic videos in the results. In
addition, potential energy amplitude Ep,amp and the kinetic energy
amplitude Ekh,amp for each video were calculated as:

Ep;amp ¼
ffiffiffi
2

p
rmsðDEpÞ; ð12Þ

and

Ekh;amp ¼
ffiffiffi
2

p
rmsðDEkhÞ: ð13Þ

The mean values of Ep,amp and Ekh,amp for each sea star were
obtained by averaging values for all videos of a given sea star. These
quantities are of interest because they allow the comparison of the
amount of energy that could potentially be exchanged between
potential and kinetic energy.
To assess the degree to which total energy amplitude Ek,amp,total

reflects Ekh,amp, we calculated the ratio Ekh;amp

Ek;amp;total
; where Ek,amp,total

was calculated in a manner analogous to Ekh,amp, where total kinetic
energy Ek,total is:

Ek;total ¼ 1

2
Mb v

2
xyz; ð14Þ

and vxyz is the magnitude of the 3D velocity vector.

Scaling
Allometric relationships were analyzed using double logarithmic
plots for the following dependent variables: sea star density,
fundamental frequency, mean horizontal speed, ΔMb, rms(Δz),
Ep,amp and Ekh,amp. To do this, both the dependent variable and
the independent variable (Mb) were log-transformed and linear
regression on the log–log transformed data was performed to
evaluate the exponential trends observed. Plots of only the first three
and last two variables are shown in the results. The density was
calculated from the meanMb and ΔMb using Eqn 5 for each sea star.
The frequency was the mean over all videos of each sea star of the
fundamental frequencies measured in each video. The speed, rms
(Δz), Ep,amp and Ekh,amp were the means over all videos of each sea
star in each video. Exponentiating both sides of the equation for the
linear relationship between the log-transformed variables gives the
coefficient and exponent of the exponential relationship.
In addition, a paired t-test on log-transformed energies was used

to test the null hypothesis that Ep,amp and Ekh,amp were equal in a
given sea star. Finally, because theory developed in the discussion

predicts a scaling exponent of 1.3 for energy amplitudes, we tested
the null hypothesis that the slopes of the log-log regressions did not
differ from a slope of 1.3 using an extra sum-of-squares F-test in
Prism (GraphPad).

Hodographs and phase shifts
Hodographs plotting vz against vxy were produced to observe phase
shifts and to compare patterns between crawling and oscillating
gaits. In addition, hodograph-like plots were made of ΔEp against
ΔEkh to describe the temporal pattern of change in energies.
Characteristic patterns from three videos are presented in the results.

For all 128 videos, we estimated the phase shifts on the unfiltered
data between ΔEkh and ΔEp, and between vxy and vz by using a cross-
correlation analysis written in Mathematica (by O.E.). Means for
each sea star were determined using polar statistics. Angular mean
was calculated as:

�f ¼ atan2
1

J

XJ
j¼1

sinfj;
1

J

XJ
j¼1

cosfj

 !
; ð15Þ

where �f is the phase shift mean for all the runs of a given sea star,
and φj are the phase shifts for each of J runs for each of the energy
and velocity pairs for a given sea star. An angle mean similar to
Eqn 15 was also used to calculate the mean phase shift for all sea
stars from the individual means of each sea star. Depending on
underlying distributions in the data either t-tests or non-parametric
sign-tests or Mann–Whitney U-tests were used to compare phase
shift between vertical and horizontal velocities and between
potential and kinetic energy with values of π/2 and zero,
respectively and the mean phase shift between energies compared
with that between cameras.

Gravitational versus accelerative forces
The mean underwater vertical force due to gravity and bouyancy
acting on a specific sea star ð�FzgbÞswas calculated from Eqn 3 as:

ð�FzgbÞs ¼ ðD �MbÞs g; ð16Þ
where ðD �MbÞs is the average ΔMb for the sth sea star.

The underwater vertical and horizontal forces due to accelerations
acting on a specific sea star were determined as follows. Vertical
velocities vz and horizontal speeds vxy, were calculated from 1 Hz
low pass filtered position data and were then used to calculate
vertical accelerations az and horizontal accelerations axy.

The mean of the observed experimental rms(az) for a specific sea
star was estimated over several runs as:

ð�azÞs ¼
1

J

XJ
j¼1

rmsðazÞj;s; ð17Þ

where (az)j,s is the observed vertical acceleration as a function of
time for the sth sea star and the jth run.

The mean rms of forces ð�FzaÞs associated with the observed
experimental vertical accelerations acting on a specific sea star
averaged over several runs were estimated as:

ð�FzaÞs ¼ ð �MbÞs ð�azÞs; ð18Þ
where ð �MbÞs is the mean mass for the sth sea star. The mean rms of
forces associated with the observed experimental horizontal
accelerations acting on a specific sea star ð�FxyaÞs were estimated
in the appropriate analogous way.

These accelerative forces are compared with gravitational minus
bouyancy forces over all sea stars by calculating two kinds of
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underwater Froude numbers Fr relative to vertical and horizontal
accelerations:

Frz ¼ 1

S

XS
s¼1

ð�FzaÞs
ð�FzgbÞs

; ð19Þ

and

Frxy ¼ 1

S

XS
s¼1

ð�FxyaÞs
ð�FzgbÞs

; ð20Þ

where S is the total number of sea stars in the kinematic analysis.
As a sensitivity analysis on the effects of filtering, in addition to

calculating the Froude numbers from 1 Hz low pass filtered position
data, we also calculated them from data low pass filtered with 2, 3
and 4 Hz cut offs (see supplementary Materials and Methods
section 6 for further details; Table S1).

Analysis software
Data were processed using Mathematica (v. 12.0.0.0) and Julia
(v. 1.5). Figures were created using Prism (v. 7.0a) and Julia
packages: GRUtils (https://juliapackages.com/p/grutils), CSV
(https://juliapackages.com/p/csv) and DataFrames (https://
juliapackages.com/p/dataframes). Statistical analyses were done
using Prism, Mathematica and SPSS Statistics (v. 26.0.0.0).
Mathematica and Julia codes were custom written in house.

RESULTS
Kinematic variables
Sea stars exhibit consistent patterns of motion (Fig. 2). They have
two gaits: a slower crawling gait and a faster oscillatory gait in
which the sea star oscillates vertically. During the oscillatory gait
the vertical displacements and speeds oscillate and the horizontal
speeds oscillate around an average speed. Whereas the average
vertical speed is close to zero, the average horizontal speed is several
mm s−1 and the minimum horizontal speed during a video is
typically greater than zero. While transitioning to an oscillatory gait
the sea star vertical height increases and develops vertical
oscillations that tend to become more regular.

Speed, frequency and gait
As sea stars transitioned from the crawling to the oscillatory gait, the
vertical oscillations increased and the horizontal and vertical speed
oscillations increased in amplitude (Figs 2,3). Each sea star has a
characteristic frequency that can be determined by doing DFTs over
the period of a video; we report those for the vxy oscillations. The
frequencies we observed for these sea stars were between 0.14 and
0.40 Hz corresponding to periods between 7.2 and 2.5 s. While the
highest period-averaged horizontal speeds are achieved during the
oscillatory gait, most of the increase in period-averaged horizontal
speed occurs during the crawling gait. There are more gradual
increases in period-averaged horizontal speed with increasing
oscillation amplitude of the horizontal speed during the
oscillatory gait.

Scaling of density, frequency, speed and vertical
displacement
Sea star density was a function of mass (log–log regression:
F1,84=37, P<0.0001; Fig. 4A) with heavier sea stars having a lower
density. During the oscillatory gait, mass of the sea stars accounted
for 53% of the variation in the fundamental frequency of
horizontal speed oscillations with heavier sea stars oscillating at
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Fig. 2. The transition from crawling to oscillatory gait in a 24 g
sea star (Asterias forbesi). (A) Vertical velocity (vz), shown as a
1 s moving average (black line) and a 3.36 s moving average based
on the fundamental period for these data (red line). (B) Vertical
displacement (Δz) of the sea star, shown as a 1 s moving average,
with the mean vertical displacement indicated by the dotted zero line.
(C) Speed in the horizontal plane (vxy), shown as a 1 s moving average
(black line) and a 3.36 s moving average (red line), with the mean vxy
indicated by the horizontal dotted line. (D) Horizontal displacement
shown as a 1 s moving average. The two vertical dashed lines are placed
at the times of two peaks in vertical displacement and show that peak
horizontal speeds are nearly in phase with peak vertical displacements of the
sea star. These data illustrate a typical pattern, where sea stars crawl with
increasing Δz and vxy, transitioning to low amplitude and then high amplitude
Δz oscillations. The area shaded in grey indicates the cycle that is plotted in
Fig. 7A.
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lower frequencies (log-log regression: F1,52=58, P<0.0001; Figs 3,
4B, 5). Mass accounted for 14% of the variation in mean speed, with
heavier sea stars moving faster (log–log regression: F1,52=8.8,
P=0.005; Fig. 4C).
Horizontal and vertical oscillations in speed were mechanically

linked since for 84% of the videos the fundamental frequency was
identical when calculated from horizontal versus vertical velocities.
In the 16% of cases where they were not identical, they were similar;
the mean absolute value of the difference was 0.04 Hz, which was
below our ability to resolve differences given the mean frequency
resolution of 0.03 Hz.
Eqn 6 indicates that ΔMb is a linear function of Mb if sea star

density ρ is constant, but a log–log regression gives:

DMb ¼ 0:11M 0:95+0:016 s:e:m:
b ; ð21Þ

with an R2=0.98 (log–log regression: F1,52=3500, P<0.0001),
indicating that sea star density changes slightly but systematically
with sea star mass, which is also supported by Fig. 4A. Eqn 21 gives

a useful approximate rule that ΔMb/Mb≈0.1. However, for the sea
stars in Fig. 4A, the range of density from ≈1100–1200 kg m−3

encompasses a range of ge/g (Eqn 7) from 0.054 to 0.14, a difference
of a factor more than two. Thus, the force that sea stars need to
exert to support their weight underwater is about 10% of what it
would be on land, but for more precise calculations or scaling
considerations it may be necessary to consider that systematic trend
with mass.

Vertical displacement was also a function of sea star mass:

rmsðDzÞ ¼ 2:8� 10�4M 0:15+0:03 s:e:m:
b ; ð22Þ

where units of mass are in g and units of vertical displacement are in
m, and with an R2=0.32 (log–log regression: F1,52=25, P<0.0001)
indicating that heavier sea stars have slightly greater, but highly
variable, changes in oscillatory height.
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Fig. 3. Examples from videos of three locomoting sea stars. (A–C) vxy as a function of time (left), shown as a 1 s moving average (black line) and longer
moving averages based on the fundamental periods determined for each video (red lines; A, 5.9 s; B, 4.4 s; C, 2.8 s) for sea stars of mass 203 g (A), 41 g (B) and
15 g (C). The area shaded in grey indicates the cycle that is plotted in Fig. 7B. DFTswith the vxyoscillation amplitude as a function of frequency (middle), where the
vertical red line indicates the fundamental frequency f, which has the largest vxy amplitude. Mean vxy over intervals shown as a function of vxy amplitude over
intervals (right); means were calculated for the indicated intervals starting each second. Most of the increase in vxy occurred during low amplitude oscillations of
less than 4×10−4 m s−1 (i.e. during crawling); further increases in speed with increasing vxy amplitudes were more gradual.
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Energies, hodographs and phases
Oscillations in potential and kinetic energy were nearly in phase in
the oscillatory gait and the change in potential energy Ep,amp was
much greater than the change in horizontal kinetic energy Ekh,amp

(Figs 5, 6, 7, 8b).
During the oscillatory gait, mass of the sea stars accounted for

>89% of the variation in the potential and kinetic energy amplitudes
with heavier sea stars having higher energy amplitudes (log–log
regressions: each F1,52>424, each P<0.0001; Fig. 6). The slope was
significantly less than 1.3 for both energy amplitudes (each
F1,52>15, each P<0.001). Variation in potential energy was two
orders of magnitude more than variation in kinetic energy (paired
t-test on log-transformed data: t53=75, P<0.0001; Figs 5, 6; mean

over all sea stars of Ep,amp/Ekh,amp=185±16; mean±s.e.m.). The
mean over all 128 videos of Ekh,amp/Ek,amp,total=0.97±0.002;
therefore, Ekh,amp represents substantially all of the Ek,amp,total.

During the oscillatory gait, hodographs for all sea stars were
clockwise, with peak vertical velocities preceding peak horizontal
speeds by about a quarter of a circle (Fig. 7A). On average, vertical
velocities preceded horizontal speeds by 1.58 radians (90.3 deg),
which is not significantly different from 90 deg (t-test: P=0.82)
(Fig. 8A).

Oscillations in potential and kinetic energy were nearly in phase,
with the potential energy peak preceding the kinetic energy peak by
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Fig. 7C. Results shown in C are from Movie 1.

8

RESEARCH ARTICLE Journal of Experimental Biology (2021) 224, jeb242813. doi:10.1242/jeb.242813

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

http://movie.biologists.com/video/10.1242/jeb.242813/video-1


a mean of 0.16±0.15 radians (9.6±8.7 deg; means±s.d.), which is
slightly, but significantly, greater than 0 deg (sign test: P<0.001;
Figs 5, 7B, 8B). This is also significantly different than the slight 1.2
deg phase shift in vx between the side and bottom cameras (Mann–
Whitney U-test, P<0.001).

Gravitational versus accelerative forces
Here, we assess the magnitude of forces required to support
the underwater weight of the sea stars and compare them to
the magnitude of the forces accelerating the sea star in the
horizontal and vertical directions. The mean of the ratios of
accelerative to gravitational forces for the 54 sea stars used in
the kinematic analyses are: Frz=1.8×10−3±1.1×10−4 and
Frxy=3.3×10−3±1.8×10−4 (means±s.e.m.), indicating that the
vertically-directed forces required to support the sea star are large
compared with either the vertical or horizontal accelerative forces
(see Table S1 for a comparison of results using low pass filtered data
with 1,2,3 and 4 Hz cut offs).

DISCUSSION
Speed and gait
In a general invertebrate textbook, sea star locomotion is described
as crawling and smooth, a result of the high number of podia each in
a different phase of the power stroke (Brusca and Brusca, 2003);
Pisaster giganteus in particular is described as crawling but we have
seen this species using the vertically oscillating gait. Although also
describing sea star locomotion as a crawl, Cole (1913) nevertheless
observed that the motion was not a smooth glide but proceeded in
short lunges of the body. This description concurred with Jennings
(1907), who described it as a ‘crawl’ and ‘creep’ but also gave
detailed observations of ‘steps’, comparing the motion to the steps
of higher animals, and describing a slight elevation of the body, as
the body swung over the podia. Only one paper (Montgomery and
Palmer, 2012) provides direct data showing that Patiria miniata
increases gradually in speed until a plateau in speed is reached – a
plateau in which there is oscillating vertical motion and oscillating
forward speed. Despite observing what we can recognize in
hindsight as a gait transition, this transition is not specifically
recognized as such in that paper. One characteristic of a gait is that it

operates over a specific range of speeds. The focus of most recent
literature on sea star locomotion has been on speeds in various
ecological contexts. Although these contexts are sometimes
classified as ‘pursuit’ or ‘escape’, these speeds are given without
regard to gait. A recognition and description of gait requires a
description of several elements that define a gait such as speed
ranges in which a gait is used and the characteristic patterns of
motion or kinematics of the gait.

Fundamental to the definition of gait, is that characteristic
kinematic quantities change discontinuously as speed changes
(Alexander, 1989). What we observed is a change in the pattern of
motion as speed increases (Figs 2, 3B,C and 7A,B). As the speed
increases, at some point vertical oscillations are established and
phase relationships develop between vertical and horizontal speed
oscillations. Specifically, in Fig. 7A,B the colorful squiggles
represent 25 s during which the sea star is crawling and the velocity
is increasing. Subsequently, during the period when vertical
oscillations occur, the hodograph is a series of clockwise circles.

Gaits are typically used over a range of speeds. For instance, walk,
trot and gallop are gaits that can each be used over a characteristic
range of speeds in horses, although there is an energetically optimal
gait within specific speed ranges (Hoyt and Taylor, 1981). Similarly,
humans can walk at a variety of speeds with a variety of stride lengths
and frequencies, but there is a combination of stride length and
frequency that feels more natural and may be more efficient (Kuo,
2001, 2007; Kuo et al., 2005). We have no information about the
energetic consequences of the crawling versus oscillatory gait for sea
stars, however, the crawling gait seems to be used over awide range of
speeds; after the transition to the oscillatory gait the highest speeds are
attained and variation in speed is less (Fig. 3).

What causes this change in gait? One idea is that the faster,
oscillatory gait may be a necessary consequence of podial
dynamics. Heydari et al. (2020) developed a model of podial
actions that described an emergent patterning in the coordination of
the podia that was associated with the bouncy gait. We have
observed that podial action during the crawl is not obviously
coordinated but that it transitions to an oscillatory gait in which there
is an alternation between coordinated elongated podia at the highest
point in each step followed by the much shorter or collapsed podia at
the bottom of each step (see Fig. 7D,E).

How does theory inform frequency predictions?
The hallmark of the bouncy gait is the rhythmic vertical oscillation
of the sea star accompanied by cyclical horizontal and vertical
velocity changes. We have observed that the frequency of these
oscillations is regular and specific to a sea star. That is, sequential
cycles in the same sea star have similar periods, a given sea star
tends to oscillate at a certain frequency, and frequency decreases
with sea star mass (Figs 3, 4B, 5). In the sections below, we develop
a simple abstract model and ask: what calculation predicts the
observed frequencies? The goal is to develop a conceptual
understanding that allows us to predict the observed frequencies
and abstracts what is happening in the steps.

Model description
Consider a pendulum bob with a massMPB at the end of a massless
rod of length l with the rod rotating about a pivot point at the end of
the rod opposite to the mass (Fig. 9). The rod is caused to oscillate
by a moment generated by the vertical force driving the motion and
the rod’s position is described by the angle θ to the vertical. That
vertical force Fz is the sum of forces due to podial pressure Fzp that
opposes the sum of gravitational and bouyant forces Fzgb (Eqn 3).
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For simplicity, we consider that Fzp and Fzgb act at the same point.
Using massMb for the inertial term and mass minus fluid displaced
ΔMb in the Fz term and using the small angle approximation that

sinθ≈θ, the moments about the pivot point are:

Fz l uðtÞ ¼ �Mb l
2 u00ðtÞ; ð23Þ
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Fig. 7. One oscillatory step for three sea stars. (A) A 24 g sea star, data plotted indicated by grey area in Fig. 2. (B) A 41 g sea star, data plotted indicated by grey
area in Fig. 3B. (C) A 34 g sea star, data plotted indicated by grey area in Fig. 5B. The steps are shown as hodographs (left): a parametric plot of vz and vxy over the
time of one step, and a parametric plot of ΔEp and ΔEkh over the time of one step (right). All data shown are one second moving averages with points 1/30 s apart.
Arrows indicate direction of time. The oscillations shown took 3.7 (A), 4.1 (B) and 4.4 s (C). Dotted vertical and horizontal lines indicate mean values for the
corresponding variables for the corresponding cycle. Blue points (i) and (ii) in C correspond to the lowest and highest position of the sea star as indicated by the
leading arm of the sea star as shown in images D and E, respectively. Yellow and orange points in A–C correspond to identical points in left and right graphs, which
occur at the mean change in potential energy and kinetic energy, respectively. Colored lines in A and B plot the first 25 s of crawling data from the figures indicated
above in 5 s intervals (green to purple). Contrast the hodograph pattern of the early crawling period to the clockwise ovals during the oscillatory gait. Scale bar: 3 mm.
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where

Fz ¼ Fzp � Fzgb ¼ P A� DMbg; ð24Þ

where P is podial pressure and A is the horizontal plane cross-
sectional area of all of the actively lifting podia.
Eqn 23 is mathematically equivalent to placing a spring at the

fulcrum that exerts a torque that counteracts the Fzgb torque. Using a
torque spring in a walking model is not unprecedented. Biswas et al.
(2018) found that both an inverted pendulum and a SLIP model
cannot model observed features of walking at low Froude numbers
(<0.1) and instead incorporated an angular spring to model low
Froude number walking in fruit flies. An angular spring has also been
incorporated in a version of the standard SLIP model used to analyze
the human walking gait (Antoniak et al., 2019). Mathematically, the
angular spring has the effect of creating a stable inverted pendulum
without a feedback control if the moment from the spring is larger
than the moment from gravity. This condition is met if PA>ΔMb g. In
that case, Eqn 24 is equivalent to a force acting on the bob of the
pendulum directed upwards and opposing Fzgb . The system then acts
as if there was a net force field acting upwards causing the inverted
pendulum to swing in a manner analogous to an ordinary pendulum
in a gravitational field.
This approximation is suitable for application to sea star

locomotion because the observed accelerations and accelerative
forces are small compared to the gravitational force (Frxy and Frz
<10−2). Since the podia are causing all forces other than Fzgb , then
the fact that the accelerative forces are relatively small implies that
the podial forces Fzp are aligned with gravity and slightly larger than
Fzgb . This pattern of forces mimics the assumed forces in our model.
We can solve for angular frequency ω by rewriting Eqn 23 as:

v2uðtÞ ¼ �u00ðtÞ: ð25Þ

Solutions of Eqn 25 give periodic functions with frequencyω, where:

v ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
P A� DMbg

lMb

s
: ð26Þ

There are a few unrealistic aspects to this model, which we call a
torque stabilized inverted pendulum model (TS-IP). For example,
real sea star podia bend and extend, whereas the podia in the model
do neither. Also, real upward podial forces vary cyclically during a
step, whereas upward podial forces are constant in the model, at least
over one step. More involved models in the future, may incorporate
those features; the simplified model nevertheless provides insights
as will be shown in the following sections.

Consideration of the magnitudes of frequencies observed
In this section, we compare two hypotheses that make different
predictions about the frequency of the sea star oscillatory step. The
first hypothesis is that fall velocity sets the frequency and the
alternative hypothesis is that frequency may be set by the podial
forces, PA in Eqn 26, slowing the sea star’s descent.

In terms of fall velocity, a person watching the oscillatory gait of a
sea star might hypothesize that each underwater step consists of
lifting the sea star to its highest point, followed by a free fall to the
end of the step, and that falling time might set the frequency of the
step. If we assume that the rising and falling halves of the step are
approximately symmetrical, then the step time is twice the fall time
from height l, which is:

t1 ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffi
2 l Mb

DMbg

s
: ð27Þ

Using ΔMb/Mb=0.11 from Eqn 21 and using a maximum estimate
of l as maximum 2

ffiffiffi
2

p
rmsðDzÞ ¼ 0:0035 m, we get τ1=0.16 s,
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which is an order of magnitude less than the periods we observed
(Fig. 4B, range: 2.5–7.2 s).
We get a similar result if the equation is further adjusted to give

the period of a pendulum underwater τu (Neill et al., 2007):

t2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rPBþkrf
rPB � rf

r
2p

ffiffiffi
l

g

s
; ð28Þ

where ρPB is the density of the pendulum bob, ρf is the density of the
fluid, and κ is the coefficient of added mass. A further adjustment
can be made for drag forces, but that adjustment is negligible for low

speeds and will not be considered here. Note, however, that there
may be significant damping by tissues and that such damping would
have the effect of lowering and broadening the resonance peak of a
damped harmonic oscillator.

Using ρPB=ρ=1150 kg m−3 (a middle value for the density of a
sea star from Fig. 4A), ρf=1025 kg m−3, and κ=3 (an upper value
from Daniel, 1984), then τ2=0.69 s. Although similar to our result
from Eqn 27, this value is still an order of magnitude less than the
observed periods. We can conclude that the periods predicted by fall
time and the underwater pendulum are too short and that some other
process must be driving the periodicity.

Consider the alternative hypothesis that podial forces control gait
frequency. For comparison to Eqns 27 and 28, the corresponding
prediction from Eqn 26 is:

t3 ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
l Mb

P A� DMb g

s
; ð29Þ

To the degree that PA is larger than ΔMb g, the step period will be
longer than the predictions of Eqns 27 and 28, where the smaller the
difference, the longer the step period. For example, if PA is 1%
larger than ΔMb g, then the prediction from Eqn 29, with l=0.0035m
and ΔMb/Mb=0.11 is τ3=3.5 s, which is within the range of periods
observed.

We have no direct measurement of the total podial forces, but the
observed accelerations provide a parity check for the relative size of
PA and ΔMb g. We can estimate the magnitude of PA using the
observed accelerations of the sea stars during a step. The vertical
upward force of podia on the sea star is of magnitude:

Fzp � Mb rmsðazÞ þ DMbg: ð30Þ
Substituting Eqn 30 into Eqn 26, expressing angular frequency in

terms of frequency and using the mean over all sea stars of the
experimentally observed �az as an average vertical acceleration and
2
ffiffiffi
2

p
rmsðDzÞ as an average leg length, we get:

f ¼ v

2p
¼ 1

2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�az

2
ffiffiffi
2

p
rmsðDzÞ

s
¼ 0:13 Hz; ð31Þ

which is a period of 7.7 s. This is of the same order of magnitude as
the observed frequencies, supporting the hypothesis that podial
forces are increasing the period relative to what would be expected
due to free fall.

Scaling of oscillatory frequency
For sea stars, we observed that f /M�0:14

b . This exponent is
remarkably similar to the scaling exponent observed for terrestrial
vertebrate legged locomotors (mean=−0.16; range: −0.12 to −0.22;
Heglund et al., 1974; Pennycuick, 1975; Alexander et al., 1977;
Alexander and Maloiy, 1984; Gatesy and Biewener, 1991; Daley
and Birn-Jeffery, 2018). Our exponent is also similar to the
exponent (−0.14) observed in ghost crabs moving in air
(Whittemore et al., 2015). Multiple theories have been advanced
to explain this scaling exponent.

Pennycuick (1992) elaborated on and compared two of these
theories that predict different scaling of frequency with mass and we
will consider these theories in the context of our TS-IP model and
sea star data. The first theory is based on scaling arguments of Hill
(1950), which focus on the role of muscle in generating force and
moments tending to cause oscillations either of the legs or of the
center of mass over the legs. The second theory is based on
Alexander and Jayes (1983), which focuses on the role of

Fzp

Fz

Ft

Fzgb

�

�

Fig. 9. A sea urchin podium imagined as an inverted pendulum swinging
a bob over the podium during a step, where the bob represents the sea
star mass. Forces exerted on the bob are gravity minus buoyancy Fzgb and the
upward force due to podial pressure Fzp . The resultant vertical force Fz has a
component, Ft in the direction tangent to the arc of the pendulum. If the forces
due to pressure are larger than the forces due to gravity minus buoyancy, then
a stable inverted pendulum results and a simple differential equation
represents this oscillation as in Eqns 23 and 26 and can be used to predict
kinematic patterns and scaling. This is our TS-IP model. The green angle
represents the torque spring, which is a conceptual representation of the effect
of the tangential forces exerted by the vertical forces shown. This model
ignores podial length changes and podial bending, which are beyond the
scope of the present manuscript.
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gravitational forces in producing pendulum-like motions during
legged locomotion. We will show below how hypotheses about
gravitational and muscle force scalings predict frequency scaling
with mass.
Consider scaling predictions using our TS-IP model for the

sea star oscillatory gait (Eqn 26). In geometric similarity, A∝l2,
Mb∝l3 and ΔMb∝Mb, but pressure is independent of size. Pressure
is generated by muscle stress in the ampullae, which is governed
by Laplace’s Law, in which the pressure across the ampullar
wall ΔP:

DP ¼ s
DR

R
; ð32Þ

where ΔR is ampullar wall thickness, R is the radius of curvature of
the ampulla, and σ is muscle stress, which does not scale with
length.
Under the first theory, Hill’s muscle hypothesis (Hill, 1950), as

formulated by Pennycuick (1992), DMbg ,, PA, so the
gravitational term is negligible and angular frequency is:

v1 �
ffiffiffiffiffiffiffiffi
P A

lMb

s
/ l�1 /M

�1
3

b : ð33Þ

This predicted scaling is much steeper than we observed for the
sea star oscillatory gait (Fig. 4B); it is also greater than any of the
literature values for terrestrial pedestrian locomotion.
Alternatively, under the second theory, assume as we did for τ3

(Eqn 29), that PA is 1% larger than ΔMb g, i.e., that PA=1.01ΔMb g,
and substituting into Eqn 26:

v2 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:01DMbg

lMb

s
/ l�

1
2 /M

�1
6

b � M�0:17
b : ð34Þ

This is the scaling predicted by Alexander and Jayes (1983).
Their prediction is that this scaling is expected for geometrically
similar animals locomoting at a constant Froude number, i.e., a
constant ratio of inertial to gravitational forces. Our assumption that
PA is 1% larger than ΔMb g is the equivalent of assuming a constant
Froude number since the inertial forces (PA−ΔMb g) are also a
multiple of ΔMb g under that assumption.
Our interpretation of Eqn 34 is thus that podial forces are recruited

to an extent just sufficient to accelerate the sea star upwards and
sideways and that this causes the podial forces to follow the size of
the underwater gravitational forces as reflected by ΔMb g. This
circumstance is equivalent to a constant Froude number and similar
to the analysis of Alexander and Jayes (1983) for vertebrate
locomotion. As also noted in their work, the observed exponent is
also close to that predicted for elastic similarity byMcMahon (1975,
f /M�0:125

b ), so we cannot rule out other possible explanations for
this scaling in vertebrates or in sea stars.

Scaling of energy
In the sea star oscillatory gait, we found that the amplitude of
both the change in kinetic and potential energy scaled identically
with mass (Fig. 6). In the following argument, we derive the
expected scaling of kinetic and potential energy for a series of
geometrically similar animals using legged locomotion in a given
medium.

Speed U is a function of step length λ and step time τ:

U ¼ l

t
/M

1
3
b

M
1
6
b

/M
1
6
b; ð35Þ

with τ being 1/ω2 in Eqn 34. Further, assuming leg length l∝λ, then,
Ep and Ekh are:

Ep / DMbgl/M1
bM

1
3
b /M

4
3
b; ð36Þ

and

Ekh /MbU
2 /M1

bM
1
6ð Þ2

b /M
4
3
b: ð37Þ

If we assume that the oscillations of kinetic and potential energy
are proportional to energies in Eqns 36 and 37, then we expect that
the slopes of the log-log plots of the rms energies as a function of
mass should be straight lines both with slopes equal to 4

3 � 1:3. The
experimentally determined slopes, both equal to 1.1, are slightly but
significantly less (Fig. 6). This underscaling is probably due to the
observed underscaling of podial length with mass (Eqn 22) and
mean speed with mass (Fig. 4C).

Relationship between potential and kinetic energies and
Froude number
Of equal interest to the scaling of energy to mass is the relationship
between potential and kinetic energy. Two striking features stand
out in our analysis: First, Ep,amp is two orders of magnitude greater
than Ekh,amp, which precludes the possibility of efficient energy
exchange between the two. This is different from the case of
terrestrial vertebrate walking where kinetic and potential energy are
of similar magnitude and exchange energy. Second, Ep,amp precedes
Ekh,amp by 9.6 deg, and so they are substantially in phase
(Figs 5,7,8b), which is a pattern more similar to terrestrial running
than walking (Cavagna et al., 1964; Cavagna and Legramandi,
2020), though without an aerial phase. In the sea star bouncy gait,
both due to the phase and magnitudes of the kinetic and potential
energies, there is clearly no exchange of energies, although because
potential energy is larger than kinetic energy, it is likely that some of
the potential energy at the top of the bounce is converted to kinetic
energy in the second half of each step.

In terrestrial locomotion, considerable attention is paid to the
redirection of motion during the ground phase (Kuo et al., 2005;
Ruina et al., 2005; Adamczyk and Kuo, 2009). This redirection is
associated with energy storage in springs. In the terrestrial running
gait the potential and kinetic energies exchange energy with
collagen-based springs in the legs that store elastic strain energy
(Alexander, 1988; Biewener, 1998; Dickinson et al., 2000). A
potential candidate for such energy storage in sea stars could be the
collagen fibers that wind around each podium in a cross-fiber helical
array and along the long axis of each ampulla (McCurley and Kier,
1995). Our TS-IP model suggests a significant role for podia in
slowing the descent of the sea star in the second half of each step,
which might provide an opportunity for storage of elastic energy in
the podia.

The ratio of kinetic to potential energy occurs in the
Froude number. In particular, in an underwater setting, it is
appropriate to write an underwater Froude number in the following
way:

Fr ¼ MbU
2

DMbgl
¼ U 2

ge l
; ð38Þ
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which is approximately 10× higher in water than in air for a given
pedestrian speed and leg length, and assuming animal densities
similar to those measured for the sea stars in our study as well as for
two species of crabs (Martinez et al., 1998; Chellapurath et al.,
2020). We have observed, however, that the kinetic energy is much
less than the potential energy in the sea star oscillatory gait, and
therefore bouncing sea stars are operating at much lower Froude

numbers, on the order of 10−2 to 10−3, than are reported for
terrestrial vertebrate locomotors, which are on the order of one, or
underwater crabs, which ranged from 0.4 to 3 (Martinez et al., 1998;
Chellapurath et al., 2020). For terrestrial vertebrate pedestrians,
across a range of species moving naturally, walking Froude numbers
have been reported between 10−2 and 0.5 (Jayes and Alexander,
1978; Kramer and Sarton-Miller, 2008; Lees et al., 2016; Dececchi
et al., 2020), but at those Froude numbers, one expects a walking
gait, where potential and kinetic energy are out of phase. In contrast,
in the bouncy sea star gait, despite the very low Froude numbers,
potential and kinetic energy are in phase. Thus, the bouncy sea star
gait represents a novel kinematic pattern. The only other legged
locomotion for which similarly low Froude numbers have been
reported is the case of slowly stepping fruit flies, where Froude
number was between 0.011 and 0.0038 (Biswas et al., 2018). That
study concluded that the fruit fly slow walking gait was fit poorly by
a standard SLIP model and required an angular spring inverted
pendulum model. Thus, studying legged locomotion at extreme
Froude numbers expands the range of known legged gaits.

Hodographs and phase relationships for velocities and
energies
The parametric plot of horizontal speed on the abscissa and vertical
speed on the ordinal axis produces a nearly circular plot that
proceeds in a clockwise fashion as in Fig. 7. This implies that the
vertical speed function precedes the horizontal speed by a
phase shift of about π/2 (90 deg) as was observed for all sea stars
in Fig. 8 and can also be seen in the example in Fig. 2. This phase
relationship between the vertical and horizontal speeds is
characteristic of the running gait in terrestrial locomotors. Another
feature of the sea star bouncy gait is that the fastest horizontal speeds
occur when the sea star is highest as can be seen in the example in
Fig. 2. This observed pattern of motion is consistent with the pattern
of motion described by our proposed TS-IP model. In the following
paragraphs we will describe how that pattern of motion arises.

Consider an upright pendulum. At the horizontal ends of travel of
the bob, the bob is highest and the speed is zero. In contrast, at the
middle of the swing, the horizontal speed is highest and the bob is at
its lowest position. Furthermore, the vertical speed is zero at the ends
and at the middle of the travel. Thus, for every one angular cycle of
the pendulum there is one horizontal cycle of position and velocity
and two vertical cycles of position and velocity. This pattern of
motion causes the characteristic relationship of kinetic and potential
energy in a pendulum with potential energy being highest when
kinetic energy is lowest and vice versa. There is an exchange of
kinetic and potential energy.

Consider as a contrast the relationships in a stably oscillating
TS-IP. As in the case of the upright pendulum, there are twice as
many vertical as horizontal cycles of speed and position and the
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Fig. 10. Kinematic data predicted by the TS-IP model (Eqn 25). Initial
conditions uð0Þ ¼ �p=8 rad, θ′(0)=0 rad s−1 and ω=1 rad s−1. The vertical
component is cos θ(t) and the horizontal component is sin θ(t). (A) Actual
pattern for vertical and horizontal speed for two steps of a sea star. The velocity
data are from the same video as the energy data shown in Fig. 5A. (B–D)
Predictions of patterns and phases; axes units are arbitrary. Compare the
predicted pattern in B with data in A, predicted pattern in C with data in Fig. 7
and predicted pattern in D with data in Fig. 5. Note that in D, changes in kinetic
energy and potential energy are exactly in phase, whereas in the sea stars
changes in potential energy slightly precede changes in kinetic energy
(Fig. 8B). For B and C, similar to Figs 7 and 8A, vertical speed precedes
horizontal speed by π/2. Pattern of energies and speeds of the TS-IPmodel are
similar to those observed in the sea star bouncy gait.
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number of horizontal cycles equals the number of angular cycles
(Fig. 10). The horizontal speed is maximum as the bob passes the
center of travel when the vertical position is highest. This causes the
kinetic energy and potential energy to be in phase as is the case in
running. Thus, the kinetic and potential energy pattern typical of
running can be seen as a consequence of inverted pendulum motion
over a single foot.
When comparing any pendulum model to a gait, there is a

mismatch in that the pendulum goes back and forth, whereas the gait
is a series of uni-directional swings over alternating legs. It is
possible to mimic this pattern by considering the absolute value of
the horizontal location and speeds. In that case the periodicity of the
horizontal motion appears to double so that the vertical period is
now equal to the horizontal period. In this case the phase shift
between the horizontal and vertical speeds is π/2 as we observed in
the sea star bouncy gait.
The patterns of motion shown by our TS-IP model mimic those of

the sea star gait. Specifically, the horizontal and vertical speed
patterns (Fig. 10A,B) have similar temporal patterns in each cycle,
the hodograph (Fig. 10C) is similar to the hodographs in Fig. 8, and
the kinetic and potential energies are in phase. The similarity
between observed and predicted kinematic patterns shows that,
despite its simplifying assumptions, the TS-IP model can replicate
some kinematic patterns of the sea star bouncy gait.

Why does speed matter to sea stars?
It seems likely that the high-speed bouncy gait is energetically
costly given the synchrony of peaks in kinetic and potential
energies. Energy is the currency of evolution and the evolution of a
high energy behavior may confer offsetting fitness benefits. Below
we speculate on some ways the speed of the bouncy gait may do so.
In general, sea stars are not thought of as high energy creatures.

They spend most of their time in sitting in a low energy state, not
eating anything. However, sea stars must move to find and capture
food and to escape predation. For example, we have observed that
the sea star Luidia clathrata initiates the oscillatory gait when food
is dropped into an aquarium with them. Perhaps these sea stars are
competing to reach a prey resource first by moving the fastest.
Similarly, A. forbesi sped up to 0.002±0.004 m s−1 (mean±s.e.m.)
when cracked clams were placed in their aquarium (Moore and
Lepper, 1997), which is similar to the speeds we observe for this
species’ oscillatory gait. Speed may not only help sea stars obtain
food first, but also to escape becoming someone else’s food. For
example, faster speeds in the small, surface grazing sea star
Parvulastra exigua allows it to flee from predation by the larger,
slower sea star Meridiastra calcar, thereby enabling their co-
existence in more resource rich areas of the intertidal (McLaren and
Byrne, 2021). Similarly, the sea star Heliaster helianthus flees from
predation by the sea star Meyenaster gelatinosus (Gaymer and
Himmelman, 2008). Speed may generally factor into the ability of
sea stars to capture not only mobile prey such as other sea stars, but
also, for example, to capture other prey such as gastropod snails that
escape sea star predation by fleeing (Vermeij, 2020).
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Kinematics of Sea Star Legged Locomotion
Supplementary Materials and Methods

1 Moving Average and its Assignment to a Point in Time
We calculated moving averages using a 30 point window. The method used to assign the
moving average to a point in time varies among algorithms implementing moving averages.
In our algorithm, we calculated the moving average of the associated times using a 30 point
window and assigned that average to the 30 point average of the associated values (see Figs
S1, S2A-C). This ensures that there is no time shift of the averaged signal resulting from the
moving average process. This produces a series of values and time points where some points
are missing from the beginning and end of the series. It is sometimes useful to renumber
the time axis so that it starts at zero time. We did such renumbering in a way that plotted
values such as position and velocity at synchronous times. Because it takes two points to
produce every velocity point, this sometimes involves additional two point averaging for
position data.

2 Filter Effects on Amplitude
Filters affect the amplitude of components of a signal typically reducing the amplitude at
some frequencies while maintaining amplitude at other frequencies. In our study we are
interested in the low frequency oscillations that occur during the bouncy gait and want to
filter out higher frequency noise, probably from digitization and image recognition noise. We
use a moving average, which is a kind of low pass filter, as well as a Finite Impulse Response
low pass filter both implemented in Mathematica.

The effects of a 30 point moving average filter and a 0.8 Hz cutoff low pass filter on
a small section of raw z-position data from one video is shown in Fig. S1. In a broader
view of data from the same video, position data in our study is nearly unaffected, except
for removal of noise, both by filtering using 30 point moving averages and using a 0.8 Hz
cutoff low pass filter (Fig. S2A-C). Nevertheless, calculating the x direction velocities reveals
high frequency noise (Fig. S2D) that is strongly attenuated by filtering the position data
before calculating the velocity. The discrete Fourier transform (DFT) of the z position also
shows little impact of filtering on the largest frequency component (Fig. S2E). The DFT
transforms of the filtered and unfiltered x velocities illustrate that high frequency noise is
attenuated while having little effect on frequencies below 0.5 Hz (Fig. S2F). Frequencies
below 0.5 Hz are of primary interest because all of the fundamental frequencies shown in
manuscript Fig. 4B are below 0.5 Hz.
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A filter should remove noise, in this case higher frequency noise, while retaining as much
of the original low frequency components as possible. Typically, a filtered signal will tend to
under represent the original signal amplitude at a specific frequency. We can illustrate the
effect of 30 point moving average and low pass filters by examining the DFT of a hypothetical
signal (Fig. S3A). The hypothetical signal we consider has several equal magnitude, discrete,
low frequency components below 3 Hz and smaller random noise at all frequencies. We can
see from the DFT that lowest frequencies are represented at almost full magnitude, whereas
the higher frequencies are strongly attenuated by the filter. We can also see that the low
pass filter has more desirable characteristics in that it is a monotonically decreasing filter
versus the lobed nature of the moving average. Nevertheless the moving average is easy to
implement and provides similar results.

We now consider the effect of moving average and low pass filters on the data in our
study. Because the fundamental frequency varies among sea stars, whereas we used the
same 30 point moving average or low pass filter for each video, the effect of filtering will
vary somewhat among sea stars. This effect can be assessed by calculating the ratio of
the magnitude of the fundamental frequency in the DFT of the filtered data compared to
magnitude of the fundamental frequency in the DFT of the raw data. A histogram comparing
this ratio between 30 point moving average filtered and 0.8 Hz low pass filtered data is in
Fig. S3B. The low pass filter represents the highest magnitude slightly better on average
than the 30 point moving average (ratio of 0.96 vs 0.93). But the biggest difference between
the effect of the filters is that the moving average has a larger variance in the ratio of filtered
to original amplitude. This suggests that the low pass filter would be a better choice for a
filter than the moving average. Overall, the use of a 30 point moving average made little
difference for most of the analyses in our manuscript, therefore, we retained the use of the
simpler 30 point moving average for most analyses.

3 Propagation of Noise as a Function of Frequency Through
Velocity, Acceleration, and Kinetic Energy Calcula-
tions

The position signal that describes the bouncy, periodic nature of the sea star gait is de-
scribed as the sum of orthogonal sinusoidal functions with each frequency in the sum being
a multiple of the smallest frequency Φ. The velocity and acceleration, given by the first and
second derivatives of such a function, have of mathematical necessity the higher frequencies
represented by larger amplitudes. This mathematical fact has the consequence that noise at
higher frequencies will tend to be over-represented in the derivatives. For example:

g(t) = a0 + a1 sin(tΦ) + a2 sin(2tΦ) + a3 sin(3tΦ) + a4 sin(4tΦ), (S1)
and

g′(t) = a1Φ cos(tΦ) + 2a2Φ cos(2tΦ) + 3a3Φ cos(3tΦ) + 4a4Φ cos(4tΦ), (S2)

and

g′′(t) = −a1Φ sin(tΦ)− 4a2Φ sin(2tΦ)− 9a3Φ sin(3tΦ)− 16a4Φ sin(4tΦ), (S3)
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where g(t) is the position function, g′(t) is the velocity function, g′′(t) is the acceleration
function, a is amplitude, and t is time. This series of differentiated formulas shows that the
higher frequencies contribute linearly more to the first derivative, the velocity, and quadrat-
ically more to the second derivative, the acceleration. This means that, in cases where the
higher frequency position signal contains noise, even when that noise is relatively small, the
noise can overwhelm the signal in the derivatives. Low pass filtering can remove the high
frequency noise and allow estimates of the lower frequency signal.

To give a sense for how low pass filtering removes noise while retaining most of the signal,
we show examples from one video with a cut off of 1 hz (Fig. S4) and a cut off of 4 hz (Fig.
S5). In both the panels showing a parameter value versus time and those showing magnitude
as a function of frequency, noise obviously increases with the higher derivatives. Furthermore,
in the magnitude vs. frequency plots, the noise in the acceleration at higher frequencies is
as big or bigger than any of the lower frequency peaks that reflect the mechanical motion
of the sea star. The mechanical motion of the sea star can be readily identified as the
low frequency fundamental - the highest low peak - and harmonics occurring at multiples
of that peak. In the acceleration graph with the shorter frequency axis (0-4) some of the
higher harmonics are as large or larger than the fundamental peak. Because the low pass
filtering at 1 Hz preserves most of the fundamental peak and, since the harmonic peaks tend
to be considerably smaller in the position and velocity graphs, the 1 Hz filtered signal is
a good approximation of the mechanical motion of the sea star. But for the evaluation of
acceleration, using a 1 Hz low pass filter removes signal as well as noise. Because noise and
signal are difficult to distinguish, we use a series of low pass filters at 1,2,3, and 4 Hz to
show a range of estimates in this ambiguous circumstance. Since the calculation of Froude
number also includes the use of Root Mean Square (RMS) we will present the results of these
calculations after that section below.

4 Velocity Squared and Kinetic Energy with Low Pass
Filter

We also did a sensitivity analysis for the kinetic energy calculation. The kinetic energy
calculation is sensitive in two ways. Firstly, since we aim to produce a graph of kinetic
energy scaling as a function of mass and since fundamental frequency is a function of mass
and since our filters - both the moving average and low pass filter - have a larger effect on
higher frequencies, there is a possibility that the scaling of kinetic energy as a function of mass
would be affected by the filtering. Secondly, the squaring of velocity in the kinematic term
generates an harmonic at twice the fundamental frequency and, as seen from the acceleration
analysis, higher harmonics also tend to be filtered out. The mechanism by which squaring
of velocity produces this enhanced harmonic can be seen as follows. The velocity signal has
a form similar to:

v(t) = 1 + sin(t), (S4)

so that the change in kinetic energy is proportional to:

v2(t) = (1 + sin(t))2 = 1 + 2 sin(t) + sin2(t). (S5)
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A double angle formula implies:

sin2(t) =
1− cos(2t)

2
, (S6)

and substituting Eqn S6 into Eqn S5 gives:

v2(t) =
3

2
+ 2 sin(t)− cos(2t)

2
. (S7)

Therefore a signal with a frequency of 1 Hz (Eqn S4) acquires an harmonic with frequency
of 2 Hz (Eqn S7). To determine the sensitivity of the kinetic energy versus mass regression
on filtering effects, we recalculated the regression in manuscript Fig. 6 with a 1 Hz low
pass filter. We used a 1 Hz rather than a 4 Hz cut off for the low pass filter because the
velocity squared signal typically shows only one smaller significantly sized harmonic and not
the proliferation of higher harmonics of similar magnitude seen in the acceleration signal
(Figs S4, S5). And since the fundamental frequency is below 0.5 Hz, the harmonic is below
1 Hz. For the example figures, we chose an example with the strongest harmonic signal in
our data; most videos have fewer and smaller harmonics.

The regression in Fig. 6 (scaling of the potential and kinetic energy with mass) was
recalculated with position data filtered with the Mathematica low pass filter with a 1 Hz cut
off frequency. As expected, when compared to the analysis shown in Fig. 6, the figure based
on low pass filtered data looked nearly identical and the potential energy scaling did not
change much: the exponent changed from 1.10 to 1.09 and the magnitude of the coefficient
changed from 4.14 × 10−7 to 4.52 × 10−7. This change is as expected because the low
pass filter allows through more signal, raising the overall amount of potential energy. And
because frequency is a function of mass and lower masses have higher frequencies and higher
frequencies are more attenuated by the filter, then lower masses will be raised more than
higher masses, thus slightly decreasing the slope reported on the curve. Similarly, for the
kinetic energy: the exponent changed from 1.09 to 1.03 and the magnitude of the coefficient
changed from 2.62 × 10−9 to 4.05 × 10−9. The changes were thus in the same direction but
of a larger magnitude than those seen in the potential energy, because for the kinetic energy
there is more signal at higher frequencies. Overall, the conclusion is similar: both potential
and kinetic energy depend mostly on mass and changes in potential energy are two orders
of magnitude higher than changes in kinetic energy.

5 Root Mean Square as a Measure of Signal Size
The position, velocity, and acceleration signals are constituted of a fundamental frequency
and harmonics that can be of similar size (Figs. S4, S5). The root mean square (RMS) is a
useful way to measure the size of a signal composed of several frequencies of interest.

For a function:
f(t) = a+ b sin(t) + c sin(2t) + d sin(3t) (S8)

the root-mean-square of the function is:

RMS(f(t)) =

√
1

2π − 0

∫ 2π

0

f(t)2 dt =

√
2a2 + b2 + c2 + d2√

2
(S9)
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The above relationships (Eqns. S8, S9) are true for orthogonal functions (e.g. sums of
different frequencies) and for time periods that are multiples of 2π and are also approximately
true for sufficiently long time periods even if not multiples of 2π. Thus the RMS is a way
of describing the size of a signal and has a well-defined mathematical relationship to the
amplitudes of the constituent signals. The RMS does not underrepresent the amplitude of
a signal; it is merely a different expression of the size of a signal. Furthermore it provides a
way to measure the size of a signal composed of several frequencies. We used the RMS to
provide a summary measure of acceleration size for the purpose of estimating Froude number
as described in the manuscript.

6 Sensitivity Analysis of the Effect of Low Pass Filter
Cut Off Frequency on Estimates of Froude Number

Froude number was calculated as detailed in the paper and the values given in Table S1
are the means and standard errors for all sea stars for the vertical Froude number and the
horizontal Froude number. The real Froude numbers are probably somewhere in the middle
of these values since Ω = 4 does include significant noise and Ω = 1 is probably missing some
real signal.

Table S1. The effect of the low pass filter cut-off frequency, Ω, on the mean Froude 
number esti-mates.

Ω Frz s.e.m. Frxy s.e.m.

1 0.0018 ±0.00011 0.0033 ±0.00018
2 0.0025 ±0.00014 0.0048 ±0.00027
3 0.0032 ±0.00016 0.0060 ±0.00032
4 0.0037 ±0.00017 0.0068 ±0.00036
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Movie 1. Simultaneous views from the side and bottom cameras showing the sea star whose 
data is shown in Fig. 5C. This composite video was made from the original side and bottom 
videos. It was prepared by inserting the original videos into PowerPoint to get composite side 
and bottom videos, playing them simultaneously in PowerPoint, and taking a QuickTime 
movie of the composite videos. Frame rate and resolution are likely altered relative to the 
originals, so these supplemental videos should not be used by readers to obtain data.
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Fig. S1. Close up of z position data, shown in Figure S2C, showing the scatter in the raw data 
(black), and the effect of a 30 point moving average (red) and a 0.8 Hz low pass filter (dark 
blue). Note that the black and blue points line up in time and that each red point falls between 
each pair of black points; those red points have been correctly positioned in time by the 30-
point moving average process we describe. There is an optical illusion that sometimes the red 
points appear closer to one side or the other of the gap.
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Fig. S2. For one example sea star video, raw data (black), 30-point moving averages (red), and 
0.8 Hz low pass filtered (dark blue) position for (A) x, (B) y and (C) z axes as well as (D) x-
velocity. Note that the position data appears to be similar filtered and unfiltered but the 
velocity data reveals high frequency noise. The Fourier transformed (E) z displacement and 
(F) x velocity show the effect of filtering out the high frequency noise.
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Fig. S3. (A) Discrete Fourier transforms (DFTs) of a hypothetical raw signal sampled at 30 Hz 
(black), a low pass 1 Hz filtered signal (light blue), and a 30 point moving average filtered 
signal (red). The hypothetical raw signal has random noise and several discrete frequency 
signals at intervals below 3 Hz. The low pass filter i s implemented i n M athematica with a 
cut-off frequency of 1 Hz. The cut-off frequency is represented at half its raw amplitude. 
Note that the 30 point moving average filter attenuates the s ignal more than the 1  Hz low 
pass filter a nd t hat t he 3 0 p oint moving a verage fi lter ha s a ty pically lo bbed sh ape with 
notches at 1 and 2 Hz whereas the low pass filter decreases m onotonically. (B) Histogram of 
the number of sea star videos with each ratio of filtered to raw Fourier transform p eak. We 
calculated the ratios of the maximum amplitude in each Fourier transform of the moving 
average filtered (red) and 0.8 Hz low pass filtered (dark blue) x-velocity in  each video to  the 
maximum peak in the Fourier transform of the raw x-velocity. Means of the ratios are 0.93
± 0.15 s.d. for the moving average and 0.96 ± 0.028 s.d. for the low pass filter. However,
the low pass filter has a much lower variance.
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Fig. S4. Example of the raw signal (black lines) filtered using the Mathematica low pass filter 
with a cut-off frequency of 1 Hz (light blue lines). First column is z-position, z-velocity, and z-
acceleration data as a function of time; second and third columns are discrete Fourier 
transforms (DFTs) of those data, with 0-4 Hz displayed in the second column and 0-14 Hz 
displayed in the third column. The cut-off frequency is represented at half its raw amplitude.
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Fig. S5. Example of the raw signal (black lines) filtered using the Mathematica low pass filter 
with a cut-off frequency of 4 Hz (light blue lines). First column is z-position, z-velocity, and z-
acceleration data as a function of time; second and third columns are discrete Fourier 
transforms (DFTs) of those data, with 0-4 Hz displayed in the second column and 0-14 Hz 
displayed in the third column. The cut-off frequency is represented at half its raw amplitude.
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