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Diet mediates thermal performance traits: implications for
marine ectotherms
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ABSTRACT
Thermal acclimation is a key process enabling ectotherms to cope
with temperature change. To undergo a successful acclimation
response, ectotherms require energy and nutritional building blocks
obtained from their diet. However, diet is often overlooked as a factor
that can alter acclimation responses. Using a temperate omnivorous
fish, opaleye (Girella nigricans), as a model system, we tested
the hypotheses that (1) diet can impact the magnitude of thermal
acclimation responses and (2) traits vary in their sensitivity to
both temperature acclimation and diet. We fed opaleye a simple
omnivorous diet (ad libitum Artemia sp. andUlva sp.) or a carnivorous
diet (ad libitum Artemia sp.) at two ecologically relevant temperatures
(12 and 20°C) and measured a suite of whole-animal (growth,
sprint speed, metabolism), organ (cardiac thermal tolerance)
and cellular-level traits (oxidative stress, glycolytic capacity). When
opaleye were offered two diet options compared with one, they had
reduced cardiovascular thermal performance and higher standard
metabolic rate under conditions representative of the maximal
seasonal temperature the population experiences (20°C). Further,
sprint speed and absolute aerobic scope were insensitive to diet and
temperature, while growth was highly sensitive to temperature but not
diet, and standard metabolic rate and maximum heart rate were
sensitive to both diet and temperature. Our results reveal that diet
influences thermal performance in trait-specific ways, which could
create diet trade-offs for generalist ectotherms living in thermally
variable environments. Ectotherms that alter their diet may be able to
regulate their performance at different environmental temperatures.
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INTRODUCTION
Understanding the full range and maximum capacity of ectotherm
physiological responses to environmental change is essential
to predict species’ vulnerability to global climate change (Huey
et al., 2012; Somero, 2011; Stillman, 2003). Temperature is a critical
environmental factor governing ectotherm physiology, behavior
and ecology (Brett, 1971). The current paradigm suggests that
ectotherms have three options when faced with unfavorable
temperatures: they can move to a more suitable habitat, adapt

over multiple generations or acclimate to the new conditions
(Daufresne et al., 2009; Glanville and Seebacher, 2006; Hofmann
and Todgham, 2010; Somero, 2011). Thermal acclimation is an
essential survival mechanism for ectotherms living in variable
environments and a critical coping mechanism against global
climate change (Bernhardt and Leslie, 2013; Jackson et al., 2021;
Seebacher et al., 2015). During thermal acclimation, ectotherms
undergo reversible phenotypic changes that improve their
performance at a given temperature (Fig. 1; e.g. enzyme activity,
membrane composition, mitochondrial density, oxygen transport,
organ morphology and function; Anttila et al., 2014; Chung and
Schulte, 2020; Ekström et al., 2016; Little et al., 2020a; Seebacher
et al., 2015). It is often assumed that ectotherms will achieve the
same level of performance after repeated exposures to a temperature,
as long as all other environmental conditions (i.e. salinity, pH,
dissolved oxygen) are held the same (Sinclair et al., 2016). To
undergo a successful acclimation response, ectotherms require
energy and nutritional building blocks obtained from their diet.
Diets vary considerably in nutritional and energetic content, which
suggests that different diets may mediate distinct thermal
acclimation responses (Fig. 1).

Food quality and availability can change seasonally, with global
climate change and across habitats (Alton et al., 2020; Arnold et al.,
2010; Birnie-Gauvin et al., 2017; Ho et al., 2010). Many ectotherms
are also generalists and vary their diet to meet their nutritional
requirements or maximize energy-use efficiency (Jobling, 2016;
Johnson et al., 2017; Kaiser and Hughes, 1993; Raubenheimer et al.,
2005; Rubio et al., 2003, 2009; Sánchez-Vázquez et al., 1998).
Some ectotherms also change their diet with temperature (Boersma
et al., 2016a; Carreira et al., 2016; Jang et al., 2015; Rho and Lee,
2017; Schmitz and Rosenblatt, 2017; Vejrí̌ková et al., 2016). For
example, multiple omnivorous fishes consume higher proportions
of algae as water temperatures increase (e.g. Behrens and Lafferty,
2012; Emde et al., 2016; González-Bergonzoni et al., 2016; Guinan
et al., 2015; Prejs, 1984). The exact reasons for these diet shifts are
unknown, with some suggesting that the optimal dietary protein to
carbohydrate ratio for ectotherms differs across temperatures (Lee
et al., 2015; Rho and Lee, 2017; Zhang et al., 2020), or that cold
temperature constrains the digestive physiology of herbivores and
omnivores (Floeter et al., 2005; González-Bergonzoni et al., 2012).
These proposed explanations hint at a broader hypothesis: that
omnivores consume different proportions of plants and animals to
regulate their physiological responses to changing temperatures.
More broadly, any changes in an ectotherm’s diet that coincide with
a change in environmental temperature (through differences in
dietary preference, availability or nutrient composition) might alter
its thermal performance.

To understand the interaction between diet and temperature, we
must consider how traits critical to survival may be differentially
affected (Fig. 1). Measuring thermal limits in conjunction with vital
biological rates provides comprehensive insight into ectothermReceived 10 May 2021; Accepted 1 October 2021
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thermal biology in variable and changing environments (Magozzi
and Calosi, 2015). A common assumption in thermal biology is
that biological rates have the same thermal sensitivity and that
aerobic capacity and baseline metabolism can be used as proxies
for many performance traits (Fry, 1947; Brett, 1971; Claireaux and
Lefrançois, 2007; Pörtner, 2001, 2010; for a critique, see Clark et al.,
2013; Schulte, 2015). However, there is growing support for a
multiple-performance, multiple-optima model, which states that
thermal sensitivity differs across biological rates (i.e. absolute
aerobic scope, standard metabolic rate, growth rate, sprint speed)
and is not always predictable based on aerobic capacity or baseline
metabolism (Clark et al., 2013; Dell et al., 2011; Kellermann et al.,
2019; Seebacher et al., 2015). For example, Healy and Schulte
(2012) demonstrated that specific growth rate was negative at
temperatures where absolute aerobic scope (i.e. maximum−standard
metabolic rate) was maximal in killifish. This model has been
challenging to test empirically as few performance traits are usually

measured per study and these traits are often considered separately
from upper and lower thermal limits (Magozzi and Calosi, 2015). If
diet and temperature together influence biological rates and thermal
limits, ectotherms may be incentivized to make diet choices that
improve their thermal responses. However, if fitness-enhancing traits
are differentially affected by diet and temperature, there could be
important performance consequences associated with an ectotherm’s
ultimate diet choices.

Opaleye (Girella nigricans) are temperate omnivorous fish that
consume a greater proportion of algae in warmer water across their
geographic range (Behrens and Lafferty, 2012), which makes them an
idealmodel for exploring diet effects on thermal acclimation responses.
Here, we tested the hypothesis that when offered a simple choice
omnivorous diet (ad libitum Artemia sp. and Ulva sp.) versus a
carnivorous diet (ad libitum Artemia sp. only) at two ecologically
relevant temperatures (12 and 20°C), opaleye would make diet choices
that altered their thermal acclimation responses in trait-specific ways.
As juveniles, opaleye live in the intertidal zone where they face many
challenges, including escaping predators, maintaining growth rates and
dealing with high daily thermal variation (Somero, 2010). Therefore,
we adopted an integrative approach and assessed the opaleye’s thermal
acclimation responses at the whole-animal (growth, sprint speed,
metabolism, critical thermal limits), organ (cardiac thermal limits) and
cellular (glycolytic capacity, oxidative stress) levels to compare
ecologically and physiologically relevant performance traits and
thermal limits for the fish in their juvenile life stage and identify any
trade-offs associated with the treatment diets. We hypothesized that
biological rates would increase with temperature but have different
thermal sensitivities depending on the diet treatment. Specifically, we
predicted that there would be costs to consuming the omnivorous diet
(e.g. higher digestive infrastructure costs resulting in higher
maintenance metabolism or reduced growth from lower protein diet)
that would be offset by increases in the performance of other traits (e.g.
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ABT Arrhenius breakpoint temperature
CTmax critical thermal maxima
CTmin critical thermal minima
fH heart rate
fH,max maximum overall heart rate
fH,min minimum overall heart rate
MMR maximum metabolic rate
SMR standard metabolic rate
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Tarr temperature at the first cardiac arrhythmia
Tpeak temperature corresponding to maximum heart rate
TL total length
TPC thermal performance curve
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Fig. 1. Conceptual graphs illustrating how diet may affect thermal acclimation responses and how those effects could be trait specific. (A) Diet can
affect thermal performance. The graph shows how acute thermal performance curves (TPC) shift towards the acclimation temperature (Tacc), where blue is the
acute TPC after acclimation to cold and red is the acute TPC after acclimation to warm conditions. Note that both cold and warm acclimation may be affected by
diet, but only potential effects of warm acclimation are displayed for simplicity. Diet may influence the shape (height and breadth) of those acute TPC (indicated
by pink curves) or the location of the curve along the x-axis (i.e. temperature of peak performance). These effects could influence the slope of the line between
reaction norms (performance at acclimation conditions, indicated by black lines). (B) Diet and temperature may interact and have trait-specific effects. The
graphs are a series of hypothetical reaction norm plots for various traits. These traits can have different diet and temperature sensitivities, which could create
performance trade-offs for ectotherms consuming different diets.
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thermal limits, sprint performance, glycolytic capacity, oxidative
stress).

MATERIALS AND METHODS
Fish collection
Juvenile opaleye, Girella nigricans (Ayres 1860), were collected in
spring 2019 [experiment 1: respirometry, sprint, growth, critical
thermal maxima (CTmax/CTmin); N=144, mean±s.d. body mass
(BM) 14.75±3.53 g and total length (TL) 9.42±0.76 cm] and in
winter 2020 (experiment 2: Arrhenius breakpoint test; N=126, BM
19.5±6.1 g and TL 10.5±1.1 cm) by seine or hook and line from
Santa Barbara Harbor, CA, USA (34.40829, −119.691389). Fish
were transported in coolers (>70% air saturation) to the University
of California, Santa Barbara and held in 95 l fiberglass flow-through
seawater tanks (9–12 fish per tank). Prior to the start of acclimation,
fish were held at ambient conditions (mean±s.d. experiment 1:
13.9±1.1°C and experiment 2: 16.2±0.6°C) and fed ad libitum
omnivorous diets (Ulva sp. and Artemia sp.). All protocols were
approved by the Institutional Animal Care and Use Committee at the
University of California, Santa Barbara.

Acclimation and diet treatments
Fish were randomly assigned to one of two ecologically relevant
temperatures (12 and 20°C, representative of the low and high
seasonal temperatures experienced in Santa Barbara, CA, USA;
Fig. 2) and fed one of two ad libitum diets (omnivorous: Artemia
sp. and Ulva sp.; and carnivorous: Artemia sp.) in a factorial design
with 3–4 replicate tanks per treatment. Ulva sp. (collected by
hand from Goleta Beach, Goleta, CA, USA) and Artemia sp.
(brineshrimpdirect.com) were replaced every morning. Diets were
selected based on stomach content information from Barry and Ehret
(1993), which demonstrated that both Ulva sp. and small crustaceans
constitute a significant portion of wild opaleye diets, and Behrens and
Lafferty (2007), which used Ulva sp. as a representative herbivorous
diet for a lab study on opaleye. Preliminary data demonstrated that
Ulva sp.-only diets were not nutritionally sufficient. Dietary
proximate analysis is provided in Table S1.
Food consumption rates were assessed during preliminary trials.

All tanks were fasted for 24 h, and then the fish were offered their

pre-weighed diet treatment for 1 h. The remaining Artemia sp. and
Ulva sp. were removed and weighed. However, we were unable to
obtain any measurable estimates of Ulva sp. consumption during
these brief 1 h trials. At 20°C, Artemia sp. consumption was ∼23%
lower in the omnivorous treatment (7.39% body mass) than in the
carnivorous treatment (9.58% body mass), suggesting that the fish
in the omnivorous treatment were supplementing their diet with
Ulva sp. This is consistent with our visual observations that the fish
readily consumed Ulva sp. in the warm treatment (though they
consistently ate more Artemia sp. compared with Ulva sp.). In
contrast, at 12°C, Artemia sp. consumption was only∼10% lower in
the omnivorous treatment (3.65% body mass) compared with
the carnivorous (4.07% body mass) and we did not observe the fish
consuming Ulva sp. at this temperature. This suggests that the
fish either were not consuming Ulva sp. or were doing so in
small amounts at the cold acclimation treatment. Further,
opaleye ate less at 12°C compared to 20°C. Overall, Artemia sp.
consumption was ∼55% lower in the cold treatment compared with
the warm.

Temperature and dissolved oxygen content were monitored 1–2
times daily by hand using a Digi-sense Traceable Singe RTD
thermometer (Cole Palmer, IL, USA) and an OxyGuard handy
Polaris 2 dissolved oxygen meter (OxyGuard International A/S,
Farum, Denmark). Oxygen was maintained at >80% air saturation
throughout the study. The average temperature per treatment was
20.0±0.4 and 12.2±0.4°C in the two experiments (mean±s.d.;
determined from in-tank Thermochron 4 K iButtons programmed to
record every 20 min). Fish were acclimated to treatment conditions
for 3 weeks prior to experimentation (14 h:10 h light:dark cycle).
All individuals were fasted for 36–40 h prior to respirometry,
thermal limit and sprint testing. All tests were performed at
acclimation temperatures unless otherwise noted.

Intermittent flow respirometry
Respirometry was conducted using 12 respirometers in one of three
sizes: 349, 579 and 711 ml. Water was flushed and recirculated
through the chamber at a rate of 2.5 l min−1 (Eheim Universal
300 pumps, Eheim, Germany). Dissolved oxygen was measured
continuously in each respirometer using a robust oxygen probe and
Firesting optical oxygen meter (Pyroscience, Germany).

Fish were transferred with minimal air exposure (<10 s) to a
cylindrical chase tank (20 l), where they were chased by hand for
5 min and then immediately placed in the respirometers to obtain an
estimate of their maximum metabolic rate (MMR) (this chase
protocol was the most effective at eliciting MMR in opaleye; data not
shown). Chases occurred between 10:30 h and 14:30 h and were
followed by ∼20 h of automated measurement cycles (15 min total
flush/recirculation cycle). Tanks were covered in shade cloth to
minimize potential disturbance. Fish were held at either 20.1±0.6 or
11.8±0.4°C (mean±s.d.) across all tests. Background respiration was
measured before and after each test for ≥3 full measurement cycles.

After 20 h in the respirometers, fish were removed and
anesthetized in 80 mg l−1 MS-222 buffered with 80 mg l−1

NaHCO3
− (Sigma Aldrich Co., St Louis, MO, USA). Each fish

was weighed (mass in g), measured for TL, and tagged with a
unique color code using Visible Implant Elastomer Tags (Northwest
Marine Fisheries Inc., Seattle, WA, USA).

Data analysis for respirometry data
All oxygen consumption data were analyzed in R (version 3.5.1)
using best practices as outlined in Rosewarne et al. (2016) andChabot
et al. (2016) (http://www.R-project.org/). The data were used to
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Fig. 2. Temperature data collected in 2019 at Stearns Wharf in Santa
Barbara, CA, USA (located next to Santa Barbara Harbor, where fish were
collected). The temperature sensor was mounted at 2 m depth and set to
record every 4 min. Blue lines indicate treatment temperatures (12 and 20°C).
Data source: Washburn, 2021 and Southern California Coastal Ocean
Observing System (SCCOOS; https://www.sccoos.org/data/autoss/timeline/?
main=single&station=stearns_wharf ).

3

RESEARCH ARTICLE Journal of Experimental Biology (2021) 224, jeb242846. doi:10.1242/jeb.242846

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

https://journals.biologists.com/jeb/article-lookup/DOI/10.1242/jeb.242846
http://www.R-project.org/
http://www.R-project.org/
https://www.sccoos.org/data/autoss/timeline/?main=single&station=stearns_wharf
https://www.sccoos.org/data/autoss/timeline/?main=single&station=stearns_wharf
https://www.sccoos.org/data/autoss/timeline/?main=single&station=stearns_wharf


calculate four metabolic rate metrics which define an individual’s
aerobic energy budget. Standard metabolic rate (SMR) is the baseline
metabolic rate needed to survive, and MMR is the maximum rate
of energy expenditure. The difference between these two metabolic
rates is the absolute aerobic scope (AAS=MMR−SMR), which is
representative of the aerobic energy budget a fish has to perform all
critical biological processes (Clark et al., 2013). Factorial aerobic
scope (FAS=MMR/SMR) is another estimate of the aerobic energy
budget and represents the scope for increasing metabolic rate
proportional to SMR (Clark et al., 2013). Only fish for which
>75% of measurements followed a linear decrease with R2>0.9 were
included in SMR analysis (i.e. >60 ṀO2

measurements total per fish;
N=6–10 per treatment). SMR was calculated as the lowest 15%
quantile of all recorded measurement cycles (Chabot et al., 2016).
MMR was calculated as the steepest 120 s slope during the first
measurement period (Little et al., 2020b; N=6–11 per treatment). All
presented metabolic rate measurements are body mass specific (i.e.
presented asmgO2 kg−1 min−1).We tested for the need to account for
body size scaling but given the small size range in the study (8–39 g),
we did not find evidence of a scaling relationship when the data were
plotted on log–log plots (data not shown). Given the lack of
knowledge on a species-specific scaling exponent, we did not scale
the metabolism to a common body size using an allometric scaling
slope. Background respiration was assessed and, when applicable, a
linear regression was fitted between the pre- and post-background
measurements and subtracted from the corresponding ṀO2

values
(Rodgers et al., 2016; Rosewarne et al., 2016).

Sprint speed
We used a modified protocol based on Kraskura and Nelson
(2018). The setup included a custom-built acrylic sprint chamber
(128 cm×30 cm×30 cm, L×W×H; water height 10 cm; water
volume 41.6 l) with a camera (Canon EOS Rebel T4i) positioned
above the sprint chamber to ensure full view of the work area. Each
sprint trial was recorded at 60 frames s−1 and saved for digital
analysis. Fish were placed behind a gated and shaded area in a sprint
chamber and habituated to the chamber for 10 min. The gate was
removed and the fish were motivated to sprint by manual chasing.
Each fish performed ≤7 trials with 5 min of recovery between trials.
Only trial videos where the fish had undergone a sprint with (1) a
straight path of >20 cm, (2) an unobstructed view of 50 cm of the
chamber, (3) active and continued bursts, and (4) no back and forth
swimming around the chamber were used in subsequent analysis.
Temperature was monitored throughout all trials and remained
within ±1°C of the test temperature. All videos used in analysis were
visualized and validated by ≥2 researchers. Videos were tracked in
ImageJ/MtrackJ and subsequently analyzed in R to determine the
fastest 5 frames of sprinting (∼10 cm) per trial; 2–3 trials were
analyzed per fish and averaged to determine each fish’s sprint
performance (cm s−1) (Figs S1 and S2; N=8–10 per treatment). All
fish were given at least 3 weeks of recovery between respirometry or
thermal limit experiments and the sprint test.

Thermal limits: CTmax and CTmin testing
We used a standardized critical thermal maxima and minima tests
(CTmax and CTmin, respectively) as described in Beitinger and
Lutterschmidt (2011). CTmax and CTmin represent the most extreme
temperatures a fish can survive at for a short period of time. Briefly,
3–4 fish per tank were transferred to the testing tank
(78 cm×61 cm×18 cm, L×W×H; water height 12 cm, water
volume 57 l) at their treatment temperature with minimal air
exposure (<10 s; total N=8–12 per treatment). After a brief

habituation period (∼5 min), the test tank was heated (CTmax;
1500 W immersion heater, Process Technology, Willoughby, OH,
USA) or cooled (CTmin; 1 HP AquaEuro chiller, AquaEuroUSA,
Los Angeles, CA, USA) at a rate of ∼0.3°C min−1 until fish lost the
ability to maintain their righting response. Temperature was
recorded at the loss of equilibrium and the fish were immediately
placed in a recovery tank at an intermediate temperature before
being returned to their treatment tanks. All fish fully recovered
following the critical thermal tests.

Growth
All fish were weighed and measured for length prior to acclimation
and again after 8 weeks under treatment conditions (note that some
had been randomly removed for tissue sample collection, see below)
to estimate growth across tanks (i.e. average weight gain per week).

Dissections and frozen tissue assays
Fish from each treatment (N=6 per treatment) were euthanized by
cerebral concussion followed by severing of the spinal cord on day
27–34 of acclimation after the aerobic scope trials were complete.
Morphometrics (body mass and TL) were measured, and a white
muscle and liver sample were flash frozen in liquid nitrogen and
stored at −80°C for future analysis. Stomach and remaining
gut contents were emptied and leftover fish remains were stored at
−20°C for proximate analysis (see Supplementary Materials and
Methods and Table S1).

Lactate dehydrogenase assays
Lactate dehydrogenase activity assays were performed as outlined in
Little et al. (2020a) as a proxy for glycolytic capacity in white
muscle, where high levels of lactate dehydrogenase activity indicate
that the animal has a high capacity to support anaerobic ATP
production to fuel burst swimming or hypoxia tolerance (Little
et al., 2020a). Briefly, white muscle samples were homogenized in
homogenization buffer (0.1% Triton, 50 mmol l−1 Hepes,
1 mmol l−1 EDTA, pH 7.4 buffer) before being run in triplicate
(intra-assay coefficient of variation, CV <15%) on a SpectraMax
iD3 Multi-Mode Microplate Reader (Molecular Devices) using a
wavelength of 340 nm to measure the disappearance of NADH. The
assay was repeated at 8, 12, 20, 26 and 32°C.

Lipid peroxidation assays
Thiobarbituric acid reactive substances were quantified in the liver
to estimate lipid peroxidation as a proxy for oxidative stress using a
commercially available fluorometric assay kit (Cayman Chemical).
Here, higher levels of lipid peroxidation are indicative of greater
oxidative damage to cellular components (Castro et al., 2012).
Samples were homogenized in RIPA buffer and treated according to
the manufacturer’s instructions before being run in duplicate at an
excitation wavelength of 544 nm and emission wavelength of
590 nm.

Thermal limits: Arrhenius breakpoint temperature test
Arrhenius breakpoint temperature (ABT) tests on the heart were
conducted (N=6–14 per test and per treatment) as outlined in
Casselman et al. (2012) and Gilbert et al. (2020). Briefly, fish were
anesthetized in seawater containing 80 mg l−1 MS-222 buffered
with 1 g l−1 NaHCO3

− before being placed ventral side up in an
experimental sling in the test tank (10 l seawater containing buffered
65 mg l−1 MS-222). Water was circulated past the gills to irrigate
them. Stainless Steel Needle Tip Electrodes (ADInstruments Inc.,
Colorado Springs, CO, USA) were inserted just under the skin to
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detect an ECG signal, which was amplified using a Dual Bio Amp
amplifier (ADInstruments Inc.) and filtered (filters: 60 Hz Notch
filter; mains filter; low pass: 2 kHz; high pass: 10 Hz; range: 2 mV).
After a 30 min equilibration period at the acclimation temperature

(Ferreira et al., 2014; Hansen et al., 2017), atropine sulfate was
injected intraperitoneally (1.2 mg kg−1 in 0.9% NaCl) to block
vagal tone followed by isoproterenol (4 μg kg−1 in 0.9% NaCl) to
maximally stimulate β-adrenoreceptors. Any fish that did not
respond to the drug injections or for which experimental error
occurred (e.g. water pump failure) were removed from the analysis
and not considered further. These drug concentrations were tested
prior to experimentation to ensure doubling the concentration did
not further increase heart rate ( fH; beats min−1). Fifteen minutes
after isoproterenol injection, water temperature was heated (warm
ABT test) or cooled (cold ABT test) at 1°C every 6 min (Polystat
recirculating heater/chiller; Cole-Palmer, Vernon Hills, IL, USA).
At each 1°C interval, fH and temperature were stabilized to record a
value for fH. This procedure was repeated until the onset of cardiac
arrythmia (Tarr), as indicated by a transition from rhythmic to
arrhythmic beating or a missed QRS peak resulting in a precipitous
drop in fH (Casselman et al., 2012) or until the known average
CTmax for the species (generally 0–5°C higher than Tarr; Chen et al.,
2015; Muñoz et al., 2014; Safi et al., 2019), to ensure that curves
could later be fitted to the data for comparisons of acute thermal
performance curves across treatments. All fish were immediately
euthanized at the end of the test.

Data analysis for ABT tests
All ECG analyses were performed in LabChart software (www.
adinstruments.com). fH was calculated for each temperature
increment from 15 continuous seconds of measurements using
automated ECG analysis software in LabChart (Gradil et al., 2016).
The heart may set upper thermal tolerance temperatures in fish
(Anttila et al., 2014; Muñoz et al., 2014). The warm ABT test
measures three sublethal thermal limits on cardiac function (TAB,
Tpeak, Tarr). Each of these limits indicates transition temperatures
where the heart’s capacity to transport oxygen, nutrients and
immune cells becomes compromised (Anttila et al., 2014; Muñoz
et al., 2014). The first thermal limit (TAB) is highly correlated with
the thermal optimum for aerobic scope in other teleosts (Anttila
et al., 2013; Ferreira et al., 2014). TAB was calculated by performing
ABT tests on the rising phase of the thermal performance curve for
fH using segmented (v1.1-0; Muggeo, 2008) in R. The temperature
corresponding to the breakpoint in fH was defined as TAB (warm
ABT test) or TAB-cold (cold ABT test). Overall maximum heart rate
( fH,max) was defined as the highest fH recorded during the 15 s
measurement phases in the warm ABT test and minimum heart rate
( fH,min) was defined as the lowest fH recorded during the 15 s
measurement phases during the cold ABT test. Peak temperature
(Tpeak) was the temperature corresponding to fH,max.

Statistical analysis
All data were statistically analyzed using R (version 3.5.1). All
metrics were investigated for normality using Shapiro–Wilk tests
and quantile–quantile plots, and for heteroscedasticity using
Levene’s test. Data that were not normally distributed were log-
transformed before statistical analysis (only FAS). Data are
displayed with untransformed values. All data were statistically
analyzed (significance level α=0.05) using a 2-way ANOVA (Car
v3.0-2; Fox and Weisberg, 2011) with post hoc Tukey HSD, except
for the thermal limits from the cold ABT, which were analyzed
using a t-test. Differences between treatments were also assessed

using Cohen’s D-tests (effsize; https://CRAN.R-project.org/
package=effsize). Note that 12°C fish were not tested for the cold
ABT because of complications surrounding COVID-19 forcing the
early shutdown of the experiment. In all 2-way ANOVA tests,
significance of interaction between diet and temperature was tested
for and excluded when non-significant. Polynomial curves were
fitted to fH data and compared using Akaike information criterion
(AIC), where the fit with the lowest AIC score was assigned the best
fit model, but all models with ΔAIC<2 were considered (Burnham
and Anderson, 2002). Measures of thermal sensitivity for all
biological rates were calculated for each diet treatment using Q10

values, where:

Q10 ¼ R2

R1

ð10=ðT2�T1ÞÞ
; ð1Þ

R1 is the treatment mean at 12°C, R2 is the treatment mean at 20°C,
T1 is 12°C and T2 is 20°C.

RESULTS
Metabolic rates
Metabolism was influenced by diet and temperature, but each
metabolic rate responded differently (Figs 3 and 4). SMR was 28%
higher in the 20°C omnivorous diet treatment compared with the
carnivorous diet treatment, resulting in a significant interaction
between diet and temperature (Fig. 3A, Table 1). This was further
supported by a large effect size between the 20°C treatments
(Cohen’s D-test). In contrast, MMR significantly increased with
acclimation temperature, but did not differ across diet treatments
(Fig. 3B,C, Table 1). There was a marginal, but not significant diet
and temperature effect on AAS (Fig. 3C, Table 1). This was likely
driven by the high individual variability in MMR, as the effect of
diet on AAS had a P-value of 0.087 and medium effect sizes
between diet treatments at 20°C. In contrast, FAS in the 20°C
omnivorous diet treatment was significantly lower than that in the
carnivorous diet treatment (diet: d.f.=1, F=5.796, P=0.023), which
was largely driven by a 44% higher FAS (with a large effect size) in
the carnivorous versus omnivorous diet (Fig. 3D, Table 1).

Other biological rates and traits
Growth rate, sprint speed, lipid peroxidation and lactate
dehydrogenase activity were inconsistently affected by diet and
temperature (Fig. 4). Growth was significantly higher at 20°C but did
not differ across diets (Fig. 4, Table 1; Fig. S2). Unexpectedly, the
Q10 value for growth was higher than that for all other rates (28.05)
and not close to any of the Q10 values for metabolic rate (range
1.28–4.12; Fig. 4, Table 1; Fig. S2). Proximate analyses for whole
tissue did not differ between treatment groups (Table S1).

In contrast with growth, maximum sprint speed did not differ in
response to thermal acclimation (Q10=1.04) or diet treatment (Fig. 4,
Table 1; Figs S1 and S2). Similarly, lipid peroxidation in liver tissue
did not differ in response to temperature and showed a marginal
but insignificant effect of diet (Fig. 4; Fig. S2; temperature: d.f.=1,
F=0.318, P=0.579; diet: d.f.=1, F=3.260, P=0.085). Lactate
dehydrogenase activity in white muscle was moderately affected by
temperature acclimation (Q10=2.10), being higher at 20°C compared
with 12°C, but did not differ across diets (Fig. 4; Fig. S3). Lactate
dehydrogenase activity also increased with acute temperature
exposure (Fig. S3). Overall, Q10 values for the reaction norms
differed dramatically across biological rates, with sprint speed having
aQ10 of 1.04 (insensitive to temperature), while growth rate had aQ10

of 28.05 (highly sensitive to temperature) (Fig. 4).
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Thermal tolerance
All thermal limits increased with acclimation to 20°C (Fig. 5,
Table 2). Upper thermal limits (CTmax, TAB, Tpeak, Tarr) increased
by 2.6–5.3°C and CTmin increased by 2.1–2.3°C with warm
acclimation (Fig. 5, Table 2). Surprisingly, fH,max was significantly
lower in the omnivorous treatments, which was driven by a 10%
lower fH,max in the 20°C omnivorous treatment relative to the
carnivorous treatment (Fig. 5, Table 2). As expected, fH followed the

shape of an acute thermal performance curve (TPC), where it
increased with an acute temperature increase until Tpeak, at which
point fH began declining with temperature until the onset of cardiac
arrhythmia (Tarr; Fig. 5A). Thermal acclimation to 20°C shifted the
acute TPC for fH to the right of the TPC at 12°C (Fig. 5A). Therewas
evidence to support an effect of diet on model selection for fH in the
warm ABT test, where the best fit model by AIC was a third-order
polynomial curve that incorporated an interaction of acclimation

Fig. 4. Reaction norms plotted across all measured
biological rates and traits. Average data from each
treatment, scaled to the maximum average treatment value
(i.e. the maximum treatment value is equal to 100%). All
values are from fish tested at their acclimation temperature.
Graphs are arranged by level of biological organization
(cellular, organ, whole animal) and labelled by trait: SMR,
MMR, AAS (MMR–SMR), FAS (MMR/SMR), maximumoverall
heart rate ( fH,max), maximum sprint speed, growth rate, lipid
peroxidation (LPO) and lactate dehydrogenase activity (LDH).
Q10 values are listed for all biological rate measurements (i.e.
everything except LPO and FAS), as a range when the diet
treatments were statistically different and as individual values
when the diet treatments were not statistically different. Lines
and circles indicate reaction norms and colors indicate diet
treatment (blue, carnivorous diet; green, omnivorous diet).
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Fig. 3. Oxygen uptake rate (mg O2 kg−1 min−1) after an exhaustive chase protocol in opaleye acclimated to 12 or 20°C and fed either a carnivorous or
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6

RESEARCH ARTICLE Journal of Experimental Biology (2021) 224, jeb242846. doi:10.1242/jeb.242846

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

https://journals.biologists.com/jeb/article-lookup/DOI/10.1242/jeb.242846


temperature, acute test temperature and diet (Fig. 5A; Table S2).
These models demonstrated that the acute TPC for fH was lower
across temperatures in the 20°C choice treatment compared with
20°C carnivorous treatment, which was consistent with the observed
differences in fH,max (Fig. 5A). Altogether, these results demonstrate
that for the 20°C acclimated fish, the omnivorous diet reduced
overall cardiac function across temperatures but did not affect the
upper thermal tolerance limits on the heart.
The results of the cold ABT test showed similar evidence of

an effect of diet on fH and fH,min. Here, diet did not have a significant
effect on any cold thermal limits (CTmin, TAB-cold, Tarr-cold), but
fH,min was lower (16%) in the omnivorous treatment compared with
the carnivorous treatment at 20°C. There was also evidence to
support an effect of diet on model selection, where the best fit model
by AIC was a fourth order polynomial curve that incorporated an
effect of acute test temperature and diet (Fig. 5C; Table S2).

DISCUSSION
Using an omnivorous fish, opaleye, as a model species, we found
evidence that diet can influence thermal performance in ectotherms
and does so in trait-specific ways. This has critical implications
for our understanding of species responses to temperature change.
Specifically, we examined three concepts outlined in Fig. 1:
(1) whether diet and temperature acclimation can affect thermal
performance and limits, (2) whether ecologically important traits vary
in their diet and temperature sensitivity (integrating multiple levels of
biological organization) and (3) whether trait-specific variation in diet
and temperature responses creates performance trade-offs for opaleye
fed an omnivorous diet compared with a carnivorous diet.

Thermal limits increased with temperature but did not differ
across diet treatments
We assessed thermal limits using a standard and commonly used
critical thermal (CT) test, as well as an ABT test, which measures
thermal limits of the heart (Casselman et al., 2012). The heart may
be a primary regulator of functional thermal tolerance in fishes. It is
responsible for oxygen, immune cell, metabolite and waste transport
around the body and is thought to be the first organ system to fail at
extreme temperatures (Christen et al., 2018; Eliason and Anttila,
2017). The heart starts showing declines in performance (at TAB)
∼10–20°C lower than CTmax and fails (Tarr) at temperatures∼0–5°C
lower than CTmax in fishes (Chen et al., 2015; Muñoz et al., 2014;
Safi et al., 2019). As expected, all thermal limits increased with

temperature acclimation and CTmax was 2.7–3.8°C higher than Tarr.
Opaleye showed a highly plastic acclimation response across all
thermal limits, consistent with other temperate marine ectotherms
(Vinagre et al., 2016). However, their thermal limits did not differ
between diets.

While we did not observe a diet difference here, diet quality and
quantity can alter thermal limits in ectotherms (fishes: Hoar and
Cottle, 1952; Craig et al., 1995; Abdel-Ghany et al., 2019; Gomez
Isaza et al., 2019; Lee et al., 2016; Turko et al., 2020; Woiwode and
Adelman, 1992). Most previous studies used formulated diets
varying in lipid composition; thus, dietary lipid composition may be
a primary factor affecting thermal limits. This is critical to consider
in the context of aquaculture, where animal feeds should be
designed to ensure farmed animals have adequate thermal
performance and resistance to suboptimal temperatures. To our
knowledge, this is the first study to test the effect of quasi-natural
diets on the thermal acclimation of critical and cardiac thermal
limits in ectotherms. Research with natural diets is ecologically
relevant for ectotherms that consume broad diets and especially for
fish such as opaleye that seem to change their diet in response to
temperature (Behrens and Lafferty, 2007, 2012; Emde et al., 2016;
González-Bergonzoni et al., 2016; Guinan et al., 2015; Vejrí̌ková
et al., 2016). Climate change is altering the nutritional landscape for
many aquatic ectotherms (Birnie-Gauvin et al., 2017; Huey and
Kingsolver, 2019). Managers and biologists should consider the
effects of this on ectotherm thermal limits. Thus, future research
should explore whether other natural diets can influence thermal
limits in ectotherms, as this has critical implications for how they
may respond to global climate change.

Thermal acclimation responses did not scale with
temperature and diet equally across biological rates
The biological rates assessed here did not scale with diet and
temperature equally. Thermal sensitivity differed dramatically
across biological rates, where sprint speed did not differ with diet
and temperature acclimation (Q10=1.04), lactate dehydrogenase
activity was moderately affected by temperature (Q10=2.10), but
insensitive to diet, and growth was highly temperature sensitive
(Q10=28.05), but also not sensitive to the diet treatments used in this
study. These results are consistent with large scale meta-analyses,
which have revealed that Q10 values differ across biological rates
(Dell et al., 2011; Seebacher et al., 2015). Diet sensitivity was also
inconsistent across rates, where SMR and fH,max were sensitive to diet,

Table 1. Summary statistics for biological rates

Biological rate
Temp.
(°C)

Results Statistical parameters

Carnivorous Omnivorous Diet Temperature Diet×Temperature

n Mean±s.e.m. n Mean±s.e.m. d.f. F P d.f. F P d.f. F P

SMR (mg O2 kg−1 min−1) 12 6 0.66±0.07 7 0.67±0.14 1 8.577 0.007 1 147.093 <0.001 1 5.282 0.029
20 10 1.62±0.09 10 2.08±0.07

MMR (mg O2 kg−1 min−1) 12 6 5.49±0.28 6 5.15±0.45 1 1.061 0.311 1 16.542 <0.001
20 10 7.89±0.69 11 7.23±0.40

AAS (mg O2 kg−1 min−1) 12 6 4.84±0.23 6 4.46±0.41 1 3.131 0.087 1 3.656 0.066
20 10 6.27±0.66 10 5.05±0.40

FAS (MMR/SMR) 12 6 8.81±0.83 6 8.65±1.21 1 5.796 0.023 1 52.242 <0.001
20 10 4.94±0.41 10 3.43±0.17

Growth (g week−1) 12 3 0.03±0.19 3 0.08±0.01 1 0.003 0.958 1 23.498 <0.001
20 3 0.75±0.15 3 0.69±0.16

Sprint speed (cm s−1) 12 10 112.36±4.88 9 110.85±5.26 1 0.099 0.756 1 0.456 0.504
20 8 116.10±5.46 8 114.26±6.01

Means±s.e.m. for each test group and ANOVA results are presented. SMR, standard metabolic rate; MMR, maximum metabolic rate; AAS, absolute aerobic
scope; FAS, factorial aerobic scope; Temp., temperature, d.f., degrees of freedom.

7

RESEARCH ARTICLE Journal of Experimental Biology (2021) 224, jeb242846. doi:10.1242/jeb.242846

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

https://journals.biologists.com/jeb/article-lookup/DOI/10.1242/jeb.242846
https://journals.biologists.com/jeb/article-lookup/DOI/10.1242/jeb.242846


but all other rates were not. This was surprising for rates that
are known to be impacted by diet, such as growth rate. Diet has
been shown to have interactive effects with temperature on growth in
other ectotherms (Sengalese sole: Guerreiro et al., 2012; rohu:Mishra
and Samantaray, 2004; yellowtail kingfish: Ilham and Fotedar, 2016;
crustaceans: Malzahn et al., 2016; Persson et al., 2011; Ruiz et al.,
2020; Starke et al., 2020; insects: Kingsolver et al., 2006; Lee and
Roh, 2010). However, Ulva sp. supplementation has had mixed
effects on growth in aquaculture fish, with some studies showing
modest amounts of Ulva sp. reducing growth, while others finding
positive or no effect of Ulva sp. supplementation on growth (Wan

et al., 2019). Futurework should explore how broader diet differences
affect growth in relation to other important biological rates.

The effects of temperature on sprint speed in comparison to
lactate dehydrogenase activity were similarly unexpected. Sprinting
in fish is primarily driven by glycolytic fast twitch white muscle
(McDonald et al., 1998; Kraskura and Nelson, 2018). Lactate
dehydrogenase is a critical enzyme in lactic acid fermentation
during glycolysis. Thus, we expected that sprint performance would
have a comparable thermal sensitivity to lactate dehydrogenase
activity. Lactate dehydrogenase activity increased with temperature
acclimation, suggesting the opaleye had a greater anaerobic capacity
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Fig. 5. Cardiac thermal performance. (A) Individual- and treatment-level responses of heart rate ( fH) of opaleye during acute warming from 12°C (dark blue,
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Tpeak, temperature corresponding to maximum heart rate; CTmax, critical thermal maximum; CTmin, critical thermal minimum.
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at 20°C (McDonald et al., 1998). However, this did not translate to
increases in sprint performance. Other enzymes in glycolysis could
be rate-limiting steps (e.g. phosphofructokinase; McDonald et al.,
1998) and more highly correlated with sprint speed. Sprint speed
has been examined in one other diet×temperature study in fishes,
which measured macronutrient selection and temperature effects on
damselfish (Rowe et al., 2018). Macronutrient selection did not
change with temperature, but sprint speed was highest in the colder
temperature treatment (Rowe et al., 2018). Fish use two different
swimming modes: anaerobically powered burst swimming and
sustained aerobically powered swimming. These swimming modes
may be differentially affected by diet and temperature. The effect of
diet and temperature on aerobically powered swimming and
maximum swim speeds (i.e. maximum swimming speed, Umax,
and critical swimming speed, Ucrit) have been assessed in grey
mullet (Vagner et al., 2015, 2019), with no observed effect of diet,
but an effect of temperature on Umax and no effect of diet or
temperature onUcrit. Given that twometabolic traits, SMR and FAS,
were affected by diet and temperature in this study, future work
should explore how aerobically powered swimming is impacted by
different levels of omnivory.
The diverse diet and temperature responses that we observed

across biological rates resulted in no consistent pattern in the
thermal sensitivity of any metabolic rates or levels of biological
organization. The small number of papers that have measured the
interactive effects of diet and temperature on metabolic rates in other
ectotherms have found mixed results (i.e. insects: Alton et al., 2020;
Schmitz and Rosenblatt, 2017; fish: Pérez-Casanova et al., 2010;
Vagner et al., 2015). For example, Vagner et al. (2015) found an
interactive effect of dietary fatty acid composition and temperature
on the AAS of juvenile grey mullet. In contrast, Pérez-Casanova
et al. (2010) did not find any effects of macronutrient ratios on
metabolism in juvenile Atlantic cod and haddock. Our results were
especially surprising for SMR, as it is often assumed that
maintenance metabolism is coupled to all other biological rates
and should have the same thermal sensitivity (Gillooly et al., 2001;

Brown et al., 2004). Aerobic scope is also considered a master
physiological factor that determines the capacity for all other
aerobically powered functions (Fry, 1947; Brett, 1971; Claireaux
and Lefrançois, 2007; Pörtner, 2010), although this idea has been
heavily debated (Clark et al., 2013; Schulte, 2015). Here, AAS did
not differ in response to diet or temperature (although FAS did) and
there was also no observed pattern between AAS, SMR and other
biological rates. These results indicate that caution should be taken
when using AAS and SMR as indicators of overall performance or
proxies for other biological rates, especially when predicting the
effects of multiple factors, such as diet and temperature.

Performance costs and benefits for diet choice at
different acclimation temperatures
Contrary to our hypothesis, we did not find evidence of a
performance trade-off to the omnivorous diet used in this study.
Instead, opaleye that consumed the omnivorous diet displayed
several higher costs: lower fH across a thermal gradient, higher SMR
and reduced FAS when acclimated to 20°C. Given that the thermal
limits of the heart did not change with diet, it was remarkable
that diet downshifted the thermal performance curve for fH,max. A
reduction in fH,max indicates a reduced capacity to transport oxygen,
metabolites, immune cells and waste around the body. There are
several potential mechanisms that could have driven this reduction
in fH,max across acute temperatures. For example, differences in the
lipid composition of the diet can impact membrane remodeling,
which can affect cardiac function in fish (Chatelier et al., 2006;
McKenzie, 2001). Further, although Ulva sp. contains no known
herbivore deterrents, our results suggest some sort of anti-nutrient
effect of Ulva sp. supplementation, which could have caused the
observed reductions in cardiac thermal performance.

The higher SMR observed in the 20°C omnivorous treatment was
expected as omnivorous and herbivorous animals generally have
higher digestive infrastructure costs than carnivores (e.g. broader
digestive enzymes, higher gut surface area; Caruso and Sheridan,
2011; Clements et al., 2009; Horn, 1989). Consistent with the higher

Table 2. Summary statistics for all thermal limits

Thermal limit Temp. (°C)

Results Statistical parameters

Carnivorous Omnivorous Diet Temperature

n Mean±s.e.m. n Mean±s.e.m. d.f. F (or t*) P d.f. F P

CTmin 12 9 4.4±0.2 10 4.1±0.2 1 1.984 0.168 1 226.206 <0.001
20 12 6.5±0.1 8 6.4±0.1

TAB 12 6 20.1±0.7 7 19.0±0.9 1 2.127 0.153 1 110.743 <0.001
20 13 25.4±0.3 14 24.9±0.4

Tpeak 12 6 25.7±1.2 7 26.4±0.5 1 0.612 0.439 1 46.990 <0.001
20 13 30.4±0.3 14 29.5±0.4

Tarr 12 6 27.5±1.1 7 28.6±0.5 1 0.021 0.886 1 33.766 <0.001
20 13 31.8±0.4 14 31.2±0.5

CTmax 12 10 31.2±0.2 10 31.3±0.2 1 0.547 0.465 1 500.078 <0.001
20 8 35.0±0.2 10 35.0±0.1

fH,max 12 6 166.6±12.5 7 163.5±6.2 1 5.243 0.028 1 17.669 <0.001
20 13 204.8±4.4 14 184.4±5.4

Tarr-cold 12 NA NA NA NA 18 1.790* 0.090
20 9 5.8±0.3 11 4.7±0.5

TAB-cold 12 NA NA NA NA 14 −0.493* 0.630
20 8 11.0±1.0 8 11.7±0.8

fH,min 12 NA NA NA NA 18 2.407* 0.027
20 9 44.5±1.9 11 37.4±2.2

Means±s.e.m. for each test group and ANOVA results are presented. *Note that t-test results are reported on the results of the cold ABT test, as this test was only
run on 20°C acclimation fish because of complications surrounding COVID-19. CTmin, critical thermal minimum; TAB, breakpoint temperature of the heart; Tpeak,
temperature corresponding to maximum heart rate; Tarr, temperature at the onset of cardiac arrhythmia; CTmax, critical thermal maximum; fH,max, maximum heart
rate across entire warm ABT test; fH,min, minimum heart rate during cold ABT test.
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SMR at 20°C, the opaleye in the omnivorous treatment had a reduced
FAS (3.43) that was less than half that at 12°C (8.65). In contrast, the
carnivorous diet maintained a 44% higher FAS at 20°C (4.94)
compared with the omnivorous diet. FAS is indicative of the amount
of scope available to perform critical biological functions that scale
proportional to SMR (Farrell, 2016). Digestion generally requires at
least a doubling of SMR in many fishes (i.e. FAS>2; Chabot et al.,
2016; Farrell, 2016; McCue, 2006). This suggests that the opaleye in
the omnivorous treatment at 20°C may have been on the threshold of
having limited scope for activities beyond digestion. As climate
change increases the seasonal extreme temperatures and the frequency
of marine heatwaves in the rocky intertidal zone (IPCC, 2019), the
opaleye’s FAS will decrease further, which could limit other
important biological functions, such as digestion, and exacerbate
energetic tradeoffs associated with different diets. Thus, another
avenue for future researchwill be to untangle diet×temperature effects
on digestive costs (i.e. specific dynamic action) in relation toAAS and
digestion efficiency (Jutfelt et al., 2021).
Given that opaleye and other omnivorous fishes eat more plants in

warmer water in the wild, we expected there to be a performance
advantage to the omnivorous diet. We measured a suite of traits to
test for any performance benefits that may offset the costs of the
omnivorous treatment. Specifically, we explored how diet and
temperature affected (1) thermal tolerance, (2) maximum sprint
speed, (3) glycolytic capacity and (4) oxidative stress. We predicted
that because opaleye eat more plants in warmer water (Behrens and
Lafferty, 2012), the omnivorous diet would result in higher thermal
limits than the carnivorous diet at 20°C. However, we did not find
evidence of any benefits to the omnivorous diet. We also expected
that the higher lipid and protein content of the carnivorous treatment
would raise oxidative stress relative to the omnivorous diet. Analysis
of lipid peroxidation in liver tissue revealed a marginal trend of
higher oxidative stress in the omnivorous diet treatment. However,
antioxidant capacity could still have been higher in the omnivorous
treatment. For example, Coggins et al. (2017) examined the effect of
dietary glutathione supplementation on thermal limits, antioxidant
capacity and lipid peroxidation in Daphnia sp. As the glutathione
concentration increased, so did total antioxidant capacity, but
glutathione supplementation did not alter lipid peroxidation or
thermal limits (Coggins et al., 2017). In contrast, Castro et al. (2012)
examined the effect of macronutrient ratios (45% and 55% protein)
and temperature acclimation (12 and 18°C) on multiple antioxidant
enzymes and lipid peroxidation in juvenile Senegalese sole. Lipid
peroxidation differed across temperature treatments and was highest
in the 55% protein diet (Castro et al., 2012). The limited amount of
research on these interactions and inconclusiveness across studies
indicate that more research is needed to elucidate the role of dietary
antioxidants and macronutrient ratios in regulating oxidative stress
across temperatures and taxa.
While it was not within the scope of this study, other important

performance traits may have differed between the diet treatments.
These include, but are not limited to, differences in microbiome
diversity and function, visual acuity, cognitive ability, digestion
efficiency and digestive costs relative to aerobic scope, immune
function, aerobic swimming performance and cardiac stroke volume
(Glencross and Rutherford, 2010; Koven et al., 2018; Vagner et al.,
2014, 2019). It remains unclear whether opaleye and other
omnivorous ectotherms consume different proportions of plant to
animal to regulate their thermal responses. Here, the opaleye’s
omnivorous diet did not maximize their performance compared with a
more specialized carnivorous diet. However, many other factors
govern diet choice in the wild, including life history (Zhang et al.,

2020), competition (Pfenning, 1990), predation (Schmitz et al., 2016),
food availability (MacArthur and Pianka, 1966) and habitat structure
(Behrens and Lafferty, 2007). Therefore, the ecological benefits of
consuming an omnivorous diet may outweigh the physiological costs.

Many ectotherms change their diets with temperature; either
directly because their diet preference changes in response to
temperature (Boersma et al., 2016b; Carreira et al., 2016; Devries
and Appel, 2014; Lee et al., 2015; Lemoine et al., 2014; Rho and
Lee, 2017; Schmitz et al., 2016; Vejrí̌ková et al., 2016) or indirectly
because food availability or the nutritional content of a diet item
changes with temperature (Alton et al., 2020; Boersma et al., 2016b;
Cross et al., 2015; Ho et al., 2010). In either scenario, generalist
ectotherms that have the capacity to adjust their diet may be at an
advantage compared with those with more specialized inflexible
diets. However, the ultimate diet choices that ectotherms make may
not always be ‘better’ or ‘worse’ because diet and temperature can
interact and have trait-specific effects. Not all diet choices are
necessarily adaptive. Irrespective of the reasons why an ectotherm
eats what it eats, our work here demonstrates that diet choices have
consequences. These consequences have far-reaching implications,
including whether diet choice can facilitate geographic range
expansion, or colonization of warmer or cooler habitats; and further,
whether specialist diets constrain thermal niches or whether diet can
facilitate differences in acclimation rates or performance under
fluctuating temperatures. Overall, diet should be treated as an
interacting factor that has the capacity to modify the thermal
responses of ectotherms.

Concluding remarks
Thermal acclimation is a key mechanism that ectotherms employ to
maintain performance across a range of temperatures. Acclimation
requires energy and nutritional building blocks that ectotherms obtain
from their diet. Here, we explored whether different diets mediated
distinct thermal acclimation responses in an omnivorous fish,
opaleye. We found clear evidence that diet influences thermal
acclimation responses. However, there was no consistent pattern in
how different biological rates responded to the temperature and diet
treatments, with Q10 values ranging from 1 to 28. When confronted
with a seasonal warm temperature (20°C), the opaleye in the
omnivorous diet treatment had inferior performance (higher SMR,
lower FAS and lower cardiac performance) relative to the opaleye
fed a carnivorous diet treatment. Global climate change is already
changing the average and extreme temperatures that marine
ectotherms experience as well as their nutritional landscape (IPCC,
2019; Birnie-Gauvin et al., 2017). These environmental changes are
likely to interact and alter many ectotherms’ thermal performance in
the wild. Incorporating multiple interacting factors into our
understanding of species’ responses to global climate change is the
next step in ensuring that researchers capture the resilience of
different species and populations (Jackson et al., 2021). Accordingly,
diet is essential to consider when predicting ectotherm performance
in variable environments and in response to global climate change.
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Supplementary Materials and Methods

Proximate Analysis 
Frozen fish remains were homogenized using a Fisher Brand Bead Mill 24 and

subsamples of the homogenate were weighed and freeze dried (Labconco Lyophilizer). Protein: 
Protein content was estimated in triplicate (intra-assay CV% <10%) using a BCA assay with a 
72% TCA precipitation (Pierce BCA kit, ThermoFisher Scientific, MA, USA), where absorbance 
was measured at 562 nm. Lipids: Lipid content was estimated using a chloroform:methanol 
extraction as described in Mann and Gallager, 1985 and Johnson et al, 2017. Lipids from 50 mg 
of freeze-dried homogenized sample were extracted using 100 ul milliQ water and 1.5 ml 
chloroform:methanol (1:2) (vortexed, incubated at 4°C, centrifuged at 4000 rpm for 5 min). The 
supernatant was removed and remaining sample was re-extracted in 1.5 ml chloroform:methanol 
(2:1). The supernatants were pooled, mixed with 950 ul NaCl (0.7%), incubated at 4°C for 30 
min, then centrifuged (4000 rpm, 5 min), and the volume of the bottom layer was measured. 
Dried subsamples of the bottom layer were used to extrapolate lipid content to the entire sample. 
Ash Content: Ash content was determined by drying freeze-dried samples overnight at 100°C to 
account for any moisture that returned during sample storage. Samples were then weighed (~30 
mg) before being combusted in a muffle furnace at 450°C for 12 h and then re-weighed. 
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Table S1. Dietary and whole-body Proximate composition (% wet weight) 

Dietary Proximate composition (% wet weight) 
Experiment 1 Experiment 2 

Ulva Artemia Ulva Artemia 
% Moisture 82.04 ± 1.63 87.48 ± 0.91 75.33 ± 3.81 86.83 ± 0.38 
% Protein 1.47 ± 0.27 4.75 ± 0.51 1.95 ± 0.88 5.59 ± 0.62 
% Lipid 0.42 ± 0.05 1.23 ± 0.14 0.55 ± 0.10 1.84 ± 0.08 
% Ash 10.71 ± 1.87 1.44 ± NA 9.93 ± NA 1.78 ± 0.04 

Whole body Proximate composition (% wet weight) 
12°C 20°C 

Carnivorous Omnivorous Carnivorous Omnivorous 
% Moisture 70.15 ± 1.15 72.25 ± 1.40 72.98 ± 0.74 71.79 ± 0.45 
% Protein 13.40 ± 1.09 13.91 ± 1.21 12.61 ± 1.45 10.76 ± 0.85 
% Lipid 3.88 ± 0.41 3.08 ± 0.25 3.70 ± 0.63 3.93 ± 0.16 
% Ash 5.45 ± 0.84 4.31 ± 0.50 4.60 ± 0.60 5.26 ± 0.60 

Represented are means and standard error values for dietary proximate 
composition in Ulva sp., Artemia sp., and proximate body composition from 
whole opaleye from experiments 1 and 2. Proximate body composition were 
statistically analyzed using 2-way ANOVA and no significant differences were 
found between treatment groups. When sample size <3 standard error was not 
calculated and is listed as NA. 
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Table S2. AIC Outputs for Polynomial Curves. 

AIC outputs for warm ABT test fhmax polynomial curves 
Model Formula df AIC △AIC

Model 1 poly(acute_temp, 3) * diet * temp + (1 | fish_id) 18 5282.61153 0 
Model 2 poly(acute_temp, 3) * temp + diet + (1 | fish_id) 11 5295.12706 12.515531 
Model 3 poly(acute_temp, 3) * temp + (1 | fish_id) 10 5297.84122 15.2296905 
Model 4 poly(acute_temp, 2) * diet * temp + (1 | fish_id) 14 5331.73874 49.1272062 
Model 5 poly(acute_temp, 3) * diet + temp + (1 | fish_id) 11 5425.26489 142.653365 
Model 6 poly(acute_temp, 4) + temp + diet + (1 | fish_id) 9 5427.25882 144.64729 
Model 7 poly(acute_temp, 4) + temp * diet + (1 | fish_id) 10 5428.15216 145.540635 
Model 8 poly(acute_temp, 3) + temp + diet + (1 | fish_id) 8 5429.2756 146.664069 
Model 9 poly(acute_temp, 3) + temp * diet + (1 | fish_id) 9 5430.17554 147.564011 
Model 10 poly(acute_temp, 3) + temp + (1 | fish_id) 7 5432.27141 149.659875 
Model 11 poly(acute_temp, 3) + diet + (1 | fish_id) 7 5433.3873 150.775766 
Model 12 poly(acute_temp, 3) + (1 | fish_id) 6 5435.91176 153.300235 
Model 13 poly(acute_temp, 2) + temp + diet + (1 | fish_id) 7 5491.9684 209.356872 
Model 14 poly(acute_temp, 2) + temp * diet + (1 | fish_id) 8 5492.77923 210.167701 
Model 15 acute_temp + temp + diet + (1 | fish_id) 6 5742.45159 459.840058 
Model 16 acute_temp + temp * diet + (1 | fish_id) 7 5743.27212 460.660589 
Model 17 acute_temp + temp + (1 | fish_id) 5 5745.43438 462.822848 
Model 18 acute_temp + diet + (1 | fish_id) 5 5749.62894 467.017406 
Model 19 acute_temp + (1 | fish_id) 4 5751.89944 469.287913 

AIC outputs for cold test fhmax polynomial curves 
Model Formula df AIC △AIC

Model 1 poly(acute_temp, 4) + diet + (1 | fish_id) 8 1620.06402 0 
Model 2 poly(acute_temp, 4) * diet + (1 | fish_id) 12 1623.74238 3.67835332 
Model 3 poly(acute_temp, 3) + diet + (1 | fish_id) 7 1636.74603 16.6820023 
Model 4 poly(acute_temp, 3) * diet + (1 | fish_id) 10 1639.36915 19.3051258 
Model 5 poly(acute_temp, 3) + (1 | fish_id) 6 1640.02832 19.9642973 
Model 6 poly(acute_temp, 2) * diet + (1 | fish_id) 8 1640.27173 20.2077023 
Model 7 poly(acute_temp, 2) + diet + (1 | fish_id) 6 1641.6658 21.6017758 
Model 8 acute_temp + diet + (1 | fish_id) 5 1992.02421 371.960185 
Model 9 acute_temp + (1 | fish_id) 4 1994.25531 374.191287 

Represented are model formulas as input into R and AIC output results. df = degrees of freedom, AIC = 
Akaike Information Criterion △AIC = AIC(model)—AIC(min AIC value), acute_temp = acute 
temperature, fish_id = individual fish. 
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Fig. S1. Figure illustrating repeatability of sprint performance across individuals. Each dot indicates a 
max sprint performance (cm s-1) calculated from an individual sprint trial. Colors indicate treatments with 
dark blue (carnivorous diet at 12°C), dark green (omnivorous diet at 12°C), light blue (carnivorous diet at 
20°C), light green (omnivorous diet at 20°C).  
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Fig. S2. Performance in opaleye acclimated to 12°C or 20°C and fed either a carnivorous (blue) or 
omnivorous (green) diet. Presented are A) sprints measured as speed in cm s-1 and B) sprints 
measured as speed in BL s-1, C) Growth rate (average fish mass (g) gained per week per tank) D) 
Lipid Peroxidation (LPO) in liver tissue measured as malondialdehyde concentration (MDA) in μmol 
gram-1 of liver tissue. In panel A, B, D box plots represent interquartile ranges (boxes and whiskers), 
median values (solid lines) and outliers (> 1.5 beyond interquartile range) are plotted as data points 
outside the whiskers. In panel C, large circles and triangles indicate mean (± SEM) values for the 
carnivorous (Artemia sp.) and omnivorous diet treatments (Artemia sp. and Ulva sp.), respectively.
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Fig. S3.  Lactate dehydrogenase (LDH) activity in µmol per gram wet white muscle tissue weight in 
opaleye acclimated to 12°C (dark colors) or 20°C (light colors) and fed either a carnivorous (Artemia 
sp., represented as blues) or omnivorous diet (Artemia sp. and Ulva sp., represented as greens). Circles 
represent mean values and error bars indicate SEM. For each sample, LDH activity was measured at 5 
different temperatures (8, 12, 20, 26, 32°C). Lactate dehydrogenase activity was higher at 20°C 
compared to 12°C but did not differ across diets. Lactate dehydrogenase activity also increased with 
acute temperature exposure. Acute temp: df = 4, χ2 = 1061.711, p<0.001; acclimation temp: df = 1, χ2 = 
5.132, p = 0.023; diet: df = 1, χ2 = 0.172, p = 0.679; acute temp ×	acclimation temp: df = 4, χ2 = 22.526, 
p < 0.001. 
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