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A simple computational method to estimate stance velocity
in running
Geoffrey T. Burns1,2,* and Ronald F. Zernicke1,2,3,4

ABSTRACT
Running dynamical analyses typically approximate a runner’s stance
velocity as the average stride cycle velocity (the average running
speed). That approximation necessarily overestimates stance
velocity and biases subsequent results. Stance velocity is crucial in
kinetic spring–mass analyses of running, where approximation of a
runner’s impact angle and calculation of leg stiffness require that
input. Here, a new method is presented to approximate a runner’s
stance velocity via measurement of contact and flight times with the
runner’s average speed, leg length or height, and mass. This method
accurately estimated the stance velocity of simulated spring–mass
systems across typical running speeds of 3.5–5.5 m s−1 (r>0.99) and
more accurately estimated the impact angle and leg stiffness. The
method also accurately estimated the peak horizontal ground
reaction force across speeds (r=0.82), but the bias magnitude
increased with speed. Robustness of the new method was further
tested for runners at 2.5, 3.5 and 4.5 m s−1, and the new method
provided steeper impact angles than those from traditional estimates
and correspondingly higher leg stiffnesses, analogous to the
observations in the simulation models. Horizontal ground reaction
force estimates were weakly correlated in braking and propulsion.
They were improved by a corrective algorithm, but the intra- and
inter-individual variation persisted. The directionality and magnitude
of angle and stiffness estimates in the human runners were
similar to simulations, suggesting the new method more accurately
modeled runners’ spring–mass characteristics by using an accurate
approximation of stance velocity. The new method can improve
traditional kinetic analyses of running where stance velocity
recordings are not captured with kinematic recordings and extend
opportunities for accurate field-based analyses with limited
measurement sources.

KEY WORDS: SLIP, Horizontal force, Impact angle, Locomotion,
Spring–mass, Stiffness

INTRODUCTION
The spring–mass model is commonly used to characterize the
systemic bouncing behavior of running bodies (Blickhan, 1989;
McMahon and Cheng, 1990), and it is most frequently used to

approximate the ‘stiffness’ of a runner – his or her linearly elastic
spring constant (Brughelli and Cronin, 2008). Leg stiffness is
typically defined as the ratio of the maximal vertical force to the
leg-spring compression during stance. Its compression can be
directly estimated from kinematic recordings, but its calculation
more typically relies on three values: center-of-mass (CoM)
displacement during stance, resting spring length and impact (i.e.
touchdown) angle (Blum et al., 2009). CoM displacement can be
kinematically measured with motion capture recordings, kinetically
measured from twice-integrating the vertical ground reaction force
(Cavagna, 1975), or temporally approximated with contact and
flight times (Morin et al., 2005). Spring length is the distance
between the runner’s CoM and center-of-pressure (CoP) on the
ground, and its resting length (L0) is commonly approximated as
the distance from the runner’s greater trochanter to the ground
while standing (Brughelli and Cronin, 2008). Impact angle can
be approximated from speed and temporal relationships or
kinematically approximated with motion capture equipment. The
most common way of approximating impact angle is the former,
using the method proposed by He and colleagues (1991). Their
approach uses average forward velocity (v) of the runner and
observed contact time (tc) to approximate step distance, with which
the approximated leg length can be used to trigonometrically infer
the angle:

aimpact ¼ cos�1 2L0
vtc

: ð1Þ

This method is conceptually simple and computationally efficient.
However, it uses the average forward velocity of the runner rather than
stance velocity, which will always be lower. That approximation will
therefore always overestimate the distance traveled during stance and
subsequently underestimate impact angle to be used in spring–mass
calculations. Despite that limitation, the simplicity of the method
affords researchers the ability to make spring–mass approximations
using only a force plate or an instrumented treadmill, as direct
measurement of stance and flight velocities otherwise requires
kinematic equipment or accelerometry recordings.

While the approximation in Eqn 1 is appealing in its simplicity
and efficiency, its consistent underestimation of the angle may be
problematic for three reasons. The first is in propagation of that error
through subsequent spring–mass calculations. As leg stiffness
estimation relies on that angle (or analogous stance distance),
inaccuracies in the estimation will manifest in inaccuracies in
estimations of leg-spring compression and leg-spring stiffness.
Thus, an underestimation of impact angle will overestimate leg
compression, which will subsequently underestimate stiffness
(Lipfert et al., 2012; Morin et al., 2005). It is unknown the extent
to which these deviations vary with speed. That leads to the second
issue, which is that of experimental generalizability. Inaccuracies in
measurements will make direct comparison of results (i.e. leg
stiffness) challenging between different measurement systems,Received 28 April 2021; Accepted 19 August 2021
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where kinetic recordings with the above assumptions are
systematically biased against other measurement systems, such as
kinematic-based (e.g. motion capture) estimations. No two methods
will be directly analogous, but additional sources of bias will
inevitably obscure interpretations of findings between studies.
Finally, the traditional angle approximation may prevent use of the
spring–mass model in a predictive fashion. Experimentally derived
spring–mass parameters have conventionally failed to produce
stable spring–mass model simulations (Lipfert et al., 2012; Ludwig
et al., 2012). Bullimore and Burn (2007) hypothesized that the
common use of the average gait-cycle velocity in the parameter
estimation was one of the primary reasons for the apparent
instability of observed spring–mass estimations in runners.
A method to more accurately approximate the stance velocity and

the subsequent impact angle for spring–mass running that does not
require kinematic recordings may be possible using the energetic
relationships of the spring-loaded inverted pendulum (SLIP)
dynamics. The first hypothesis of this investigation was that a
numerical relationship could be derived that estimates a runner’s
stance velocity using only the observed contact time and flight time
with the average gait cycle velocity and runner anthropometry. The
second hypothesis was that this approximation of stance velocity
would more accurately approximate the impact angle and leg
stiffness in simulated SLIP models across a variety of speeds and
sizes. The third hypothesis was that the new stance velocity
estimates could be used to estimate the peak horizontal braking and
propulsive forces. Morin et al. (2005) demonstrated the accuracy of
modeling the vertical ground reaction force of a runner using only
the contact time and flight time, but no such simple analog has been
demonstrated for the horizontal forces. The fourth and final
hypothesis was that the differences between the new method and
the conventional methods that were observed in analyzing SLIP
simulations would be analogous in human runners, suggesting a
more accurate characterization of the runner’s spring–mass system.

MATERIALS AND METHODS
Model derivation
Background
The SLIP is the physical model that underlies spring–mass analyses
of running (Blickhan, 1989). It has separate flight and stance
dynamics, where its motion during flight is described by simple
ballistic motion (Fig. 1):

d2x

dt2
¼ 0; ð2Þ

d2y

dt2
¼ �g: ð3Þ

During stance, the model contacts the ground at a fixed point and
impact angle, where the linear spring compresses as the model
simultaneously rotates forward over the contact point following
pendular motion. Its motion and leg compression are described by
the following:

d2x

dt2
¼ k

m
ðL0 � LÞ x� x0

L

� �
; ð4Þ

d2y

dt2
¼ k

m
ðL0 � LÞ y

L

� �
� g; ð5Þ

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
y2 � ðx� x0Þ2

q
; ð6Þ

where k is the spring constant, m is mass and L is spring length. As
the model is passive in nature, the impact angle and velocities are
equal to the takeoff angle and velocities in a stable system.While the
model is conceptually simple, its numerical complexity prevents
description via any closed form analytical solution, as these
equations of motion are non-integrable through the entirety of the
gait cycle.

Stance velocity approximation
Though a continuous solution for its motion cannot be solved, we
hypothesized that the duty factor and energy states of the spring–mass
SLIP model can be numerically related to approximate its stance
velocity and its subsequent impact angle. In a passive system
neglecting air resistance, the horizontal velocity during flight (vflight)
will remain constant and will be the initial horizontal velocity at
impact (vimpact). The identity vxi can therefore be used for both states:

vxi ¼ vflight ¼ vimpact: ð7Þ

If the change in forward velocity is approximated through stance as a
linear decrease from the initial horizontal velocity at impact (vxi) to
the horizontal velocity at midstance (vxf ), the velocity values could be
related to the average running speed (i.e. average step cycle horizontal
velocity, v) with the step-cycle duty factor, β:

b ¼ tc
tc þ tf

; ð8Þ

v � vxi þ vxf
2

bþ vxið1� bÞ; ð9Þ

where tf is flight time. The average stance velocity (vstance) can be
approximated as:

vstance � vxi þ vxf
2

: ð10Þ

In considering a case where the runner’s average horizontal velocity
(v) is known (e.g. treadmill setting or timing gate measurement), vxi
and vxf can thus be approximated and expressed via Eqns 1 and 9 as:

vxi �
v� ðð2L0 cosaimpactÞ=tcÞb

ð1� bÞ ; ð11Þ

vxf �
4L0 cosaimpact

tc
� v� ðð2L0 cosaimpactÞ=tcÞb

ð1� bÞ : ð12Þ

Here, v, β and L0 are known or measured quantities. Specifically, the
system has three distinct energy states: apex (Eapex), impact (Eimpact)
andmidstance (Emidstance). These states are illustrated in Fig. 1 with an
interpretation of a spring–mass model. At the apex, the vertical
velocity is zero, so the total system energy is defined by Eqn 13,
where y0 is the impact height of the SLIP model and yflight is the peak
vertical distance traveled during flight:

Eapex ¼ 1

2
mv2xi|fflffl{zfflffl}

kinetic

þmgðy0 þ yflightÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
potential

ðgravityÞ

: ð13Þ

Similarly, at midstance, the vertical velocity is also zero, so the total
system energy is defined by Eqn 14, where Δy is the maximal vertical
displacement during stance, k is the spring constant (i.e. stiffness) and
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ΔL is the maximal spring compression of the SLIP model (Fig. 1):

Emidstance ¼ 1

2
mv2xf|fflffl{zfflffl}
kinetic

þmgðy0 � DyÞ|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
potential

ðgravityÞ

þ 1

2
kDL2|fflfflffl{zfflfflffl}

potential

ðspringÞ

: ð14Þ

Because the system is assumed to be passive and energy is
conserved, the two energy states are equal: Eapex=Emidstance.
These two expressions can be algebraically combined to isolate vxi
and vxf:

0 ¼ v2xf � v2xi � 2gðyflight þ DyÞ þ k

m
DL2: ð15Þ

The remaining variables can be approximated using known
quantities. Following principles of ballistic motion, yflight can be
approximated using the flight time as:

yflight ¼ g

8
t2f : ð16Þ

The spring stiffness (k) and maximal spring compression (ΔL) from
its initial length L0 are defined as:

k ¼ Fmax

DL
; ð17Þ

DL ¼ L0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L20 �

vxi þ vxf
2

� tc
2

� �2r
þ Dy: ð18Þ

By incorporating the approximations presented by Morin et al.
(2005), maximum vertical force (Fmax) and Δy can be approximated
via the contact and flight times:

Fmax ¼ mg
p

2

tf
tc
þ 1

� �
; ð19Þ

Dy ¼ Fmax

m

t2c
p2

� g
t2c
8
: ð20Þ

Together, these identities allowed a re-expression of Eqn 15 where
vxi and vxf were the isolated unknown quantities:

0 ¼ v2xf � v2xi � 2gðyflight þ DyÞ

þ Fmax

m
L0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L20 �

vxi þ vxf
2

� tc
2

� �2r
þ Dy

 !
: ð21Þ

The energetic relationship of vxi and vxf provides an additional
identity so that together with Eqn 9, a unique solution can be found
for vxi and vxf. This further allows the approximation of vstance as
per Eqn 10.

To estimate the horizontal ground reaction force (hGRF) with
these vxf and vxi approximations, we modeled the SLIP system’s
hGRF as a negative sinusoid with a period of tc, adapting the method
suggested by Robilliard and Wilson (2005), where Fh is horizontal
force:

FhðtÞ ¼ �m
2pðvxi � vstanceÞ

tc
sin

2p

tc
t

� �
: ð22Þ

Given the complexity of Eqns 9 and 21, a solution for vxi and vxf
requires a numerical approach. A MatLab and an R function are
included for executing the approximations described here, where the
inputs are the runner’s speed, mass, leg length (which can be
accurately approximated using the anthropometric height ratio of
0.53h; Morin et al., 2005; Winter, 2005), and their contact time and
flight time (see SupplementaryMaterials andMethods; also available
from https://git.io/JmxRB).

Validation via SLIP simulations
To assess the accuracy of the proposed method to approximate
stance velocity and impact angle in spring–mass systems, the
approximations and the conventional angle approximation to
simulated SLIP models were compared. One hundred model
systems representative of the size and speed of typical runners
were generated. The models ranged from 50 to 80 kg with leg-
spring lengths of 90–105 cm. Each model was run at 3.5, 4.0, 4.5,
5.0 and 5.5 m s−1 for a total of 500 simulations. Particle-swarm
optimizations were used to find stiffness and impact angle values
that yielded stable, symmetric systems, where stability was assessed
as a system that could exceed 25 passive steps without failure at
4.0–5.5 m s−1 and 10 steps at 3.5 m s−1 (Seyfarth et al., 2002). All
models were simulated using the ode45 solver in MatLab (MatLab
2019a, MathWorks, Natick, MA, USA) with the SLIP model
equations of motion as described by Eqns 2–6 (Blickhan, 1989).

For each simulation, the initial, final and average stance velocities
were recorded for each of the SLIP models along with its actual
impact angle, leg stiffness and peak hGRF. Using its contact time
and flight time, the model’s initial, final and average stance
velocities were then approximated, along with the corresponding
impact angle, leg stiffness and hGRFwith the newmethod proposed
above. For comparison, the impact angle and leg stiffness were also

Eapex= EapexEmidstance=

vxi

yflight

L0

k
�y

mvxi2+mg(y0+yflight)
1
2

vxf vxi

mvxf2+mg(y0–�y)+   k�L21
2

1
2

� impact

Fig. 1. The spring-loaded inverted pendulum (SLIP) as the spring–mass model of running and its energy states at the apex of the flight phase (Eapex)
and midway through the stance phase (Emidstance). For definitions, see Materials and Methods.
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calculated for each simulation model using the conventional
approximation from Eqn 1 (He et al., 1991).

Experimental comparison and assessment
The conventional impact angle measurement was compared with
the new proposed method using the vertical ground reaction force
(vGRF) recordings of 28 runners from a public dataset of running
biomechanics (mean±s.d. age 34.8±6.7 years). The methods are
described in detail by Fukuchi and colleagues (2017). Briefly, the
runners ran on an instrumented treadmill (FIT, Bertec, Columbus,
OH, USA) at 2.5, 3.5 and 4.5 m s−1, and the ground reaction forces
were recorded continuously for 30 s at 300 Hz. For the current
study, the vGRF time series recordings were extracted from the
database and processed in MatLab using custom algorithms, where
single step cycles were isolated with detection thresholds set at 50 N
(84±7 steps per subject per speed; 7091 steps total). Each subject’s
mass was extracted from the metadata (69.6±7.7 kg), and his or her
leg length was determined from the average height of anatomical
markers on the left and right legs corresponding to the greater
trochanter as recorded during a standing static calibration relative to
the ground (leg length 92.8±5.0 cm). The contact time and flight
time for each step cycle were then recorded for use in the new stance
velocity and impact angle calculation, and the conventional impact
angle was calculated using Eqn 1. From each of these angle
estimates, leg stiffness was calculated from the vGRF recordings as
per Eqns 17 and 18 using the method of McMahon and Cheng
(1990), where the CoM displacement was determined via double
integration of the vertical acceleration (Cavagna, 1975). Peak
braking and propulsive hGRF measures were also recorded for each
step, and hGRF estimations using the new method were similarly
calculated.

Data analysis
To test the accuracy of the velocity and angle estimates provided by
the proposed method in simulated spring–mass SLIP model
running systems, differences were calculated between the method-
estimated average stance velocity and the actual average stance
velocity for each simulation. Differences were also calculated
between each method’s estimated impact angle and leg stiffness
and each model’s actual impact angle and actual stiffness for the
two estimates (i.e. new method and estimate) and the differences
between the new and traditional method. Finally, peak hGRF
estimates were compared from the new method with the model’s
actual peak hGRF. A linear regression was conducted on each
criterion variable to examine the fixed effects of speed and model
anthropometry on the magnitude of any estimate discrepancies.
The criterion variable was the respective difference (i.e. average
stance velocity, impact angle, leg stiffness and peak hGRF), and
the predictors were speed, mass and leg-spring length, respectively.
Correlation coefficients were also calculated for agreement between
estimates and actual values for descriptive purposes.
To assess the performance of the estimates in the human runners,

a similar analysis was conducted, where differences between the
new method and the traditional method were calculated at each
speed for impact angle and leg stiffness. Then, a linear mixed-
effects regression analysis was conducted using the difference
between these two methods as the criterion variable. Speed and leg
length were treated as fixed effects, and the subjects were modeled
with random intercepts. For the horizontal force measurements, a
similar analysis was conducted using the difference between the
estimated and observed peak hGRF in both braking and propulsion.
All analyses were assessed with a Type I error control rate of

P<0.05, and P-values were adjusted for multiple comparisons
within each family of hypotheses (i.e. simulations and experimental
analyses) using the Benjamini–Hochberg method for false
discovery rate control (Benjamini and Hochberg, 1995). All
model distributions were verified for normality via their residual
and quantile–quantile plots. All data analyses were conducted in R
v4.0.2 (http://www.R-project.org/).

RESULTS
Simulation comparison
Stance velocity
Across speeds and models, the stance velocity estimate
demonstrated near-perfect agreement with the simulation models’
actual stance velocity (r>0.99). The mean difference between the
estimated and actual velocities within models was −0.009 m s−1 or
−0.2% (95% confidence interval, CI: −0.008, −0.009 m s−1; limits
of agreement: −0.023, +0.005 m s−1). These relationships are
shown in Fig. 2. The actual average stance velocity for all models
was 0.06 m s−1 lower (1.35%) than the gait cycle average velocity
(‘average running speed’). While small in relative magnitude, the
newmethod’s bias was related to both speed and leg length, where it
decreased slightly at faster speeds and increased slightly at slower
speeds. There was also a small interaction of these effects. The
magnitudes of these relationships are provided in Table 1 and
visualized in Fig. 2.

Impact angle
The new method’s stance velocity estimate yielded more accurate
impact angle estimates across all speeds and models. Bias for the
new method was −0.05±0.04 deg, whereas the conventional angle
approximation carried an average bias of −0.36±0.03 deg.
Correspondingly, within models, the new method estimated the
impact angle to be 0.31±0.03 deg steeper than with the traditional
method. In both methods, the bias from the actual angle increased in
magnitude at faster speeds and with shorter legs with a further
significant interaction between the two. The difference between the
methods followed that same pattern, where it was augmented at
faster speeds and in models with shorter legs. Fig. 2 compares the

Table 1. Difference between stance velocity (vstance) estimates and true
values within each simulation model, with the effects of average step
cycle running speed, model leg length and their interaction

Method Δvstance (m s−1) s.e. (m s−1) P-value

Traditional
Intercept 0.0595 0.00012 <0.001
Speed 0.0136 0.00016 <0.001
Leg length −0.0004 0.00002 <0.001
Leg length×Speed 0.0003 0.00003 <0.001

New method
Intercept 0.0087 0.00009 <0.001
Speed 0.0086 0.00012 <0.001
Leg length −0.0005 0.00002 <0.001
Leg length×Speed 0.0001 0.00002 <0.001

Method difference
Intercept −0.0508 0.00008 <0.001
Speed −0.0049 0.00012 <0.001
Leg length −3.1·10−5 0.00002 0.041
Leg length×Speed −0.0001 0.00002 <0.001

Data (estimate−true) are shown for the traditional method using the average
gait cycle velocity and the new method described here, and the difference
between the twomethods (new−traditional). Speed and leg length weremean-
centered prior to analysis, so the intercept is the grand mean difference.
Estimated standard errors (s.e.) are provided for each effect.
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new method against the simulation’s known values, and Fig. 3
demonstrates the relationships between the new and traditional
estimates. Table 2 describes the linear models of the bias for each
method.

Stiffness
The newmethod also more accurately estimated the stiffness of each
of the models across speeds and geometries. The conventional
method underestimated the stiffness by 218±36 N m−1 (0.34
±0.06 BW/L0), whereas the new method only underestimated it
by 32±25 N m−1 (0.05±0.04 BW/L0). Within models, the average
difference between the two methods was 186±19 N m−1 (0.29
±0.02 BW/L0). Analogous to the angle estimates, the bias of each
method was related to both speed and leg length with significant
interactions, though the magnitude of these relationships was also
small relative to the absolute values. Similarly, Fig. 2 presents the
new method against the known simulated values, and Fig. 3
visualizes the new and traditional estimates. Table 3 also provides
analyses of the bias.

Horizontal forces
The horizontal force estimates from the new method were highly
correlated with the true simulation model forces (hGRF: r=0.82,
BW: r=0.73). The average bias was −27.1 N (−0.05 BW, −8.5%),
with 95% limits of agreement of −91.4–37.3 N (−0.15–0.06 BW).
Similar to the other estimates, the bias was significantly related to
the speed and leg length of the models as well as to the interaction of
these effects. The magnitude of these relationships was more
substantial, with the bias decreasing by 42 N (−0.07 BW, −13%)
for every 1 m s−1 increase in speed, and increasing by 1.4 N
(0.004 BW, 0.8%) for every 1 cm increase in leg length. This is
visualized in Fig. 4, and the results are summarized in Table 4.

Experimental comparison
Impact angle and stiffness
In human runners, the difference in impact angle estimates between
the new method and the conventional method followed the same
patterns observed in the simulations. The new method estimated
angles that were 0.40±0.07 deg steeper than the conventional
estimate. Similar to the simulations, that difference had a small but
significant relationship to both speed and leg length, where it
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Fig. 2. Comparison of estimates from the new method with true values from simulated SLIP running systems. (A,B) Stance velocity, (C,D) impact angle
and (E–H) leg stiffness. In A, C, E and G, the newmethod’s estimate is presented versus the actual value, where the dashed line indicates perfect agreement and
consistency. B, D, F and H are modified Bland–Altman plots of the bias against the true values (Altman and Bland, 1983). The middle dashed line indicates the
mean bias and the upper and lower dashed lines indicate the 95% limits of agreement. BW, body weight; L0, resting length.

Table 2. Difference between impact angle (α) estimates and true values
within each simulation model, with the effects of average step cycle
running speed, model leg length and their interaction

Method Δα (deg) s.e. (deg) P-value

Traditional
Intercept (mean) −0.3612 0.0009 <0.001
Speed −0.0236 0.0013 <0.001
Leg length 0.0017 0.0002 <0.001
Leg length×Speed −0.0007 0.0002 0.004

New method
Intercept (mean) −0.0493 0.0006 <0.001
Speed −0.0459 0.0008 <0.001
Leg length 0.0029 0.0001 <0.001
Leg length×Speed −0.0013 0.0001 <0.001

Method difference
Intercept (mean) 0.3119 0.0010 <0.001
Speed −0.0223 0.0013 <0.001
Leg length 0.0012 0.0002 <0.001
Leg length×Speed −0.0006 0.0002 0.011

Data (estimate−true) are shown for the traditional method (Eqn 1) and the new
method described here, and the difference between the two methods
(new−traditional). Speed and leg length were mean-centered prior to analysis,
so the intercept is the grand mean difference. Estimated standard errors are
provided for each effect (s.e.).
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decreased at faster speeds and increased slightly with longer legs.
The difference between the leg stiffness estimates from the two
angle estimation methods also followed the simulation patterns.
However, the magnitudes of the differences were larger and
distributed non-normally. The strong rightward kurtosis suggested
a logarithmic distribution, so we used a log10 transformation on the
differences prior to analysis. The average magnitude of the
differences after transformation was 0.59 kN m−1. These results
are detailed in Table 5 and presented in Fig. 5.

Horizontal forces
The hGRF estimation did not perform as well on the human
runners as it did on the simulation models. In both braking and

propulsion, the horizontal force estimates were inconsistent,
with correlations of r=0.33 and r=0.50, respectively. The average
bias and standard deviation at 2.5, 3.5 and 4.5 m s−1 in braking were
+72±40 N (+0.10 BW, 38%), −11±54 N (−0.02 BW, −1%) and
−75±80 N (−0.11 BW, −17%). In propulsion, the average bias at
each of the three speeds was +123±32 N (+0.18 BW, 82%), +53
±31 N (+0.08 BW, 24%) and +13±37 N (+0.02 BW, 5%).
Similarly, these results are described in Table 5 and visualized in
Fig. 5.

DISCUSSION
Summary of results
Using the energetic states of a simple spring–mass running system,
we present a method to approximate stance velocity using the
contact times and flight times of a runner. The newmethod provided
accurate average stance velocities across a range of running speeds.
That estimation further provided more accurate estimations of
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Fig. 3. The newmethod versus the traditional method for approximating stance velocity, impact angle and leg stiffness of the simulated SLIP running
systems. The traditional method approximates the stance velocity (A) as the gait cycle average velocity. The traditional method of approximating impact angle (B)
and calculating leg stiffness (C) is via the Eqn 1 approximation (He et al., 1991).

Table 3. Difference between leg stiffness (k) estimates and true values
within each simulation model, with the effects of average step cycle
running speed, model leg length and their interaction

Method Δk (N m−1) s.e. (N m−1) P-value

Traditional
Intercept (mean) −218.90 0.70 <0.001
Speed −43.22 0.98 <0.001
Leg length −1.09 0.12 <0.001
Leg length×Speed −2.37 0.17 <0.001
New method
Intercept (mean) −32.22 0.37 <0.001
Speed −31.34 0.51 <0.001
Leg length 1.33 0.07 <0.001
Leg length×Speed −1.12 0.09 <0.001
Method difference
Intercept (mean) 186.67 0.41 <0.001
Speed 11.88 0.57 <0.001
Leg length 2.42 0.07 <0.001
Leg length×Speed 1.25 0.10 <0.001
Method difference (relative) Δk (BW/L0)
Intercept (mean) 0.289 0.0006 <0.001
Speed 0.017 0.0009 <0.001
Leg length −0.002 0.0001 <0.001
Leg length×Speed 0.002 0.0002 <0.001

Differences (estimate−true) are shown for the traditional method (Eqn 1) and
the new method described here, and the difference between the two methods
(new−traditional). Speed and leg length were mean-centered prior to analysis,
so the intercept is the grand mean difference. Estimated standard errors are
provided for each effect (s.e.).

Table 4 . Difference between peak horizontal ground reaction force
(hGRF) estimates and true values within each simulation model, with the
effects of average step cycle running speed, model leg length and their
interaction

Parameter ΔhGRF s.e. P-value

Absolute difference (N)
Intercept (mean) −27.15 0.36 <0.001
Speed −41.71 0.50 <0.001
Leg length 1.40 0.06 <0.001
Leg length×Speed −1.85 0.09 <0.001

BW-normalized difference
Intercept (mean) −0.046 0.0006 <0.001
Speed −0.065 0.0009 <0.001
Leg length 0.004 0.0001 <0.001
Leg length×Speed −0.001 0.0002 <0.001

Relative difference (%)
Intercept (mean) −8.57 0.16 <0.001
Speed −12.70 0.23 <0.001
Leg length 0.79 0.03 <0.001
Leg length×Speed −0.47 0.04 <0.001

Data (estimate−true) are given for the absolute difference (N), the body weight
(BW)-normalized difference and the relative percentage difference. Speed and
leg length weremean-centered prior to analysis, so the intercept represents the
grand mean difference. Estimated standard errors are provided for each
effect (s.e.).
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impact angle and leg stiffness in spring–mass models. The precision
of the velocity estimates, however, did not translate as analogously
to the estimations of horizontal acceleration and corresponding
hGRF patterns in the simulations. When applied to human runners,
the newmethod further provided values for the impact angle and leg
stiffness that were similarly distinct from traditional estimates as
compared with the differences observed in the simulations,
suggesting the new method may provide accurate stance velocity
estimations and more accurate spring–mass parameters without the
need for kinematic recording systems.

Estimations in simulated spring–mass systems
The accuracy of the method on simulated spring–mass systems was
tested where the exact stance velocity, impact angle and leg stiffness
were known. The first two hypotheses were supported, as the
method provided accurate estimations of stance velocity, and those
velocity estimations further provided more accurate impact angle
and leg stiffness approximations in the models. The new method’s
estimations were highly consistent with the known values of the
simulations (r>0.99 for all), and the bias was small in relative
magnitude (all <0.4%). Across all measures, the bias was
significantly impacted by the speed and leg length of the running
model. For example, in the stance velocity estimates, the bias was
negligible at 3.5 m s−1, but increased modestly across speeds to
−0.017 m s−1 at 5.5 m s−1 (−0.31%). Longer-legged models had
smaller bias compared with the shorter models but, similarly, the
bias was small in relative magnitude (e.g.−0.29% for 90 cmmodels
versus −0.11% for 105 cm models). When assessed as
dimensionless quantities (e.g. against the Froude number instead
of absolute speed), similar small factor-dependent bias was present.
Therefore, it is likely that these small dependencies in both the
traditional methods and the new estimation may be related to the

nuanced implications of the model assumptions, such as the linear
decrease in velocity through stance.

From a practical perspective, the magnitudes of the speed
and length dependencies are negligible, as the amount that the
bias changed across speed and leg length was consistently and
considerably smaller than the bias from using traditional
methods to approximate stance velocity, impact angle or leg
stiffness (Fig. 3). Again, considering the stance velocity estimate,
the traditional method that assumes the average gait cycle velocity
overestimated the stance velocity by 0.06 m s−1, or 1.35% (Fig. 3
and Table 1), with similar speed and length dependencies. The new
method only overestimated it by 0.009 m s−1, or 0.18% (Fig. 3 and
Table 1).

The hypothesis pertaining to the horizontal force estimations
was not entirely supported. In the aggregate, the consistency
of the new method’s estimate among the simulations was good,
with correlations of 0.82 and 0.73 for force and acceleration
values, respectively. The bias indicated a modest underestimation
of the force (−27 N, 0.05 BW, −8.5%), but the performance of
the estimate and the magnitude of the bias were strongly
influenced by the speed of the model. Across the five speeds, the
bias increased from +15 N (+6.3%) at 3.5 m s−1 to −69 N (−19%)
at 5.5 m s−1.

This is likely due in part to the difficulty in approximating the
horizontal force progression of a SLIP system with a sinusoid. The
vertical force progression of a spring–mass system has been
accurately approximated as a sinusoid across a range of speeds and
model geometries (Burns et al., 2021), but no similar investigation
has tested that approximation across a breadth of distinct models
for the horizontal force progressions. Robilliard and Wilson
(2005) explored their sinusoidal approximation with several
numerical SLIP simulations across a range of impact angles in a

–50

0

50

3.5 4.0 4.5 5.0 5.5

E

–0.1

0

0.1

3.5 4.0 4.5 5.0 5.5

F

–20

0

20

3.5 4.0 4.5 5.0 5.5

G

100

200

300

400

100 200 300 400

–100

–50

0

50

100

200 250 300 350 400

Leg length: 90 cm   95 cm    100 cm    105 cm 

BA

0.3

0.4

0.5

0.6

0.3 0.4 0.5 0.6

–0.2

–0.1

0

0.1

0.2

0.35 0.40 0.45 0.50 0.55 0.60

DC

True horizontal force (BW)True horizontal force (BW)True horizontal force (N)True horizontal force (N)
D

iff
er

en
ce

 (e
st

im
at

e−
tru

e)
 (N

)

Es
tim

at
ed

 h
or

iz
on

ta
l f

or
ce

 (B
W

)

D
iff

er
en

ce
 (e

st
im

at
e−

tru
e)

 (B
W

) 

Es
tim

at
ed

 h
or

iz
on

ta
l f

or
ce

 (N
)

Speed (m s–1)Speed (m s–1)Speed (m s–1)

hG
R

F 
di

ffe
re

nc
e 

(N
) 

hG
R

F 
di

ffe
re

nc
e 

(B
W

)

R
el

at
iv

e 
hG

R
F 

di
ffe

re
nc

e 
(%

)
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single model, and the horizontal acceleration predictions were
similarly challenged.
The SLIP hGRF progression is not perfectly symmetric within

the braking and propulsive phases. The influence of the spring in the
horizontal deceleration of the mass is at its peak at initial contact, but
it falls to zero as it pendularly rotates to a vertical orientation at
midstance. As such, the peak braking force in a SLIP system occurs
prior to the midpoint of the braking phase, as opposed to a
sinusoidal progression, which would result in the peak occurring
exactly at the midpoint. This earlier peak (and correspondingly later
peak in the propulsive phase) will likely result in a modestly greater
amplitude than in a symmetric sinusoid as well. That trend towards
an under-approximation of the peak hGRF via the sinusoid was
observed, as all speeds associated with robustly stable SLIP systems
(>4.0 m s−1) elicited lower estimations of the hGRF. From a
practical perspective, this may challenge the direct implementation
of this method for hGRF estimates. However, the bias was strongly
predicted by the model speed and geometry, which suggested an
opportunity to use a corrective algorithm to better predict the peak
hGRF values in practice, which is described later.

Estimations in human running
The steeper touchdown angle and higher leg stiffness values of the
new method’s estimations were also observed in humans. The
magnitude of the angle bias against the traditional estimation was
similar in the human runners to that observed in the simulations:
+0.33 deg in humans versus +0.40 deg in simulations at 3.5 m s−1.
In the simulation analyses, the steeper angles and higher leg
stiffnesses from the newmethod were closer to the true spring–mass
system values, which would support the notion that those same
patterns in the human estimations may be better modeling the
‘actual’ spring–mass characteristics of the runner via more accurate
stance velocity approximations. That was expected, as adopting the
gait cycle average velocity instead of the stance velocity will
necessarily underestimate the impact angle and correspondingly
overestimate the stiffness.

While the impact angle and leg stiffness estimations in humans
corresponded to the trends observed in the simulations, the
horizontal force estimations were not as consistent. The average
bias at 3.5 m s−1 was only −0.02 BW in braking, but the spread was
large (i.e. standard deviation of 0.08 BW). However, this
overestimated the actual braking hGRF at slower speeds and
underestimated it at faster speeds. In propulsion, it was most
accurate at the fastest speed, with an average bias of +0.02 BW,
though the spread was similarly large with a standard deviation of
0.05 BW. These discrepancies in accuracy in braking and
propulsion were likely due to three factors: (1) asymmetries in the
energetic balance through stance (Cavagna, 2006), (2) variability
in braking patterns within human runners (Munro et al., 1987), and
(3) the instability of SLIP model systems and their parameters at
slow speeds (i.e. 2.5 m s−1) (Seyfarth et al., 2002).

In the simulated models, the bias in the peak horizontal force
estimations was significantly predicted by both speed and leg
length, with the relationship being most pronounced in the
acceleration estimates (Fig. 4). This presented an opportunity to
test a correction transformation on the human force estimates using
the linear model coefficients from the simulations as provided in
Table 4. By transforming the force estimations with corrections for
speed (−0.065 BW per m s−1 with an intercept of −0.046 BW at
4.42 m s−1), the force estimations improved across speeds (r=0.69
and 0.85 for braking and propulsive forces, respectively), and the
speed dependency of the bias improved. An additional leg length
correction did not substantively improve the estimate, and the
individual variation following the speed correction remained large
(Fig. 6). This suggests the method may need further refinement for
consistent prediction of horizontal forces in running bodies.

One area to realize this refinement in the estimates for running
subjects may be in the initial leg length assumption. The spring
length in a runner modeled as a SLIP system is that of the CoM to
the CoP.We adopted the common assumption that the resting length
L0 corresponded to the distance of the runner’s greater trochanter
(GrT) to the CoP while standing. In humans, the CoM is higher
than the GrT while standing, consequently underestimating the
CoM–CoP distance. This discrepancy is justified by the notion that
a runner lands with a flexed knee at contact, suggesting that the
resting GrT–CoP is a reasonable estimate for the initial CoM–CoP
distance while running (Bullimore and Burn, 2007). However, a
longer spring will necessitate steeper impact angles and higher leg
stiffnesses, and the choice of this definition will affect experimental
values accordingly (Müller et al., 2016). Blum et al. (2009)
proposed using a sex-specific correction factor of 1.05 and 1.10 for
women and men, respectively, to reconcile the difference of the GrT
and CoM lengths, and Burns et al. (2021) found that a nonlinear

Table 5. Difference in impact angle (α), leg stiffness (k), peak braking
hGRF and peak propulsive hGRF estimates within human runners, with
the effects of running speed, estimated leg length and their interaction

Parameter Value s.e. P-value

Δα (deg)
Intercept 0.398 0.010 <0.001
Speed −0.021 0.001 <0.001
Leg length 0.007 0.003 0.027
Leg length×Speed 0.001 0.000 <0.001
Δlog10(k)
Intercept 2.7707 0.0241 <0.001
Speed 0.0233 0.0039 <0.001
Leg length 0.0207 0.0068 0.009
Leg length×Speed −0.0004 0.0011 0.807
Relative Δlog10(k)
Intercept −0.0909 0.0249 0.002
Speed 0.0233 0.0039 <0.001
Leg length 0.0149 0.0070 0.064
Leg length×Speed −0.0004 0.0011 0.807
Braking hGRF (BW)
Intercept −0.0136 0.0121 0.360
Speed −0.1088 0.0010 <0.001
Leg length 0.0010 0.0034 0.970
Leg length×Speed −0.0001 0.0003 0.807
Braking hGRF (%)
Intercept 5.43 2.61 0.066
Speed −27.41 0.23 <0.001
Leg length 0.01 0.74 0.994
Leg length×Speed −0.23 0.06 0.001
Propulsive hGRF (BW)
Intercept 0.0871 0.0073 <0.001
Speed −0.0802 0.0004 <0.001
Leg length 0.0017 0.0021 0.531
Leg length×Speed −0.0003 0.0001 0.011
Propulsive hGRF (%)
Intercept 35.42 2.75 <0.001
Speed −37.94 0.22 <0.001
Leg length 0.58 0.78 0.561
Leg length×Speed −0.40 0.06 <0.001

Data were calculated as new estimate−traditional method for α, k (N m−1) and
relative k (BW/L0), or new estimate−true value for hGRF. Note that the stiffness
differences were log transformed prior to analysis for normality. Speed and leg
length were mean-centered prior to analysis. As such, the intercept represents
the grand mean difference. Estimated standard errors are provided for each
effect (s.e.).
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regression estimation of L0 from a vGRF time series approximated
the distance as 1.05 times that of the GrT measurement. In the
analyses of the simulation models here, the resting spring length
as an input was known. Consequently, none of the observed
variation in the simulation estimates was due to error in that
approximation and, correspondingly, the absolute differences in the
estimates and the true values were quite small. However, in the
human runners, this quantity was unknown and approximated via
the aforementioned GrT measurement. Therefore, any discrepancy
in these anthropometric assumptions may have contributed to the
greater individual variation in both the stiffness estimates and the
hGRF approximations in human runners.

Methodological advantages and limitations
The new method accurately estimated stance velocity and impact
angle in running using only measurements of contact time, flight
time and average running speed, with mass and leg length as inputs.
Thus, it can be easily implemented in experimental settings where
high-resolution kinematic recordings are infeasible or unavailable.
That includes common kinetic investigations using overground

runways with timing gates or instrumented treadmills where the
belt speed is used. Furthermore, it can be used in field-based
investigations where average running speed is captured from a GPS
watch and temporal measures from accelerometers, inertial
measurement units (IMUs) or portable high-speed cameras. This
complements the work of Morin and colleagues (2005), who
presented means to estimate peak vertical force, vertical oscillation,
and vertical and leg stiffness using these same inputs. Furthermore,
it built on the work of Robilliard and Wilson (2005), who presented
a means to approximate spring–mass dynamics with temporal
and horizontal velocity measurements. The increase in accessible
and accurate temporal recording technology, such as commercial
IMUs and smartphone-integrated high-speed cameras (Balsalobre-
Fernández et al., 2017), creates new opportunities to integrate and
apply these methods for more accurate, generalizable spring–mass
analyses in a variety of ecological settings.

The new technique for stance velocity and angle approximations
was limited by its requirement of a numerical equation solver. It can
be easily implemented in any numerical computing language (e.g.
MatLab, R or Python), but that requires familiarity with one of those
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Fig. 5. Method differences (new−traditional) in human runners across speeds. Impact angle (A), leg stiffness (absolute, B; relative, C), peak braking force
(BW normalized, D; percentage, E) and peak absolute propulsive force (BW normalized, F; percentage, G).
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tools. Both a MatLab and an R function have been provided (see
Supplementary Materials and Methods or https://git.io/JmxRB) to
implement the newmethod, where the stance velocity, impact angle,
hGRF estimate and corrected hGRF estimate are provided. If a
researcher or practitioner is not proficient with one of these tools, a
simple correction for the stance velocity would provide an
improvement over the conventional use of the average step cycle
velocity. Here, the simulation models’ stance velocity was 98.65
±0.09% of their average step cycle velocity, so a correction of 0.987
would be a reasonable adjustment in the absence of a numerical
equation solver. This, however, will inevitably be less accurate than
the method’s estimate given the subject- and speed-specific
energetic relationships, so the numerical estimation is strongly
recommended. Furthermore, the method’s derivation assumes a
level ground through the gait cycle, restricting its application to flat-
terrain running. An extension of the estimate to include energetic
changes related to changes in ground height between steps may be
useful, as runners modulate temporal parameters and spring–mass
characteristics as they navigate gradients and uneven terrain (Iversen
and McMahon, 1992; Müller and Blickhan, 2010; Müller et al.,
2012). Finally, the application of the method for hGRF estimations
should be approached with caution. The aforementioned correction
improves the estimation, but the estimate still exhibits enough
variance to challenge its use for contexts where a high sensitivity in
hGRF measurement is required.

Conclusion
A novel method was developed and presented to estimate the
average stance velocity in runners using only their contact time,
flight time, average speed, mass and leg length or height as inputs.
This allows for accurate estimation of stance velocity without
kinematic recordings, facilitating a more accurate description of
spring–mass characteristics of runners. The new method accurately
estimated the stance velocity of SLIP running system simulations
across a range of speeds and sizes, and its corresponding impact
angle and leg stiffness estimates were closer to each system’s actual
angle than the conventional approximation. This further resulted in
more accurate leg stiffness estimations. It was hypothesized that the
average stance velocity could be used to estimate the peak hGRF
forces in a spring–mass system, but that hypothesis was not strongly
supported, as there was modest agreement between the estimates
and the actual values but large speed- and length-dependent
variations in the estimate’s bias. In human runners, the estimates for
the impact angle and leg stiffness followed the same patterns as
those observed in the simulations when compared against the
traditional estimates, suggesting more accurate modeling of the
runners’ spring–mass behavior. The new method can be applied to
laboratory and field-based investigations alike to accurately estimate
stance velocity and improve spring–mass analyses.
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Morin, J.-B., Dalleau, G., Kyröläinen, H., Jeannin, T. and Belli, A. (2005). A
simple method for measuring stiffness during running. J. Appl. Biomech. 21,
167-180. doi:10.1123/jab.21.2.167

Müller, R. and Blickhan, R. (2010). Running on uneven ground: leg adjustments to
altered ground level. Hum. Mov. Sci. 29, 578-589. doi:10.1016/j.humov.2010.04.
007

Müller, R., Ernst, M. and Blickhan, R. (2012). Leg adjustments during running
across visible and camouflaged incidental changes in ground level. J. Exp. Biol.
215, 3072-3079. doi:10.1242/jeb.072314

Müller, R., Birn-Jeffery, A. V. and Blum, Y. (2016). Human and avian running on
uneven ground: a model-based comparison. J. R. Soc. Interface 13, 20160529.
doi:10.1098/rsif.2016.0529

Munro, C. F., Miller, D. I. and Fuglevand, A. J. (1987). Ground reaction
forces in running: a reexamination. J. Biomech. 20, 147-155. doi:10.1016/0021-
9290(87)90306-X

Robilliard, J. J. and Wilson, A. M. (2005). Prediction of kinetics and kinematics of
running animals using an analytical approximation to the planar spring-mass
system. J. Exp. Biol. 208, 4377-4389. doi:10.1242/jeb.01902

Seyfarth, A., Geyer, H., Günther, M. and Blickhan, R. (2002). A
movement criterion for running. J. Biomech. 35, 649-655. doi:10.1016/S0021-
9290(01)00245-7

Winter, D. A. (2005). Biomechanics and Motor Control of Human Movement, 3rd
edn. Hoboken, NJ: John Wiley & Sons.

10

RESEARCH ARTICLE Journal of Experimental Biology (2021) 224, jeb242787. doi:10.1242/jeb.242787

Jo
u
rn
al

o
f
Ex

p
er
im

en
ta
lB

io
lo
g
y

https://journals.biologists.com/jeb/article-lookup/DOI/10.1242/jeb.242787
https://git.io/JmxRB
https://git.io/JmxRB
https://git.io/JmxRB
https://git.io/JmxRB
https://doi.org/10.2307/2987937
https://doi.org/10.2307/2987937
https://doi.org/10.2307/2987937
https://doi.org/10.1123/jab.2016-0104
https://doi.org/10.1123/jab.2016-0104
https://doi.org/10.1123/jab.2016-0104
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1016/0021-9290(89)90224-8
https://doi.org/10.1016/0021-9290(89)90224-8
https://doi.org/10.1016/j.jbiomech.2009.06.040
https://doi.org/10.1016/j.jbiomech.2009.06.040
https://doi.org/10.1111/j.1600-0838.2008.00769.x
https://doi.org/10.1111/j.1600-0838.2008.00769.x
https://doi.org/10.1111/j.1600-0838.2008.00769.x
https://doi.org/10.1016/j.jtbi.2007.06.004
https://doi.org/10.1016/j.jtbi.2007.06.004
https://doi.org/10.1016/j.jtbi.2007.06.004
https://doi.org/10.1242/jeb.232850
https://doi.org/10.1242/jeb.232850
https://doi.org/10.1242/jeb.232850
https://doi.org/10.1152/jappl.1975.39.1.174
https://doi.org/10.1152/jappl.1975.39.1.174
https://doi.org/10.1242/jeb.02344
https://doi.org/10.1242/jeb.02344
https://doi.org/10.7717/peerj.3298
https://doi.org/10.7717/peerj.3298
https://doi.org/10.7717/peerj.3298
https://doi.org/10.1152/jappl.1991.71.3.863
https://doi.org/10.1152/jappl.1991.71.3.863
https://doi.org/10.1152/jappl.1991.71.3.863
https://doi.org/10.1115/1.2894092
https://doi.org/10.1115/1.2894092
https://doi.org/10.1016/j.jtbi.2011.09.021
https://doi.org/10.1016/j.jtbi.2011.09.021
https://doi.org/10.1016/j.jtbi.2011.09.021
https://doi.org/10.1016/j.jbiomech.2012.06.030
https://doi.org/10.1016/j.jbiomech.2012.06.030
https://doi.org/10.1016/j.jbiomech.2012.06.030
https://doi.org/10.1016/j.jbiomech.2012.06.030
https://doi.org/10.1016/0021-9290(90)90042-2
https://doi.org/10.1016/0021-9290(90)90042-2
https://doi.org/10.1016/0021-9290(90)90042-2
https://doi.org/10.1123/jab.21.2.167
https://doi.org/10.1123/jab.21.2.167
https://doi.org/10.1123/jab.21.2.167
https://doi.org/10.1016/j.humov.2010.04.007
https://doi.org/10.1016/j.humov.2010.04.007
https://doi.org/10.1016/j.humov.2010.04.007
https://doi.org/10.1242/jeb.072314
https://doi.org/10.1242/jeb.072314
https://doi.org/10.1242/jeb.072314
https://doi.org/10.1098/rsif.2016.0529
https://doi.org/10.1098/rsif.2016.0529
https://doi.org/10.1098/rsif.2016.0529
https://doi.org/10.1016/0021-9290(87)90306-X
https://doi.org/10.1016/0021-9290(87)90306-X
https://doi.org/10.1016/0021-9290(87)90306-X
https://doi.org/10.1242/jeb.01902
https://doi.org/10.1242/jeb.01902
https://doi.org/10.1242/jeb.01902
https://doi.org/10.1016/S0021-9290(01)00245-7
https://doi.org/10.1016/S0021-9290(01)00245-7
https://doi.org/10.1016/S0021-9290(01)00245-7


Supplementary Materials and Methods 
 
1. Stance Velocity Estimation Code (R) 
 
vc.est <- function(t_c, t_f, v, m, L){ 
 
# Stance Velocity Estimation 
 
# Author: 
# Geoffrey Burns 
# University of Michigan 
 
# Inputs: 
# t_f -- flight time (s) 
# t_c -- contact time (s) 
# v   -- subject's average running speed (m/s) 
# m   -- subject's mass (kg) 
# L   -- subject's leg length (m) 
#        Approximate leg length via height: L = 0.53*h 
#        where h is the subject's height (m) per Winter (2005) 
   
 
# Outputs: 
# v_c   -- average horz. speed during contact (m/s) 
# v_f   -- average horz. speed during flight (m/s) 
# v_ms  -- minimum horz. speed at midstance (m/s) 
     
## Set Constants 
     
    g <- 9.80665; #acceration due to gravity (m/s^2) 
     
    F_v <- m*g*(pi/2)*(t_f/t_c+1); #vGRF max estimate per Morin et al. (2005) 
    d_y <- (F_v*t_c^2)/(m*pi^2)-g/8*(t_c)^2; #vertical CoM disp. at midstance per Morin et al. (2005) 
     
## Numerically Solve for v_c 
 
f <- function(z){ 
  (v-z*(t_c/(t_c+t_f)))*((t_c+t_f)/t_f)-(1/(2*m*z))*(2*m*z^2+m*g*d_y-(m/8)*t_f^2*g^2+(F_v*(L-sqrt(L^2-
(z*t_c/2)^2))^2+d_y)/(2*(L-sqrt(L^2-(z*t_c/2)^2)+d_y))) 
} 
 
fvec <- Vectorize(f) 
 
v_c.solve <- uniroot(f, c(0.8*v,v)); 
 
v_c <- v_c.solve$root 
 
## Solve for v_f and v_ms 
 
# Flight Velocity     
v_f <- (v-v_c*(t_c/(t_f+t_c)))*((t_c+t_f)/t_f); 
# Midstance Velocity 
v_ms <- 2*v_c-v_f; 
 
 
## Results List 
 
output <- list(v_c = v_c, 
               v_f = v_f, 
               v_ms = v_ms) 
output 
} 
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2. Stance Velocity Estimation Code (MatLab) 
 
 
function [v_c, v_f, v_ms] = vc_est(t_c, t_f, v, m, h) 
 
%% Stance Velocity Estimation 
 
% Author: 
% Geoffrey Burns 
% University of Michigan 
 
% Inputs: 
% t_f -- flight time (s) 
% t_c -- contact time (s) 
% v   -- subject's average running speed (m/s) 
% m   -- subject's mass (kg) 
% L   -- subject's leg length (m) 
%        Approximate leg length via height: L = 0.53*h 
%        where h is the subject's height (m) per Winter (2005) 
 
% Outputs: 
% v_c       -- average horz. speed during contact (m/s) 
% v_f       -- average horz. speed during flight (m/s) 
% v_ms      -- minimum horz. speed at midstance (m/s) 
     
%% Set Constants 
     
    g = 9.80665; %acceration due to gravity (m/s^2) 
     
    F_v = m*g*(pi/2)*(t_f/t_c+1); %vGRF max estimate per Morin et al. (2005) 
    d_y = (F_v*t_c^2)/(m*pi^2)-g/8*(t_c)^2; %vertical CoM disp. at midstance per Morin et al. (2005) 
     
%% Numerically Solve for v_c 
 
syms z 
 
v_c = vpasolve(0 == (v-z*(t_c/(t_c+t_f)))*((t_c+t_f)/t_f)... 
    -(1/(2*m*z))*(2*m*z^2+m*g*d_y-(m/8)*t_f^2*g^2+(F_v*(L-sqrt(L^2-(z*t_c/2)^2))^2+d_y)/(2*(L-sqrt(L^2-
(z*t_c/2)^2)+d_y))), z, [0.8*v,v]); 
 
v_c = double(v_c); 
 
%% Solve for v_f and v_ms 
 
% Flight Velocity 
v_f = (v-v_c*(t_c/(t_f+t_c)))*((t_c+t_f)/t_f); 
% Midstance Velocity 
v_ms = 2*v_c-v_f; 
 
    end 
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3. Horizontal Force Estimation Code (R) 
 
Fh.est <- function(t_c, t_f, v, m, L){ 
 
# Horizontal Force Estimation 
 
# Author: 
# Geoffrey Burns 
# University of Michigan 
   
# Inputs: 
# t_f -- flight time (s) 
# t_c -- contact time (s) 
# v   -- subject's average running speed (m/s) 
# m   -- subject's mass (kg) 
# L   -- subject's leg length (m) 
#        Approximate leg length via height: L = 0.53*h 
#        where h is the subject's height (m) per Winter (2005) 
 
# Outputs: 
# F_h     -- peak hGRF (N) (negative in braking/positive in propulsion) 
# F_h.rel -- peak hGRF (BW) (negative in braking/positive in propulsion) 
# Imp_h   -- hGRF impulse (N-s) (negative in braking/positive in propulsion) 
# F_h.adj     -- corrected peak hGRF (N) (negative in braking/positive in propulsion) 
# F_h.rel.adj -- corrected peak hGRF (BW) (negative in braking/positive in propulsion) 
# Imp_h.adj   -- corrected hGRF impulse (N-s) (negative in braking/positive in propulsion) 
 
     
## Set Constants 
 
    g <- 9.80665; #acceration due to gravity (m/s^2) 
     
    F_v <- m*g*(pi/2)*(t_f/t_c+1); #vGRF max estimate per Morin et al. (2005) 
    d_y <- (F_v*t_c^2)/(m*pi^2)-g/8*(t_c)^2; #vertical CoM disp. at midstance per Morin et al. (2005) 
     
## Numerically Solve for v_c 
 
f <- function(z){ 
  (v-z*(t_c/(t_c+t_f)))*((t_c+t_f)/t_f)-(1/(2*m*z))*(2*m*z^2+m*g*d_y-(m/8)*t_f^2*g^2+(F_v*(L-sqrt(L^2-
(z*t_c/2)^2))^2+d_y)/(2*(L-sqrt(L^2-(z*t_c/2)^2)+d_y))) 
} 
 
fvec <- Vectorize(f) 
 
v_c.solve <- uniroot(f, c(0.8*v,v)); 
 
v_c <- v_c.solve$root 
 
## Solve for v_f and v_ms 
 
# Flight Velocity     
v_f <- (v-v_c*(t_c/(t_f+t_c)))*((t_c+t_f)/t_f); 
 
## Approximate F_h 
 
# Peak hGRF (Braking and Propulsion) 
F_h <- (2*pi/t_c)*(v_f-v_c)*m # Absolute (N) 
F_h.rel <- F_h/(m*g)    # Relative (BW) 
# hGRF Impulse 
Imp_h <- F_h*(t_c/pi); 
 
## Adjusted hGRF 
 
#Model Coefficients 
v.center <- 4.417989 
vel.c <- v_c - v.center 
 
B.0 <- -0.04619409 
B.v <- -0.06456883 
 
#Estimate-True 
Fh.diff <- B.0 + B.v*vel.c 
 
#Speed-corrected hGRF and Impulse 
F_h.adj <- F_h - Fh.diff*(m*g) 
F_h.adj.rel <- F_h.rel - Fh.diff 
Imp_h.adj <- F_h.adj*(t_c/pi) 
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## Results List 
 
output <- list(F_h = F_h, 
               F_h.rel = F_h.rel, 
               Imp_h = Imp_h, 
               F_h.adj = F_h.adj, 
               F_h.adj.rel = F_h.adj.rel, 
               Imp_h.adj = Imp_h.adj) 
output 
} 
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4. Horizontal Force Estimation Code (MatLab) 
 
function [F_h, F_h_rel, Imp_h, F_h_adj, F_h_adj_rel, Imp_h_adj] = Fh_est(t_c, t_f, v, m, L) 
 
%% Horizontal Force Estimation 
 
% Author: 
% Geoffrey Burns 
% University of Michigan 
 
% Inputs: 
% t_f -- flight time (s) 
% t_c -- contact time (s) 
% v   -- subject's average running speed (m/s) 
% m   -- subject's mass (kg) 
% L   -- subject's leg length (m) 
%        Approximate leg length via height: L = 0.53*h 
%        where h is the subject's height (m) per Winter (2005) 
 
% Outputs: 
% F_h         -- peak hGRF (N) (negative in braking/positive in propulsion) 
% F_h_rel     -- peak relative hGRF (BW) (negative in braking/positive in propulsion) 
% Imp_h       -- hGRF impulse (N-s) (negative in braking/positive in propulsion) 
% F_h_adj     -- speed-corrected peak hGRF 
% F_h_adj_rel -- speed-corrected relative peak hGRF (BW) 
% Imp_h_adj   -- speed-corrected hGRF impulse 
     
%% Set Constants 
 
    g = 9.80665; %acceration due to gravity (m/s^2) 
     
    F_v = m*g*(pi/2)*(t_f/t_c+1); %vGRF max estimate per Morin et al. (2005) 
    d_y = (F_v*t_c^2)/(m*pi^2)-g/8*(t_c)^2; %vertical CoM disp. at midstance per Morin et al. (2005) 
     
%% Numerically Solve for v_c 
 
syms z 
 
v_c = vpasolve(0 == (v-z*(t_c/(t_c+t_f)))*((t_c+t_f)/t_f)... 
    -(1/(2*m*z))*(2*m*z^2+m*g*d_y-(m/8)*t_f^2*g^2+(F_v*(L-sqrt(L^2-(z*t_c/2)^2))^2+d_y)/(2*(L-sqrt(L^2-
(z*t_c/2)^2)+d_y))), z, [0.8*v,v]); 
 
v_c = double(v_c); 
 
%% Solve for v_f 
 
% Flight Velocity 
v_f = (v-v_c*(t_c/(t_f+t_c)))*((t_c+t_f)/t_f); 
 
%% Approximate F_h 
 
% Peak hGRF (Braking and Propulsion) 
F_h = (2*pi/t_c)*(v_f-v_c)*m;    % Absolute (N) 
F_h_rel = F_h/(m*g);             % Relative (BW) 
 
% hGRF Impulse 
Imp_h = F_h*(t_c/pi); 
 
%% Speed-Corrected hGRF 
 
% Model Coefficients 
v_center = 4.417989;       
vel_c = v_c - v_center; 
B_0 = -0.04619409; 
B_v = -0.06456883; 
 
%Estimate-Actual 
Fh_diff = B_0 + B_v*vel_c; 
 
%Speed-corrected hGRF and Impulse 
F_h_adj = F_h - Fh_diff*(m*g); 
F_h_adj_rel = F_h_rel - Fh_diff; 
Imp_h_adj = F_h_adj*(t_c/pi); 
 
    end 
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