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Size scaling in collective cell growth
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ABSTRACT
Size is a fundamental feature of living entities and is intimately tied to
their function. Scaling laws, which can be traced to D’Arcy Thompson
and Julian Huxley, have emerged as a powerful tool for studying
regulation of the growth dynamics of organisms and their constituent
parts. Yet, throughout the 20th century, as scaling laws were
established for single cells, quantitative studies of the coordinated
growth of multicellular structures have lagged, largely owing to
technical challenges associated with imaging and image processing.
Here, we present a supervised learning approach for quantifying the
growth dynamics of germline cysts during oogenesis. Our analysis
uncovers growth patterns induced by the groupwise developmental
dynamics among connected cells, and differential growth rates of
their organelles. We also identify inter-organelle volumetric scaling
laws, finding that nurse cell growth is linear over several orders of
magnitude. Our approach leverages the ever-increasing quantity and
quality of imaging data, and is readily amenable for studies of
collective cell growth in other developmental contexts, including early
mammalian embryogenesis and germline development.
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INTRODUCTION
Uncovering the patterns and the mechanisms underlying the growth
of organisms has been a longstanding goal in biology. Propelled by
D’Arcy Thompson’s and Julian Huxley’s seminal work over one
century ago, scientists have since devised increasingly sophisticated
methods to capture and analyze growth in its many forms and at
scales that span a large dynamic range (Thompson, 1917; Huxley,
1932; Sharpe, 2017). In particular, numerous studies have focused
on uncovering growth dynamics of cells and their substructures;
cells are the primary building blocks of more-complex structures,
and the proper physical dimensions of a cell and relative sizes of its
organelles are important for proper structure and function (Chan and
Marshall, 2010, 2012; Jorgensen et al., 2007; Neumann and Nurse,
2007; Levy and Heald, 2012; Marshall et al., 2012; Ginzberg et al.,
2015). Previous work, primarily focusing on X. laevis and
C. elegans, has provided many of the established quantitative
methods for characterizing size regulation and scaling in single

cells, thus elucidating how these features regulate key biological
processes, such as the cell cycle (Arata et al., 2015; Arata and
Takagi, 2019; Jevti′c and Levy, 2015; Levy and Heald, 2010;Masui
and Wang, 1998; Wang et al., 2000).

In contrast to studies of growth of individual cells, studies
of coordinated growth in multicellular clusters have been slow
to emerge (Macklin, 2019). A particularly important class of
multicellular growth problems arises during the development of
gametes. Across species, oocytes and sperm develop within clusters
of connected cells, called germline cysts (Pepling et al., 1999;
Matova and Cooley, 2001; Woznica et al., 2016; Yamashita, 2018).
These structures have a relatively few number of cells (several to
tens) and are conserved, thus providing a highly tractable and
relevant system for studying the growth dynamics of cells in a
multicellular context. With the ever-increasing power of modern
technologies and emergence of machine learning, it has now
become possible to systematically analyze large datasets, to extract
three-dimensional measurements of cells and their substructures,
and to identify the relationships characterizing the coordinated
growth of these multicellular structures and their underlying
mechanisms (Sommer et al., 2011; Machado et al., 2019; Zhang
et al., 2019; Tokuoka et al., 2020).

Here, we study collective growth during invertebrate oogenesis,
during which a small number of connected support cells grow
rapidly and significantly, while synthesizing the molecules and
molecular machines required for supporting the growth and early
embryonic life of the oocyte (Matova and Cooley, 2001; Haglund
et al., 2011; Lei and Spradling, 2016). To determine whether there
are laws that govern the growth of clusters of connected cells, we
focused on the Drosophila egg chamber, a powerful and relevant
experimental system, the invariant structure of which allows
identification and unique labeling of each cell in the cyst. An egg
chamber comprises 16 germline cells enveloped by an epithelium
(Fig. 1A) (Koch and King, 1969; King, 1970). The germline cyst
arises from a differentiated stem cell that undergoes four rounds of
cell division with incomplete cytokinesis, leaving cells connected
through stabilized intercellular bridges or ring canals (King, 1970;
Mahajan-Miklos and Cooley, 1994). At ∼1-10 m, ring canals allow
for intercellular communication and transport – processes that
are essential for oocyte development and growth (Cooley and
Theurkauf, 1994). One of the two cells with four ring canals
becomes the oocyte, while the remaining 15 cells become
supporting nurse cells (King, 1970; Diegmiller et al., 2021).

Over the course of 3 days, the egg chamber grows by four orders
of magnitude; however, that volume increase is not partitioned
equally among its 16 cells (King, 1970). While the oocyte becomes
transcriptionally quiescent, the nurse cells undergo ∼8-10
endoreplication cycles that significantly increase their ploidy, thus
enabling them to synthesize the materials necessary for future
developmental events (Edgar and Orr-Weaver, 2001; Fox and
Duronio, 2013; Navarro-Costa et al., 2016; Doherty et al., 2021).
Furthermore, studies have shown that, within the nurse cell cluster

Handling Editor: Cassandra Extavour
Received 30 March 2021; Accepted 12 August 2021

1Department of Chemical and Biological Engineering, Princeton University,
Princeton, NJ 08544, USA. 2Lewis-Sigler Institute for Integrative Genomics,
Princeton University, Princeton, NJ 08544, USA. 3Department of Molecular Biology,
Princeton University, Princeton, NJ 08544, USA. 4Flatiron Institute, Simons
Foundation, New York, NY 10010, USA.

*Author for correspondence (stas@princeton.edu)

R.D., 0000-0002-6115-7891; T.S., 0000-0003-4279-3558; J.I., 0000-0002-9630-
4775; S.Y.S., 0000-0002-9152-9334; S.Y.S., 0000-0002-9152-9334

1

© 2021. Published by The Company of Biologists Ltd | Development (2021) 148, dev199663. doi:10.1242/dev.199663

D
E
V
E
LO

P
M

E
N
T

mailto:stas@princeton.edu
http://orcid.org/0000-0002-6115-7891
http://orcid.org/0000-0003-4279-3558
http://orcid.org/0000-0002-9630-4775
http://orcid.org/0000-0002-9630-4775
http://orcid.org/0000-0002-9152-9334
http://orcid.org/0000-0002-9152-9334


itself, a hierarchy of cell sizes emerges (Brown and King, 1964;
Dapples and King, 1970; Imran Alsous et al., 2017, 2018). Nurse
cell nuclear volumes increase with increasing ploidy, but the nurse
cells also grow in concert with the oocyte; it is therefore unclear how
the nuclei and cells scale during egg chamber development.
Nucleolar size has been shown to correlate with ribosomal density,
which is linked to cell growth rates (Rudra and Warner, 2004;
Uppaluri et al., 2016); however, given the syncytial nature of these
cell clusters, and the ability of RNA and protein products to be
exchanged within nurse cells and between nurse cells and the oocyte
through ring canals, it is not clear whether each nurse cell nucleolus
scales with the size of its own nucleus.
We therefore sought to investigate the coordinated growth of

germline cells and their substructures during Drosophila oogenesis,
using a high-throughput, data-driven approach. This paper was
largely inspired by the previous work of Dr Charles Dapples and
Dr Robert King, who over 50 years ago analyzed the shapes and
volumes of nuclei and nucleoli in developing egg chambers
(Dapples and King, 1970). Motivated to overcome the limitations of
2D studies, researchers of the King lab at Northwestern University
set out to generate 3D visualizations of these organelles (Charles
C. Dapples, personal communication). Armed with cutting-edge
electron microscopy equipment at the time, the researchers began by
serially sectioning entire egg chambers, manually tracing each
acquired electron micrograph onto graph paper, and mapping the
locations of nucleolar regions. For each of the∼50-100 micrographs
obtained for each cell, this information was transferred to punch
cards and fed into a computer, creating a 3D array of the nucleolar
region. This laborious process took months to complete;
furthermore, the resolving power of the micrographs limited the
statistical power and scope of this study. Nonetheless, these efforts
yielded the first insights into the unique 3D structure of this
organelle (Fig. 1B).
Technology has come far since, yet to obtain measurements of

cell volumes, numerous studies still assume that cells are spherical
objects or rely on interpolation of circular areas across slices

(Arata et al., 2015; Arata and Takagi, 2019; Masui andWang, 1998;
Wang et al., 2000). The approach presented in this paper allowed us
to determine the morphological features and to measure the volumes
of cells and their organelles for each cell in egg chambers across
several orders of magnitude, while circumventing these limitations.
Our results shed light on several properties relating to the groupwise
developmental dynamics of these multicellular clusters. More
generally, this work establishes an automated pipeline for high-
throughput data processing and systematic analysis that is
unencumbered by large datasets and can be readily applied to
characterize collective growth in a several multicellular systems,
including early mammalian embryos and germline cysts.

RESULTS AND DISCUSSION
Algorithm for automated egg chamber reconstruction
As live imaging is limited to a few hours, we set out to establish
scaling relationships in Drosophila egg chambers for each of the
16 cells in the germline cyst using fixed samples with fluorescently
labeled cell membranes, ring canals, nuclei and nucleoli (see
Materials and Methods). Although formaldehyde fixation may
disturb the integrity of living materials, the cells of the egg chamber
and substructures appeared largely unaffected (Fig. 2). Each cell in
the cyst was uniquely identified using a supervised learning
approach. For each of the 15 nurse cells, the volumes of the cells, as
well as their nuclei and nucleoli were measured, and their sizes
reconstructed over ∼60 h of oogenesis, i.e. from stages 3 to 10A
(King, 1957; Spradling, 1993). This supervised learning program
yielded probabilistic pixel information based on minimal training
(Sommer et al., 2011; Berg et al., 2019). Once these probability
maps were exported to MATLAB to isolate each feature within each
egg chamber, we were able to uniquely identify each cell in the cyst,
reconstruct its morphology, measure its volume and also extract
those features for its nucleus. The unique identification of nurse
cells was made possible through implementation of an assignment
algorithm relating the identified cell-cell connections based on the
positions of ring canals within the system. After identifying the

Fig. 1. Schematic of Drosophila egg chamber development. (A) The Drosophila ovariole comprises a germarium and several egg chambers arranged
from youngest (left) to oldest (right). The egg chamber is formed in the germarium where a differentiated stem cell undergoes four rounds of divisions to give
rise to a 16-cell cyst, the cells of which are connected through ring canals. The stereotypic connectivity of the cells is illustrated as a network of nodes (cells)
and edges (ring canals); one cell (pink) is specified as the oocyte, while the other 15 become endoreplicating nurse cells. Over time, the egg chamber grows
by several orders of magnitude, with the oocyte eventually occupying a large fraction of the egg chamber volume. During this time, nurse cell nuclear and
nucleolar volumes grow as the nurse cells undergo several rounds of DNA replication. (B) An early 3D model of a stage 9 nurse cell nucleolus reconstructed
from thick cardboard, depicting its intricate morphology. Reproduced, with permission, from Dapples and King (1970).
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oocyte, each cell in the egg chamber is identifiable by its number of
ring canals and the cells to which it is connected. The automated
reassignment algorithm allowed each nurse cell to be distinctly
labeled in a given egg chamber and compared with the same cell
in other egg chambers across developmental stages (Kuhn, 1955;
Umeyama, 1988). This automated pipeline for image processing
and reconstruction (Fig. 2) facilitates extraction of quantitative
information regarding the temporal evolution and development of
the connected network of cells.

Linear scaling of nuclear and cell volumes
Discovery of the emergent pattern of cell sizes within the nurse
cell cluster was first enabled through measurements from 2D
sections, and subsequently confirmed through painstaking manual
measurements and 3D reconstructions (Brown and King, 1964;
Imran Alsous et al., 2017, 2018). These studies formed the basis for
interrogating features and dynamics of cell and organelle growth
through the more advanced, higher throughput and automated
computational and image processing tools featured here.
Previous work has demonstrated that nuclear volumes correlate

with distance from the oocyte – i.e. that the number of ring canals
between a nurse cell and the oocyte correlate with the nuclear
volume of a cell (Brown and King, 1964; Imran Alsous et al., 2017).
We first sought to verify this finding using the automated
reconstructions and to expand its scope to total nurse cell
volumes. We recovered a strong correlation between nurse cell
volume rank and nuclear volume rank (Fig. S1A), thus validating
the accuracy of the aforementioned approach and establishing an
important link between previous manual reconstructions and the
automated versions presented here.

Nurse cell volume fractions remain constant during growth
Previous work has also demonstrated that nurse cells exhibit
differential growth, and that four groups of nurse cell sizes emerge,

correlating with the distance of the cells from the oocyte. This
pattern of cell sizes is already present in egg chambers that have
exited the germarium, the stem cell niche (Brown and King, 1964;
Imran Alsous et al., 2017, 2018); furthermore, once the pattern
emerges from uniform initial conditions, it persists throughout
oogenesis until the onset of nurse cell dumping, when the volumes
of nurse cells start to decrease markedly through rapid transport of
their cytoplasmic contents to the oocyte (Theurkauf and Hazelrigg,
1998; Imran Alsous et al., 2021).

In addition to confirming these findings, we found that the
volume fraction of each nurse cell in a given egg chamber between
stages 3 and 10A does not depend on developmental stage
(Fig. S1B) (Jia et al., 2016; King, 1957). That is, the size of the
egg chamber does not have predictive power for the relative nurse
cell sizes. Instead, volume fractions appear to be conserved across
developmental stages and are roughly uniform based on distance
from the oocyte. In particular, there is a clear deviation for the four
cells directly connected to the oocyte, while the other cells in the
cyst appear to be more uniformly distributed. Given the size
hierarchy of nurse cells, conservation of relative nurse cell volume
fractions across all measured samples implies that the observed size
divergence of nurse cells based on distance from the oocyte must
have occurred at a time point before the earliest egg chamber
measured in this study (∼stage 3) (Jia et al., 2016; Imran Alsous
et al., 2017; Doherty et al., 2021).

Nurse cell nuclei and nucleoli grow isometrically
We next explored the total growth rates of nucleolar and nuclear
regions within developing egg chambers. Starting from early∼stage
3 egg chambers, we found that nurse cell nuclear and nucleolar
volumes scale at the same rates with respect to each other through
developmental time (Fig. 3A,B) (Jia et al., 2016). This observation
is consistent with that made half a century ago by Dapples and King
(Dapples and King, 1970). Across various stages of oogenesis,

Fig. 2. Pipeline for automated egg chamber reconstruction. Fixed stacks of images were stained for cell membrane, ring canals, DNA and nucleoli. From
here, training in ilastik was performed, where each pixel in a given stack was assigned a list of probabilities for being a member of each of these classes
(color bar shows probability in the interval [0, 1] within the slice for each respective feature). These probabilities were then exported to MATLAB, where cell
membrane data were used to identify the 16 cells of the cyst. Using the ring canals to identify adjacent cells, each cell identified in MATLAB can be mapped
one-to-one to a unique label using the known adjacencies of the invariant Drosophila egg chamber.
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the relationship between nuclear and nucleolar size within each nurse
cell remains consistent, scales isometrically with cell size and is
independent of distance from the oocyte or location in the cell lineage
tree. Taken together, these data suggest that nurse cell nuclear
volumes change at constant rates across developmental stages.

Oocyte growth diverges from nurse cell growth
Although relative nurse cell growth remains constant throughout
development, oocyte volume does not follow this trend. During the
early stages of oogenesis (∼stages 3 through 7-8), the oocyte grows
roughly isometrically with the rest of the cells in the cyst; however,
when the total egg chamber reaches a volume of roughly 105 μm3,
oocyte growth begins to diverge, becoming much larger than the
other cells in the developing cyst (Fig. 4).
We found that although nurse cells as a whole appear to have one

rate of growth throughout oogenesis relative to the entire egg
chamber (Fig. S1C), two distinct growth rates exist for the oocyte.
This sharp increase in growth rate relative to the growth of the egg

chamber occurs around stage 9, when developmental processes such
as yolk uptake take place (Spradling, 1993; Jia et al., 2016). This
developmental checkpoint appears to split oocyte growth into two
distinct phases: early isometric growth relative to the nurse cells;
and later divergent growth, where the oocyte grows at around twice
the rate as the nurse cells.

Contextualizing analysis and applications to other systems
The work presented here highlights the utility and feasibility of
automated reconstruction algorithms in quantifying developmental
processes. The key strength of this approach is its flexibility: given
either stacks of fixed images or movies of developing multicellular
structures, a minimal amount of training on images is required
before one is able to uniquely identify each cell within a given
system, make quantitative measurements at varying scales and glean
insights into developmental trajectories. We demonstrate this
approach here by quantifying the relative growth rates of oocyte,
nurse cells and their subparts in the Drosophila egg chamber, thus
uncovering properties of their growth dynamics.

A key aspect of this analysis was comparing the growth rates of
nucleoli and nuclei across development and within the nurse cell
cluster. During oogenesis, ribosomal RNA is rapidly synthesized
in nurse cell nucleoli (Jorgensen et al., 2007; Uppaluri et al., 2016).
As ribosomes are required for protein translation, an increase in
the number of ribosomes promotes an increase in cell growth, as
occurs in the nurse cells (Rudra and Warner, 2004). As nurse cell
nucleoli and nuclei grow at roughly the same rates, ribosomal
density is most likely constant throughout Drosophila oogenesis.
This observation implies that nurse cell growth rates are constant
across developmental stages, consistent with our other findings.
Nuclear and nucleolar sizes also scale with cell size (Fig. 3A). This
relationship has been observed in a range of organisms and cell
types, and implies that nuclear size is most likely regulated by
cytoplasmic volume and contents (Gregory, 2005; Levy and Heald,
2012).

Fig. 4. Divergent growth in the oocyte during oogenesis. Oocyte volume
and total nurse cell volume as a function of total egg chamber volume
across developmental stages highlights the divergence of oocyte growth rate
at a stage of oogenesis. As depicted in the schematics, this increase in the
rate of growth of the oocyte relative to the growth rate of the entire egg
chamber appears to come from external sources, most likely due to the
onset of vitellogenesis around this stage of development. Early and late
stage nurse cell growth rates relative to the egg chamber have a correlation
of R2=0.999 and R2=0.998, respectively. Early and late stage oocyte relative
growth rates have a correlation of R2=0.97 and R2=0.99, respectively. Here,
n=40 total egg chambers. Gradients are mean±s.d.

Fig. 3. Subcellular scaling relationships in Drosophila oogenesis.
(A) Nucleolar and total nuclear volumes as a function of nurse cell volume
shows that these organelles grow isometrically with respect to one another
(R2=0.82 for nucleoli and R2=0.94 for total nuclear regions). Inset is a
projection of a 3D rendered nucleus, with DNA in blue and nucleolar region
in red. (B) Total nucleolar volume as a function of total nuclear volume
exhibits the same isometric relationship (R2=0.80), thus recapitulating
previous results (Dapples and King, 1970). Inset is a reconstructed egg
chamber with the full nuclear regions of each nurse cell. For both plots,
n=600 nurse cells or n=40 egg chambers. Gradients are mean±s.d.
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A key feature of nucleoli in nurse cells is their ‘lava lamp’
morphology, with the nucleolus loosely wrapped by the
surrounding DNA (Fig. 3A, inset) (Dapples and King, 1970).
This unusual structure is a departure from the more familiar dense,
olive pit-like region observed in other cell types (Jorgensen et al.,
2007; Neumann and Nurse, 2007; Windner et al., 2019). Given the
ploidy and high biosynthetic capacity of nurse cells, such
morphology may allow a relatively higher surface area to volume
ratio than the more compactly packed configuration – a hypothesis
that can be tested by applying the pipeline developed here to flies
with mutations in rRNA structural gene locus, such as bobbed (bb),
which is known to cause delayed development, with oogenesis
progressing at significantly reduced rates (Kay and Jacobs-Lorena,
1987).
A striking feature of Drosophila oogenesis is the rapid growth of

the egg chamber around stage 9, which correlates with the uptake of
yolk by the oocyte (Fig. 4) and cannot be accounted for by the
isometric growth rates of the nurse cells (King, 1970; Bownes,
1982; Spradling, 1993; Jia et al., 2016). Indeed, although the oocyte
and the nurse cells reside within a shared cytoplasm, they exhibit
strikingly different nuclear behaviors and sizes (Fig. 1A). Future
work is required to investigate the factors that control the scaling of
nuclei in the egg chamber, both temporally throughout oogenesis,
and spatially within the network. Notably, the functionally and
morphologically different nuclei of the egg chamber are reminiscent
of the macro- and micronuclei that reside within the same cell in the
protozoan Tetrahymena thermophila, where differences in nuclear
size and behavior have been attributed to differences in nuclear pore
complexes (Levy and Heald, 2012).
Last, the presented approach can be adapted to developmental

systems where the structure of intercellular connections is known
and invariant, such as the tardigradeDactylobiotus parthenogeneticus
and the Argentine ant Linepithema humile (Poprawa et al., 2015;
Eastin et al., 2020). The key adjustment would only be in the
application of the assignment algorithm that uniquely identifies
each cell (Umeyama, 1988). As in Drosophila, the known matrix of
connections between uniquely identifiable cells would need to be
compared with that of each reconstructed sample, allowing the
proper identification and analysis of multicellular growth in a
variety of developmental contexts.

MATERIALS AND METHODS
Fly stocks
Fibrillarin-RFP flies were used in all studies as a marker for nucleolar
regions within each nurse cell (Falahati and Wieschaus, 2017). The flies
were maintained with standard cornmeal, molasses and yeast media.

Antibody staining
Ovaries were fixed in 4% paraformaldehyde in 0.1% Tween-20 in PBS for
20 min at room temperature on a nutator. After washing in 0.1% Tween in
PBS, the ovaries were then blocked for 2 h in blocking solution (1% BSA in
PBS) before adding the primary antibody rabbit anti-Phosphotyrosine
(1:500) and rocked overnight at 4°C overnight. The following secondary
antibodies and additional stains were then used: donkey anti-rabbit Alexa-
Fluor 647 nm (1:400) (Invitrogen), Alexa Fluor 488 phalloidin (1:1000)
(Invitrogen) and DAPI (250 ng/ml).

Mounting and imaging
Dissected ovaries were mounted in a 1:1 mixture of RapiClear 1.47 (SUNJin
Lab) and Aqua-Poly/Mount (Polysciences). Imaging was performed on a
Leica SP5 confocal microscope using a 63×/1.3 NA oil objective. Three
dimensional stacks were acquired using 405, 488, 546 and 647 nm in
series with 3× line averaging. Stacks acquired were usually between 70 and

120 z-slices of 16-bit, 1024×1024 images. Each imagewas isometric in the x
and y directions, tuned to best match the necessarily larger z length. Most
acquired images were 246 nm in x and y, and 250 nm in z. Calibration of
volume measurements was performed using 1.8 μm diameter spherical
beads to confirm accuracy of measurements in all three directions.

Image processing and supervised learning
Raw image stacks were pre-processed using FIJI to isolate individual egg
chambers within each stack. The channels for each egg chamber were then
split and recombined to create three stacks: a stack containing nuclear and
nucleolar data, a stack containing ring canal data, and a stack containing cell
membrane data. Multiple representative stacks for each type of data were
uploaded into the Pixel Classification module for training within ilastik, a
freely accessible semi-supervised machine learning program (Sommer et al.,
2011; Berg et al., 2019). For each type of data, training was performed by
manually identifying pixels that belong to each class of interest. Based on a
minimal number of these examples, the program then developed
probabilities for each pixel of a stack to belong to each of these classes.
Owing to the morphological and volumetric differences between early- and
late-stage egg chambers, two sets of training data were used to more
accurately identify the relevant features for each class of samples. Each
classifier was trained to identify the relevant features for all three stacks,
yielding an output matrix of probabilities across all three dimensions.

Egg chamber reconstruction
The processed stacks, containing information about the probability of each
pixel in the image to belong to either the cell membrane, ring canal, nucleus,
nucleolus or image background, were imported into MATLAB for final
object identification, post-processing and data quantification. Cell
membrane probability maps were used to identify the areas of lowest
probability lying inside the egg chamber, which were used as seeds for the
watershed transformation. After applying this transformation and applying a
Gaussian smoothing kernel based on the size of the image being analyzed,
this process yielded the 16 objects most likely to be the cells within the
developing cyst and assign each object a unique identifier. Applying a
simple probability threshold (usually taken to be 0.5 or 50% certainty for a
given pixel to have come from a certain class) allowed the ring canals,
nuclear and nucleolar regions to all be identified within the cluster. As each
ring canal connected two cells in the cluster, each necessarily touched the
boundary of the connected cells. Exploiting this fact allowed an adjacency
matrix to be built that contained information about which cells are
connected. This was achieved by creating an n-by-nmatrix A, where n is the
number of cells, where for each pair of connected nurse cells i and j, Aij and
Aji were set to 1. Connections between the oocyte and nurse cells were
instead weighted by a factor of 2.

Identifying the oocyte required the segmentation of the nucleus and
nucleolus of each cell in the cluster. As the nuclei and nucleoli of each cell
were classified in a previous step, this was performed by identifying the
location of each nucleolar region and identifying which cell each region was
within. Because the oocyte is transcriptionally quiescent throughout these
stages of oogenesis (Edgar and Orr-Weaver, 2001; Fox and Duronio, 2013),
nuclear staining in this cell appears less intense, allowing it to be identified
as the oocyte. Once the oocyte was properly identified, all nurse cells and
their respective organelles could be uniquely identified due to the bilateral
symmetry of connections within the cell cluster. This was achieved by
applying a graph matching algorithm in which the cell-cell connections
identified through ring canals were compared with the known adjacency
matrix of the uniquely labeled cyst and re-allocated (Kuhn, 1955; Umeyama,
1988). This matrix reallocation process is based on the Hungarian algorithm,
an optimization algorithm applied in this context to find the best
configuration for assigning label j from the known adjacency matrix to
object i from the sample adjacency matrix for all labels and objects. For each
sample, this automatic segmentation and identification algorithm produced
a set of objects from which quantitative data was obtained for further
statistical analyses. Once each nurse cell was uniquely defined, volumes
were measured by calculating the number of voxels within each object of
interest and scaling by the voxel size in all three dimensions, thus
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approximating each volume as the sum of many small rectangular prisms. A
subset of these samples was compared with egg chambers reconstructed
manually in Imaris to confirm the absence of systematic biases in volume
measurements or segmentation.

Statistical analysis
Simple linear regression was performed using standard functions in
MATLAB, assuming that the relationship between two properties, x and
y, could be best represented as ln(y)=mln(x)+ln(b). Rearranging these
relationships yields the relationship y=bxm, which shows that the slope of the
regression, m, is the scaling factor between the two properties.
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Fig. S1.  Size divergences in the nurse cells and oocyte. (A) A plot of nuclear volume rank against cell 
volume rank shows the emergence of groups based on distance from the oocyte, and also demonstrates the 
deviation of the cells closest to the oocyte (n=40, R2=0.976, error bars are s. d.). (B) Total nurse cell volume 
fraction (excludes the volume of the oocyte) as a function of egg chamber volume shows that across 
developmental stages, the cells closest to the oocyte are larger than the rest of the nurse cells, but this 
difference does not change through time (n=600 nurse cells from 40 egg chambers). (C) Volume fraction of cells 
against egg chamber volume highlights the onset of oocyte size divergence as the egg chamber progresses 
through oogenesis (n=640 cells from 40 egg chambers). All colors are based on proximity to oocyte, as denoted by 
the tree inset in (A) (gray depicts oocyte). 
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