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ABSTRACT
Recent years have seen a dramatic increase in the application of
organoids to developmental biology, biomedical and translational
studies. Organoids are large structures with high phenotypic
complexity and are imaged on a wide range of platforms, from simple
benchtop stereoscopes to high-content confocal-based imaging
systems. The large volumes of images, resulting from hundreds of
organoids cultured at once, are becoming increasingly difficult to
inspect and interpret. Hence, there is a pressing demand for a coding-
free, intuitive and scalable solution that analyses such image data in an
automated yet rapid manner. Here, we present MOrgAna, a Python-
based software that implements machine learning to segment images,
quantify and visualize morphological and fluorescence information of
organoids across hundreds of images, each with one object, within
minutes. Although the MOrgAna interface is developed for users
with little to no programming experience, its modular structure makes it
a customizable package for advanced users. We showcase the
versatility of MOrgAna on several in vitro systems, each imaged with a
different microscope, thus demonstrating the wide applicability of the
software to diverse organoid types and biomedical studies.
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INTRODUCTION
Organoids are cell aggregates capable of generating complex
structures, thereby mimicking fully grown organs in vitro (Huch
et al., 2017; Lancaster and Knoblich, 2014; Kretzschmar and
Clevers, 2016). To develop such complex organization, organoids
undergo highly dynamical processes, including growth, shape
changes and emergence of gene expression patterns concomitant
with cell fate commitments (Huch et al., 2013; van den Brink et al.,
2014; Eiraku et al., 2011; Serra et al., 2019) These observables
provide qualitative information on the patterning of organoids, and
can be used to assess the wide variety of phenotypes displayed.

In recent years, due to novel engineering solutions and the need
of buffering the large variability of organoid generation (Gritti et al.,
2021), the number of experimental conditions have grown
combinatorially and it is now possible to generate increasingly
large datasets. There is therefore now a major bottleneck in the ability
to inspect this huge number of images and quantify morphological
and fluorescence parameters in space and timewith high accuracy and
in an unbiased manner. When quantitatively interpreted, such data
have been crucial in dissecting the mechanisms responsible for
organoid development (Phipson et al., 2019; Lukonin et al., 2020;
Hof et al., 2021). Another hindrance is the limited access to an
imaging system that can accommodate the variety of plates
and devices used in organoid culture (Rossi et al., 2018).
Generally, high-content screening (HCS) devices represent an ideal
platform to image a large number of samples under a variety of
conditions (Durens et al., 2020; Brandenberg et al., 2020; Vrij et al.,
2016). However, there is a tradeoff between microscope availability,
high-throughput capacity and image quality, often forcing researchers
to use low-end stereoscopic microscopes that can suffice for
qualitative assessment. Therefore, in order to extract quantitative
information, much effort is required to adapt, if not rewrite,
conventional algorithms to work around the signal to noise in
images generated by the diverse devices used.

Nowadays, machine learning (ML)-based algorithms have
become an essential tool across biomedical disciplines to perform
a quantitative, unbiased analysis of microscopy images, and are
either provided as part of proprietary software (e.g. MetaMorph,
Imaris, Harmony and ZEN) or distributed open-source (e.g. FIJI,
CellProfiler and ilastik); (Berg et al., 2019; Schindelin et al., 2012;
Carpenter et al., 2006). In the context of HCS of 2D adherent cell
culture, such software have been capable of, for example,
identifying thousands of cells within wide fields of view and
extracting biologically relevant features (McQuin et al., 2018).
However, organoids display highly complex phenotypes, which are
difficult to describe with traditional morphological features such as
radius length, area, perimeter or average fluorescence intensity.
Thus, standard high-throughput segmentation pipelines need to be
adapted to detect individual large objects distributed among several
images. Even though data-driven approaches to characterizing
organoid phenotypes exist (Serra et al., 2019), so far little effort has
been made to develop a user-friendly intuitive pipeline that can be
used by a large community with limited programming experience.

In this work, we present MOrgAna, a Machine-learning-based
Organoid Analysis software. MOrgAna is a Python package that
implements an easy-to-use ML pipeline to segment hundreds of
organoids, each fully contained in a single 2D image, within minutes
(Fig. 1A,B; Fig. S1). MOrgAna provides a simple, yet powerful,
visualization and quantification toolbox for morphological as well as
fluorescence information (Fig. 1C; Fig. S2). We proved the flexibility
of MOrgAna by applying its pipeline to characterize morphological
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and fluorescence parameters for several sample types, including
human brain organoids (Lancaster et al., 2017), zebrafish explants
(pescoids) (Fulton et al., 2020), mouse embryonic organoids
(gastruloids) (van den Brink et al., 2014) and intestinal organoids
(Serra et al., 2019). The images were acquired with different
microscopy devices, magnifications and fields of view, thus
demonstrating the wide applicability of MOrgAna (Table S1). For
users without coding experience, MOrgAna can run through a
graphical user interface (GUI) to quickly provide visual quantitative
graphs (Fig. S2). Formore experienced users, we additionally provide
ready-to-use code in the form of Jupyter notebooks (Materials and
Methods) that can be customized at will and integrated into advanced
image analysis pipelines.

RESULTS AND DISCUSSION
To provide a widely applicable tool, we developed a pipeline that is
divided into two separate and independent parts: the first
segmentation step is based on the bright field image of the
organoid (Fig. 1B), followed by a quantification step that takes into
account all bright field and fluorescence channels available (Fig. 1C).
The rationale behind this design is that bright field images are usually

readily available when performing any imaging experiment, whereas
fluorescence signals depend on labeled structures within organoids,
and are thus more difficult to use for segmentation purposes.
Moreover, especially in biomedical applications, patient-derived
organoids are typically monitored in bright-field mode and
fluorescently labeled at the end of the experiment.

To define the training set, features of pixels in provided images
are computed with morphological parameters, such as the widths of
Gaussian and Laplacian filters, which are initialized to default
values and can optionally be modified by the user (Materials
and Methods). In most applications, we found that our default
parameters, generating 18 features per pixel, provide sufficient
information for successful object segmentation. To improve
flexibility and applicability, as an alternative to training image
segmentation networks based on Logistic Regression (classical
ML), MOrgAna can also use Multi Layer Perceptron with two
hidden layers (deep learning algorithm) to recognize organoids. As
development of organoids generally happens over several days and
requires media exchange, aggregates can be surrounded by
delaminating cells and debris, making it complicated to accurately
detect their boundaries. Therefore, the networks in MOrgAna learn

Fig. 1. MOrgAna workflow schematic. (A) Versatility and flexibility of MOrgAna derives from its ability to accept, as input data, images acquired by diverse
devices such as high-content screening devices, confocal microscopes and simple benchtop stereo-microscopes, and under diverse experimental scenarios
such as those acquired over the course of several days, across experimental replicates or under different perturbation conditions. (B) Schematic of the
segmentation workflow of the Python-based MOrgAna. Users first create binary masks of a few representative images for training of an image segmentation
model. With the trained network, additional masks of unseen images can be easily generated and subsequently checked and modified manually, all of which can
be accomplished with a few mouse clicks through its graphical user interface. (C) With binary masks and input images, users can then cluster their images into
different groups and choose the method of image analysis based on their data type. The modular nature of MOrgAna allows the user to build an analysis pipeline
by combining options for timelapse, replicates or conditions depending on the experimental scenario in A. MOrgAna quickly produces quantitative plots based on
morphological and fluorescence parameters, thereby visually answering the users’ research questions, leading to biological discoveries.
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to classify pixels into three classes: background, organoid and
organoid edge. The resulting trained network can then be applied
to previously unseen images. Although the standard classifier
network performs well in most cases, MOrgAna additionally and
automatically predicts masks using the watershed algorithm, thus
providing the user with an alternative segmentation option to choose
from. Importantly, MOrgAna presents a manual curation step,
whereby the user is prompted to inspect, detect and correct
segmentation errors or to ignore corrupted images. Therein, a final
segmentation mask of the organoid within the image is computed
and stored (Fig. 1B). When multiple organoids per image exist and a
segmentation can be generated by simple thresholding or using third
party software, users can import the image and masks. MOrgAna
will then save individual objects into separate files together with
their masks. These can be used to perform a finer segmentation of
the organoids or to proceed with the quantification pipeline using
the previously provided masks (Fig. S3).
Upon completion of the segmentation task, MOrgAna is then

equipped to compute and visualize several morphological and
fluorescence features characteristic of organoid development
(Fig. 1C). For this aim, we created a simple, yet powerful,
pipeline that performs the computations and retrieves the results
for future visualizations in a format that is modular and can be
adapted to the experiment type. For example, data from different
experimental replicates and conditions can be clustered into separate
groups, while parameters among different conditions can be
compared. On the other hand, data obtained from time lapse
experiments are analyzed with an additional time dimension. Time
lapse trajectories from different replicates and conditions can also be
grouped and shown together in one plot. The range of possibilities
available, as well as a detailed description of the interface, are
thoroughly described at the online MOrgAna repository (see
Materials and Methods).
To first test the performance of the MOrgAna segmentation

module and benchmark it with existing pipelines, we used a dataset
consisting of 91 organoid images (Fig. S4A). The images were
manually annotated to provide a ground truth reference with which
to compare the segmentation results. We chose to use CellProfiler
(Carpenter et al., 2006) and OrganoSeg (Borten et al., 2018) for
comparisons as they are the two popular tools used for automated
image analysis, with the second being organoid-specific and using
local adaptive thresholding for segmentation (Fig. S4B-D). We
compared the segmentation results from all three software packages
against the ground truth images based on standard metrics such as
Jaccard distance, precision and accuracy, and found that MOrgAna
performed better than both CellProfiler and OrganoSeg (Fig. S4E).
We would like to emphasize that, although the chosen existing
pipelines use standard morphological operations to segment the
images, MOrgAna uses ML algorithms, which are expected to
perform better as they directly learn a non-linear relationship
between input images and the provided ground truth. Moreover,
thanks to the fact that MOrgAna classifies pixels into three classes,
we observed a higher accuracy in segmenting complex organoid
boundaries. With respect to the run time, we observed that, although
OrganoSeg is comparable with MOrgAna, CellProfiler processing
time was more than twice as long (Fig. S4F).
Next, we tested the ability of MOrgAna to detect global

morphological changes in time lapse images. We chose to analyze
confocal microscopy images of human brain organoids (Lancaster
et al., 2017), cell aggregates that display neuroectoderm formation
associated with complex morphological changes. Brain organoids
start as spherical aggregates and grow rapidly in size to form irregular

structures displaying several lobes (Fig. 2A). We observed that
MOrgAna is capable of segmenting and quantifying subtle changes
in their morphological shape, including area, perimeter and form
factor (Andriankaja et al., 2012) (Fig. 2B,C). To better characterize
the phenotypic complexity observed, we additionally implemented
lobe contribution elliptical Fourier analysis (LOCO-EFA), a
descriptor typically used to quantify the shape of tissues and cells
(Andriankaja et al., 2012; Samuel et al., 2018). LOCO-EFA
represents a powerful algorithm that decomposes the object outline
into a series of coefficients related to the elliptical fundamental modes
needed to accurately describe the lobes (Sánchez-Corrales et al.,
2018). This is particularly useful in cases where conventional
parameters based on fit to an ellipse such as eccentricity, major and
minor axes, cannot capture the complexity of the organoid shape. We
applied LOCO-EFA to time lapse images of the human brain and
intestinal organoids (Fig. 2D; Fig. S5A,A′), and observed that the
coefficients accurately capture the appearance of lobes, and that
contributions fromhighermodes are necessary to describe the increasingly
complex shapes developed by the organoids (Fig. S5B,B′). In addition,
we observed that the highest non-negligible mode roughly
corresponds to the number of lobes present in the organoids, as
previously described (Sánchez-Corrales et al., 2018).

LOCO-EFA is a powerful tool in describing shapes of amorphous
aggregates; however, it is not ideal when morphological changes
result from the curving of the body axis. In such cases, higher
elliptical modes could be biased by the overall curved organoid
shape, resulting in bent organoids being incorrectly assigned higher
coefficient values than straight ones. This happens, for example, in
zebrafish explants known as pescoids, which break their original
spherical symmetry and form elongated and curved structures with
an anteroposterior (AP) pattern over the course of 11 h (Fig. 2E)
(Fulton et al., 2020; Schauer et al., 2020). In such cases, MOrgAna
is equipped with an algorithm to extract a morphological midline of
the aggregates purely based on the binarized mask. This midline is
then used to computationally straighten the binarized images
(Fig. 2E; see also Materials and Methods) and re-compute all
morphological parameters, which now also include eccentricity and
the length of the major and minor axes. Using this straightening
approach, MOrgAna is capable of detecting subtle morphological
changes induced by experimental perturbations. When imaged at
the time of maximum elongation, we found that pescoid
development was affected by different durations of exposure to a
small molecule inhibitor of Nodal signaling (Fig. 2F,G).

Besides morphological features, fluorescently labeled organoids
provide valuable information on the underlying patterns of
differentiation and lineage commitments. Such informative
fluorescence intensities can be quantified using MOrgAna.
Besides analysis of standard average and background intensities,
MOrgAna can also incorporate the spatial context through the
computationally straightened mask to determine the fluorescence
intensity profiles along different axes depending on the shape and
the biological identity of different regions within the organoids such
as the longitudinal (AP), orthogonal (mediolateral), angular and
radial directions. To test the ability of MOrgAna to quantify and
visualize these profiles, we used images of gastruloids, aggregates
of mouse embryonic stem cells (mESCs) that have been shown to
mimic the early stages of mammalian embryonic development and
patterning (van den Brink, 2014). Gastruloids were generated in 96-
well plates and imaged on an HCS device (Fig. 3A). Gastruloids
start as spherical aggregates that, over the course of 5 days, develop
into elongated structures with the establishment of the three main
body axes: AP, mediolateral and dorsoventral (DV) (Beccari et al.,
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2018). These events are accompanied by cellular transcriptional
changes that establish a characteristic posterior domain expressing
the mesodermal marker brachyury (Bra; Turner et al., 2017),
which was fluorescently labeled in the cell line used (Fig. 3B,C).
Quantification of average fluorescence intensities in the gastruloids
with MOrgAna (Fig. 3B) revealed a gradual increase in brachyury
expression during the initial growth phase and a subsequent
signal decrease during the elongation phase (Fig. 3B). Between 72
and 96 h after aggregation, brachyury starts being expressed

homogeneously throughout the gastruloids and eventually
becomes restricted to one side of the spherical aggregate, a
polarization event that is thought to drive gastruloid patterning.
This development is well captured with the MOrgAna angular
profile quantification (Fig. 3C). On the following day, gastruloids
elongate dramatically, with the brachyury domain being confined to
the posterior-most side of the gastruloids, a patterning dynamics
that is well described by the AP profile quantification of MOrgAna
(Fig. 3D).

Fig. 2. Morphology quantification of organoids over time and across replicates with MOrgAna. (A) Representative time-lapse images of a 7 day human
induced pluripotent stem cell-derived brain organoid acquired on a confocal microscope depicted in the schematic on top. (B) Segmentation output of a single
brain organoid with Logistic Regression (top) and Multi Layer Perceptron (bottom) models. Left masks are obtained with the classifier (red) and the watershed
algorithm (blue). Binary images represent the final masks after postprocessing. (C) Temporal dynamics of the area, perimeter and form factor for brain organoids
(n=4) over the course of 24 h of development. (D) LOCO-EFA quantification for a single brain organoid. Insets represent the shape reconstructed using 0 (blue),
2 (green) and 7 (orange) ellipsemodes. Kymograph represents theweight of every ellipsemode (log scale). Dashed white line labels the highest mode necessary
to describe 95% of the shape. (E) Representative image of pescoids as obtained from a dissection microscope. Enlarged is a single pescoid: red line represents
the edge of the segmented mask, white line the computational midline and white dots a subsample of the meshgrid used to computationally straighten the
organoid (bottom image). (F) Schematic of the inhibition experiment with representative images of control and inhibited pescoids at 11 hours post fertilization.
(G) Morphological quantification and comparison between control (gray) and pescoids inhibited at the time window highlighted in F. Data are mean±s.d., n=10
for all conditions shown. *P<0.05, **P<0.01 (using a Welch two sample t-test). ns, not significant. Scale bars: 200 µm (A,D); 100 µm (E,F).
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To test the quantification along the radial direction, we analyzed
previously published time lapse images of intestinal organoids (Serra
et al., 2019), which undergo a spherically symmetrical growth with
occasional crypts rather than a stereotypical AP elongation (Fig. S5C,
C′). Finally, we performed the full segmentation and fluorescence
quantification analysis pipeline for a time-lapse dataset with over 90
gastruloids and 144 timepoints, thus testing the scalability of the
MOrgAna pipeline and displaying its applicability to large datasets
(∼0.5 TB, Fig. 3E). In particular, we quantified the average angular
and AP profiles of brachyury expression and computed the relative
position of the expression peak and the normalized length of the AP
profile. In total, using only∼1% of the total number of images to train
a ML network, the ∼0.5 TB of data that formed the gastruloid time-
lapse dataset was analyzed within a few hours and the output graphs
were generated on the same day as processing.
In conclusion, we developed MOrgAna, a user-friendly and

modular segmentation and quantification pipeline, proving its
applicability to the analysis of several organoid types and imaging
devices. This was inspired by previous works that quantified
embryonic organoid images with custom scripts (Turner et al.,
2017; Moris et al., 2020) but that were crucially limited to
considerable manual annotation and one organoid type. The
MOrgAna pipeline is capable of processing hundreds of 2D images
within minutes, reliably extracting morphological and fluorescence
information and providing visual quantitative graphs for the user to
interpret in the context of the biological question of interest. In the
case of tiled acquisition of large organoids, postprocessing of the
images is necessary before it can be used as input of the MOrgAna
pipeline. Such postprocessing includes, but is not limited to:
stitching, correction for inhomogeneous illumination of the sample,
denoising and deconvolution. Many excellent solutions for these

tasks already exist, such as the FIJI plugin BigStitcher (stitching),
Noise2Void (denoising) and DeconvolutionLab2 (deconvolution)
(Hörl et al., 2019; Krull et al., 2019 preprint; Sage et al., 2017) The
quantitative results are saved as JavaScript Object Notation ( json)
files, which can be accessed with common text editors. In addition,
the data for every graph can be saved in csv or xls files and therefore
can serve as input for other visualization programs. Owing to its user
friendly GUI and Python implementation (Figs S1 and S2),
MOrgAna can be used by users with little to no programming
experience as well as by more experienced users as part of more
advanced image analysis pipelines (Oriola et al., 2020 preprint). In
particular, our Jupyter Notebooks provide a ready-to-use platform to,
for example, compute and visualize curve-fitting parameters of the
fluorescence intensity profiles (Fig. 3D,E). Together, these features
make MOrgAna a useful tool for researchers in a wide variety of
organoid-based imaging experiments and we expect it to become
widely used to perform image quantification in an automated, quick
and standardized manner.

The field of image and shape analysis is continuously growing;
therefore, we intend to maintain and expand the current version of
the software to integrate more complex shape descriptors to further
characterize the phenotypic complexity of organoids. Importantly,
the modular nature of the MOrgAna code can facilitate its
integration with existing frameworks, such as CellProfiler, in
future. Such efforts will allow the establishment of flexible and
accessible image analysis pipelines for users. Similarly, as the
characterization of organoid phenotypes is being driven by the study
of their constituent single cells, it can be envisioned that modules to
segment and quantify secondary objects within organoid images
will be useful in future. Upon acquisition of diverse datasets taken
by different imaging devices in the field, MOrgAna will

Fig. 3. Fluorescence quantification of high-throughput image datasets with MOrgAna. (A) Schematic of a typical high-throughput imaging experiment,
exemplified here using gastruloids cultured in a 96-well plate and imaged on a high-content screening device at 48 h and then continuously for 2 days between 72
and 120 h post aggregation. (B) Average fluorescence intensity for gastruloids (n=90) at 24 h intervals. (C) Representative images of two gastruloids between 72
and 96 h post aggregation, with the angular profile shown as an angular heatmap. The 0 angle is defined as the direction of maximal radial fluorescence intensity.
(D) Example images of a gastruloid at 96, 108 and 120 h post aggregation. Dashed white line shows the computational midline. A, anterior; P, posterior. Insets
show anteroposterior (AP) profile and exponential fit for the example images. Kymograph represents the AP profile at all imaged timepoints for a single gastruloid.
Dashed blue and orange lines represent the position of the highest brachyury expression and the position corresponding to its decay length, respectively.
(E) Average angular and AP profiles for n=39 and n=90 gastruloids, respectively. Blue and orange bands represent the standard deviation of the peak position and
decay length, respectively. Scale bars: 100 μm.
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subsequently become equipped with pre-trained, more complex and
fully convolutional deep learning networks that can be directly
applied to previously unseen images, thus further reducing the gap
between microscopy images and biological discoveries.

MATERIALS AND METHODS
Sample preparation and image acquisition
As previously described (Anlas et al., 2021), we used a Bra:GFP
transcriptional reporter cell line (Gadue et al., 2006; Fehling et al., 2003)
which was shown to faithfully reproduce the expression of brachyury in a
variety of differentiation conditions (Turner et al., 2014). Cells were
maintained in ES-Lif (ESL), consisting of KnockOut D-MEM
supplemented with 10% fetal bovine serum (FBS), 1× non-essential
amino acids (NEEA), 50 U/ml Pen/Strep, 1× GlutaMax, 1× sodium
pyruvate, 50 μM 2-mercaptoethanol and leukemia inhibitory factor (LIF,
homemade) in 0.1% gelatin-coated (Millipore, ES-006-B) tissue culture
25 cm2 flasks (T25 flasks, Corning 353108) at 37°C and 5% CO2. ESL was
prepared and provided by the Tissue Engineering Unit of the Centre for
Genomic Regulation (CRG; Barcelona, Spain). Briefly, cells were grown up
to 50-70% confluency before being trypsinized and centrifuged at 180 g. We
then added 40 μl of the resulting cell suspension in differentiation medium
N2B27 (Ndiff 227, Takara, Y40002) to each well in a U-bottom, low
adhesion 96-well plate (96WP, Greiner, 650970), corresponding to ∼300
cells per well. An additional 150 μl of N2B27 with 3 μM CHIR99 (Sigma-
Aldrich, SML1046) was added into each well after 48 h, with daily N2B27
medium exchange after 72 h. Gastruloids were imaged every 24 h with the
Opera Phenix High Content Screening System (PerkinElmer) in wide-field
mode with 10× magnification (NA 0.3, air objective). It is worth noting that
a few gastruloids are usually lost during the daily media exchange or
discarded because of insufficient elongation caused by media evaporation,
particularly in the wells located along the edges of the plate. For this reason,
the typical sample size is ∼90 gastruloids per multi-well plate. For the time-
lapse dataset, images of gastruloids generated in five of the eight columns
were acquired every 20 min, with gastruloids maintained at 37°C, 5% CO2.

Pescoids were generated as detailed in Fulton et al. (2020). Zebrafish
embryos were grown at 28.5°C until the 256 cell stage (∼2.5 h after
fertilization). Next, embryonic cells were severed from the embryo using an
eyelash tool. The explants were allowed to compact for∼1 min before being
transferred to a 60 mm×20 mm Petri dish (Sigma-Aldrich) containing 8 ml
of Leibovitz’s L15 Medium (Thermo Fisher Scientific, 11415049) with 3%
FBS and 1% Pen/Strep. Culture medium was changed after ∼6 h. Bright-
field images were taken on a benchtop Leica stereomicroscope S9i ∼11 h
after pescoid generation. For perturbation experiments, pescoids were
exposed to the small molecule SB43 (Sigma-Aldrich, #616461), a potent
TGF-β inhibitor, for different 2 h time windows.

Brain organoids were prepared from human induced pluripotent stem cell
line iPS(IMR90)-4 cultured in STEMFlex medium (Thermo Fisher
Scientific), and generated using STEMdiff™ Cerebral Organoid Kit
(Stemcell Technologies, 08570), including modifications from Lancaster
et al. (2017). Brain organoids were imaged between 7 and 8 days after
preparation on an Olympus FV3000 confocal microscope, using a 10×
objective (NA 0.4) with brightfield. As brain organoids are large structures
which spread over several focal planes, 3D image stacks were acquired and
the average stack projections were subsequently used for image analysis.

Benchmarking with established segmentation algorithms
To benchmark the performance of the MOrgAna segmentation module, we
used two popular automated image segmentation pipelines: CellProfiler and
OrganoSeg (Carpenter et al., 2006; Borten et al., 2018) and a dataset
composed of 91 organoid images (Fig. S4A). For MOrgAna, we used three
images (∼3% of the available images) to train the ML network and directly
applied it to the remaining images in the dataset using default settings. For
CellProfiler segmentation, we used the following pipeline. First, images
were smoothed using morphological Opening and Closing with a
structuring element of 25 pixel diameter. Image intensities were inverted
with the ImageMath module and Primary objects were identified using
Global Otsu with two classes as a thresholding method. Finally, to filter out

debris, only the largest identified object was considered
(MeasureObjectSizeShape followed by FilterObjects). For OrganoSeg, we
used the default pipeline with Intensity Threshold=0.5, Window Size=500
and Size Threshold=5000. Similar to CellProfiler, we removed debris by
filtering objects smaller than the largest identified object in the image. These
analysis-generated masks for all the 91 organoids were then analyzed
(Fig. S4A-D).

To perform a quantitative analysis, we used a custom Python script to
linearize the mask into a 1D array and compute the Jaccard distance,
defined as:

Jðq; gtÞ ¼ jqi � gtij
jqi _ gtij ;

where� and ∨ indicate the logical XOR and AND operators. In addition we
computed the precision (P) and accuracy (A), following the definitions:

P ¼ tp

ðtpþ fpÞ

A ¼ ðtpþ tnÞ
ðtpþ tnþ fpþ fnÞ ;

where tp, tn, fp and fn represent true positive, true negative, false positive
and false negative pixel classification, respectively (Fig. S4E). Finally, we
computed the runtime by manually monitoring the starting and finishing
time of processing for every pipeline (Fig. S4F).

All processing pipelines used (including the CellProfiler project, the
custom script used to filter the OrganoSeg masks and the Python code used
to generate the quantitative measures) are available at the GitHub repository
(Benchmarking, https://github.com/LabTrivedi/MOrgAna.git).

Statistical analysis
Statistical analysis for both pescoid inhibition and benchmarking of
MOrgAna was conducted with custom code written in RStudio Version
3.6.1. In the case of the pescoid data, the differences between conditions
were evaluated using a t-test. Normality and homogeneity of variance were
tested using Shapiro and Bartlett tests, respectively. As homogeneity of
variance was discarded, we used the var=FALSE option in the t-test
function, thus employing the Welch Two Sample t-test. As multiple
statistical tests were performed, we applied the Bonferroni correction. In the
case of benchmarking with CellProfiler and OrganoSeg, thanks to the large
number of samples (n=91), we tested the differences between the pipelines
using the single-step multi-comparison statistical Tukey test.

Data handling and segmentation
Input images for theMOrgAna pipeline are multi-channel TIF files, with the
first channel being used for the segmentation (typically the bright-field
image). As common high-content screening systems output one file per
channel, we provide a FIJI macro (found in the MOrgAna GitHub
repository), to compile the individual files into the image format required for
MOrgAna.

To train an image segmentation model, a few representative images are
copied into a ‘training set’ subfolder. During the training of the model,
images can optionally be resized to reduce computation time. Next, users
can choose to use one of two feature extraction modes: ‘Ilastik’ or ‘Daisy’.
The first includes Gaussian, Laplacian, gradient magnitude filters and
difference of Gaussian computed for different filter widths (σ=1, 2, 5, 15
pixels), similar to previously established segmentation pipelines (Berg et al.,
2019). Choosing the ‘Daisy’ option, a large number of texture features are
added to the computation (Tola et al., 2010), which are extracted using the
implementation from the scikit-image Python package (van derWalt, 2014).

Previously generated binary masks of the ‘training set’ images are
subsequently dilated to include boundary regions of organoids in the final
ground truth images. The pixels in training images are therefore identified as
either background, organoid proper or organoid edge. A fraction of pixels
(set by default to 50%) within the input images are extracted for training.
Furthermore, there exists an option to define an extraction probability bias,
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which is useful when organoids occupy a small region of the full input
image, and a random distribution of pixels would result in a training set
heavily biased towards background pixels. For training, we employed either
Logistic Regression or Multi Layer Perceptron models from the Python
package scikit-learn (Pedregosa et al., 2011) with higher weights assigned to
organoid edge pixels. Once trained, the model and the parameters used for
feature extraction and training are stored in csv files in the model folder.

Next, trained models can be used to predict segmentations of previously
unseen images. For this purpose, multi-channel TIF files in the same folder
can be loaded and, with the ‘Generate Masks’ button, extraction and
prediction with the same parameters used for the model training are
conducted for these additional images. Then, pixels within input images are
assigned probabilities of belonging to the three classes: background,
organoid proper and organoid edge. A classifier mask is generated by
assigning each pixel the class with the highest probability. Concurrently, a
watershed algorithm is used to perform a second segmentation. In this
algorithm, the edge probability map is used as input and the center of mass
of the organoid proper map as seed. Both classifier- and watershed-based
masks generated are saved.

Manual inspection is then required to generate the final mask. By
selecting ‘Inspect Images’, users can quickly inspect and select the
classifier- or watershed-based mask or choose to make another manually.
With the mask selected, final binary images are generated by standard
morphological operations such as filling holes, removing small objects and
dilations. In particular, objects smaller than the largest detected object and
any additional object touching the edge of the image are discarded. This
efficiently allows debris and organoids that partially appear in the same field
of view to be discarded. Parameters of these operations can be manually
modified to the users’ satisfaction in the same inspection window.

After generation of the final masks, morphological and fluorescence
intensity parameters are computed when the corresponding graphs are called
by the user. In the quantification tab, morphological information can be
obtained for both the ‘unprocessed’ and ‘straightened’ binary image. The
latter is computed based on a distance transform map and skeletonization of
the mask. Distance transform typically works well at the center of the object
but generates multiple branches at the poles of the binarized mask; therefore,
only the skeleton between the two closest connected points is kept and
extended along the tangential direction to the edge of the organoid. We thus
obtained the anchor points along which the full midline and meshgrid are
determined and used for computational straightening.

All morphological and fluorescence intensity information are saved as
json files. In addition, after generating a graph, the user can adjust pixel size
to obtain absolute values of dimensionality measures such as perimeter and
area, perform statistical analysis between conditions and save the data into
csv or xls files, thus they can be retrieved for future inspection and as input in
other processing pipelines.

Decay length estimation
To estimate the decay length of T/Bra expression along the AP direction, we
assumed a 1D model in which a point source is confined at a location x0
within the AP domain. We further assumed impermeable boundary
conditions (zero flux at either ends x=0 and x=L, where L is the length of
the gastruloid). The solution for this simple 1D model is

FðxÞ ¼ A0 e
�jx�x0 j=l;

where A0 represents the production at the source and λ is the decay length of
the fluorescence gradient profile relative to its source position x0. Individual
timepoints from every gastruloid dataset were analyzed separately. Next,
average and standard deviation of the decay length at every time point were
computed.

Software availability
MOrgAna is freely available as a GitHub repository at https://github.com/
LabTrivedi/MOrgAna.git, and as a Python package that can be installed
with the widely used PyPi library.
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Figure S1. Graphical user interface of MOrgAna: input images and segmentation.

A) Model definition and segmentation section (left) and module to import previously segmented

datasets (right). B) Example of a bright field image of an organoid which is presented to the user for

manual annotation of the ground truth binary mask (red line). C) Prediction panel (left) and manual

inspection (right).
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Figure S2. Graphical user interface of MOrgAna and GitHub page: quantification

and output. A) Panel to cluster different datasets into separate “groups” for future visualization 

and comparison. Datasets can be treated as time lapse (tick box). Overview images can be 

generated with the “Visualization functions” buttons. B) Morphology (left) and Fluorescence 

intensity (right) visualization graphs can be generated and datasets from different groups easily 

compared. C) The GitHub repository at which all open-source MOrgAna code is found. In the same 

repository, advanced users can find ready-to-use Jupyter Notebooks.

Development: doi:10.1242/dev.199611: Supplementary information
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Figure S3. MOrgAna pipeline for pre-segmented object parsing. A) A single image 

containing multiple objects and previously segmented with OrganoSeg. Scale bar: 100 µm. B) The 

raw image and the masks can be imported in MOrgAna using the parsing functionality. C) Single 

objects are automatically stored in individual files and their masks are parsed accordingly. D) The 

resulting data structure can be directly used for the subsequent quantification pipeline of MOrgAna.

Development: doi:10.1242/dev.199611: Supplementary information
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Figure S4. Benchmarking of MOrgAna with existing image analysis pipelines. A) Dataset used 

to benchmark MOrgAna with CellProfiler and OrganoSeg consists of gastruloids generated in a 96 

wells plate and imaged on a high content screening device. Five of the 96 wells were discarded 

because no organoid was present or because it was not fully contained in the field of view (indicated 

by red crosses), thus resulting in a dataset of 91 gastruloid images. Scale bar: 100 um. B-D) 

Overlay of the manual annotation used as ground truth (cyan) and the edges for the 
segmentations generated with CellProfiler (B), OrganoSeg (C) and MOrgAna (D) (dark orange). 
Yellow lines represent boundaries within the ground truth mask, that is, cases in which the mask 
contains holes. In (A)-(D), inset highlights the raw image and the segmentation results. E) 
Quantitative measures used to compare the three segmentation methods include Jaccard distance, 
Precision and Accuracy. (*** p-value<0.001). F) Comparison of the run time for the three pipelines, 
in minutes.

Development: doi:10.1242/dev.199611: Supplementary information
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Figure S5. Quantitative analysis of intestinal organoid development. A, A’) Representative 

images of two time lapse datasets of intestinal organoids adapted from (Serra et al. 2019). White 

texts indicate frame number in the time lapse. B,B’) Morphology quantification of the time lapse 

datasets. Top: Area normalized by the area at the first time point. Bottom: LOCO-EFA 

coefficients for each individual image in the datasets. White dashed lines represent the highest 

elliptical mode necessary to describe the organoid shape with a 95% accuracy. C, C’) Kymograph of 

the radial profiles for the two channels in the raw images. Red: ubiquitous cell membrane (top) and 

nuclear marker expression (bottom dataset). Green: Expression of the stem cell marker LGR5 (top) 

and membrane marker (bottom).

Development: doi:10.1242/dev.199611: Supplementary information
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Table S1 

Figure Sample Imaging modality Pixel size 
(x,y) (um) 

Frame size 
(pixels) 

Fig 2 A-D Human brain organoid Confocal 2.5 ~500 x 250 

Fig 2 E-G Pescoids Dissection 
microscope 

1.25 ~1000 x 500 

Fig 3 Gastruloids HCS 0.6 2160 x 2160 

Sup Fig 3 Intestinal organoids Light Sheet 
Fluorescence 
Microscope 

0.12 ~800 x 800 
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