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20-hydroxyecdysone (20E) signaling regulates amnioserosa
morphogenesis during Drosophila dorsal closure: EcR modulates
gene expression in a complex with the AP-1 subunit, Jun
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ABSTRACT
Steroid hormones influence diverse biological processes throughout
the animal life cycle, including metabolism, stress resistance,
reproduction, and lifespan. In insects, the steroid hormone, 20-
hydroxyecdysone (20E), is the central hormone regulator of molting
and metamorphosis, and plays roles in tissue morphogenesis. For
example, amnioserosa contraction, which is a major driving force
in Drosophila dorsal closure (DC), is defective in embryos mutant
for 20E biosynthesis. Here, we show that 20E signaling modulates
the transcription of several DC participants in the amnioserosa and
other dorsal tissues during late embryonic development, including
zipper, which encodes for non-muscle myosin. Canonical ecdysone
signaling typically involves the binding of Ecdysone receptor (EcR)
and Ultraspiracle heterodimers to ecdysone-response elements
(EcREs) within the promoters of responsive genes to drive
expression. During DC, however, we provide evidence that 20E
signaling instead acts in parallel to the JNK cascade via a direct
interaction between EcR and the AP-1 transcription factor subunit,
Jun, which together binds to genomic regions containing AP-1
binding sites but no EcREs to control gene expression. Our work
demonstrates a novel mode of action for 20E signaling in
Drosophila that likely functions beyond DC, and may provide further
insights into mammalian steroid hormone receptor interactions
with AP-1.
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INTRODUCTION
Dorsal closure (DC) of the Drosophila embryo is a developmental
wound-healing event in which a hole in the dorsal epidermis,
occupied by a transient epithelium, the amnioserosa, is closed by
migration of the epidermal flanks (reviewed in Harden, 2002). DC
serves as a paradigm for morphogenetic events where tissues are
brought together and fused, including the vertebrate processes of
embryonic neural tube closure and palate fusion. A recurring
finding in studies of wound healing and developmental epithelial
closures is that cells occupying the hole contribute to closure by
contracting in response to signaling from the hole margin by
transforming growth factor β (TGF-β) superfamily ligands
(reviewed in Belacortu and Paricio, 2011). This mechanism is
conserved in DC where the leading edge epidermal cells (i.e. the
dorsal-most epidermal, DME, cells) secrete Decapentaplegic (Dpp),
a TGF-β ligand that activates a signaling pathway in the
amnioserosa through the receptors Thickveins (Tkv) and Punt,
which are required for correct amnioserosa morphogenesis
(Fernández et al., 2007; Wada et al., 2007; Zahedi et al., 2008).
Recent studies suggest that autonomous contraction of the
amnioserosa alone can drive DC and it is of interest to know how
this is initiated (Pasakarnis et al., 2016; Wells et al., 2014). One way
that synchronized contraction of the amnioserosa cells could be
achieved is through an autocrine signaling process in which the
amnioserosa cells produce a secretable ligand that induces their own
contraction. In a search for such a pathway downstream of Dpp in
the amnioserosa, we considered signaling by the steroid hormone,
20-hydroxyecdysone (20E). The amnioserosa is a major source of
20E during embryogenesis, and mutants of the Halloween group
of genes, which encode enzymes in the 20E biosynthetic pathway,
display DC defects (Chavez et al., 2000; Giesen et al., 2003;
Kozlova and Thummel, 2003; Niwa et al., 2010; Ono et al., 2006).

Canonical ecdysone signaling involves the binding of 20E-
activated Ecdysone receptor (EcR) and Ultraspiracle (Usp)
heterodimers to ecdysone-response elements (EcREs) to promote
gene expression (Dobens et al., 1991; Yao et al., 1993). Here, we
show that 20E modulates gene expression in the amnioserosa and
other dorsal tissues in a novel manner. Key DC participants in the
DME cells and amnioserosa are transcribed in response to a c-Jun
N-terminal kinase (JNK) MAPK cascade operating through the AP-
1 transcription factor, which consists either as a homodimer of Jun
or a heterodimer of Jun and Fos (Ríos-Barrera and Riesgo-Escovar,
2013). We present evidence that 20E signaling acts in parallel to the
JNK cascade by regulating Jun through the activation of EcR, which
carries Jun from the cytoplasm to genomic regions containing AP-1
binding sites but no EcREs in DC genes. To our knowledge, this the
first time that EcR has been shown to directly interact with AP-1 inReceived 25 January 2021; Accepted 6 July 2021
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Drosophila, though a genetic interaction has been recently
uncovered during the pruning of sensory neuron dendrites (Zhu
et al., 2019). Our work demonstrates a mechanism for fine tuning
the output from the JNK cascade during DC, and reveals an
alternative mode of action for 20E signaling that likely functions
beyond DC, as several mammalian steroid hormone receptors can
also regulate gene expression in a complex with AP-1 (reviewed in
Marino et al., 2006).

RESULTS
Dpp signaling to the amnioserosa leads to 20E production,
which is required for correct morphogenesis of the tissue
during DC
Given that Dpp signaling to the amnioserosa is required for
morphogenesis during DC, and that 20E required for DC is
produced in the amnioserosa, we tested the hypothesis that Dpp
regulated 20E production. An attractive mechanism for the timely
production of 20E in the amnioserosa could be through the presence
of all but one or two of the biosynthetic pathway members in the
amnioserosa. According to this model, 20E production could be
activated specifically in the amnioserosa through tissue-specific
transcriptional regulation of just a couple of the pathway members.
The spook (spo) gene is the only locus encoding a member of
the 20E biosynthetic pathway known to be transcribed in the
amnioserosa, although other members of the pathway are expressed
in the amnioserosa anlage (Ono et al., 2006). In tkv7 mutant
embryos, spo expression detected by fluorescent in situ
hybridization (FISH) was largely abolished (Fig. 1A,B). If 20E is
required for morphogenesis during DC, then mutants in 20E
production should show morphogenetic defects. Indeed, live
imaging of embryos mutant for spo or disembodied (dib), another
enzyme in the 20E biosynthetic pathway, revealed abnormalities in
amnioserosa morphogenesis and a failure to complete DC properly
(Fig. 1C-H and Movies 1-3). In particular, mutants lacking 20E
showed uneven contractility of the amnioserosa cells and a failure to

complete amnioserosa morphogenesis, suggesting perturbation of
cytoskeletal regulation. Thus, candidate genes for regulation by 20E
during DC are likely regulators or components of the cytoskeleton
expressed in the amnioserosa.

The timing of expression of four JNK-responsive genes in the
amnioserosa is regulated by 20E signaling
Three JNK-responsive genes were previously found to be expressed
at high levels in the DME cells and amnioserosa during DC: jaguar
( jar), jupiter ( jup), and Z band alternatively spliced PDZ-motif
protein 52 (zasp52) (Ducuing et al., 2015). The duration of
expression varies from gene to gene, and we determined by FISH
that this was due to transcriptional regulation (Fig. S1A-L). jar and
zasp52 have been shown to be required for scar-free DC (Ducuing
and Vincent, 2016; Millo et al., 2004), while jup encodes for a little-
studied microtubule-associated protein (Karpova et al., 2006). zipper
(zip) encodes for non-muscle myosin, which is required for cell shape
change duringDC, and is transcribed in a similar pattern to these three
genes (Fig. S1M-P) (Franke et al., 2005; Young et al., 1993; Zahedi
et al., 2008). To test if zipwas also a JNK-responsive gene, prd-GAL4
was used to drive segmental embryonic expression of either an
activated version of the small Rac1 GTPase, which activates the JNK
pathway (Glise and Noselli, 1997; Hou et al., 1997), or a
constitutively active form of JNKK encoded by hemipterous (hep)
(Weber et al., 2000). Ectopic expression of Rac1V12 or HepCA both
resulted in elevated zip transcripts in prd stripes in the epidermis and
amnioserosa (Fig. S1Q-S), indicating regulation of zip expression by
JNK signaling. We confirmed that endogenous JNK signaling was
required for this process by impairing the pathway through expression
of BskDN, a dominant negative form of JNK encoded by basket (bsk)
(Weber et al., 2000), which resulted in a loss of zip transcripts in prd
stripes in the DME cells (Fig. S1T).

We next used FISH to examine the expression patterns of the four
JNK-responsive genes in embryos mutant for either spo or dib to
determine if loss of 20E also had an effect on their transcription.

Fig. 1. Dpp signaling is required
for the expression of spo, which,
together with another gene
involved in 20E biosynthesis, dib,
is required for correct
morphogenesis of the
amnioserosa during DC. (A) FISH
showing spo expression in the
amnioserosa during germband
retraction in wild type. (B) In
embryos mutant for the Dpp
receptor, Tkv, spo expression is
lost. (C-H) Stills from live imaging of
DC-staged wild type (C,D), spo
mutant (E,F), and dib mutant (G,H)
embryos, showing uniform
amnioserosa morphogenesis and
closure of the epidermis in wild type
(see Movie 1), but defective
amnioserosa morphogenesis and
failure of DC in spo and dib mutant
embryos (see Movies 2 and 3). A
ubi-DE-cadherin-GFP transgene
was expressed in all embryos to
visualize morphology. Time points
(h:min) are shown in the bottom
right corner of each panel. Scale
bar: 50 µm (B).
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jar and zasp52 expression normally disappeared from the
amnioserosa by the beginning of DC in spo1 and dib2 heterozygous
mutant embryos (Fig. 2A,D), which served as controls that displayed
similar expression patterns to wild type (Fig. S1C,K). However,
expression of both genes persisted in a subset of amnioserosa cells in
spo1 and dib2 homozygous mutant embryos undergoing DC (Fig. 2B,
C,E,F). Effects in the DME cells were not readily observable. In
contrast to jar and zasp52, jup and zip expression in the amnioserosa
was shut off earlier in spo1 and dib2 homozygous mutants (Fig. 2H,I,
K,L) than in controls (Fig. 2G,J; Fig. S1G,M for wild type). A small
but statistically significant decrease in jup and zip expression within
the DME cells was also observed in the mutants. Quantification of
FISH signal can be found in the supplementary material (Fig. S2).
Based on these results, we conclude that 20E signaling mainly
regulates the timing of the expression of at least four JNK-responsive
genes in the amnioserosa during DC.

EcR forms a complex with the AP-1 transcription factor
subunit, Jun, in amnioserosa nuclei
20E canonically activates EcR, which in turn forms a heterodimer
with the nuclear receptor, Usp, and binds to EcREs in target genes to
control expression (Dobens et al., 1991; Yao et al., 1993). EcR is

structurally similar to the vertebrate estrogen receptor, which has
been shown to be able to bind to AP-1, the transcription factor acting
in the JNK cascade that is commonly composed of heterodimers of
Jun and Fos (Marino et al., 2006). Interestingly, JNK signaling is
shut off in the amnioserosa prior to DC, with Fos adopting a largely
cytoplasmic distribution but with Jun retaining some nuclear
localization (Reed et al., 2001). This downregulation of JNK
signaling in the amnioserosa is required for DC, and we wondered
whether there might be a ‘handing over of control’ of gene
expression in the amnioserosa from the JNK pathway to 20E
signaling through an interaction between Jun and EcR. In wild type,
jar and zasp52 lose amnioserosa expression by mid-germband
retraction (Fig. S1B,J), whereas expression of jup and zip persist
longer in the tissue (Fig. S1F,N). We expressed BskDN in the
amnioserosa to test for a requirement for JNK signaling in
maintaining jup and zip transcription and found that it was not
required (Fig. 3A,B). Ubiquitous expression of a dominant negative
version of EcR, EcR-W650A, which is thought to block
endogenous EcR from dimerizing with Usp and thereby repress
expression at EcREs, failed to inhibit jup and zip transcription
in both the amnioserosa and DME cells (Fig. 3E,F), but did
block epidermal transcription of a known 20E-responsive gene,

Fig. 2. spo and dib regulate the expression of JNK-responsive genes in amnioserosa and DME cells. For clearer views of the changes in gene
expression, representative images have been inverted. Heterozygous siblings of the homozygous mutant embryos served as controls for each FISH stain, as
they were treated under identical conditions within the same tube. (A-C) jar expression in the amnioserosa shuts off by the start of DC in the control (A), but
persists in a subset of amnioserosa cells in both spo and dib homozygous mutants (B,C) (see Fig. S2A,B for quantifications). Effects in the DME cells were
not readily observable (data not shown). (D-F) Similar results were observed for zasp52 (see Fig. S2C,D for quantifications). (G-I) Expression of jup persists
in the amnioserosa during DC in the control (G), but is significantly reduced in both spo and dib homozygous mutants (H,I) (see Fig. S2E,G for
quantifications). A slight but statistically significant decrease in expression within the DME cells was also observed in the homozygous mutants (see
Fig. S2F,H for quantifications). (J-L) zip is strongly expressed in the amnioserosa during germband retraction (J), but is lost in both spo and dib homozygous
mutants (see Fig. S2I,K for quantifications). A slight but statistically significant decrease in expression within the DME cells was also observed in the
homozygous mutants (data not shown; see Fig. S2J,L for quantifications). Scale bar: 50 µm (L). DME cells=dorsal-most epidermal cells, which flank the
amnioserosa.
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ecdysone-inducible gene L1 (IMP-L1) (Fig. 3C,D) (Cherbas et al.,
2003; Natzle et al., 1988, 1992). Additionally, no effects on jar and
zasp52 transcription were observed (Fig. 3G-J). These results
indicate that expression of the four genes in the amnioserosa is not
dependent on JNK or canonical ecdysone signaling.
We wondered if 20E regulates gene expression in the amnioserosa

by modulating an interaction between EcR and the AP-1
transcription factor subunit, Jun, given Jun’s persistent nuclear
localization in the tissue. We looked for such an in vivo interaction
using proximity ligation assay (PLA) (Söderberg et al., 2006), and
found that Ecr formed a complex with Jun predominately in the
amnioserosa from germband retraction to DC (Fig. 4A,B). PLA
signal was largely absent in spo1 mutant embryos, indicating a loss
of EcR-Jun complexes (Fig. 4C). For these experiments, we used
antibodies against EcR and Jun that revealed their presence in
amnioserosa nuclei, as well as in epidermal nuclei though EcR was
much less abundant in comparison to Jun (Fig. 4D,E). Higher
magnification views showed that complexes of EcR and Jun were
largely found in amnioserosa nuclei, with much lower levels found
throughout the epidermis (Fig. 4E′-G′). Negative controls that were
performed with anti-EcR antibody omitted or with anti-Jun replaced
by anti-phosphorylated Mothers against dpp (pMad), which detects
another transcription factor participating in DC (reviewed in

Affolter et al., 2001), showed very low signal background
(Fig. S3). It is not surprising that multiple PLA signals are seen in
the amnioserosa, as the amnioserosa is the site of high levels of 20E
and nuclear EcR. We next assessed if the association between Ecr
and Jun involved direct physical interaction using reciprocal GST
pull-down assays and found that EcR could bind directly to Jun,
in vitro (Fig. 4H,I; see Fig. S4 for relative levels of bait proteins used
in the assays). These assays also showed that EcR could bind to
Kayak (Kay, Fos in mammals) and Jun could bind to Usp, though
further work is required to confirm the in vivo relevance of these
interactions. Interestingly, addition of 20E did not increase binding
between Jun and EcR (Fig. 4J,K).

In the embryonic epidermis, where 20E levels are lower,
complexes of EcR and Jun were also observed but were
consistently outside the nucleus, with 72.5% of 131 PLA signals
counted in a wild type embryo being cytoplasmic (Fig. 4F,F′).
Soaking embryos in 20E caused EcR-Jun complexes in the
epidermis to translocate into the nucleus with only about a third
of PLA signals remaining in the cytoplasm (Fig. 4G,G′), and this
was accompanied by elevated expression of zip transcripts in the
epidermis (Fig. 4L,M). Collectively, these results suggest that high
levels of 20E promote the movement of EcR-Jun complexes into the
nucleus where they can modulate gene expression.

Fig. 3. 20E-mediated gene
expression in the amnioserosa is
independent of the JNK and
canonical ecdysone pathways.
(A,B) Impairment of the JNK
pathway in the amnioserosa via
BskDN expression does not inhibit
the transcription of jup during DC
(A) or zip during mid-germband
retraction (B). (C-J) Impairment of
canonical ecdysone signaling
through the ubiquitous expression of
EcR-W650A, which prevents
endogenous EcR from dimerizing
with Usp, blocks transcription of the
known ecdysone-responsive gene,
IMP-L1, in the epidermis (C,D).
However, similar to BskDN, EcR-
W650A does not suppress jup (E)
or zip (F) transcription in the
amnioserosa. Furthermore,
transcription in the DME cells
remains unaffected. Transcription of
jar and zasp52 is also unaltered in
the amnioserosa during early
germband retraction (G,I) and in the
DME cells during DC (H,J). Scale
bar: 50 µm (J).
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20E signaling requires the JNK pathway to drive ectopic zip
expression in the epidermis
Having determined that exogenous 20E can elevate zip expression
in the embryonic epidermis, we explored the requirements for such
regulation. We first assessed the ability of exogenous 20E to restore
zip transcription in the DME cells of tkv7 mutant embryos, in

which endogenous 20E is absent, and found that it could
(Fig. 4N,O). As seen above, knockdown of the JNK pathway in
the amnioserosa through expression of BskDN did not prevent 20E-
dependent gene expression in that tissue. In contrast, exogenous
20E was incapable of restoring zip transcription in DME cells with
BskDN expression (Fig. 4P), indicating a requirement for JNK

Fig. 4. See next page for legend.
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pathway activation in triggering 20E-induced ectopic expression of
zip in the epidermis.

Discovery of putative EcR-AP-1 binding regions in or near DC
genes
We have shown that 20E is required for the expression of zip in the
amnioserosa - is there any evidence of EcR directly binding to the
zip locus? Gauhar and colleagues mapped 502 genomic binding
regions for EcR-Usp in Drosophila Kc167 cells treated with 20E,
one of which resides in intronic sequences of zip (Fig. 5A) (Gauhar
et al., 2009). This region lacks a consensus EcRE but does contain
five copies of the AP-1 binding motif consensus, TGANTCA,
suggesting that EcR binds to the zip locus through its association
with Jun. We wondered if this region constituted an enhancer
modulating gene expression in the amnioserosa by EcR and Jun,
and screened through the Kc167 EcR-Usp binding regions for those
containing at least four consensus AP-1 binding motifs but no EcRE
consensus site. We identified 51 additional genomic regions fitting
these criteria (listed in Table S1). 22 of these regions are in or near
genes that have previously been shown to be expressed in the
amnioserosa. Interestingly, EcR was picked up in the screen, thus
indicating a feedback loop. In an effort to look for further evidence
of joint regulation of EcR and Jun in such genes, we used chromatin
immunoprecipitation sequencing (ChIP-seq) data generated by
Kevin White’s lab as part of the ENCODE Project Consortium
(Davis et al., 2018; ENCODE Project Consortium, 2012). These
data include genome-wide binding regions for GFP-tagged versions
of EcR, Usp, Jun, and Kay (Fos) immunoprecipitated with anti-GFP
antibodies from white prepupae, 0-12 h old embryos, wandering
third instar larvae, and 0-24 h old embryos, respectively. Putative
binding regions for these proteins were scattered throughout zip
introns, but not in open reading frames (Fig. 5A). Though regions
associated with jup, jar, and zasp52were not picked up in the screen
performed by Gauhar and colleagues, potential EcR binding sites

were discovered by the ENCODE Project Consortium for jup and
jar, but not zasp52 (not shown) (ENCODE Project Consortium,
2012; Gauhar et al., 2009). Interestingly, Alexander Stark’s group
used self-transcribing active regulatory region sequencing (STARR-
seq) to identify hormone-responsive transcriptional enhancers in S2
and ovarian somatic cells, and found a 20E-repressed enhancer
within an intron of zasp52 but no corresponding EcR binding site
(Arnold et al., 2013; Shlyueva et al., 2014). Their study revealed
that only 5.5% of the identified repressed enhancers had significant
EcR ChIP-seq enrichment, indicating that 20E-mediated repression
may involve a mechanism that is predominately independent of EcR
binding.

To explore further the regulation of gene expression by EcR
acting at AP-1 binding motifs, we selected five genes from our
screen to determine if 20E also regulates their expression through
FISH. The five genes were the known DC participants cbt and ush,
plus EcR, RhoGAP71E, andMes2. All of these genes are expressed
in the amnioserosa (Fig. S5), and enriched in other dorsal tissues
including the yolk sac and hindgut (cbt, Fig. S5A-C), the dorsal
epidermis (ush, Fig. S5D-F), and the dorsal vessel (RhoGAP71E,
Fig. S5J-L;Mes2, Fig. S5M-O) (Belacortu et al., 2011; Kozlova and
Thummel, 2000; Lada et al., 2012).

cbt is located in an intron of ush, but transcribed in the opposite
direction. Based on prior immunostains, Cbt is expressed in yolk sac
nuclei, the amnioserosa, as well as in other more ventral tissues
during DC (Belacortu et al., 2011). Expression in the yolk sac and
amnioserosa appeared unperturbed in spo1 and dib2 mutant
embryos, but relative to these two tissues, cbt transcript levels
were elevated in the epidermis during DC (Fig. 6A-D;
quantifications in Fig. S6A-D), indicating inhibition of epidermal
cbt expression by 20E signaling. A previous study used reporter
genes to identify a block of sequences that promoted expression in
many of the tissues Cbt is found and likely constitutes the major
control region for cbt (Belacortu et al., 2011). This region has a
single AP-1 binding motif, which EcR and Fos have been shown to
bind in the vicinity of (Fig. 5B) (ENCODE Project Consortium,
2012). Starting about 8 kb upstream of the cbt regulatory region is a
stretch of about 35 kb of intronic sequences with multiple AP-1
binding motifs that putatively recruit various combinations of EcR,
Usp, Jun, and Kay (Fos), and are likely control sequences for ush
(Fig. 5B) (ENCODE Project Consortium, 2012). We found that the
expression of ush in the peripheral amnioserosa cells and dorsal
epidermis were reduced in spo1 and dib2mutant embryos during DC
(Fig. 6E-H; quantifications in Fig. S6E-H), indicating promotion of
ush expression by 20E signaling.

AP-1 binding motifs were found in four EcR binding regions
within the EcR locus, including two in the EcR-bound area
identified in 20E-treated Kc167 cells (Fig. 5C) (ENCODE Project
Consortium, 2012; Gauhar et al., 2009). These motifs were also
found in binding regions for Jun and/or Kay (Fos), supporting the
idea that EcR is guided to binding sites in a complex with AP-1. EcR
expression comes on strongly in the amnioserosa during germband
retraction in wild type but not in spo1 nor dib2 mutant embryos
(Fig. 6I-L; quantifications in Fig. S6I,J), suggesting that EcR
operates in a positive feedback loop for 20E-mediated gene
expression in the amnioserosa. RhoGAP71E expression in wild
type is typically restricted to the dorsal vessel during DC, but
expression was ectopically induced in the dorsal epidermis of spo1

and dib2 mutants (Fig. 6M-P; quantifications in Fig. S6K,L).
Interestingly, although an EcR-bound region within the RhoGAP7E
locus of 20E-induced Kc167 cells was identified, the ENCODE
Project Consortium data showed no binding of EcR to this region,

Fig. 4. Evidence of interactions between 20E signaling and the JNK
pathway. (A,B) Wild type embryos subjected to PLA between EcR/Jun (red)
and stained with DAPI (blue) predominately show clusters of PLA complexes
in amnioserosa nuclei during germband retraction (A) and DC (B). (C) PLA
signals are not observed in spo mutant embryos. (D) Close-up view of a wild
type embryo stained with anti-EcR antibody shows highest levels of EcR in
amnioserosa nuclei during DC (this antibody was used in the PLA
experiments). (E-E″) Close-up view of a wild type embryo subjected to PLA
between EcR/Jun (E′, red in E″) and stained with anti-Jun antibody (E,
green in E″). Highest levels of Jun are found in the DME cells, but Jun is
also present in amnioserosa nuclei during DC. (F-G′) Similarly stained
embryos as in E-E″. High magnification views of epidermal cells show that
PLA complexes are largely cytoplasmic in wild type embryos (F,F′), where
endogenous 20E levels are low, but translocate into the nucleus upon 20E-
treatment (G,G′). F′ and G′ are inverted images. (H-K) Immunoblot analysis
of pull-down assays between EcR and Jun. EcR immunoblots show that
GST-Jun and GST-Kay (Fos) are both able to pull-down His-EcR (H). No
binding was observed in the negative control, which involved GST alone.
GST-Usp served as a positive control since Usp is known to dimerize with
EcR. Jun immunoblots show that GST-EcR and GST-Usp were both able to
pull-down His-Jun in reciprocal assays (I). No binding was observed with
GST alone. GST-Kay (Fos), the other subunit of the AP-1 transcription
factor, served as a positive control. Addition of 20E increases binding
between EcR and Usp (J), but not EcR and Jun (K). All inputs represent 1%.
His-EcR (expected size=97.4 kDa), His-Jun (34.9 kDa). (L,M) DC-staged
wild type embryos treated with 20E show ectopic zip transcription in the
epidermis (M) in comparison to untreated embryos (L). (N,O) DC-staged tkv
mutant embryos show reduced zip transcript levels (N), but upon 20E-
treatment, zip transcription is restored in the DME cells (O). (P) In contrast,
20E-treatment does not restore zip transcription in DME cells expressing
BskDN (arrowheads).
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but one instance of Usp binding (Fig. 5D) (ENCODE Project
Consortium, 2012; Gauhar et al., 2009). Finally, despiteMes2 being
isolated as a putative EcR-binding gene (Gauhar et al., 2009), loss of
20E had no discernible effects on Mes2 expression in the
amnioserosa or the dorsal vessel (Fig. 6Q-T; quantifications in
Fig. S6M-P).

DISCUSSION
With amnioserosa morphogenesis being an important part of DC, it
is critical that the timing and degree of amnioserosa contraction is
properly modulated and is synchronized with the morphogenesis of
the surrounding epidermis. Here, we provide evidence that Dpp
secreted from the leading edge epidermis informs the amnioserosa
that epidermal morphogenesis is commencing by turning on the
expression of spo in the extraembryonic tissue. This in turn leads to
20E production, which can then regulate the expression of DC

participants in the amnioserosa and nearby tissues such as the dorsal
epidermis by promoting complex formation between EcR and the
AP-1 transcription factor subunit, Jun, at genomic binding regions
that contain AP-1 motifs but no EcREs. The most commonly
regulated tissue observed in this study is the amnioserosa, with six
of the nine genes examined showing modulation by 20E signaling
in the tissue. This is not surprising as the amnioserosa has the
highest levels of 20E, EcR, and nuclear EcR-Jun complexes during
germband retraction and DC.

We identified three patterns of gene expression in the
amnioserosa of wild type embryos, which may result from
differing contributions from JNK and 20E signaling. The first
pattern, seen with RhoGAP71E and Mes2, is modest gene
expression before the start of germband retraction, which is likely
driven by the JNK pathway, that quickly disappears as germband
retraction begins, presumably as JNK is shut down in the

Fig. 5. Putative EcR-AP-1 binding regions are located in large introns of genes expressed in dorsal tissues during germband retraction and DC.
Diagrams are modified from GBrowse and UCSC Genome Browser (Gonzalez et al., 2021; Larkin et al., 2021). Arrows mark consensus AP-1 binding sites
(TGANTCA). Blue arrows are sites that do not overlap with ChIP-seq peaks for EcR, Jun or Kay (Fos); red arrows are sites that overlap with ChIP-seq peaks
for Jun and/or Kay (Fos); green arrows are sites that overlap with ChIP-seq peaks for EcR (ENCODE Project Consortium, 2012). Labels above arrows
indicate additional ChIP-seq peaks, whereas shaded boxes are EcR binding regions identified by Gauhar and colleagues (ENCODE Project Consortium,
2012; Gauhar et al., 2009). Sample distributions of ChIP-seq peaks are denoted in panels A and E as black rectangles. (A) zip locus showing no binding of
the four transcription factor proteins to exons. (B) cbt and ush genomic region. The unshaded box on the far left denotes sequences controlling cbt
expression. (C) EcR genomic region. (D) RhoGAP71E genomic region. (E) Control large intron gene, bruno 1 (bru1), showing distribution of consensus AP-1
binding motifs in a gene not known to be regulated by JNK or 20E signaling. There is only about one AP-1 binding motif every 10 kb.
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amnioserosa (Reed et al., 2001). An effect of 20E signaling on this
expression pattern is not apparent. The second pattern, seen with jar
and zasp52, is strong expression prior to germband retraction onset
that again is likely driven by JNK, but shuts down by mid-germband
retraction. This expression pattern requires EcR-mediated
repression, as loss of 20E signaling causes aberrant persistence of
gene expression in the amnioserosa into DC. The third pattern, seen
with jup, zip, ush, and EcR, is persistent expression throughout
germband retraction and sometimes into DC. This expression
pattern requires EcR-mediated activation, as loss of 20E signaling
causes premature termination of gene expression in the
amnioserosa. In this situation, there may be a ‘hand off’ in
regulation where EcR takes control from the AP-1 transcription
factor as the JNK pathway is shut down. Notably, EcR does not
impart a huge influence on promoting gene expression in the
epidermis, which is JNK-dependent, likely because 20E levels are
too low. This is supported by treatment of wild type embryos with
exogenous 20E, which greatly increases epidermal zip expression.
We do, however, provide evidence of 20E-mediated repression of
gene expression in the epidermis, as seen with cbt and RhoGAP71E.
Similar to other work, we show that EcR can both positively and

negatively regulate gene expression. For example, mammalian
estrogen has been shown to activate some genes through AP-1 while
repressing others (Björnström and Sjöberg, 2005). Future work will
be aimed at determining the composition of EcR-containing
complexes at EcR-AP-1 binding regions, and understanding how

they can activate or repress gene expression. For example, we have
yet to establish roles for the EcR binding partner, Usp, or the Kay
(Fos) subunit of the AP-1 transcription factor for these modes of
regulation, though ChIP-seq data and our pull-down assays suggest
that they may somehow be involved (ENCODE Project Consortium,
2012; Shlyueva et al., 2014). Alternatively, 20E-mediated enhancer
repression may be entirely independent of EcR binding, instead
involving Ecdysone-induced protein 74 (Eip74) in an unknown
mechanism (Shlyueva et al., 2014).

One matter that remains unclear is the exact role of the ecdysone
steroid hormone in 20E signaling through EcR-AP1 binding
regions. Canonically, 20E activates EcR, which can then form a
heterodimer with Usp and bind to EcREs (Dobens et al., 1991; Yao
et al., 1993). EcR-W650A, which blocks endogenous EcR from
dimerizing with Usp and consequently inhibits expression at
EcREs, had no effect on the transcription of the JNK-responsive
genes jar, jup, zasp52, and zip. In embryos mutant for spo, which
lack 20E production, PLA complexes between EcR and Jun were
abolished in the amnioserosa. However, as EcR itself is also
regulated by this non-canonical 20E signaling pathway, we are
unable to determine if the absence of PLA complexes in spo
mutants is due to a loss of 20E production that may promote binding
between EcR and Jun, or just solely due to the loss of EcR
expression. Pull-down assays between tagged versions of EcR and
Jun indicate that direct binding between the two proteins is not
enhanced in the presence 20E in vitro. But other proteins may be

Fig. 6. spo and dib regulate the expression of genes bearing putative EcR-AP-1 binding regions in dorsal tissues during germband retraction and
DC. For clearer views of the changes in gene expression, representative images have been inverted. Heterozygous siblings of the homozygous mutant
embryos served as controls for each FISH stain, as they were treated under identical conditions within the same tube. (A-D) Relative to the controls (A,C),
spo and dib mutant embryos both show increased cbt expression in the epidermis but no change in the amnioserosa (B,D) (see Fig. S5A-D for
quantifications). (E-H) Control embryos have high levels of ush expression in both the peripheral amnioserosa cells and dorsal epidermis (E,G), but
expression is reduced in both tissues of embryos mutant for either spo or dib (F,H) (see Fig. S5E-H for quantifications). (I-L) In contrast to the controls (I,K),
expression of EcR in the amnioserosa during germband retraction is lost with disruption of 20E signaling (J,L) (see Fig. S5I,J for quantifications). (M-P)
RhoGAP71E expression is restricted to the dorsal vessel in control embryos during DC (M,O), but is ectopically expressed in the dorsal epidermis in both
spo and dib mutant embryos (N,P) (see Fig. S5 K,L for quantifications). (Q-T) No change in the expression of Mes2 is observed between control (Q,S) and
mutant (R,T) embryos (see Fig. S5M-P for quantifications). Scale bar: 50 µm (T).
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required to modulate this binding. We do, however, observe in wild
type embryos that PLA complexes between EcR and Jun are
predominately nuclear in the amnioserosa where 20E levels are
high, but are mostly cytoplasmic in the epidermis where 20E levels
are low. Interestingly, 20E-treatment of embryos causes a shift in the
subcellular localization of the EcR-Jun PLA complexes from the
cytoplasm to the nucleus in the epidermis. Thus, at the very least,
our work indicates that the ecdysone steroid hormone plays a role in
the nuclear translocation of EcR-Jun complexes to regulate gene
expression.
We have demonstrated that 20E signaling, acting through EcR-

AP-1 binding regions, allows for more refined modulation of gene
expression than the JNK pathway on its own. This mode of
regulation presumably acts elsewhere during development when
and where 20E and JNK signaling overlap, which is supported by
ChIP-seq data done in different cells, tissues, and developmental
stages (ENCODE Project Consortium, 2012; Shlyueva et al., 2014).
Alternate tissues to study in the future may be the larval imaginal
wing disc, where EcR has been shown to bind to non-canonical
ecdysone target genes (Uyehara and McKay, 2019), or the larval
salivary gland, where AP-1 is required for 20E-triggered cell death
(Lehmann et al., 2002).
Finally, an interesting issue raised by our work is whether it

informs us about the origin of steroid hormone-AP-1 interactions.
We noticed that EcR-AP-1 binding regions, which apparently
recruit EcR and AP-1 transcription factor subunits to DNA, tended
to occur in large introns. Indeed, the candidate genes from our
screen (listed in Table S1) were on average twice the size of the
average Drosophila gene (i.e. 22 kb compared to 11 kb). The large
introns of the genes containing EcR-AP-1 binding regions may have
provided an ideal setting for the emergence of these regulatory
sequences by allowing transcription factors to experiment with their
DNA binding, which could be followed by the evolution of protein–
protein interactions between transcription factors fortuitously
finding themselves as neighbors on DNA. This could be a
mechanism for convergent evolution of steroid hormone–receptor
interactions. We examined the distributions of consensus AP-1
binding motifs and ChIP-seq data for several large genes including
brn-1 (Fig. 5E). Such genes had many ChIP-seq peaks scattered
throughout their introns that showed little overlap with AP-1
binding motifs, suggesting that many of the ChIP-seq peaks
represent spurious interactions and/or binding to non-consensus
sequences (ENCODE Project Consortium, 2012; Spivakov, 2014).
In the absence of molecular comparisons between Drosophila and
vertebrate steroid hormone receptor-AP-1 complexes, it remains
uncertain if our results support an ancient origin of interactions
between these transcription factor families.

MATERIALS AND METHODS
Fly stocks
Flies were maintained at 25°C under standard conditions (Ashburner and
Roote, 2007). w1118 was used as a wild type control strain unless otherwise
stated. spoZ339 was a kind gift from M. O’Connor, Department of Genetics,
Cell Biology and Development, University of Minnesota, MN, USA (Ono
et al., 2006), and ubi-DE-cadherin-GFPwas generously provided byH. Oda,
Laboratory of Evolutionary Cell and Developmental Biology, Biohistory
ResearchHall, Japan (Oda andTsukita, 2001). All other stockswere obtained
from the Bloomington Drosophila Stock Center, IN, USA.

Live imaging of embryos
Embryos were prepared for live imaging using the hanging drop protocol
(Reed et al., 2009), and imaged with a Nikon Eclipse 90i microscope with a
Nikon D-Eclipse C1 scan head. Images were saved as animated projections

using Nikon EZ-C1 software and further processed with ImageJ (NIH). A
ubi-DE-cadherin-GFP transgene was expressed in all embryos to visualize
morphology (Oda and Tsukita, 2001).

20E treatment of embryos
Embryonic treatment with exogenous 20E was performed as previously
described (Kozlova and Thummel, 2003). Embryos were collected for 6 h
(Rothwell and Sullivan, 2007a), then cultured for another 4 h in MBIM,
supplemented with 5×10−6 M 20E (H5142, Sigma-Aldrich) dissolved in
ethanol, prior to fixation (Rothwell and Sullivan, 2007b). Control embryos,
done in parallel, were subjected to the same treatment but replacing 20E in
ethanol with ethanol alone.

FISH
Detection of transcripts in situ by FISH was performed as described
previously (Lécuyer et al., 2008). cDNA templates used to make full-length
antisense probes were obtained from the Drosophila Genomics Resource
Center. Fluorescently stained embryos were imaged on a Nikon A1R laser
scanning confocal microscope with NIS-Elements software, and the images
were processed with Adobe Photoshop. Mutant stocks were re-balanced over
GFP-tagged balancers allowing for homozygotes to be selected based on the
absence of GFP signal. Heterozygous siblings, which were treated under
identical conditions within the same tube, served as controls. For transgenic
analysis, homozygous UAS-transgene-bearing males were crossed to
homozygous Gal4-bearing virgin females ensuring that all progeny carried
one copy of each. In cases where either theGal4 orUAS-transgenic stock was
homozygous lethal, the stock was also re-balanced over a GFP-containing
balancer. In subsequent crosses, GFP-negative embryos carried both theGal4
andUAS-transgene, whereas GFP-positive embryos lacked either the Gal4 or
UAS-transgene and, therefore, had no transgenic expression.

Quantification of FISH signal
FISH signal in the amnioserosa
Expression levels in the amnioserosa were quantified by counting the
number of pixels that made up the fluorescent signals derived from FISH.
Heterozygous siblings of the homozygous mutant embryos served as
controls for each stain, as they were treated under identical conditions within
the same tube. For each embryo, the z-stacked confocal image was first
converted to grayscale with Adobe Photoshop. The amnioserosa was next
hand-selected with the Lasso tool, and the surface area of the tissue was
measured as pixel surface area. The selection was next copied and pasted
into a new file, then opened under ImageJ (NIH). The selection was inverted
and the threshold was adjusted to create a black and white image, where
black represented the FISH signal and white represented the background.
The FISH signal was then measured as the total number of black pixels. To
standardize the measurement between embryos, the number of black pixels
was divided by the pixel surface area of the amnioserosa. Data were
expressed as absolute values, and presented as means±s.e.m.. Student’s t-
tests were performed for all statistical comparisons using GraphPad. Note
that the parameters used for quantification were kept constant within data
sets. See Fig. S7A for examples of the quantification.

FISH signal in the DME cells
Expression levels in the DME cells were quantified by measuring the
intensities of the fluorescent signals derived from FISH. Heterozygous
siblings of the homozygous mutant embryos served as controls for each
stain, as they were treated under identical conditions within the same tube.
For each embryo, the z-stacked confocal image was first converted to
grayscale with Adobe Photoshop. A section of leading edge epidermis
corresponding to one embryonic segment was next selected using the
Rectangular Marquee tool with a fixed selection size. The fluorescence
intensity of the FISH signal was then measured as mean gray value. Multiple
sections of leading-edge epidermis were analyzed per embryo. Data were
expressed as absolute values, and presented as means±s.e.m.. Student’s t-
tests were performed for all statistical comparisons using GraphPad. Note
that the parameters used for quantification were kept constant within data
sets. See Fig. S7B for an example of the quantification.
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PLA
PLA was performed as previously described but with modifications
(Thymiakou and Episkopou, 2011). Fixed embryos (Rothwell and
Sullivan, 2007a,b) were blocked for 1 h with 1% BSA (in PBT: 3 mM
NaH2PO4·H2O, 7 mM Na2PO4, 1.3 M NaCl, 0.1% Triton X-100, pH 7.0).
Next, the embryos were incubated with 1:5 mouse anti-EcR (DDA2.7,
Developmental Studies Hybridoma Bank) (Talbot et al., 1993) and 1:25
rabbit anti-Jun (sc-25763, Santa Cruz Biotechnology) primary antibodies in
1% BSA overnight at 4°C. For negative controls, either mouse anti-EcR was
omitted or rabbit anti-Jun was replaced with rabbit anti-pMad (Persson et al.,
1998). After three PBTwashes for 10 min each, the embryos were incubated
with 1:5 dilutions of anti-rabbit PLUS (DUO92002, Sigma-Aldrich) and
anti-mouse MINUS (DUO92004, Sigma-Aldrich) PLA probes in 1% BSA
for 2 h at 37°C. The embryos were subsequently washed twice with Wash A
for 5 min each, then incubated in Ligation reagent (DUO92008, Sigma-
Aldrich) for 1 h at 37°C. Following twowashes withWash A for 2 min each,
the embryos were incubated in Amplification reagent (DUO92008, Sigma-
Aldrich) for 2 h at 37°C. After two Wash A washes for 2 min each, the
embryos were incubated with 1:200 FITC-conjugated anti-mouse or anti-
rabbit secondary antibody (Jackson ImmunoResearch) in 1% BSA for 1 h.
Finally, the embryos were washed twice with Wash B for 10 min each,
followed by a single wash with 0.01x Wash B for 1 min, then stored in
Duolink In SituMountingMediumwith DAPI (DUO82040, Sigma-Aldrich)
at −20°C until ready for confocal imaging.

GST pull-down assays
Preparation of tagged proteins was performed as described previously
(Rebay and Fehon, 2009). The following cDNA clones, obtained from the
DrosophilaGenomics Resource Center, IN, USAwere used:EcR (RE06878),
jun (LD25202), usp (LD09973), and kay (LP01201). Full-length coding
regions were amplified and inserted in frame into pET-28a(+) (69864-3,
MilliporeSigma) and/or pGEX-4T-1 (28-9545-49, GE Healthcare) to create
N-terminal, His- and GST-tagged constructs, respectively. The constructs
were transformed into BL21(DE3) competent cells (C2527, New England
Biolabs) for expression.

Pull-downs were standardized by adding an equivalent amount of bait
protein (i.e. the GST-tagged protein from the bacterial soluble protein
fraction) to an equal volume of prey protein (i.e. the His-tagged protein from
the bacterial soluble protein fraction). The volume was then topped up to
500 µl with Buffer A (20 mM Tris, 1 mMMgCl2, 150 mMNaCl, 0.1% NP-
40, 10% Glycerol, 1x cOmplete protease inhibitor cocktail, pH 8.0), and the
mix was incubated for 1.5 h at 4°C. In the meantime, 25 µl of Glutathione
Sepharose 4B (17-0756-01, GE Healthcare) was blocked with 1% BSA (in
Buffer A) for 1 h at 4°C. The mix was then added to the blocked beads and
incubated for another 1.5 h at 4°C. For testing 20E-mediated effects on
binding, the appropriate amount of 20E (H5142, Sigma-Aldrich) was also
included. Following three washes with Buffer A, bound proteins were
denatured and fractionated by SDS-PAGE. The presence of His-tagged, prey
proteins was determined by immunoblotting with the use of the following
primary antibodies: 1:150 mouse anti-EcR (DDA2.7, DSHB) (Talbot et al.,
1993) and 1:1000 rabbit anti-Jun (sc-25763, SCBT). Both antibodies were
diluted in 1% milk (in TBST: 1.5 M Tris, 0.5 M NaCl, 0.1% Tween 20, pH
7.5). Peroxidase-conjugated secondary antibodies (Vector Laboratories)
were used at a 1:2000 dilution in 1%milk, and signal was detected with BM
Chemiluminescence Blotting Substrate (11500694001, Roche).
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Fig. S1. FISH showing endogenous expression of JNK-responsive genes 

during late embryonic development. (A-P) Shown are progressively older wild-

type embryos from left to right depicting early germband retraction (stage 11), 

mid-germband retraction (stage 12), mid-DC (stage 13), and late DC (stage 14). 

jar, jup, zasp52 and zip are all expressed in the amnioserosa prior to germband 

retraction (A,E,I,M). However, as jup and zip expression is still present in the 

amnioserosa during germband retraction (F,N), jar and zasp52 expression 

promptly shuts off (B,J). jup expression persists in the amnioserosa until late DC 

(G,H), whereas zip expression is almost absent as DC begins (O). All four genes 

show expression in the dorsal-most epidermal (DME) cells (C,G,K,O), which 

flank the amnioserosa, but fades as DC progresses (D,H,L,P). (Q-T) FISH 
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experiments demonstrating that the expression of zip is regulated by the JNK 

pathway. Activation of the JNK pathway through expression of transgenic 

Rac1V12 (Q) or HepCA (R,S) in paired (prd) stripes elevates zip expression in the 

epidermis (Q,R). Ectopic zip expression in the amnioserosa (arrowheads) can 

also be observed (S). Panel shows high magnification view of a merge between 

zip FISH (red) and anti-phosphotyrosine (pY) staining (blue), which marks cell 

membranes. Inhibition of the JNK pathway through expression of transgenic 

BskDN in prd stripes causes loss of zip expression (T). Panel shows high 

magnification view of gaps in zip expression in the epidermis (arrowheads). 

Scale bar represents 50µm (P). 
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Fig. S2. Quantification of the effects of spo and dib mutations on the expression 

of JNK-responsive genes. Representative FISH stains are shown in Fig. 2. Stages of 

embryos analyzed ranged from late germband retraction (stage 12) to mid-DC (stage 

13). For amnioserosa (AS) measurements, the total number of embryos (n) analyzed for 

each genotype is displayed in the bar graphs. For epidermis measurements, the total 

number of dorsal epidermal segments (n) analyzed for each genotype is also displayed. 

(A,B) Quantification of jar FISH signals in the amnioserosa. (C,D) Quantification of 

zasp52 FISH signals in the amnioserosa. (E-H) Quantification of jup FISH signals in the 

amnioserosa (E,G) and dorsal epidermis (F,H). For epidermis measurements, seven 

segments were analyzed per embryo. (I-L) Quantification of zip FISH signals in the 

amnioserosa (I,K) and dorsal epidermis (J,L). For epidermis measurements, ten 

segments were analyzed per embryo. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Fig. S3. Negative control experiments for PLA. (A,A’) PLA experiment in 

which anti-EcR antibody was omitted. While there is robust anti-Jun staining (A), 

there are no clusters of PLA signals in the amnioserosa (A’). (B-C’’) PLA 

experiment in which anti-Jun antibody was replaced with anti-pMad. The anti-

pMad antibody detects another transcription factor that drives gene expression in 

the amnioserosa and dorsal epidermis. Despite strong anti-pMad (B,C) and anti-

EcR (B’,C’) staining during germband retraction (B-B’’) and DC (C-C’’), there are 

no observable PLA signals (B’’,C’’). Scale bar represents 50µm (C’’). 
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Fig. S4. Western blot analysis of the levels of each bait protein used in the 

pull-down assays. Shown are gels stained with Coomassie Brilliant Blue. GST 

fusion (bait) proteins were expressed in BL21(DE3) bacterial cells (left, lysate 

soluble fraction) and purified with Glutathione Sepharose (right). Input 

percentages are as follows: GST (100%), GST-EcR (15%), GST-Jun (75%), 

GST-Usp (75%), and GST-Kay (4.3%). Asterisks denote bands of interest for 

GST (expected size = 27.9kDa), GST-EcR (120.2kDa), GST-Jun (57.7kDa), 

GST-Usp (81.9kDa), and GST-Kay (89.5kDa). Same amounts were used in the 

experimental pull-downs shown in Fig. 4H-K. 
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Fig. S5. FISH showing endogenous expression of genes bearing putative 

EcR-AP-1 binding regions. Shown are merged images of FISH signal (red) and 

anti-phosphotyrosine (pY) staining (green), which marks cell membranes to help 

distinguish the boundary between the amnioserosa and epidermis. Wild-type 

embryos are progressively older from left to right, and depict early germband 

retraction (stage 11), mid-germband retraction (stage 12), and mid-DC (stage 

13). (A-C) cbt is expressed strongly in the amnioserosa, yolk sac nuclei, and 

hindgut (asterisk), with lower levels present in the epidermis, during germband 

retraction (A,B) and DC (C). (D-F) ush is expressed predominately in peripheral 

amnioserosa cells and the dorsal epidermis during germband retraction (D,E) 
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and DC (F). (G-I) EcR expression is present in the amnioserosa during 

germband retraction (G,H), but is promptly turned off by the onset of DC (I). (J-L) 

RhoGAP71E expression is shut down in the amnioserosa during germband 

retraction (J,K), but appears in the dorsal vessel by the beginning of DC (L). (M-

O) Mes2 has a similar expression pattern as RhoGAP71E, but is also expressed 

in head tissues and ventrally in oenocytes. Scale bar represents 50µm (O). 
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Fig. S6. Quantification of the effects of spo and dib mutations on the 

expression of genes bearing putative EcR-AP-1 binding regions. 

Representative FISH stains are shown in Fig. 6. Stages of embryos analyzed 

ranged from late germband retraction (stage 12) to mid-DC (stage 13). For 

amnioserosa (AS) measurements, the total number of embryos analyzed for 

each genotype (n) is displayed in the bar graphs. For epidermis measurements, 

the total number of dorsal epidermal segments analyzed for each genotype (n) is 

also displayed. (A-D) Quantification of cbt FISH in the amnioserosa (A,C) and 
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dorsal epidermis (B,D). For epidermis measurements, five segments were 

analyzed per embryo. (E-H) Quantification of ush FISH in the amnioserosa (E,G) 

and dorsal epidermis (F,H). For epidermis measurements, six segments were 

analyzed per embryo. (I,J) Quantification of EcR FISH in the amnioserosa. (K,L) 

Quantification of RhoGAP71E FISH in the dorsal epidermis. Six segments were 

analyzed per embryo. (M-P) Quantification of Mes2 FISH in the amnioserosa 

(M,O) and dorsal epidermis (N,P). For epidermis measurements, ten segments 

were analyzed per embryo. * p < 0.05, ** p < 0.01, *** p < 0.001. 
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Fig. S7. Examples of FISH signal quantification. (A) Transcription levels in the 

amnioserosa were quantified by counting the number of pixels that made up the 

fluorescent signals derived from FISH. For each embryo, the z-stacked confocal 

image was first converted to grayscale with Adobe Photoshop (top panels). The 

amnioserosa was next hand-selected with the Lasso tool (selection boundaries 

symbolized in red), and the surface area of the tissue was measured as pixel 
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surface area. The selection was next copied and pasted into a new file, then 

opened under ImageJ (NIH). The selection was inverted and the threshold was 

adjusted to create a black and white image, where black represented the FISH 

signal and white represented the background (bottom panels). The FISH signal 

was then measured as the total number of black pixels. To standardize the 

measurement between embryos, the number of black pixels was divided by the 

pixel surface area of the amnioserosa. (B) Transcription levels in the DME cells 

were quantified by measuring the intensities of the fluorescent signals derived 

from FISH. For each embryo, the z-stacked confocal image was first converted to 

grayscale with Adobe Photoshop. A section of leading edge epidermis 

corresponding to one embryonic segment was next selected using the 

Rectangular Marquee tool with a fixed selection size (selection boundary 

symbolized in red). The fluorescence intensity of the FISH signal was then 

measured as mean gray value. Multiple sections of leading edge epidermis were 

analyzed per embryo. See Materials and Methods for more details. 
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Table S1.: Genes near or containing putative EcR-AP-1 binding regions 

consisting of at least four AP-1 binding motifs (TGANTCA) but no EcREs. 

Chromosome 
Gene       

Symbol 
Annotation                           

Symbol 
DC 

Gene? 
Expressed in 

Amnioserosa? 
Expressed in 

Dorsal Tissue? 
References 

X 
CG12535          

and/or            
CG14269   

CG12535          
and/or            

CG14269   
? ? ? - 

X 
Agpat1                                 
and/or                                    

CG32647 

CG3812 
and/or 

CG32647 
? ? ? - 

X IP3K2 CG45017 ? N Y BDGP 

2L cbt CG4427 Y Y Y 
Muñoz-Descalzo et al., 2005; 
Belacortu et al., 2011; BDGP 

2L ush CG2762 Y Y Y Lada et al., 2012; BDGP 

2L Kr-h1 CG45074 ? N Y BDGP 

2L Akap200 CG13388 ? Y Y BDGP 

2L Pect CG5547 ? Y Y BDGP 

2L B4 CG9239 ? ? ? - 

2L CG5953 CG5953 ? Y N BDGP 

2L MESR3 CG15162 ? ? Y BDGP 

2L brat CG10719 ? N N BDGP 

2L CdGAPr CG10538 ? N ? Sagnier et al., 2000 

2L sky CG9339 ? ? ? - 

2L step CG11628 Y Y Y West et al., 2017; BDGP 

2R EcR CG1765 Y (GBR) Y Y Kozlova and Thummel, 2003 

2R chk CG3409 ? Y Y BDGP 

2R Roc2 CG8998 ? ? ? - 

2R CG17574 CG17574 ? ? ? - 

2R shot CG18076 Y N Y 
Strumpf and Volk, 1998;                            

Takacs et al., 2017 

2R Cp1 CG6692 ? Y Y BDGP 

2R Rho1 CG8416 Y Y Y Harden et al., 1999; BDGP 

2R GstE gene cluster ? ? ? - 

2R MFS14 CG15095 ? Y Y BDGP 

2R ena CG15112 Y Y Y 
Grevengoed et al., 2001;                             

Gates et al., 2007 

2R CG13868 CG13868 ? Y Y BDGP 

2R Tub60D CG3401 ? N Y BDGP 

2R Mmp1 CG4859 ? N Y 
Page-McCaw et al., 2003;                           

BDGP 

2R zip CG15792 Y Y Y 
Young et al., 1993;                                     

Zahedi et al., 2008; BDGP 

3L promL CG7740 ? Y Y - 

3L 
Ack                         

and/or            
Chd64  

CG14992        
and/or            

CG14996 
Y Y Y Sem et al., 2002 
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3L h CG6494 ? N Y BDGP 

3L CG6685 CG6685 ? ? ? - 

3L CG32091 CG32091 ? ? ? - 

3L Frl CG32138 ? ? ? - 

3L RhoGAP71E CG32149 ? N N BDGP 

3L CG5151 CG5151 ? ? ? - 

3L CG5290 CG5290 ? N N BDGP 

3L Eip75B CG8127 ? N Y Chavoshi et al., 2010 

3L Rcd2 CG4786 ? ? ? - 

3L Mes2 CG11100 Y Y Y 
Zimmermann et al., 2006; 

BDGP 

3R kra CG2922 ? Y Y BDGP 

3R CG8312 CG8312 ? Y Y BDGP 

3R 
fabp                         

and/or            
Mrp4 

CG6783                      
and/or            

CG14709 
? ? ? - 

3R GstD gene cluster ? ? ? - 

3R red CG12207 ? N N BDGP 

3R Xrp1 CG17836 ? Y Y BDGP 

3R SNF4Aγ CG17299 ? Y Y BDGP 

3R InR CG18402 Y N Y Fernandez et al., 1995 

3R Gdh CG5320 ? Y Y BDGP 

3R Gprk2 CG17998 ? ? ? - 

DC Gene?: Y – previously shown to be involved in some aspect of DC or germband retraction (GBR); ? – 

DC role has yet to be determined to our knowledge. Expressed in Amnioserosa/Dorsal Tissue?: Y – 

previously shown to be expressed in the amnioserosa and/or dorsal tissues such as the dorsal epidermis, 

yolk sac, and hindgut; N – no expression observed based primarily on in situ hybridisation (ISH) results 

generated by the Berkeley Drosophila Genome Project (BDGP) (https://insitu.fruitfly.org/cgi-

bin/ex/insitu.pl) (Hammonds et al., 2013; Tomancak et al., 2002; Tomancak et al., 2007); ? – expression 

has yet to be determined to our knowledge. 
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Movie 1. The process of DC shown in a time-lapse movie of a wild-type 

embryo expressing DE-cadherin-GFP. Each frame is a Z-stack projection. 

Elapsed time (h:min:s:ms) is shown in the top right. Scale bar represents 20μm. 

Selected frames from this movie are shown in Fig. 1C,D. 
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http://movie.biologists.com/video/10.1242/bio.058605/video-1


Movie 2. Delay and failure to complete DC shown in a time-lapse movie of a 

spoZ339 mutant embryo expressing DE-cadherin-GFP. The body movement 

indicates completion of somatic musculature innervation, a process that normally 

occurs following the completion of DC. Each frame is a Z-stack projection. 

Elapsed time (h:min:s) is shown in the top right. Scale bar represents 20μm. 

Selected frames from this movie are shown in Fig. 1E,F. 
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http://movie.biologists.com/video/10.1242/bio.058605/video-2


Movie 3. Delay and failure to complete DC shown in a time-lapse movie of a 

dib2 mutant embryo expressing DE-cadherin-GFP. The dib2 phenotype is 

indistinguishable from that described for spoZ339
 (see Movie S2). Each frame is a 

Z-stack projection. Elapsed time (h:min:s) is shown in the top right. Scale bar 

represents 20μm. Selected frames from this movie are shown in Fig. 1G,H. 
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http://movie.biologists.com/video/10.1242/bio.058605/video-3

