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ABSTRACT
Marine mammals are thought to have an energetically
expensive lifestyle because endothermy is costly in marine
environments. However, measurements of total energy expenditure
(TEE; kcal day−1) are available only for a limited number of marine
mammals, because large body size and inaccessible habitats
make TEE measurements expensive and difficult to obtain for many
taxa. We measured TEE in 10 adult common bottlenose dolphins
(Tursiops truncatus) living in natural seawater lagoons at two facilities
(Dolphin Research Center and Dolphin Quest) using the doubly
labeledwatermethod.We assessed the relative effects of bodymass,
age and physical activity on TEE. We also examined whether TEE of
bottlenose dolphins, and more generally of marine mammals, differs
from that expected for their bodymass compared with other eutherian
mammals, using phylogenetic least squares (PGLS) regressions.
There were no differences in body mass or TEE (unadjusted TEE and
TEE adjusted for fat-free mass) between dolphins from the two
facilities. Our results show that adjusted TEE decreased and fat mass
increased with age. Different measures of activity were not related to
age, body fat or adjusted TEE. Both PGLS and the non-phylogenetic
linear regression indicate that marine mammals have an elevated
TEE compared with that of terrestrial mammals. However, bottlenose
dolphins expended 17.1% less energy than other marinemammals of
similar body mass. The two oldest dolphins (>40 years) showed a
lower TEE, similar to the decline in TEE seen in older humans. To our
knowledge, this is the first study to show an age-related metabolic
decline in a large non-human mammal.
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INTRODUCTION
Marine mammals can have disproportionate effects on the structure
of marine ecosystems because of their large body size and their role
as apex predators (Williams et al., 2004). Understanding the daily
energy requirements of marine mammals provides insight into
their ranging behavior, foraging efficiency and dive performance, as
well as their impact on prey populations (Acquarone et al., 2006;
Bejarano et al., 2017; Benoit-Bird, 2004; Costa and Gales, 2003;

McHuron et al., 2018; Williams et al., 2004). Measurements of
energy expenditure, particularly total energy expenditure (TEE; also
called ‘field metabolic rate’; Nagy, 2005), are essential to
understand an organism’s physiology and ecology (McNamara
and Houston, 1996; Salzman et al., 2018). TEE has been measured
in a variety of mammalian and avian species (Nagy, 1987, 2005;
Pontzer et al., 2014; Simmen et al., 2015; Song and Beissinger,
2020; Speakman, 2000), but several major vertebrate groups,
including cetaceans, remain poorly studied. TEE measurements of
marine mammals are typically expensive, given their large body
size, and their inaccessible habitats hinder the collection of repeated
body fluid (i.e. blood or urine) samples required for the doubly
labeled water (DLW) method. TEE data, measured using the
DLW method, are available for several pinniped species (sea
lions: Neophoca cinerea, Zalophus californianus, Phocarctos
hookeri; seals: Arctocephalus galapagoensis, Arctocephalus
gazella, Halichoerus grypus, Mirounga angustirostris, Phoca
vitulina: Atlantic walrus: Odobenus rosmarus rosmarus), but only
two cetaceans, the harbour porpoise (Phocoena phocoena) and
the common bottlenose dolphin (Tursiops truncatus) (Acquarone
et al., 2006; Boyd et al., 1995; Costa, 1988; Costa and Gales, 2003;
Costa et al., 2013; Maresh et al., 2014; McHuron et al., 2018; Nagy
et al., 1999; Rojano-Doñate et al., 2018; Sparling et al., 2008).

Over the long term (months, years), individuals must maintain a
balance between energy intake and energy expenditure, and allocate
energy to somatic maintenance, growth, reproduction and physical
activity in a manner that maximizes their fitness (Gadgil and Bossert,
1970). TEE can change throughout an individual’s lifespan,
reflecting changes in energy allocation to different physiological
processes. Similarly, body composition also changes throughout
life. In humans, TEE and fat-free mass (FFM) decrease in adults older
than 60 years (Elia et al., 2000; Manini, 2010; Speakman and
Westerterp, 2010). Results regarding age-related changes in fat mass
(FM) have been mixed, where FM increased (Coin et al., 2008; Kyle
et al., 2001a) or decreased (Elia et al., 2000) with age in humans.
Different-sized dog breeds differ in age-related changes in body
composition: FM increased with age in the largest breed, but was not
related with age in amedium- and small-sized breed (Speakman et al.,
2003). Age-related changes in TEE and body composition are not
well studied and may be species specific, and data from additional
species are needed to shed light on these patterns.

Body mass, specifically FFM, is the most important factor
shaping inter-specific variation in TEE (Hudson et al., 2013; Nagy,
2005; Pontzer et al., 2012, 2014; Simmen et al., 2015; Speakman,
2000). But other factors, such as thermoregulatory requirements,
physical activity and organ size, are also thought to contribute to
variation in daily expenditure. Variation in the size of metabolically
expensive organs such as the brain and gut has been put forward
as another factor resulting in inter-specific variation in TEE (Aiello
and Wheeler, 1995; Isler and van Schaik, 2009; Navarrete et al.,Received 6 January 2021; Accepted 30 June 2021
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2011). Cetaceans, similar to anthropoid primates, have a
significantly larger encephalization quotient (a measure of relative
brain size) than their sister clade the Hippopotamidae (Boddy et al.,
2012), which makes energy expenditure of cetaceans an interesting
point of comparison. It has also been proposed that marine
mammals have an elevated TEE for their body mass (Hudson
et al., 2013; Speakman and Król, 2010; Williams et al., 1993, 2001;
Williams et al., 2017), and the most widely accepted hypothesis is
that the elevated metabolism reflects the high cost of endothermy in
a marine environment. However, other studies have questioned the
generality of this hypothesis for all marine mammals (Maresh,
2014; Williams and Maresh, 2016). It has been predicted that heat
loss is important only for very small marine mammals, such as sea
otters (Enhydra lutris) and young otariid seals (Liwanag et al., 2012;
Porter and Kearney, 2009), but not for larger-bodied marine
mammals (Maresh et al., 2014; Porter and Kearney, 2009).
Daily physical activity is thought to contribute to intra-specific

variation in TEE, and TEE has been shown to correlate with daily
movement distance in some free-ranging animals, such as llamas
(Riek et al., 2019), cheetahs (Scantlebury et al., 2014) and polar bears
(Pagano and Williams, 2019). However, other research suggests
that organisms maintain TEE homeostatically within a narrow,
evolved, species-specific range such that daily expenditure is largely
independent of daily physical activity (Pontzer, 2015a, 2017).
The common bottlenose dolphin (T. truncatus), a long-lived,

highly-encephalized marine mammal, presents an opportunity to
examine the effects of body mass, activity and age on daily energy
requirements. The metabolic rate of common bottlenose dolphins
has been measured at rest, during exercise and post-exercise
(Fahlman et al., 2015, 2016, 2018a,b; Holt et al., 2015; Noren et al.,
2013; Pedersen et al., 2020; van der Hoop et al., 2014; Williams
et al., 1993, 2001, 2017; Yazdi et al., 1999; Yeates and Houser,
2008), but very little is known about their TEE. Previous studies
relied on extrapolation from Kleiber’s curve for basal metabolic rate
(BMR) of terrestrial mammals or extrapolation of caloric content of
consumed prey to quantify energetic requirements of dolphins and
cetaceans (Bejarano et al., 2017; Benoit-Bird, 2004; Rojano-Doñate
et al., 2018). To date, a single analysis (published as a conference
abstract) has measured TEE using DLW in wild bottlenose dolphins
in Florida (summer TEE: 6.79±1.11 W kg−1, N=10; winter TEE:
4.82±0.81 W kg−1, N=4) (Costa et al., 2013). Additional TEE
measurements are needed to determine whether daily expenditure is
elevated for common bottlenose dolphins, and marine mammals
in general, relative to other taxa. Estimates of bottlenose dolphin
daily energy expenditure are also needed to parametrize both
intra-specific (Bejarano et al., 2017) and inter-specific bioenergetic
models. These models help us to examine trophic interactions
(Bejarano et al., 2017), evaluate the population-level consequences
of disturbance (Pirotta et al., 2018) and understand allometric
scaling in marine mammals (Goldbogen et al., 2019). Moreover,
bottlenose dolphins are the most common species of cetacean in
human care (NMFS, 2019); thus, data on body condition and TEE
can help veterinarians in marine mammal facilities refine energy
requirements and adjust caloric intake.
In this study, we examined energy expenditure and body

composition of 10 adult common bottlenose dolphins
(T. truncatus) living at two marine mammal facilities: Dolphin
Quest (Hawaii, USA) and the Dolphin Research Center (Florida,
USA).Wemeasured TEE using the DLWmethod, the gold standard
for measuring TEE outside of a laboratory setting (Speakman,
1997). We investigated the relative effects of body mass, body
composition, age and physical activity on TEE. Moreover, we

compared our TEE measurements with two measures of physical
activity for 6 of the studied individuals. We also assessed whether
TEE of bottlenose dolphins, and more generally of marine
mammals, differs from that expected for their body mass
compared with other eutherian mammals, using phylogenetic least
squares (PGLS) regressions to control for phylogeny.

MATERIALS AND METHODS
Study species
The common bottlenose dolphin, Tursiops truncatus (Montagu
1821), is a long-lived, highly encephalized marine mammal
found in warm temperate to tropical seas, in coastal as well as
offshorewaters. Age at sexual maturity varies by region, but females
typically reach sexual maturity at 5–13 years and males at
9–14 years (Sergeant et al., 1973; Wells and Scott, 2018). In the
wild, individuals rarely live beyond 40 years of age (Fernandez and
Hohn, 1998; Mattson et al., 2006; Read et al., 1993; Sergeant et al.,
1973). Old female T. truncatus show increased inter-birth intervals,
suggesting reproductive senescence (Robinson et al., 2017).
Similarly, in Tursiops aduncus, lactation period and inter-birth
intervals increase with maternal age, while calf survival decreases
with maternal age, also suggesting reproductive senescence
(Karniski et al., 2018). Bottlenose dolphin males reach a larger
body mass and total length than females, but patterns of growth are
similar for the two sexes and no sexual dimorphism is observed
regarding relative muscle mass within any life history category
(Mallette et al., 2016).

Animal subjects and study sites
All animal use and methods were approved by the Duke University
Institutional Animal Care and Use Committee (Protocol A017-
19-01). We collected data from a total of 10 adult bottlenose dolphins
(age 10–45 years; Table 1) living in natural seawater lagoons at two
marine mammal facilities, Dolphin Quest (DQ), Hawaii, and Dolphin
Research Center (DRC), Florida. At DQ, we collected data from
4 males (age 11.2–35 years; Table 1) between April and June 2019.
The animals inhabit several natural seawater lagoons separated by
floating docks and underwater barriers. The main lagoon is about
750 m2 and 3.4 m deep. The other lagoons are 360 m2, 190 m2 and
120 m2, with each of the smaller lagoons having a deepest point of
∼2.4 m. During the study period, the DQ dolphins’ typical routines
were not altered; they were fed herring, capelin andmullet throughout
the day. Three of the dolphins were born in zoological facilities, one
was collected under a NOAANMFS permit in the 1980s. During the
period of measurements, average water temperature was 25–26°C in
the lagoons at DQ. At DRC, we collected data from 5 males and
1 female (age 10–45 years; Table 1) between September and October
2019. DRC dolphins live in variable social groups in natural seawater
lagoons (520 m2 and 4.8 m deep, 540 m2 and 4.8 m deep, 1000 m2

and 6.0 m deep, and 2350 m2 and 9.1 m deep) situated on the Gulf of
Mexico. During the study period, DRC dolphins were fed according
to their normal daily routine, which typically included herring,
capelin and smelt, offered 3–5 times daily. During the period of
measurements, average water temperature was 28°C in the lagoons
at DRC.

Energy intake
To determine energy intake, the daily intake in kilograms per fish
species ingested was recorded for each individual at both facilities.
For dolphins at DQ, subsamples from each batch of fish were
sampled via bomb calorimetry at Michelson Laboratories
(Commerce, CA, USA) to estimate the caloric content (kcals) of
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the ingested diet. For dolphins at DRC, subsamples from each batch
of fish were analyzed for caloric content either by the fish supplier
or by an independent laboratory (ABC Research Corporation,
Gainesville, FL, USA). We corrected food intake values assuming a
90% assimilation efficiency (Lockyer, 2007; Reddy et al., 1994)
and provide energy intake relative to body mass (kcal kg−1).

Body mass measurements and sample collection
Body mass was measured every 2 weeks using an Altralite scale
(Rice Lake Weighing Systems) and GSE 250SS indicator (GSE
Scale Systems; ±0.1 kg) at DQ and a SRV713W scale (SR
Instruments; ±0.1 kg) at DRC. In both places, blood and urine
were collected voluntarily, without restraint. Blood was collected
from the ventral fluke, urine was collected with the ventral area
above the water surface.

TEE
Using the DLWmethod (Lifson and McClintock, 1966; Speakman,
1997), we determined TEE of 10 bottlenose dolphins (see Table S1
for information on dilution spaces and isotope depletion rates).
Dolphins ingested premeasured doses (125–195 g) of DLW (6%
2H2O, 10% H2

18O) tailored to body mass to provide sufficient initial
isotopic enrichment (Speakman, 1997). Each individual provided
one urine or blood sample (4 ml) prior to dosing and another three to
five samples post-dose ingestion. The first post-dose ingestion was
collected 4.4–7.5 h after dosing, and the remainder were collected
every 2–3 days for 5–9 days. Mean duration from dosing to last
urine sample was 7.5 days. Samples were kept frozen and shipped in
an insulated container to Duke University for isotopic analysis.

Isotope analysis
Samples were filtered using carbon black and a 30 kDa centrifuge
concentrator (Vivaspin®). Enrichments of 2H and 18O were
determined using integrated cavity off-axis spectroscopy (ABB®).
We used the slope–intercept method to determine the dilution
spaces ND and NO and the depletion rates kD and kO for 2H and
18O, respectively (Berman et al., 2020; Pontzer, 2018; Speakman,
1997).We ran all samples in triplicate or quadruplicate, and used the
average isotope enrichment for subsequent calculations. We
determined total body water (TBW) from isotope dilution as:

TBW ¼ ðNO=1:007þ ND=1:041Þ=2: ð1Þ
The mean (±s.d.) isotope dilution space ratio was 1.016±0.030. We
calculated the rate of CO2 production (mol day−1) following the

two-pool equation (Speakman, 1997) as:

rCO2 ¼ 0:455 TBWð1:007 kO–1:041 kDÞ: ð2Þ
We used CO2 production to calculate TEE (kcal day−1) using the
Weir equation (Weir, 1949):

TEE ¼ 22:4 rCO2ð1:1þ 3:9=FQÞ; ð3Þ
where FQ is the food quotient, which reflects the macronutrient
content of the diet. We used FQ=0.8, and FFM was calculated from
TBW assuming a hydration coefficient of 0.732 for FFM. We
calculated FM by subtracting FFM from total body mass.

Physical activity of DRC dolphins
We collected behavioral data during the 5–9 days after the dose was
administered. We conducted observations during 118 training
sessions, and noted the number of behaviors with a high cost of
locomotion shown per dolphin per session. We defined behaviors as
having a high cost of locomotion that involved fast swimming
(which leaves white water/big wake), and/or propelling more than ¾
of the body up out of the water, and considered the following
behaviors as having a high cost of locomotion: dive, back dive,
spiral dive, flying forward tail walk, front flip, back flip, back tail
walk, forward tail walk, breach, speed swim, tummy speed swim,
spiral speed swim, vertical spin, belly flop, hurdle jump, slip and
slide on dock, dive over object, banana jump, beach on dock. For
each individual, we observed sessions for an average of 305
±57.7 min (range 217–384 min), and individuals showed 56.8±23.5
(range 39–91) behaviors with a high cost of locomotion. Sessions
occurred both in the mornings (between 08:30 h and 11:26 h; 46.6%
of sessions) and in the afternoons (between 12:01 h and 16:45 h;
53.4% of sessions). For every individual, we calculated the number
of high energy tasks shown per minute as the sum of high energy
tasks divided by the number of session minutes for that dolphin. To
determine a baseline level of physical activity, we conducted
observations outside of session times.

Baseline physical activity during the day was recorded using
scan sampling (N=101 scans). For each individual, an average of
17 observations (range 16–20) was conducted during the DLW
measurement period. Observations were conducted both in the
mornings (between 08:43 h and 11:49 h; 40% of observations) and
in the afternoons (between 12:00 h and 17:00 h; 60% of
observations). Each observation lasted 10 min, and every 30 s the
focal dolphin’s activity level was rated on a scale from 1 to 3. Score
1 was noted when the individual was floating or showed very low

Table 1. Overview of measurements for each common bottlenose dolphin (Tursiops truncatus)

ID
Study
site

Age
(years) Sex

Body mass
(kg)

TEE
(kcal day−1)

Body
fat (%)

FFM
(kg)

TBW
(l)

Water turnover
(l day−1)

Baseline
activity

High energy
behaviors (min−1)

DRC Female 1 DRC 45 F 213.6 8716 18.1 174.9 128.1 42.33 1.908 0.102
DRC Male 1 DRC ∼40* M 256.8 7028 9.8 231.7 169.6 47.26 1.138 0.189
DRC Male 2 DRC 31 M 210 13,026 12.3 184.1 134.8 39.02 1.762 0.149
DRC Male 3 DRC 29 M 265.4 18,274 6.4 248.3 181.8 46.21 1.829 0.294
DRC Male 4 DRC 22 M 257.2 20,046 8.1 236.4 173.0 49.57 1.790 0.301
DRC Male 5 DRC ∼10* M 160.9 13,004 9.7 145.3 106.4 33.26 1.791 0.123
83H1 DQ 11.2 M 142.9 6948 1.4 140.8 103.1 25.60 – –

9FL3 DQ ∼35* M 245.8 11,526 4.7 234.1 171.4 28.55 – –

6JK5 DQ 24.9 M 199.6 13,859 4.8 189.9 139.0 39.87 – –

9ON6 DQ 21.5 M 193 15,105 4.2 184.8 135.3 31.69 – –

Measurements were obtained at the two study sites: Dolphin Research Center, FL, USA (DRC) and Dolphin Quest, HI, USA (DQ). Data are presented on age,
sex (F, female; M, male), body mass, unadjusted total energy expenditure (TEE), body fat percentage, fat-free mass (FFM), total body water (TBW), water
turnover, baseline activity and high energy behaviors.
*Age was estimated for these individuals because they were born in the wild.
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activity, score 2 was noted for regular swimming, and score 3 was
noted for fast swimming or jumping. For every individual, we
calculated baseline activity as the sum of all scores recorded in all
observations (range 454–607) divided by the number of scan
sampling points. Because studies have found energy expenditure at
slow swim speeds is only slightly elevated compared with BMR, it
is likely that score 1 and 2 have a similarly low cost of locomotion,
compared with score 3 (Williams et al., 2017). Consequently, we
calculated a second activity, in which we assumed that score 1 and 2
are relatively similar in their cost of locomotion, and assigned score
1 a value of 1.3 and score 2 a value of 1.7, and then calculated an
alternative activity as the sum of all scores divided by the number of
scan sampling points.
We did not conduct observations early in the mornings and late in

the afternoons or during the night because the facility is closed
during that time. Wild dolphins show an increase in activity around
sunrise and sunset, which is associated with feeding behaviors
(Miller et al., 2010; Vermeulen et al., 2015). At DRC, dolphins were
fed only during the time range during which our observations
occurred and thus we do not assume that activity of DRC dolphins
peaked around sunrise and sunset.

Comparative TEE
To compare bottlenose dolphin TEE with data from other marine
and eutherian mammals, we used published comparative datasets
(Pontzer, 2015b; Pontzer et al., 2014; Simmen et al., 2015), and
included additional species, such as the polar bear (Pagano and
Williams, 2019), sea otter (Williams et al., 1988) and walrus
(Acquarone et al., 2006) (Table S2). We were unable to include
previously published (as conference abstract) TEE data for
bottlenose dolphins because body mass was not reported (Costa
et al., 2013). We used the phylogenetic structure of the analyzed
species from a published mammalian supertree (Bininda-Emonds
et al., 2007). Seven species, for which TEE data were available,
were not present in the phylogenetic tree and we removed these
species for the phylogenetically controlled analysis (Canis
familiaris, Eremitalpa namibensis, Lemmus trimucronatus, Papio
anubis, Papio cynocephalus, Perognathus formosus and Vulpes
macrotis).

Statistical analyses
We conducted all analyses in R v.3.6.2 (http://www.R-project.org/).
We used Welch’s t-tests to assess study population-level differences
in age, body mass and TEE. We investigated relationships between
ln-transformed TEE and ln-transformed body composition variables
using linear models (LMs). We did not use linear mixed models
(LMMs) with population (DQ versus DRC) as a random factor
because such models resulted in singularity. We assessed the
relationship between body mass and water turnover using a LMM
that included population (DQ versus DRC) as a random factor.
We fitted all LMs using the function ‘lm’, and LMMs using the
function ‘lmer’ in the R package lme4 (Bates et al., 2015).
Unadjusted TEE increases with body mass (Nagy, 1987, 2005;
Speakman, 2000), but larger individuals generally expend less
energy per gram body mass than smaller individuals (Pontzer et al.,
2016; Speakman, 2005; Tschöp et al., 2012). Different tissues have
different metabolic rates, and adipose tissue has a much lower
metabolic activity than FFM (Krebs, 1950). Thus, body
composition, and especially FFM, affects TEE. To control for
variation in FFM, we calculated an adjusted TEE for each dolphin
based on a multiple regression model with TEE as the dependent
variable and FFM as an independent variable (Poehlman and Toth,

1995; Pontzer, 2015b; Ravussin and Bogardus, 1989; Tschöp et al.,
2012). TEE and FFM were ln-transformed for this model. Using
predicted and residual TEE for each measurement, we calculated
adjusted TEE as:

Adjusted TEE ¼ 100ð1þ Residual TEE=Predicted TEEÞ: ð4Þ

An adjusted TEE of 120% indicates a measured TEE that is 20%
greater than predicted and an adjusted TEE of 80% indicates a
measured TEE that is 20% lower than predicted.

We determined age-related changes in body mass, FFM, FM,
body fat percentage, adjusted TEE and energy intake, and the
relationship between energy intake and expenditure using LMMs.
We included age as a fixed factor and population (DQ versus DRC)
as a random factor. In mammals, body mass increases with age until
an asymptote is reached (Sebens, 1987; West et al., 2001), and in
many species a quadratic relationship between age and body mass
has been reported, where body mass decreases again at old age
(Nussey et al., 2011; Pépin et al., 1996; Tafani et al., 2013). Because
the relationships between age and body mass, FFM, FM, body fat
percentage and adjusted TEE are likely non-linear, we included age
and its quadratic term to assess age-related changes in body mass,
FFM, FM, body fat percentage and adjusted TEE. Because of non-
significance of the term, we removed the quadratic term of age in the
models assessing age-related changes in FFM and body fat
percentage.

We assessed the relationship of two measures of activity, (1)
baseline activity level and (2) high energy behaviors, with age and
body fat percentage using linear models. We examined the
relationship between Adjusted TEE and two measures of activity
using LMs, which included one measure of activity (baseline
activity or high energy behaviors) as fixed factor.

We used PGLS regression to assess the association between body
mass and TEE after controlling for phylogenetic relatedness
between species. We used the ‘pgls’ function in the caper
package to perform PGLS regression (https://CRAN.R-project.
org/package=caper). We accounted for polytomies using the
function ‘multi2di’ in the R package ape (Paradis and Schliep,
2019). We fitted a model using a maximum-likelihood (ML)
estimate for Pagel’s lambda (Pagel, 1999). We included habitat
(marine versus terrestrial) as an explanatory variable to assess
whether marine mammals have a similar or an elevated TEE
compared with that of similarly sized terrestrial mammals. In
addition, we also fitted two linear models (one including all TEE
data and one excluding the 7 species that were not present in the
mammalian supertree) using habitat as an explanatory variable. We
report model results as estimates±s.e.

RESULTS
We did not find statistically significant differences in body
mass (Welch two sample t-test: t=1.197, d.f.=6.35, P=0.27)
between dolphins at DRC (mean±s.d. mass 227.3±40.3 kg, range
160.9–265.4 kg) and dolphins at DQ (195.3±42.1 kg, range
142.9–245.8 kg; Table 1). Further, we did not find statistically
significant differences in age (t=0.894, d.f.=7.65, P=0.40; Table 1),
unadjusted TEE (t=0.540, d.f.=7.91, P=0.60; Table 1) or adjusted
TEE (t=0.344, d.f.=7.76, P=0.74).

FFM, FM and body fat percentage were not related to unadjusted
TEE [LMs: FFM: estimate±s.e. 0.73±0.59, d.f.=8, t=1.24, P=0.25,
95% confidence interval (CI) −0.63–2.08, R2=0.06; Fig. 1A; FM:
0.10±0.15, t=0.63, P=0.55, d.f.=8, 95% CI −0.26–0.45, R2=−0.07;
body fat percentage: 0.08±0.18, t=0.43, P=0.68, d.f.=8, 95% CI
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−0.34–0.50, R2=−0.10; Fig. 1B). Water turnover increased
with body mass (LMM: 0.11±0.04, d.f.=7.34, t=2.67, P=0.03,
R2=0.69).

Age-related changes in adjusted TEE and body composition
Body mass showed a quadratic relationship with age (LMM: age
11.36±3.59, d.f.=6.1, t=3.16, P=0.02; age2 −0.17±0.07, d.f.=6.2,
t=−2.59, P=0.04, R2=0.69; Fig. 2A). FFM also showed a quadratic
relationship with age (age 11.40±3.85, d.f.=7.0, t=2.96, P=0.02;
age2 −0.18±0.07, d.f.=7.0, t=−2.56, P=0.04, R2=0.69). Neither
FM nor body fat percentage showed a quadratic relationship with

age (both P>0.14). FM increased with age (0.52±0.13, d.f.=7.1,
t=4.12, P=0.004, R2=0.87; Fig. 2B), while body fat percentage
did not vary with age (0.18±0.09, d.f.=7.1, t=2.10, P=0.07,
R2=0.70; Fig. 2D). Adjusted TEE showed a quadratic relationship
with age (age 5.57±3.25, d.f.=6.1, t=1.71, P=0.14; age2 −0.13
±0.06, d.f.=6.2, t=−2.22, P=0.07, R2=0.61; Fig. 2C). Energy intake
also decreased with age (−0.36±0.14, d.f.=7.2, t=−2.49, P=0.04,
R2=0.69; Fig. 3A), consistent with our measures of TEE, but the
relationship between energy intake and expenditure did not reach
statistical significance (0.14±0.10, d.f.=7.0, t=1.39, P=0.21,
R2=0.65; Fig. 3B).
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Activity and TEE
There was little variation with regard to baseline activity level.
However, one of the two individuals that was >40 years (DRCMale
1) had a much lower baseline activity level (1.13) compared with all
other individuals (1.67–1.90; Table 1, Fig. 4). Neither total activity
score (the sum of all scores) nor baseline activity level (total activity
score divided by number of scores) was related to age (total activity:
−3.11±1.61, d.f.=4, t=−1.94, P=0.13, R2=0.43; baseline activity
level: −0.01±0.03, d.f.=4, t=−0.60, P=0.58, R2=0.07; Fig. 4A) or
body fat percentage (total activity: 0.36±6.84, d.f.=4, t=0.05,
P=0.96, R2<0.01; baseline activity: 0.02±0.03, d.f.=4, t=0.46,
P=0.67, R2=0.04; Fig. 4C). Using the alternative activity score
yielded the same results, and neither baseline activity level (−0.003
±0.004, d.f.=4, t=−0.78, P=0.48, R2=0.10) nor total activity score
was correlated with age (−1.60±1.98, d.f.=4, t=−0.81, P=0.46,
R2=0.12) or body fat percentage (total activity: −2.43±6.41, d.f.=4,
t=−0.38, P=0.72, R2=0.03; baseline activity level: 0.01±0.01,
d.f.=4, t=0.39, P=0.72, R2=0.03). The rate of high energy behaviors
per minute was not related to age (−0.001±0.003, d.f.=4, t=−0.38,
P=0.72, R2=0.03; Fig. 4B) or body fat percentage (−0.02±0.01,
d.f.=4, t=−2.52, P=0.07, R2=0.56; Fig. 4D).
There was no relationship between adjusted TEE and total

activity score (0.35±0.27, d.f.=4, t=1.32, P=0.26, R2=0.26) or
baseline activity (85.48±47.16, d.f.=4, t=1.81, P=0.14, R2=0.40;
Fig. 4E). Using the alternative activity score also showed no
relationship between adjusted TEE and total activity score (−0.11
±0.33, d.f.=4, t=−0.35, P=0.75, R2=0.02) or baseline activity
(221.3±109.9, d.f.=4, t=2.01, P=0.11, R2=0.45). There was no
relationship between high energy behaviors and adjusted TEE
(183.1±186.3, d.f.=4, t=0.98, P=0.38, R2=0.16; Fig. 4F).

Comparative TEE
Both the PGLS and the non-phylogenetic linear regression indicated
that marine mammals have an elevated TEE compared with
terrestrial mammals (PGLS: −0.699±0.222, t=−3.14, P=0.002,
d.f. =102, adjusted R2=0.90; linear regression: −0.901±0.156,
t=−5.78, P<0.0001, d.f. =102, adjusted R2=0.97; linear regression
including the 7 species excluded for PGLS: −0.900±0.158,
t=−5.72, P<0.0001, d.f. =109, adjusted R2=0.97; Fig. 5A). TEE
of bottlenose dolphins fell 17.1% below the regression line for

marine mammals, similar to that of harbour porpoises (P. phocoena)
and Galápagos fur seals (A. galapagoensis) which fell 14.3% and
11.4% below the regression line for marine mammals (Fig. 5B),
respectively. However, TEE of several terrestrial mammals fell
closer to the regression line for marine mammals than to the
regression line for terrestrial mammals. For example, TEE of the
polar bear (Ursus maritimus) fell 34.5% above the regression line
for terrestrial mammals, and TEE of the gray wolf (Canis lupus) and
the African wild dog (Lycaon pictus) fell 30.8% and 36.4% above
the regression line for terrestrial mammals, respectively (Fig. 5B).

DISCUSSION
TEE measurements are available only for a limited number of
marine mammals, and only for two cetaceans. Moreover, age-
related changes in TEE and body composition have rarely been
evaluated in cetaceans. Here, we report that adjusted TEE and body
composition of bottlenose dolphins change with age. Body mass
and FFM showed a quadratic relationship with age, suggesting that
body mass and FFM decrease in older dolphins. Such an age-related
loss of body mass was not reported in a cross-sectional study in wild
bottlenose dolphins (Read et al., 1993). But a longitudinal study
reported inter-individual variation in aging rates in US Navy
bottlenose dolphins (Venn-Watson et al., 2020), and serum
creatinine levels decrease with increasing age, indicating a
decrease in muscle mass in the species (Venn-Watson et al.,
2011). Muscular senescence has also previously been reported in
wild Weddell seals (Leptonychotes weddellii) and Atlantic spotted
dolphins (Stenella frontalis) (Hindle et al., 2009; Sierra et al., 2013).
Thus, a decrease in FFM at old age, as reported here, might indicate
muscular senescence, similar to sarcopenia occurring in old humans
(Larsson et al., 2019).

To date, few studies have investigated whether animals show age-
related changes in body composition and TEE. Our results show that
dolphin FM increased with age: young adults (individuals younger
than 20 years) had a FM of 8.8 kg (5.5% body fat) and individuals
older than 40 years had a FM of 31.8 kg (13.9% body fat). Although
not significant in our sample (P=0.07), likely because of the small
sample size, body fat percentage showed an increasing trend with
age (Fig. 2D). Adjusted TEE showed the opposite pattern and
decreased with age, where the two individuals older than 40 years
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expended 48.8% and 22.1% less energy than predicted, after
accounting for FFM. Age-related changes in dolphins stand in
contrast to findings in some other species. Several long-lived
species, such as thick-billed murres (Uria lomvia) and tufted
capuchins (Sapajus apella), do not show an age-related decline in
TEE (Edwards et al., 2017; Elliott et al., 2014). Similarly, naked
mole-rats (Heterocephalus glaber), a long-lived rodent (maximum
lifespan >27 years), show no age-related changes in body mass,
BMR, body fat percentage or FFM (O’Connor et al., 2002).
However, changes in body composition in the form of muscular
senescence have been reported in several long-lived marine
mammals, including bottlenose dolphins (Hindle et al., 2009;
Sierra et al., 2013; Venn-Watson et al., 2011, 2020). Dolphins in
this study show age-related changes in TEE and FFM that are
similar to those reported in humans, where TEE and FFM decrease
in adults older than 52 or 60 years (Elia et al., 2000; Manini, 2010;
Speakman and Westerterp, 2010). Results regarding age-related
changes in FM have been mixed in humans, where FM has been

found to increase (Coin et al., 2008; Kyle et al., 2001a,b) and
decrease (Elia et al., 2000; Speakman and Westerterp, 2010) with
age. In dogs, FM increased with age in Great Danes, but was not
related to age in smaller breeds such as Labradors and Papillons
(Speakman et al., 2003). The same study found that FFM increased
with age in Papillons but was not related to age in the other two
breeds (Speakman et al., 2003). Japanese macaques (Macaca
fuscata) show large inter-individual variation in body fat percentage
in captivity, with adults having a higher percentage than young
individuals, but age-related changes in body fat were not evident in
adults (Hamada et al., 2003).

An age-related increase in FM, as reported in this study (Fig. 2B),
could be caused by an increase in energy intake, a decline in TEE
(Johnstone et al., 2005; Speakman andWesterterp, 2010; Speakman
et al., 2003), or a combination of the two. Energy intake decreased
with age in our sample (Fig. 3A). A similar age-related decrease in
energy intake has previously been reported in bottlenose dolphins
(Reddy et al., 1994), and energy intake of three adult harbour
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porpoises (P. phocoena) decreased by 20% over a 9 year period,
potentially related to aging (Rojano-Doñate et al., 2018). Thus, the
age-related increase in FM does not seem to be the result of
excessive energy intake (Fig. 3B). We did not measure BMR for this
study, but BMR is known to make up a large percentage of TEE
in avian and mammalian species (30–86%; Drent and Daan, 1980;
Ricklefs et al., 1996; Nagy et al., 1999; Speakman, 2000; Speakman
et al., 2003) and thus an age-related modulation of basal metabolism
might have a large effect on TEE. However, the extent to which
BMR explains variation in TEE of cetaceans is still unclear.
Additional studies assessing physiological alterations associated
with aging need to be conducted in more species, preferably using
longitudinal data rather than cross-sectional data, to understand the
causes of these age-related changes.
Limitations of our study include the small number of dolphins

measured, especially females (N=1), and the lack of very young
individuals. The small sample size likely also explains why we did
not find the expected positive relationship between FFM and TEE.
Uncertainty in the ratio of TBW to FFM (hydration coefficient) and
its variation with age might limit the accuracy of isotope-based body
composition measurements. It is uncertain whether the low TEE and
low body fat percentage of one individual (83H1) are accurate
measurements or whether an error occurred during the data
collection period (e.g. some of the DLW dose was not ingested).

This individual had a much lower TEE compared with a similar
aged individual (DRC Male 5), but at the same time they had a
comparable body mass and FFM.

We found little inter-individual variation in baseline activity,
which was very similar for 5 out of 6 dolphins for which activity
data were available (Fig. 4). We found that neither baseline
activity nor the number of high energy behaviors per minute varied
with age or an individual’s body fat percentage, and that adjusted
TEE did not change with any measure of activity. Limitations of our
study include the lack of accelerometer data, observational data of
24 h activity, or measures of swim speed and leap heights, both of
which have been shown to influence metabolic rate in bottlenose
dolphins (Williams et al., 2017; Yazdi et al., 1999). We think that
our measurements of activity are reflective of the relative differences
in activity level between subjects, but it is possible that our measures
do not accurately reflect variation in daily activity among
individuals, causing the similarity in activity level between
individuals and the lack of correspondence between activity level
and TEE in dolphins. TEE has been shown to correlate with daily
movement distance in some free-ranging animals, such as llamas
(Riek et al., 2019), cheetahs (Scantlebury et al., 2014) and polar
bears (Pagano and Williams, 2019). However, many studies show
that physical activity is unrelated to TEE in humans, non-human
primates and rodents (Edwards et al., 2017; Perrigo, 1987; Pontzer,
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2015b, 2017; Pontzer et al., 2014; Rimbach et al., 2018), and these
studies suggest that physical activity is a relatively poor predictor of
TEE both within and between species (Pontzer, 2015b, 2017).
Research on more species is required to determine whether the
discrepancy between studies that found an association of TEE and
activity and those that did not might be due to phylogenetic or
ecological differences between the studied taxa (e.g. carnivores
versus herbivores) or aspects of the habitat (e.g. extreme thermal
environments). However, we note that TEE of human populations
with demanding lifestyles (e.g. hunter–gatherers and forager–
horticulturalists) is similar to that of sedentary industrialized
populations (Pontzer, 2017; Pontzer et al., 2016, 2018; Urlacher
et al., 2019, 2021), and that physically active populations of wild
primates have similar TEE to primate populations in captivity
(Pontzer et al., 2014). Similarly, comparisons of captive versus wild
or free-ranging populations of pandas, kangaroos and sheep also
show no difference in TEE (Munn et al., 2013; Nie et al., 2015).
Further, laboratory studies in rodents and birds often show no effect
of increased physical activity on TEE (O’Neal et al., 2017; Pontzer,
2015a). Clearly, the relationship between TEE and physical activity
can be complex, with the body apparently adjusting to differences in
habitual activity, and warrants further study.
Both the analysis controlling for phylogeny and the non-

phylogenetic linear regression indicated that marine mammals
have an elevated TEE compared with terrestrial mammals (Fig. 5).
We found that bottlenose dolphins expended on average 17.1% less
energy than other marine mammals of a similar body mass
(Fig. 5B). Similarly, harbour porpoises (P. phocoena) and
Galápagos fur seals (A. galapagoensis) used 14.3% and 11.4%
less energy than expected for their size. It is important to note that
the sampled marine mammal species to date under-represent several
marine mammal taxa – sirenians, mysticetes, most odontocetes, and
many otariids and phocids. Life history differences (e.g. carnivores
versus herbivores and locomotory mode) likely account for some
differences within the broad group of ‘marine mammals’ and
additional data are needed (Williams et al., 2020). It has been
proposed that marine mammals have a high energy expenditure
because homeothermy is costly in a marine environment. In support
of this notion, some studies report that the BMR of bottlenose
dolphins is 2.3 times those predicted by scaling equations for
terrestrial mammals (Williams et al., 2001), and TEE has been
reported to be 7 times BMR (Costa et al., 2013). However, there is
large variation in BMR and resting metabolic rate (RMR) values
of bottlenose dolphins, and of studies which met BMR criteria,
several reported values (0.90–1.68 W kg−1) relatively close to
values predicted by Kleiber’s scaling equation for terrestrial
mammals (Noren et al., 2013; Pedersen et al., 2020; van der
Hoop et al., 2014; Yeates and Houser, 2008), while others reported
higher values (2.25–2.48 W kg−1) (Williams et al., 1993, 2001,
2017). Thus, there is uncertainty regarding whether BMR/RMR of
bottlenose dolphins is truly elevated compared with that of
terrestrial mammals. The results from our study show a low TEE
of 2.91 W kg−1 (DQ: 2.95±0.75 W kg−1 and DRC:
2.98±1.03 W kg−1) compared with previously reported values of
TEE in the same species collected in Florida during summer (6.79
±1.11 W kg−1, when water temperatures where comparable to water
temperatures in this study) and winter (4.82±0.81 W kg−1; Costa
et al., 2013). Thus, it is unlikely that differences in TEE between the
two studies stem from differences in the thermal environments and
resulting thermoregulatory needs. TEE data reported here add to a
small but growing set of measurements for cetaceans and other
marine mammals. Additional cetacean TEE studies will improve

our understanding of how TEE compares with that of terrestrial
mammals and how it scales with size, thus improving bioenergetic
models in ecology and life history and informing conservation
outcomes (Bejarano et al., 2017; Goldbogen et al., 2019).
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Patagonia, Argentina. Aquat. Mamm. 41, 272-283. doi:10.1578/AM.41.3.2015.
272

Weir, J. B. V. (1949). New methods for calculating metabolic rate with special
reference to protein metabolism. J. Physiol. 109, 1-9. doi:10.1113/jphysiol.1949.
sp004363

Wells, R. S. and Scott, M. D. (2018). Bottlenose dolphin, Tursiops truncatus.
Common bottlenose dolphin. In Encyclopedia of Marine Mammals (ed. B. Würsig,
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Table S1. Overview of dilution spaces (ND and NO), dilution space ratio (ND/NO), deuterium 

depletion rate (kD) and 18O depletion rate (kO) for each individual. 

ID Study site Mass (kg) ND (mol) NO (mol) ND/NO kD (d-1) kO (d-1) 
DRC Female 1 DRC 213.6 7373.32 7180.98 1.027 0.3030 0.3332 
DRC Male 1 DRC 256.8 9819.65 9460.29 1.038 0.2540 0.2748 
DRC Male 2 DRC 210 7746.81 7572.01 1.023 0.2658 0.3032 
DRC Male 3 DRC 265.4 10464.52 10197.03 1.026 0.2331 0.2705 
DRC Male 4 DRC 257.2 9949.78 9715.54 1.024 0.2629 0.3059 
DRC Male 5 DRC 160.9 6121.60 5968.10 1.026 0.2868 0.3324 

83H1 DQ 142.9 5909.35 5807.58 1.018 0.2287 0.2562 
9FL3 DQ 245.8 9704.76 9771.22 0.993 0.1552 0.1802 
6JK5 DQ 199.6 8016.22 7782.69 1.030 0.2625 0.3006 
9ON6 DQ 193 7851.49 7525.00 1.043 0.2130 0.2530 

Table S2. Body mass and total energy expenditure (TEE) in eutherian mammals studied with 

doubly labeled water. Average values of mass and TEE are reported per species. In cases where 

more than one reference is presented, we averaged data from all included references. 

Click here to download Table S2

Journal of Experimental Biology: doi:10.1242/jeb.242218: Supplementary information 
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