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Opposing effects of dopamine on agonistic behaviour in crayfish
Kengo Ibuchi1 and Toshiki Nagayama2,*

ABSTRACT
The effects of dopamine on the agonistic behaviour of crayfish were
analysed. When dopamine concentrations of 1 μmol l−1 were injected
into large crayfish, individuals were beaten by smaller opponents,
despite their physical advantage. Injection of 10 μmol l−1 dopamine into
small animals increased their rate of winning against larger opponents.
Injection of a D1 receptor antagonist prohibited the onset of a ‘loser’
effect in subordinate animals, suggesting that the inhibitory effect of
dopamine on larger animals is mediated by D1 receptors. Similarly,
injection of a D2 receptor antagonist prohibited the onset of a ‘winner’
effect in dominant animals, suggesting that the facilitating effect of
dopamine on small animals is mediated by D2 receptors. Since the
inhibitory effect of 1 μmol l−1 dopamine was similar to that seen with 1
μmol l−1 octopamine and the facilitating effect of 10 μmol l−1 dopamine
was similar to that of 1 μmol l−1 serotonin, functional interactions
among dopamine, octopamine and serotonin were analyzed by co-
injection of amines with their receptor antagonists in various
combinations. The inhibitory effect of 1 μmol l−1 dopamine
disappeared when administered with D1 receptor antagonist, but
remained when combined with octopamine receptor antagonist.
Octopamine effects disappeared when administered with either D1
receptor antagonist or octopamine receptor antagonist, suggesting that
the dopamine system is downstream of octopamine. The facilitating
effect of 10 μmol l−1 dopamine disappeared when combined with
serotonin 5HT1 receptor antagonist or D2 receptor antagonist.
Serotonin effects also disappeared when combined with D2 receptor
antagonist, suggesting that dopamine and serotonin activate each
other through parallel pathways.
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Interplay of biogenic amines

INTRODUCTION
Biogenic amines can modulate feeding and sexual, postural and
aggressive behaviours in both vertebrate and invertebrate animals (for
reviews, see Weiger, 1997; Kravitz, 2000). Aggression levels, in
particular, can be controlled by biogenic amines. In vertebrates,
dopamine promotes aggressive behaviour in fish (Maler and Ellis,
1987;Winberg and Nilsson, 1992), lizards (Höglund et al., 2005) and
rats (van Erp Annemoon and Miczek, 2000), while serotonin can
reduce aggression in fish (Winberg et al., 1992), lizards (Larson and
Summers, 2001) and rodents (Saudou et al., 1994; de Boer and
Koolhaas, 2005). Some researchers, however, report that serotonin
promotes aggression in birds (Shea et al., 1991; Buchanan et al.,

1994), dogs (Badino et al., 2004) and rodents (Saudou et al., 1994;
Takahashi et al., 2010). In insects, octopamine increases aggressive
motivation in crickets (Stevenson et al., 2000; Rillich et al., 2011),
whereas serotonin enhances aggression in Drosophila (Alekseyenko
et al., 2010, 2013, 2014). In crustaceans, serotonin can increase
aggressive motivation, while octopamine and tyramine reduce
aggressiveness (Antonsen and Paul, 1997, 2001; Huber, 2005;
Huber et al., 1997, 2001; Momohara et al., 2013, 2016, 2018;
Bacqué-Cazenave et al., 2018, 2019; Bergman and Moore, 2020).
Studies also indicate that serotonin and dopamine can mediate
aggressive behaviour in ants (Szczuka et al., 2013), and a single
dopaminergic neurone can modulate aggression in Drosophila
(Alekseyenko et al., 2013), while fighting behaviour in hermit
crabs can increase serotonin and decrease dopamine (Briffa and
Elwood, 2007). Despite these findings, the role of dopamine in
crayfish agonistic behaviours is still unclear. In this study, we
examined the effect of dopamine on agonistic bouts in crayfish using
pharmacological behavioural analyses and found that dopamine has
serotonin-like and octopamine-like opposing actions relative to dose.

Evidence of functional interplays between biogenic amines has
been reported in mammalian and invertebrate learning and memory
processes (Wong et al., 1995; Sasaki-Adams and Kelly, 2001). In
Drosophila, for example, octopamine-dependent reinforcement
requires interactions with dopamine neurones that control appetitive
motivation (Burke et al., 2012). Furthermore, serotonergic neurones
control the activity of dopaminergic neurones in long-term memory
formation (Kasture et al., 2018). However, there have been no
attempts to clarify the functional interplay of biogenic amines in
agonistic behaviours. We therefore examined both dopamine–
octopamine and dopamine–serotonin interactions via co-injection
of receptor antagonists in various combinations.

MATERIALS AND METHODS
Animals
Adult male crayfish Procambarus clarkii (Girard 1852) (6–9 cm
body length from rostrum to telson) were used in all experiments.
Individuals were purchased from a commercial supplier in
Okayama, Japan, and maintained individually in separate
19×33×15 cm (width×length×height) opaque containers filled
with water to a depth of 10 cm under a 12 h:12 h light:dark
photoperiod cycle for at least 3 weeks. Each crayfish was fed equal
amounts of small food pellets (Kyorinn, Japan) once a week.
Experimental trials were performed in dim light conditions at a
room temperature of approximately 23°C. Crayfish with damaged
legs or that had moulted within the week before the experiments
were not used in this study.

Pairing
Two crayfish with a length difference of 3–7% were selected and
paired in a new 26×38×24 cm (width×length×height) opaque
container filled about halfway with water. Prior to each pairing, an
opaque plastic barrier was placed in the centre of the tank, separating
it into two areas. A single crayfish was placed on each side of thisReceived 10 December 2020; Accepted 29 April 2021
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barrier and allowed to acclimate for at least 10 min before the
divider was removed. The agonistic bouts were recorded for 45 min
using a video camera (Victor GZ-MG330-S, Japan) mounted on a
tripod above the container. Crayfish behaviour was analysed frame-
by-frame to construct an ethogram for every second of the encounter.
After releasing the divider, fighting was recorded as soon as one
crayfish approached and made contact with its opponent. The
winner–loser relationship was determined after 15–30 min, a period
that included several fights. Change in orientation from approach
to attack was an evident characteristic of a dominant crayfish
(Watanabe et al., 2016) and submissive crayfish retreated or
tailflipped following an attack by a dominant crayfish and engaged
in no further fights (Sato and Nagayama, 2012). After 45 min
of pairing, dominant and subordinate crayfish were re-isolated
separately in the stock container for a second pairing session the
following day. The video tapes were analyzed by individuals who
were blind to the drug(s) that had been administered.

Drug injection
Dopamine hydrochloride (DA), serotonin creatinine sulphate
monohydrate (5HT), (±)-octopamine hydrochloride (OA), and their
receptor antagonists methylergonovine maleate salt (methergine) as
the non-specific dopamine receptor antagonist, R(+)-SCH-23390
hydrochloride (SCH23390) as the dopamine D1 receptor antagonist,
chlorpromazine hydrochloride (chlorpromazine) as the dopamine D2
receptor antagonist, WAY-100635 maleate salt (WAY100635) as the
serotonin 5HT1 receptor antagonist, and epinastine hydrochloride
(epinastine) as the octopamine receptor antagonist were obtained
from Sigma-Aldrich (St Louis, MO, USA) and dissolved in
physiological saline (van Harreveld, 1936) to make up the required
concentrations prior to each experiment. The concentration of each
drug was determined from Shiratori et al. (2017) for DA, SCH23390
and chlorpromazine; from Momohara et al. (2016) for 5HT, OA and
WAY100635; and from Momohara et al. (2018) for epinastine. The
concentration of methergine was determined by our preliminary
observation that 10 was the maximum concentration that resulted in
no postural or behavioural changes in the animals. Drugs (1 ml in
volume) were injected using a 27 gauge (20 mm) needle into the
pericardial sinus from the dorsal carapace within the caudal third of
the pericard, to avoid damaging the underlying heart. This injection
point was determined as in Alcaro et al. (2011). The carapace
expanded fully after injection of drugs into the pericardial cavity, then
extra fluid leaked out immediately through the gills, returning the
carapace to its original shape within 1 or 2 min.

Effect of dopamine application to naive animals
Two naive animals with a length difference of 3–7% were paired.
Naive crayfish were defined as isolated newcomers with no previous
pairing in the past 3 weeks. Larger or smaller naive animals were
injected with either physiological saline or 0.5, 1, 2, 5 or 10 μmol l−1

dopamine 15 min prior to pairings against untreated small or large
naive opponents, respectively. The winning rate of drug-treated
animals was compared with that of saline-injected animals as
controls. Number of pairings, size of animals and concentration of
drugs are summarized in Table S1.

Effect of dopamine receptor antagonist on dominant or
subordinate animals
Two naive animals with similar body length were paired to establish
winner and loser relationships, then re-isolated individually in
separate containers overnight. The following day, dominant animals
were paired with larger naive animals, and subordinate animals

were paired with smaller naive opponents. Dominant or
subordinate animals were injected with physiological saline,
10 μmol l−1 methergine, 10 μmol l−1 SCH23390 or 10 μmol l−1

chlorpromazine immediately after establishing the winner and
loser relationship. The winning rates of drug-treated animals were
compared with untreated dominant or subordinate animals
(controls). Number of pairings, size of animals and concentration
of drugs are summarized in Table S2.

Interplay between dopamine and octopamine
Dopamine (1 μmol l−1) or octopamine (1 μmol l−1) with or without
co-injection of either dopamine or octopamine receptor antagonists
(10 μmol l−1 SCH23390 or 12.5 μmol l−1 epinastine, respectively)
were injected into naive large animals 15 min prior to pairings with
smaller naive opponents. The winning rates of animals co-injected
with the receptor antagonists were compared with that of large
animals injected with only dopamine or octopamine (controls).
Number of pairings, size of animals and concentration of drugs are
summarized in Table S3. One pairing between 1 μmol l−1

dopamine-injected large naive animal and untreated small naive
animal was added for analyses of experiment 3 to prevent the usage
of the same data from experiment 1.

Interplay between dopamine and serotonin
Dopamine (10 μmol l−1) or serotonin (1 μmol l−1) with or without
co-injection of either dopamine or serotonin receptor antagonists
(10 μmol l−1 chlorpromazine or 50 μmol l−1 WAY100635,
respectively) were injected into naive small animals 15 min prior
to pairings with larger naive animals. The winning rates of animals
co-injected with the receptor antagonists were compared with that
of small animals solely injected with dopamine or serotonin as
controls. Number of pairings, size of animals and concentration
of drugs are summarized in Table S4. One pairing between
10 μmol l−1 dopamine-injected naive small animal and untreated
naive large animal was added for analyses of experiment 4 to
prevent the usage of the same data from experiment 1.

Statistical analyses
The win rate was determined by the number of animals that won
pairings / total number of pairings. Thewin ratewithin paired animals
was analysed by binomial tests. Multiple comparisons of the
differences in win rates among drug-treated groups compared with
controls were performed using Fisher’s exact test after a Bonferroni
correction was applied to the alpha, with resulting significance levels
of 0.001 (0.05/5), 0.0125 (0.05/4), 0.0166 (0.05/3) and 0.025
(0.05/2). The time in which the dominant–subordinate relationship
was determined was analysed using a survival log rank test. Multiple
comparisons of the number of fights and average duration of
individual fights were analysed using ANOVA on Ranks and a
Student’s t-test if data were normally distributed, or a Mann–Whitney
rank sum test if not after a Bonferroni correction was applied to the
alpha, with resulting significance levels of 0.001 (0.05/5), 0.0125
(0.05/4), 0.0166 (0.05/3) and 0.025 (0.05/2). Differences in the
number of attacks and retreats/tailflips between paired animals were
compared using a Mann–Whitney Rank Sum Test. All statistical
analyses were carried out using SigmaPlot v14.

RESULTS
Effect of dopamine injection on naive animals
When large and small naive crayfish with a length difference of
3–7% were paired, 25 large animals out of 32 pairings won, while
small animals won only 5 pairings. Large animals had a win rate of
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78% and were deemed more likely to win (P=0.021; binomial test).
When physiological saline was injected into large animals prior to
pairings with small animals, 15 large animals won in 19 pairings
(79%). Saline-injected large animals were also more likely to win
(P=0.019; binomial test) and no statistical difference was found
when comparing these with untreated large animals. Instead of
saline, 0.5, 1, 2, 5 or 10 μmol l−1 dopamine was then injected into
large animals 10 min prior to pairings with small animals (Fig. 1A).
For 0.5 μmol l−1 dopamine injections into large animals, the
win rate reduced to 40% (n=4 out of 10 pairings). Injection of
1 μmol l−1 dopamine further reduced their win rate to 17%; only two
large animals won in 12 pairings with small opponents. Small
opponents were more likely to win (P=0.0386; binomial test). The
win rate of large animals increased to 40% (n=4 out of 10 pairings)
for 2 μmol l−1 dopamine, 70% (n=7 out of 10 pairings) for
5 μmol l−1 dopamine, and 82% (n=9 out of 11 pairings) for the
10 μmol l−1 dopamine injections. Statistically, the win rate of
1 μmol l−1 dopamine-injected large animals was significantly lower
than saline-injected controls (P=0.0003; Fisher’s exact test after
Bonferroni correction was applied to the alpha and the significance
level set to 0.01=0.05/5).
Similarly to the results for non-treated small animals, the win rate

of saline-injected small animals was also low (21%: n=4 out of 19
pairings). Larger opponents were more likely to win in these
pairings (P=0.0192; binomial test). Fig. 1B shows the win rate of
small animals with and without dopamine injections. The win rate
of the 1 μmol l−1 dopamine-injected small animals was still low at
20% (n=1 out of 5 pairings). A 5 μmol l−1 dopamine injection
increased the win rate to 40% (n=4 out of 10 pairings). Small
animals were more likely to win when 10 μmol l−1 dopamine was

injected (P=0.0386; binomial test). Ten small animals won in 12
pairings, with a win rate of 83%, which was statistically higher than
saline-injected small animals (P=0.0001; Fisher’s exact test after a
Bonferroni correction was applied to the alpha resulting in a
significance level set to 0.0167=0.05/3).

Any physical advantage of the large animals was lost by injection
of low concentration of dopamine since 1 μmol l−1 dopamine-
injected large animals were frequently beaten by small opponents.
On the other hand, injection of high concentration of dopamine
facilitated aggressive motivation since 10 μmol l−1 dopamine-
injected small animals frequently won against larger opponents.
Accordingly, aggressive motivations of the treated animals were
estimated by an ‘aggression index’, which was determined by
the total number of attacks/total number of both retreats and tailflips.
The number of attacks of both the dopamine-injected large
animals and non-treated small opponents (Fig. 2A) and that of
both the dopamine-injected small animals and non-treated large
opponents were compared (Fig. 2B). Furthermore, the total number
of both retreats and tailflips in pairing animals was also compared
(Fig. 2C,D). Saline-injected large animals showed more attacks
than their small opponents (Fig. 2A) and the total number of retreats
and tailflips was lower than that of small opponents (Fig. 2C).
There was statistically no significant difference in the number of
attacks (P=0.076; Mann–Whitney Rank Sum Test), but there was a
significant difference in the number of retreats and tailflips (P=0.019;
Mann–Whitney Rank Sum Test). The number of attacks in the large
animals decreased when dopamine of 0.5 or 1 μmol l−1 was injected,
and, at the same time, the number of retreats and tailflips increased
(Fig. 2A,C). In 1 μmol l−1 dopamine-injected large animals, the
number of attacks was statistically significantly lower than that of the
small opponents (P=0.038; Mann–Whitney Rank Sum Test) and the
number of retreats and tailflips was significantly higher than that
of small opponents (P=0.023; Mann–Whitney Rank Sum Test). By
contrast, when 10 μmol l−1 dopamine was injected, the number
of attacks of both the large and small animals increased significantly
in comparison to that of the opponents (P=0.012 between 10 μmol l−1

dopamine-injected large animals and small opponents in Fig. 2A,
and P=0.010 between 10 μmol l−1 dopamine-injected small
animals and large opponents in Fig. 2B; Mann–Whitney Rank
Sum Test). Furthermore, the number of retreats and tailflips of the
opponents against 10 μmol l−1 dopamine-injected animals increased
significantly (P=0.006 between 10 μmol l−1 dopamine-injected large
animals and small opponents in Fig. 2C, and P=0.018 between
10 μmol l−1 dopamine-injected small animals and large opponents
in Fig. 2D; Mann–Whitney Rank Sum Test). Furthermore, in the
pairings between 5 μmol l−1 dopamine-injected large animals and
non-treated small opponents, the number of retreats and tailflips of
the dopamine-injected large animals was lower than that of the
small opponents (P=0.017; Mann–Whitney Rank Sum Test). The
aggression index of saline-injected naive large animals was 4.2
(Fig. 2E) while that of saline-injected naive small animals was 0.2
(Fig. 2F). In dopamine-injected animals, the aggression index of low
concentration dopamine-injected animals was frequently lower than
1.0. The aggression index of naive large animals was 0.3 after
0.5 μmol l−1 dopamine injection, 0.06 with 1 μmol l−1 dopamine
injection and 0.9 for 2 μmol l−1 dopamine injection (Fig. 2E).
Furthermore, the aggression index of naive small animals was 0.4
when 1 μmol l−1 dopaminewas injected (Fig. 2F). On the other hand,
injection of a higher concentration of dopamine increased the
aggression index in the large as well as small animals: 2.3 in naive
large animals after 5 μmol l−1 dopamine injection and 10.9 with
10 μmol l−1 dopamine injection (Fig. 2E); and 1.2 in naive small
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Fig. 1. Effect of dopamine on percentage win rate in encounters between
small and large crayfish. Saline or 0.5, 1, 2, 5 or 10 μmol l−1 dopamine (DA)
was injected into (A) naive large animals 15 min prior to pairings with naive
small opponents or (B) naive small animals 15 min prior to pairings with naive
large opponents, and their percentage win rate was plotted. Asterisks indicate
significant difference in percentage of wins compared with saline-injected
animals as controls using Fisher’s exact test after applying a Bonferroni
correction to the alpha, leading to a significance level P=0.0083 in A and
P=0.0125 in B.
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animals with 5 μmol l−1 dopamine injection and 2.1 for 10 μmol l−1

dopamine injection (Fig. 2F).
In the pairings between naive large and small animals, the time

in which the dominant–subordinate relationship was determined
was variable from 4 min to 38 min, with average time of 16
±2.5 min (n=30; mean±s.d.). In saline-injected large and small
animals (controls), dominant–subordinate relationships were also
determined within ∼16 min (Fig. 3A,B). Although the decision
time to establish the dominant–subordinate relationship was about
15 min in 10 μmol l−1 dopamine-injected large animals (Fig. 3A)
and about 16 min in 10 μmol l−1 dopamine-injected small animals
(Fig. 3B), dopamine of lower concentration tended to lead to a
longer decision time of 20–25 min (Fig. 3A,B). There were,
however, no statistically significant differences from saline-injected
animals (P=0.480 in naive large group and P=0.826 in naive small
groups; Survival log rank test). The number of fights during
agonistic bouts was plotted for dopamine-injected large animals
(Fig. 3C) and small animals (Fig. 3D) and in both, the number of
fights in 1 μmol l−1 dopamine-injected animals was lowest, but no
significant difference was found by multiple comparison (P=0.018
against saline injected animals in naive large animals: Student’s
t-test after a Bonferroni correction was applied to the alpha resulting
in a significance level set to 0.010=0.05/5, and P=0.190 in naive

small animals; Mann–Whitney Rank Sum Test). In 10 μmol l−1

dopamine-injected naive large animals, the average duration of
individual fights was longer than that of saline-injected animals
(Fig. 3E). Multiple comparisons showed, however, no statistically
significant difference (P=0.026; Mann–Whitney rank sum test
after a Bonferroni correction was applied to the alpha, resulting
in a significance level set to 0.01). The average duration of
individual fights in the naive small animals with 1 μmol l−1

dopamine injection decreased significantly from that of saline-
injected animals (P=0.0160; Student’s t-test after a Bonferroni
correction was applied to the alpha resulting in a significance level
set to 0.0167=0.05/3) (Fig. 3F).

Effect of dopamine receptor antagonists on winner and
loser effects
After acquiring their dominant status, dominant small animals
frequently won against larger naive opponents, a phenomenon
known as the winner effect. In 26 pairings between dominant small
and naive large animals, 18 dominant small animals won, resulting
in awin rate of 70% (Fig. 4A). Physiological salinewith or without a
particular dopamine receptor antagonist was injected immediately
after animals acquired their dominant state, after which they were
paired with naive large opponents the following day to confirm the
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establishment of the winner effect (Fig. 4A). Saline alone injected
into dominant small animals led to awin rate of 73% (n=11 out of 15
pairings). The win rate of dominant small animals was reduced
considerably when the non-specific dopamine receptor antagonist
methergine or the D2 receptor antagonist chlorpromazine were
injected. In both treatments, the win rate of dominant small animals
was 20% (n=2 out of 10 pairings), which was statistically lower than
in controls (P=0.0113; Fisher’s exact test after a Bonferroni
correction to the alpha set the significance level to 0.0125). In
contrast, injection of the D1 receptor antagonist SCH23390 showed
no significant impact. Eight dominant small animals won in 10
pairings with naive large opponents (P=0.6895; Fisher’s exact test).
After losing in previous agonistic encounters, subordinate

large animals were beaten by naive small opponents (Fig. 4B), a
phenomenon known as the loser effect. In 17 pairings, subordinate
large animals won only once. The win rate was 6% and naive small
opponents weremore likely towin (P=0.0003; binomial test). Thewin
rate of subordinate large animals was still low at 8% (n=1 out of 13
pairings) following physiological saline injection and the tendency for
naive small opponents to win was significant (P=0.0034; binomial
test). In methergine-injected subordinate large animals, the win rate
increased to 60% (n=6 out of 10 pairings). SCH23390 injection in

subordinate animals also showed a win a rate of 60% (n=6 out of 10
pairings). Conversely, the win rate of subordinate animals was 9%
(n=1 out of 11 pairings) following injection of chlorpromazine. The
win rates of both methergine- and SCH23390-injected animals were
statistically higher than in controls (P=0.0042; Fisher’s exact test after
a Bonferroni correction to the alpha set the significance level to
0.0125), whereas win rates after chlorpromazine injection did not
differ from controls (P=1; Fisher’s exact test).

The aggression index of dominant small animals with no
treatment or saline injection was 3.5 (17 attacks/ 4.8 retreats or
tailflips) and 4.6 (18.2/4), respectively (Fig. 4C). Aggressive
motivation was high and enough to win against larger opponents
owing to the achievement of the winner effect. The aggression
index of D1 receptor antagonist SCH23390-injected animals was
2.1 (2.6 /1.2), while that of non-specific DA receptor antagonist
methergine-injected animals was 0.3 (7.6 / 21.8) and D2 receptor
antagonist chlorpromazine-injected animals was 0.1 (0.7/6.9)
(Fig. 4C). Subordinate animals without drug treatment or with
saline injection had a very low aggression index value of 0.05
(1.1/23 in subordinate large animals and 1.3/25.7 in saline-injected
subordinate large animals) (Fig. 4D). Although they had a physical
advantage, they were beaten by small opponents owing to
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untreated naive small animals or
(F) dopamine-injected naive small and
untreated naive large animals for 45 min
agonistic bouts. Asterisk indicates
significant difference from saline-injected
animals as controls using Mann–Whitney
Rank Sum Test after applying a Bonferroni
correction to the alpha, leading to a
significance level set to 0.0166.
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their low aggression index (Fig. 4B). The aggression index
of chlorpromazine-injected subordinate animals was also 0.03
(0.2/6.5) while that of methergine-injected animals was 1.4
(2.6 /1.8) and SCH23390-injected animals was 1.9 (1.7/0.9).
The time in which the dominant−subordinate relationship was

formed was similar in the dominant animals with or without drug
treatments at 11−18 min (P=0.703; survival log rank test) (Fig. 5A).
By contrast, decision time was significantly longer when dopamine
receptor antagonists were injected into subordinate large animals
(P<0.001; survival log rank test) (Fig. 5B). The number of fights
and the average duration of individual fights in the dominant small
animals (Fig. 5C) and those of subordinate large animals were
plotted (Fig. 5D). The number of fights tended to decrease in the
drug-treated animals of both dominant and subordinate status, but
statistically, no significant differences were found among them by
multiple comparisons (P=0.042 in methergine-injected animals,
P=0.028 in SCH23390-injected animals and P=0.017 in
chlorpromazine-injected animals against controls; Mann–Whitney
rank sum test after a Bonferroni correction to the alpha set the
significance level to 0.0125, and P=0.118 among subordinate large
animals; ANOVA on Ranks). The average duration of individual
fights was similar in all groups (P=0.365 in dominant small animals
and P=0.531 in subordinate large animals; ANOVA on Ranks).

Interplay between dopamine and octopamine
As shown in Fig. 1A, 1 μmol l−1 dopamine-injected naive large
animals were frequently beaten by naive small opponents. A similar

inhibitory effect was previously observed when octopamine was
injected into large crayfish (Momohara et al., 2013). We examined
the interactions between dopamine and octopamine via co-injection
of dopamine (Fig. 6A) or octopamine (Fig. 6B) with dopamine and
octopamine receptor antagonists. To prevent the usage of same data
of 1 μmol l−1 dopamine injection from Fig. 1A, we added one new
pairing to the analysis. The win rate was reduced from 17%
(Fig. 1A) to 15% (n=2 out of 13 pairings) in Fig. 5A. Co-injection of
the D1 receptor antagonist SCH23390 with 1 μmol l−1 dopamine
into large animals increased their win rate in pairings with small
opponents (n=9 out of 13 pairings), which was statistically higher
than solely dopamine-injected controls (n=2 out of 13 pairings)
(P=0.0154; Fisher’s exact test after a Bonferroni correction was
applied to the alpha, setting the significance level to 0.025=0.05/2).
The win rate of large animals after co-injection of 1 μmol l−1

dopamine and the octopamine receptor antagonist epinastine was
27% (n=3 out of 11 pairings), which was not statistically different
from controls (P=0.6299; Fisher’s exact test).

The win rate of large animals following injection of 1 μmol l−1

octopamine only was 22% (n=4 out of 14 pairings), with small
opponents more likely to win (P=0.0309; binomial test). Co-
injection of the octopamine receptor antagonist epinastine with
octopamine into large animals increased their win rate to 83% (n=5
out of 6 pairings). The win rate of large animals following co-
injection of octopaminewith SCH23390 also increased to 67% (n=8
out of 12 pairings). The win rate of octopamine-injected large
animals with co-injection of epinastine or SCH23390 was
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statistically higher than controls (P=0.0147 with co-injection of
epinastine and P=0.0243 with co-injection of SCH23390; Fisher’s
exact test after a Bonferroni correction to the alpha set the
significance level to 0.025).
The aggression index of 1 μmol l−1 dopamine-injected naive

large animals was 0.06 (0.6/10) (Fig. 6C) and that of co-injection of
epinastine with 1 μmol l−1 dopamine was 0.2 (0.7/4.1). After co-
injection of 1 μmol l−1 dopamine with SCH23390, the aggression
index increased to 3.6 (3.6/1.0) suggesting that SCH23390 blocked
the inhibitory action of 1 μmol l−1 dopamine. The aggression
index of 1 μmol l−1 octopamine-injected naive large animals was
0.1 (0.5/4.2) (Fig. 6D). The index increased to 2.5 (2.5/1.0) after
co-injection of octopamine with epinastine and also increased to
2.6 (3.1/1.2) after co-injection of octopamine with SCH23390
(Fig. 6D).
As shown in Fig. 7A, the time in which social hierarchy was

established in 1 μmol l−1 dopamine-injected animals was similar
with and without co-injection of antagonists (P=0.189; survival log
rank test). Furthermore, the time to form hierarchy in 1 μmol l−1

octopamine-injected animals was also similar with and without
co-injection of antagonists (P=0.268; survival log rank test)
(Fig. 7B). The number of fights and the average duration of
individual fights in the naive large animals after co-injection of
1 μmol l−1 dopamine with SCH23390 was higher than those

of controls (P<0.001 for fight number and P=0.001 in individual
fight duration; Mann–Whitney rank sum test after a Bonferroni
correction was applied to the alpha resulting in a significance level
set to 0.025) (Fig. 7C). In 1 μmol l−1 octopamine-injected naive
large animals (Fig. 7D), the number of fights tended to decrease
when receptor antagonists were injected simultaneously, but no
significant differences were found in comparison to levels in
controls (P=0.063; ANOVA on Ranks). No statistical difference
was also found for the average duration of individual fights when
comparing with controls (P=0.054; ANOVA on Ranks).

Interplay between dopamine and serotonin
Injections of either 1 μmol l−1 serotonin or 10 μmol l−1 dopamine
into naive small animals increased their win rate in pairings with
naive large animals. To prevent the use of same data for 10 μmol l−1

dopamine injection as in Fig. 1B, we added one new pairing. The
win rate of 10 μmol l−1 dopamine-injected small animals was 85%
(n=11 out of 13 pairings), which was slightly increased from 83% in
Fig. 1A. The win rate decreased to 17% with co-injection of the D2
receptor antagonist chlorpromazine (n=1 out of 6 pairings) and 30%
(n=3 out of 10 pairings) with co-injection of the serotonin 5HT1
receptor antagonist WAY100635 (Fig. 8A). After co-injection of
chlorpromazine andWAY100635, the win rate of small animals was
statistically lower than in controls (P=0.0095 with co-injection of
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chlorpromazine and P=0.0131 with co-injection of WAY100635;
Fisher’s exact test after a Bonferroni correction to the alpha set the
significance level to 0.025).
In pairings with naive large animals, injection of 1 μmol l−1

serotonin into naive small animals increased their win rate to 67%
(n=12 out of 18 pairings). Their win rate reduced to 33% (n=4 out of
12 pairings) when WAY100635 was injected simultaneously, and

decreased to 10% with co-injection of chlorpromazine (Fig. 8B).
Statistically, the win rate of small animals with co-injection of
serotonin and chlorpromazine was lower than that of controls
(P=0.0060; Fisher’s exact test after a Bonferroni correction to the
alpha set the significance level to 0.025), whereas the win rate with
WAY100635 co-injection did not differ significantly from controls
(P=0.1349; Fisher’s exact test).
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Fig. 8C,D shows the aggression index of 10 μmol l−1 dopamine-
injected and 1 μmol l−1 serotonin-injected naive small animals,
respectively. The aggression index of 10 μmol l−1 dopamine
only injected animals was 2.2 (5.5/2.5), which decreased to 0.2
(1.2/4.8) by co-injection of D2 receptor antagonist chlorpromazine
and to 0.6 (1.8/3.1) with co-injection of the 5HT1 receptor
antagonist WAY100635 (Fig. 8C). Similarly, the aggression
index of 1 μmol l−1 serotonin only injected animals was 2.8
(7.9/2.9) while after agonistic co-injection of WAY100635 or
chlorpromazine it reduced to 0.3 (0.9/3.3) and 0.07 (0.3/4.3),
respectively.
As shown in Fig. 9A, the time within which a dominant and

subordinate relationship was established in 10 μmol l−1 dopamine-
injected animals was similar with or without co-injection of
antagonists (P=0.880; survival log rank test). By contrast, the
decision time after co-injection of WAY100635 became shorter
than that of 1 μmol l−1 serotonin-injected control animals (P=0.008;
survival log rank test) (Fig. 9B). The number of fights and the
average duration of individual fights in 10 μmol l−1 dopamine-
injected small animals was similar regardless of whether antagonists
were co-injected (P=0.189 in the number and P=0.239 in the
duration; ANOVA on Ranks) (Fig. 9C). The average duration of
individual fights in 1 μmol l−1 serotonin-injected small animals
with and without antagonists were similar statistically (P=0.223;
ANOVA on Ranks) while the number of fights decreased after co-
injection of both 5HT1 and D2 receptor antagonists (Fig. 9D). The
number of fights was statistically significantly lower with
chlorpromazine (P=0.017; Mann–Whitney rank sum test after a
Bonferroni correction to the alpha set the significance level to
0.025) and almost reached significance with WAY100635
(P=0.026: Mann–Whitney Rank Sum Test after a Bonferroni
correction to the alpha set the significance level to 0.025).

DISCUSSION
We showed that large crayfish injected with 1 μmol l−1 dopamine
prior to pairings were frequently beaten by smaller opponents
despite their physical advantage. Furthermore, their aggression
index was less than 1. Conversely, despite a physical disadvantage,
10 μmol l−1 dopamine-injected small crayfish increased their win
rate and aggression index in pairings with large opponents.
Furthermore, injection of 1 µmol l−1 dopamine induced the
extension of decision time and the decrease in the number and
duration of fights while 10 µmol l−1 dopamine increased the number
and duration of fights. Monoamine crosstalk experiments suggested
that different concentrations of dopamine had opposing effects and
this may have implications for the interactions octopamine and
serotonin with dopamine.

Dose-dependent opposing modulatory effects of dopamine
Synergistic and opposing effects of biogenic amines relative to dose
concentrations have been shown in many animals. For example, low
concentrations of serotonin enhance the synaptic response of LG
interneurones in crayfish, but high concentrations of serotonin show
an opposing inhibitory effect (Teshiba et al., 2001). In crayfish,
injecting a low concentration of serotonin elicits anxiety-like
reactions, while injecting a high concentration increases aggressive
motivation (Kamada and Nagayama, 2021). In Chinese mitten
crabs, injecting a low concentration of serotonin promotes agonistic
behaviour, while a high concentration reduces it (Pang et al., 2019).
Furthermore, in the lobster stomatogastric pyloric circuit, dopamine
and octopamine can independently induce different motor patterns
at different concentrations (Flamm and Harris-Warrick, 1986). In
honeybee virgin queens, the dopamine antagonist cis-flupenthixol
decreases fighting ability at low concentrations, while increasing it
at high concentrations (Farkhary et al., 2017). Two types of
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Fig. 8. Percentage of winning bouts in dopamine-
or serotonin-injected naive small animals.Win rate
of naive small animals injected with (A) 10 μmol l−1

dopamine (DA) or (B) 1 μmol l−1 serotonin (5HT) with
or without co-injection of dopamine or serotonin
receptor antagonist when paired with naive large
opponents. Asterisks indicate significant differences
in win rates compared with DA or 5HT controls using
Fisher’s exact test after a Bonferroni correction was
applied to the alpha, setting the significance level to
0.025. Aggression index of naive small animals
injected with (C) 10 µmol l−1 dopamine or
(D) 1 µmol l−1 serotonin with and without receptor
antagonist. chlorpromazine is a D2 receptor
antagonist and WAY100635 is a 5HT1 receptor
antagonist.
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anatomically distinct dopaminergic neurones provide appetitive and
aversive learning in Drosophila (Waddell, 2013) and convey
positive and negative motivational signals in monkeys (Matsumoto
and Hikosaka, 2009).

Opposing functions of two dopamine receptors
Previous winning or losing experiences affect future fight
outcomes, which is known as the winner or loser effect (Hsu
et al., 2006). In crayfish agonistic bouts, the winner effect is defined
by reduced cAMP levels mediated by serotonin 5HT1 receptors,
while the loser effect is defined by an octopamine-mediated increase
in cAMP levels (Momohara et al., 2016). In Drosophila,
furthermore, different subtypes of the same amine can have
different actions in the modulation of aggressive behaviours
(Johnson et al., 2009). Dopamine receptors are classified into five
subtypes in vertebrates (Missale et al., 1998) and two receptors, D1
and D2, have been characterised in crustaceans (Clark et al., 2008).
The crustacean D1 receptor induces an increase in intracellular
cAMP, while the D2 receptor can inhibit adenylyl cyclase, leading
to reduced cAMP levels (Clark and Baro, 2006, 2007).
Unfortunately, the selectivity of the employed D1 and D2
antagonists have been established in mammals, but not fully in
invertebrates. In this study, however, injection of the dopamine D2
receptor antagonist chlorpromazine immediately after animals
acquired their dominant state prevented achievement of the
winner effect so that they were beaten by naive large opponents
with a physical advantage on the following day. Conversely, the D1

receptor antagonist SCH23390 prevented formation of the loser
effect but chlorpromazine did not. Therefore, DA antagonists used
in this study are most likely acting selectively and our results are
consistent with previous findings (Momohara et al., 2016), whereby
D1 receptors were able to achieve the loser effect by increasing
cAMP levels while D2 receptors mediated the winner effect by
decreasing cAMP activity. Similar selective actions of the drugs
on different DA receptors are reported in the marbled crayfish
(Shiratori et al., 2017). Thus, dopamine, like serotonin and
octopamine, regulates the elevation or reduction of cAMP levels
to modulate aggressive motivation in crayfish. Further molecular
analyses of crayfish dopamine receptors would help to elucidate the
selective actions of dopamine receptors directly.

Since 1 μmol l−1 dopamine showed a similar effect to
octopamine, while 10 μmol l−1 dopamine had effects similar to
serotonin, it would be reasonable to assume that 1 μmol l−1

dopamine activates D1 receptors preferentially, while D2 receptors
are strongly activated by 10 μmol l−1 dopamine. If the binding
affinity of D2 receptors to dopamine is somewhat weaker than D1
receptors, sufficient binding may require high concentrations of
dopamine, otherwise, the expression of D1 and D2 receptors may be
biased. In the rat prefrontal cortex, the expression of D1 receptor
mRNA is higher than D2 receptor mRNA (Santana et al., 2000).
Serotonin 5HT1α and 2β receptors have been identified in crayfish
(Spitzer et al., 2008) and 5HT1α receptor mRNA expression in
dominant animals is higher than that in subordinate animals (Spitzer
et al., 2005). Currently, it is not known whether the binding affinity
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Fig. 9. Comparison of agonistic behavioural
acts of dopamine- or serotonin-injected naive
small animals with and without co-injection of
receptor antagonist. (A) The time in which the
dominant–subordinate relationship was
determined when (A) 10 µmol l−1 dopamine or (B)
1 µmol l−1 serotonin was injected with or without
DA or 5HT receptor antagonist into naive small
animals. Asterisk indicates significant difference
(P<0.05) from non-antagonist injected controls
using survival log rank test. The number of fights
(top panels) and the average duration of individual
fights (bottom panels) of pairings between naive
small animals injected with (C) dopamine or (D)
serotonin, with or without receptor antagonist, and
large opponents for 45 min agonistic bouts.
Asterisks indicate significant difference (P<0.05)
from controls using Mann–Whitney rank sum test
after a Bonferroni correction was applied to the
alpha, setting the significance level to 0.025.
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and/or expression of crayfish D1 and D2 receptors differ. Further
quantitative molecular and pharmacological analyses are necessary
to explore this point and clarify our conclusion.

Functional interplay between dopamine and other
biogenic amines
Using a gas chromatography/mass spectrometry system, Sheddon
et al. (2000) analysed serotonin, dopamine and octopamine
concentrations in blood before and after agonistic behaviour of
shore crabs, and showed a link between the relative concentrations
of these amines and fighting ability. Furthermore, recent high
performance liquid chromatography (HPLC) analyses suggest that
the level of serotonin in the central nervous system increases in
dominant crayfish (Bacqué-Cazenave et al., 2017; Momohara et al.,
2018). Amine release and their functional interplay could be
essential in regulating aggressive motivation in crayfish. Crosstalk
among dopaminergic, serotonergic and octopaminergic systems
can modulate behavioural outputs in animals. Interactions between
dopamine and serotonin are found in both mammals and
invertebrates (Wong et al., 1995; Sasaki-Adams and Kelly, 2001;
Daw et al., 2002; Ishii et al., 2015; Kasture et al., 2018; Rillich and
Stevenson, 2018). For example, a pair of serotonergic projection
neurones in Drosophila trigger the oscillatory activity of dopamine
neurones that mediates long-term olfactory memory formation in
the mushroom body (Scheunemann et al., 2018). In rats, the activity
of dopaminergic neurones in the ventral tegmental area is under the
excitatory control of serotonin 5HT2A receptors in the medial
prefrontal cortex (Bortolozzi et al., 2005). In Drosophila, dopamine
modulates the connectivity of serotonergic neurones to their target
neurones in the mushroom body (Niens et al., 2017). Dopamine
shows two distinct effects – blocking and enhancement – on
serotonergic facilitation of synaptic response in crayfish LG
interneurones, which depend on the duration of activation time
of the dopaminergic pathways (Titlow, 2010). In the former two
cases, serotonin modulates downstream dopaminergic neurones to
increase dopamine release, while dopamine modulates downstream
serotonergic pathways in the latter two cases. Moreover, octopamine-
dependent memory formation in Drosophila requires signalling via
dopamine neurones (Burke et al., 2012). Octopamine triggers an
increase in intracellular calcium in dopamine neurones that controls
appetitive motivation. In our study, the inhibitory effect of 1 μmol l−1

dopamine was maintained after co-injection of the octopamine
receptor antagonist epinastine, whereas octopaminergic inhibition
disappeared with co-injection of the dopamine D1 receptor antagonist
SCH23390. These results strongly suggest that the dopaminergic
system is downstream and that octopamine induces dopaminergic
inhibition during agonistic behaviour. Conversely, the facilitating
effect of 10 μmol l−1 dopamine disappeared after co-injection of the
serotonin 5HT1 receptor antagonist WAY100635, while serotonergic
facilitation was disturbed by co-injection of the dopamine D2 receptor
antagonist chlorpromazine. Therefore, the dopaminergic and
serotonergic systems could be activated in parallel with mutual,
interacting pathways.
In crustaceans, biogenic amines function mainly as

neurotransmitters and neuromodulators in the nervous system
(Sneddon et al., 2000) and the distribution of amine-containing
neurones has been mapped in the central nervous system (for
review, see Beltz, 1999). In insects, the suboesophageal ganglion
is known to be the integration centre for both courtship and
aggressive behaviours (Zhou et al., 2008; Maeda et al., 2014; Tran
et al., 2014). Cell bodies of many dopaminergic, serotonergic and
octopaminergic neurones are positioned in the suboesophageal

ganglion and their axons project anteriorly and posteriorly in the
central nervous system of crayfish and lobsters (Beltz and Kravitz,
1983; Schneider et al., 1993; Tierney et al., 2003). Therefore, the
suboesophageal ganglion could be a centre for orchestrating
functional interplay among these amines. We observed previously
that serotonin levels in the suboesophageal ganglion are much
higher in dominant crayfish after winning (Momohara et al., 2018)
and dopamine levels of dominant animals are higher than those
of subordinate animals (K.I., personal observation). Further
analyses are necessary to clarify the pathways and interactions of
these biogenic amines using pharmacological and physiological
techniques.
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Table S1 Summary of animals used in experiment 1. 
 

animals drug treatment opponent 
sample 

number  
length(cm)  opponent 

ration of 

difference 

naive L saline naive S 19 6.4-7.8 6.2-7.5 1.03-1.06 

 
0.5µM DA naive S 10 6.3-7.9 5.4-7.5 1.03-1.07 

 
1µM DA naive S 12 6.5-8.2 6.2-7.8 1.03-1.07 

 
2µM DA naive S 10 6.3-7.4 6.1-7.2 1.03-1.07 

 
5µM DA naive S 10 6.2-8.3 6.0-8.0 1.03-1.07 

 
10µM DA naive S 11 6.4-8.5 6.0-8.2 1.03-1.07 

naive S saline naive L 19 6.2-7.6 6.6-8.0 0.94-0.97 

 
1µM DA naive L 5 6.1-7.6 6.3-7.8 0.94-0.97 

 
5µM DA naive L 10 6.0-7.1 6.2-7.6 0.93-0.97 

 
10µM DA naive L 12 6.0-7.9 6.3-8.3 0.94-0.97 

 

 

 

Table S2 Summary of animals used in experiment 2.  

 

animals drug treatment opponent 
Sample 

number 
length(cm) opponent 

ration of 

difference 

       subL no naive S 17 6.4-7.8 6.2-7.4 1.03-1.06 

 
saline naive S 13 6.4-7.8 6.2-7.5 1.03-1.06 

 
10µM metylergonobin naive S 10 6.2-7.7 6.0-7.5 1.03-1.07 

 
10µM SCH23390 naive S 10 6.2-7.4 6.0-7.2 1.03-1.07 

 
10µM chlorpromazine naive S 11 6.3-8.0 6.1-7.6 1.03-1.07 

dom S no naive L 26 6.3-7.5 6.7-7.8 0.94-0.96 

 
saline naive L 15 6.4-7.4 6.8-7.8 0.94-096 

 
10µM metylergonobin naive L 10 6.4-8.0 6.7-8.3 0.95-0.97 

 
10µM SCH23390 naive L 10 6.2-7.6 6.5-8.1 0.94-0.97 

 
10µM Chlorpromazine naive L 10 6.6-8.1 6.9-8.5 0.94-0.97 
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Table S3 Summary of animals used in experiment 3. 

 

animals drug treatment opponent 
Sample 

number  
length(cm)  opponent 

ration of 

difference 

naive L 1µM DA naive S 13 6.5-8.2 6.2-7.8 1.03-1.07 

 
1µM DA + 10µM SCH23390 naive S 13 6.6-8.4 6.4-8.1 1.03-1.07 

 
1µM DA + 12.5µM epinastine naive S 11 6.5-8.3 6.1-8.0 1.03-1.07 

 
1µM OA naive S 18 6.6-8.4 6.3-8.1 1.04-1.06 

 
1µM OA + 12.5µM epinastine naive S 6 6.5-8.0 6.1-7.6 1.04-1.07 

 
1µM OA + 10µM SCH23390 naive S 12 6.8-8.2 6.4-7.9 1.03-1.06 

 

 

 

 

Table S4 Summary of animals used in experiment 4. 

 

animals drug treatment opponent 
Sample 

number  
length(cm)  opponent 

ration of 

difference 

naive S 10µM DA naive L 13 6.0-8.2 6.4-8.5 0.94-0.97 

 
10µM DA + 10µM chlorpromazine naive L 6 6.2-7.9 6.4-8.4 0.94-0.97 

 
10µM DA + 50µM WAY100635  naive L 10 6.3-7.6 6.6-7.9 0.93-0.97 

 
1µM 5HT naive L 18 6.3-7.4 6.5-7.9 0.93-0.97 

 
1µM 5HT + 50µM WAY100635 naive L 12 6.2-7.7 6.5-8.0 0.93-0.97 

 
1µM 5HT + 10µM chlorpromazine naive L 10 6.3-7.7 6.6-8.1 0.93-0.97 
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