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ABSTRACT

Giant land vertebrates have evolved more than 30 times, notably in
dinosaurs and mammals. The evolutionary and biomechanical
perspectives considered here unify data from extant and extinct
species, assessing current theory regarding how the locomotor
biomechanics of giants has evolved. In terrestrial tetrapods, isometric
and allometric scaling patterns of bones are evident throughout
evolutionary history, reflecting general trends and lineage-specific
divergences as animals evolve giant size. Added to data on the
scaling of other supportive tissues and neuromuscular control, these
patterns illuminate how lineages of giant tetrapods each evolved into
robust forms adapted to the constraints of gigantism, but with
some morphological variation. Insights from scaling of the leverage of
limbs and trends in maximal speed reinforce the idea that, beyond
100-300 kg of body mass, tetrapods reduce their locomotor abilities,
and eventually may lose entire behaviours such as galloping or
even running. Compared with prehistory, extant megafaunas are
depauperate in diversity and morphological disparity; therefore,
turning to the fossil record can tell us more about the evolutionary
biomechanics of giant tetrapods. Interspecific variation and
uncertainty about unknown aspects of form and function in living
and extinct taxa still render it impossible to use first principles of
theoretical biomechanics to tightly bound the limits of gigantism. Yet
sauropod dinosaurs demonstrate that >50 tonne masses repeatedly
evolved, with body plans quite different from those of mammalian
giants. Considering the largest bipedal dinosaurs, and the disparity in
locomotor function of modern megafauna, this shows that even in
terrestrial giants there is flexibility allowing divergent locomotor
specialisations.

KEY WORDS: Scaling, Muscle, Gait, Effective mechanical
advantage, Maximal speed

INTRODUCTION

Two patterns prevail when surveying the evolution of legged
vertebrates on land (tetrapods) in the context of body size. First,
‘giant’ body size (>1000 kg body mass; Owen-Smith, 1987) has
evolved repeatedly since the Permian period (Alexander, 1998;
Vermeij, 2016); initially in non-mammalian synapsids and other
Palacozoic tetrapods — most famously in Mesozoic dinosaurs — and
then in mammals shortly after the Cretaceous—Palacogene mass
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extinction. Second, the diversity and morphofunctional disparity
of gigantic forms today is depauperate compared with just
20,000 years ago (Pleistocene epoch), let alone in the Mesozoic
era. Fig. 1 (also Table S1) shows that giant tetrapods have evolved
more than 30 times; however, we are left with only five main groups
(elephants, rhinoceroses, hippopotamuses, giraffes and bovids) of
extant land giants; all herbivorous placental mammals, and all under
threat of human-induced extinction (Ripple et al., 2015). Extant
Crocodylia barely reach giant size (Table S1) and deserve more study.

Giant tetrapods prompt big questions about the rules of life on
land under extreme gravitational constraints. It is timely to unify
disparate information from evolution and biomechanics, giving
insight into what kinds of giants have evolved and how much
diversity in locomotor function could evolve. What special
challenges face land giants? How much does giant size force
convergence of locomotor form and function during evolution?
What are the upper bounds of size and athleticism in nature? A
wealth of knowledge has accumulated to answer these questions,
but it remains separated in the two disciplinary ‘silos’ of evolution
and biomechanics. In this Review, I cover how supportive hard and
soft tissues (including control by the nervous system) scale with
body mass (i.e. isometrically/allometrically; see Glossary) up to
giants, and how giants overcome the challenges of falling versus
standing under gravitational constraints (see Glossary). Next,
I discuss insights into the biomechanics of giants gained from
scaling of limb leverage. I also consider scaling of tissue stresses,
safety factors and strength indicators (see Glossary), as well as
differential scaling (see Glossary) and its consequences for scaling
of maximal speed. In addition, I review our understanding of the
locomotor biomechanics of extant and extinct giants, and reflect
on how giants evolved through water—land transitions. Finally,
using an evolutionary biomechanical perspective, I synthesise our
understanding of locomotor function in giant land animals,
addressing the questions above to the degree feasible.

Scaling of supportive tissues

Bones

Scaling theory quantifies how animal form and function change with
body size, which is valuable for understanding the comparative
biology of giant animals. Vast literature on the scaling of vertebrate
morphology (such as the limb skeleton), inspired by Galileo’s (1638)
original insights, considers how body size and form correlate in extant
species, and places these findings into biomechanical and behavioural
contexts (e.g. Dial et al., 2008). For example, minimal long bone
circumference tends to scale isometrically versus body mass — or at
most with weak positive allometry — from small tetrapods such as
shrews to giant ones such as elephants (Campione and Evans, 2012).
However, limb geometry also varies considerably within and across
lineages, and within and between bones. The relationship between
bone length versus bone diameter or body mass generally shows
negative allometry; larger animals tend to have more robust
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Fig. 1. Phylogenetic relationships of mammals and tetrapods showing giant or near-giant taxa (~1000+ kg). The relationships are shown for (A)
mammals and (B) tetrapods. *Extinct taxon. Table S1 details mass estimates and references. Phylogeny from Crawford et al. (2015), Gauthier (1986),
Gauthier et al. (1988), Gheerbrant et al. (2018), Halliday et al. (2017), Holbrook and Lapergola (2011), O’Leary et al. (2013), Rowe (1993), Upham et al.
(2019), Welker et al. (2015) and Westbury et al. (2017). Silhouettes from http:/phylopic.org/, by An Ignorant Atheist, Dmitry Bogdanov, L.-M. Davalos,
Tasman Dixon, Ghedoghedo, Scott Hartman, Tracy A. Heath, Jackovche, Chris Jennings, Karkemish, Oscar Sanistro, Roberto Diaz Sibaja, Christopher
Silva, Smokeybjb, Nobu Tamura, David Tana, Steven Traver, Jan A. Venter, Mark Witton, Emily Willoughby and Zimices; used under a Creative Commons
Attribution 3.0 Unported license (https:/creativecommons.org/licenses/by/3.0/) or Public Domain Dedication 1.0 license (http:/creativecommons.org/
publicdomain/zero/1.0/).
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Glossary

Aerial phase

Absence of limb support during a period of locomotion.

Allometry

How the size of a particular feature of an organism changes
disproportionately in relation to body size (negative, less than isometry;
positive, more than isometry).

Athletic capacity (or athleticism)

Relative maximal locomotor performance, e.g. maximal speed.
Constraint

Limitation on, or canalization of, evolutionary or functional possibilities.
Cursorial

Morphology involving elongate distal limb bones; gracile skeleton.
Differential scaling

Nonlinear changes with size.

Duty factor

Proportion of a stride cycle for which limbs are in stance (support) phase;
tending to be inversely correlated with peak GRFs.

Effective mechanical advantage (EMA)

Quantitative index of limb leverage (i.e. moment arms r/R) against
gravity; straighter-limbed animals generally have a higher EMA.

Gait

Mechanism or pattern of locomotion, e.g. walk or run, trot or gallop.
Ground reaction force (GRF)

Force incurred during stance (support) phase of locomotion, equal and
opposite to the limb’s force and tending to increase with speed.
Graviportal

Morphology involving shortened distal limb bones; robust skeleton.
Inertial delay

Prolonged response time to perturbations, due to the scaling of muscular
capacities to generate accelerations versus body segment inertial
properties.

Isometry

Scaling with maintenance of proportions to size (i.e. geometric
similarity).

Kinematics

Motion-related biomechanics (e.g. posture, speed).

Kinetics

Force-related biomechanics (e.g. moments, stresses).

Moment arm

Leverage of a force (e.g. muscle r, GRF R) around a joint.

Safety factor

Tissue strength/maximal functional stress.

Strain

Relative deformation of a structure compared with resting dimensions.
Strength index

Bone resistance to twisting (J) divided by length (L) times diameter (d),
JILd (Selker and Carter, 1989; Fig. 4).

Strength indicator

Bone resistance to bending (Z) divided by force acting around joint
(a'mg) times the force’s moment arm (x), Z/(a:mg-x) (e.g. Alexander,
1985a,b; Fig. 4).

(i.e. shorter, thicker) limb bones, and this is most extreme in giants
(Alexander, 1977; Alexander et al., 1979a; Christiansen, 1999;
Carrano, 2001; McMahon, 1975a; Prothero and Sereno, 1982; Selker
and Carter, 1989). Further variation of limb proportions such as
femur/metatarsal length represents the continuum between
graviportal and cursorial (see Glossary; Fig. 2) (Carrano, 1999;
Coombs, 1978; Gregory, 1912; Osborn, 1929), which becomes
conspicuous in giant animals (large bovids and giant giraffes or
rhinoceroses versus elephants; or giant theropod versus sauropod
dinosaurs; Bertram and Biewener, 1990; Christiansen, 1999;
Carrano, 2001; Iriarte-Diaz, 2002; Prothero and Sereno, 1982).

The scaling of vertebrae and intervertebral joints is neglected
relative to that of limb bones. Rhinos and large mammals such as

bovids have allometrically stiffened thoracic columns with low
mobility that is mainly restricted to the lumbosacral joint (Halpert
etal., 1987; Jones, 2015; Jones and Holbrook, 2016). Giants such as
elephants (and perhaps hippos) seem to have eliminated this mobility,
although biomechanical studies of this pattern would be valuable.
Other data on the scaling of bone geometry further illuminate
how bone strength is influenced by internal architecture, enabling
the support of land giants. Trabecular struts within bones become
thicker but more widely spaced in larger land mammals, suggesting
that trabecular tissue stress remains constant in joints (Doube et al.,
2011). Bone osteons (the primary structural unit of cortical bone)
and remodelling capacity follow an analogous trend: osteons and the
Haversian canals that run through the centre thereof are reduced in
area in larger animals, maintaining overall cortical porosity and
thereby strength (Felder et al., 2017). At the level of the whole bone,
giant land animals have repeatedly evolved thicker limb bone
cortices and filled more of their marrow cavities with cancellous
bone. This is sometimes associated with aquatic ancestry (as it
confers density and negative buoyancy benefits, facilitating diving;
Houssaye et al., 2016a,b). Regardless, these more solid bones
should increase skeletal strength; hence, such bones in land giants
are either exaptations or adaptations sensu Gould and Vrba (1982).

Non-skeletal tissue

Scaling of supportive non-skeletal tissues reinforces what the
skeletal scaling data reveal — yet the data are more sparse and based
on limited sample sizes, and there is underexplored potential for
phylogenetic biases. Limb muscles of most mammals, birds and
lizards scale with overall allometry of strength-related geometry
(>mass®®7; Alexander et al., 1979b, 1981; Bennett, 1996; Cieri
et al., 2020; Dick and Clemente, 2017; Maloiy et al., 1979; Pollock
and Shadwick, 1994a), despite a constant capacity of muscle to
produce isometric force per unit area (Close, 1972; Medler, 2002;
Rospars and Meyer-Vernet, 2016). In contrast, amniote tendon
geometry scales isometrically or with negative allometry, rendering
the relatively thinner leg tendons of larger mammals and birds more
likely to act in a spring-like fashion; as muscle force/tendon area
generally increases with size. This scaling is unaffected by their
material properties because these (like those of muscles) remain
constant (Alexander et al., 1979b; Pollock and Shadwick, 1994a,b;
Bennett, 1996). Articular cartilage thickness in limbs (femoral
condyles) of mammals from mice to elephants scales with negative
allometry (Malda et al., 2013), consistent with a shift of passive
supportive loads from some soft tissues to bones with giant size; but
some archosaurian reptiles, including giant sauropods, instead
experienced positive allometry (Bonnan et al., 2013; Tsai et al.,
2020).

Recent research has revealed the unusual biomechanical problems
for the feet of giant land animals. As the locus of interaction between
the environment and morphology, feet are major determinants of the
biomechanics of locomotion and thus may evolve extreme
adaptations in giant tetrapods. Importantly, stress (i.e. foot sole
pressure or force/area) increases allometrically in mammals despite
greater foot areas (Michilsens et al., 2009; Chi and Louise Roth,
2010; Panagiotopoulou et al., 2012, 2016, 2019; Strickson et al.,
2020). Giant mammals thus have repeatedly evolved adaptations to
ameliorate increasing foot pressures, such as more upright
osteological or functional (‘subunguligrade’) foot postures
(Wortman, 1893; Klaits, 1972; Carrano, 1997; Hutchinson et al.,
2011a,b; Kubo et al., 2019; Clemente et al., 2020), and foot pads that
attenuate impact shocks (Alexander et al., 1986; Warner et al., 2013).
Similar features are evident in extinct dinosaurs (Moreno et al., 2007).
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In megafauna, foot pressures in wild animals seem to be near their
limits, and captive animals show increased incidences of
mechanically induced pathologies (e.g. osteoarthritis) in regions
where pressures are normally high during walking (Panagiotopoulou
et al., 2012, 2016, 2019; Regnault et al., 2013, 2017).

The scaling of neuromuscular control is also important for the
evolution of giant terrestrial tetrapods. More et al. (2010) and
More and Donelan (2018) revealed how the time lags for neural
and motor responses to stimuli (e.g. perturbations, reflex arcs and
neuromuscular activation) scale with positive allometry in land
mammals. Giant tetrapods (e.g. elephants) thereby need more than
double the relative response time compared with small animals (e.g.
shrews) at fast locomotor speeds, and consequently adopt slower
maximal speeds to avoid instability. Inertial delays (see Glossary)
are also important for locomotor control. The limb segments of
quadrupedal mammals overall scale with negatively allometric
resistance to swinging (Kilbourne and Hoffman, 2013, 2015).
Mohamed Thangal and Donelan (2020) used biomechanical models
combined with the former studies’ data on limb inertial properties
(and muscular data from Alexander et al., 1981) to estimate the
scaling of inertial delays. They found that inertial delays scaled with
strong positive allometry (almost tripling in relative magnitude
across the shrew-to-elephant spectrum), which meant that, for
larger-amplitude motions or in the largest animals, sensorimotor
delays may be less influential than inertial delays. This supports the
idea that giant land animals should have reduced athletic capacity
(see Glossary) to avoid dynamic instability.

Standing versus falling challenges for giants

When considering the scaling of supportive tissues, it should be
noted that the problem of simply standing may become more
important in giants. Large mammalian quadrupeds have more
adaptations to standing, such as passive joint-locking mechanisms
(Hermanson and McFadden, 1992; Shockey, 2001) and other traits
(Weissengruber et al., 2006) that allow grazing or even sleeping
while standing still. Perhaps giant tetrapods act more like statically
stable systems than smaller taxa (i.e. maintaining their centre of mass
over support polygons; Hildebrand, 1980, 1985) rather than relying
on more complex dynamic control? Ellis et al. (2018) posited that the
large muscular length changes required during standing up from a
prone sitting position conflict with locomotor demands, posing a
constraint even on moderate-sized tetrapods. Given allometrically
shorter muscle fibres, elongate limbs and straighter limb postures in
land giants (see Biewener, 2005; Dick and Clemente, 2017), might
giants face difficulties in standing up? This question remains
unanswered. Falling also presents a greater risk for giant animals, as
‘the bigger you are, the harder you fall’. Whether it is the scaling of
sensorimotor control (More et al., 2013; More and Donelan, 2018) or
the risk of injury itself (Farlow et al., 1995), land giants seem to have
evolved to minimise falling risks. These issues of standing versus
falling deserve further neuromechanical research inquiry.

Scaling of limb leverage

Fig. 3 illustrates the concept of the effective mechanical advantage
(EMA; see Glossary) of limbs in tetrapods (Biewener, 1989, 1990,
2005; McMahon, 1975a,b). EMA is the ratio of extensor muscle
moment arms 7 (see Glossary; internal; anti-gravity) to moment
arms R (external; inertially induced) resulting from the ground
reaction force (GRF; see Glossary) around joints, which can be
averaged for limbs (around mid-stance of locomotion, or as a
weighted mean across the stance phase). A higher EMA indicates
better overall supportive leverage. Limb postures become straighter

as many parasagittally locomoting (i.e. erect; giant taxa in
particular) terrestrial tetrapods become larger (Biewener, 1989,
1990, 2005; Osborn, 1900; Reilly et al., 2007). Concurrently, limb
muscle moment arms become allometrically larger (Alexander
et al., 1981; Biewener, 1990; Maloiy et al., 1979). These changes
allometrically increase EMA (Biewener, 2005). However, EMA
scaling reaches a plateau around horse-size (perhaps 300 kg in
mammals) — big animals cannot become more straight-limbed
(limiting minimal R) once they are straight-limbed (see below). But
as Fig. 3A illustrates, EMA still varies in large land animals — there
is not just a simple plateau at EMA ~1. This variation indicates
differential, lineage-specific evolution (i.e. scaling) of EMA in
some land giants. Giant tetrapods, then, are not canalized to have a
uniform (fully ‘columnar’) limb posture and antigravity support
abilities, despite the importance of such abilities in gigantism.
Multiple extant giants (e.g. thinos, hippos) remain unmeasured, and
estimates are yet to be made for many extinct taxa; thus, there is
likely to be further variation.

EMA (=r/R) is determined by complex interactions of posture,
dynamics and anatomy (Fig. 3B). Musculotendinous moment arms
r are set mainly by anatomy and somewhat by posture (because
moment arms vary with joint angles). The denominator R (~GRF
moment arms about joints) is determined largely by posture but
also by dynamics (the centre of pressure and GRF vector
orientation) and by anatomy (e.g. limb proportions modify where
the GRF vector is relative to joints). As above, R has its limits in
tetrapods, although other relevant anatomical/dynamic parameters
such as limb segment masses, centres of mass and inertia can
modify it (Biewener et al., 2004). Pike and Alexander (2002) found
an interplay between limb proportions and limb kinematics (i.e.
posture) in mammalian quadrupeds, implying dependence of EMA
on limb proportions, but also perhaps on phylogeny. Hence
‘cursors’ with elongate limb proportions could have low EMA for
their size (owing to large R caused by long segments; giraffes in
Basu, 2019; Basu and Hutchinson, 2021 preprint; tyrannosaurs in
Gatesy et al., 2009; elephants in Ren et al., 2010; Fig. 3A).
Similarly, there should be trade-offs, with larger moment arms r
aiding gravitational support but incurring greater musculotendinous
excursions (Pandy, 1999), along with larger musculoskeletal
anatomy resulting in greater masses or presenting a ‘packing’
problem for fitting tissues onto a body.

Most EMA research on tetrapods has focused on erect, non-
sprawling taxa, but results on the scaling of posture and bone in
crocodylians and lizards (Blob, 2000; Clemente et al., 2011)
suggest that EMA could scale differently in more sprawling
tetrapods. Importantly, most previous analyses of EMA have
focused on the trot—gallop transition, except for work on walking
and running in humans (Biewener et al., 2004) and elephants (Ren
etal., 2010). The latter two studies found effects of speed and/or gait
(see Glossary) on EMA, so relationships between locomotion and
EMA scaling deserve careful investigation, particularly as some
giant tetrapods might not trot or gallop and might exhibit postural
change with speed and/or gait. It remains unclear, then, how far
EMA can be ‘pushed’ in giant tetrapods: an exciting issue for future
research. Nonetheless, EMA scaling alone renders giant tetrapods
dynamically dissimilar to those in the mouse-to-horse size range
(Box 1).

Stresses, safety factors and strength indicators

Analyses of EMA and spring-loaded inverted pendulum (SLIP)
models (Box 2) only roughly indicate how the limbs are loaded, not
what the stresses in supportive tissues are. How, then, does the
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Box 1. Dynamic similarity theory

Dynamic similarity is an extension of scaling theory (Alexander and
Jayes, 1983) used to aid comparisons of animals of different sizes
moving at similar relative speeds, and hence to reveal potentially similar
relative dynamics (kinetics and kinematics; see Glossary). The scaling of
effective mechanical advantage (EMA; Fig. 3) itself is a distortion of this
similarity but helps us to understand how some dynamic similarity is
maintained with increasing size even if limb orientations are not. The
trot—gallop gait transition is often employed as a dynamically similar
speed for comparing smaller mammals (in the mouse to horse size
range), but does not apply to animals that do not trot and/or gallop,
including some modern megafauna (elephants, hippos, giraffes; see
‘Locomotor biomechanics of extant giants’ in main text). Likewise,
dynamic similarity tends to assume that geometric similarity (i.e.
isometric scaling) applies to the animals being compared, and the
distorted limb proportions of giant animals do not comply (Fig. 2). Thus,
land giants tend to be an example of ‘breaking’ dynamic similarity via
morphological and behavioural changes; their structure and function can
no longer be predicted based on trends from smaller animals. Again,
methods used to compare smaller animals may only work at small to
moderate sizes (mice to horses), adjusting for the confounding effects of
size, in the case of dynamic similarity. At best, these methods might only
coarsely apply for comparisons with land giants (e.g. Basu et al., 2019a,
b). Indeed, some aspects of dynamic similarity are not maintained even
across smaller animals — peak joint and other maximal forces scale with
strong negative allometry (Alexander, 1980, 1985a,b) — raising the
question, how is such scaling explained in terrestrial vertebrates and
what does it mean for land giants?

scaling of tissue stress relate to posture and gait? Alexander
(1980) estimated that the forces on limb joints across a huge size
range (including giant tetrapods) scale inversely with linear
dimensions (i.e. as body mass™-33), thereby preserving constant
tissue stresses across that size range (Rubin and Lanyon, 1984).
Furthermore, ratios of maximal forces exerted on the environment
(e.g. GRFs) versus muscle forces are proportional to each other
across similar broad size ranges, explaining how peak tissue stresses
are maintained within safe bounds (Alexander, 1985a,b). These
bounds, effectively ‘safety factors’ or ratios of failure to peak
operational stress or strain (see Glossary), concur with results from
EMA and bone stress analyses (Biewener, 1989, 1990, 2005; Rubin
and Lanyon, 1984). Similarly, Selker and Carter (1989) combined
data on internal and external geometry of long bones of artiodactyl
mammals (~15-1500 kg), showing that a ‘bone strength index”’ (see
Glossary; Fig. 4) scaled in a way that, when combined with likely
scaling of muscle forces, would maintain constant peak bone
stress. Analogous concepts of safety factors have been used in a
‘strength indicator’ by Alexander et al. (1979b) and others (Fig. 4;
see below).

However, we should be cautious in assuming uniform scaling of
safety factors. Variation in their magnitudes appears wider than the
commonly cited 2—4 ‘constant’, partly owing to the likelihood that
true peak stresses and strains have not been measured or estimated
for most species (e.g. because of difficulties in obtaining maximum
speeds during experiments). For example, Alexander et al. (1979b)
assumed hindlimb peak vertical GRFs of 57% body weight and that
their elephant subject was near maximal speed, but more precise
measurements from Ren et al. (2010) indicate that ~100% body
weight is more accurate, leading to a safety factor of ~1 (not 2) for
muscles and bones. Furthermore, Nunamaker et al. (1990) measured
racehorse metacarpal bone strains approaching safety factors of 1 at
near-maximal speeds, versus >2 measured at moderate speeds (e.g.
Rubin and Lanyon, 1984). Alexander (1997) noted that safety

factors are likely to be optimised for the most valuable or vulnerable
elements in a ‘mixed chain’ such as a limb, as these elements could
be most costly in terms of survival and natural selection. Distal
elements may have lower safety factors, perhaps owing to trade-offs
in terms of the cost required to swing more robust, stronger but
heavier elements (Currey, 2002; Nunamaker et al., 1990). This
possibility has been little explored in the context of locomotor
scaling (but see Blob et al., 2014) and contrasts strongly with the
concept of symmorphosis (evenly matched safety factors across
‘chains’) that much scaling literature implies (e.g. Rubin and
Lanyon, 1984). As noted above on the positive allometry of foot
sole pressures in mammals, such proximo-distal decreases in safety
factors are especially relevant to giant tetrapods.

Differential scaling and its consequences for scaling of maximal
speed

A ‘“differential scaling problem’ arises from the above scaling
patterns of supportive tissues, leverages and dynamics combined.
Consequently, giant tetrapods become ‘nonlinearly constrained’ in
their locomotor abilities: elephants and rhinoceroses are not
biomechanically giant mice — one cannot simply scale smaller
animals up to giant tetrapods because the constraints imposed on
them become excessive past moderately large sizes. Much of the
gait dynamics scaling literature only considers the realm of mouse-
to-horse scaling (e.g. Heglund et al., 1974; SLIP models in Box 2) —
dynamic similarity (Box 1) tends to ‘break’ beyond this range,
although it depends on the criteria that are considered. For example,
giant tetrapods benefit from greater migration distances, but migrate
a similar number of body lengths as smaller tetrapods (Hein et al.,
2012), preserving some approximation of dynamic similarity;
however, larger tetrapods choose slower preferred walking speeds
(Lees et al., 2016), acting in contradiction to strict dynamic
similarity. Deviations from near-constant stresses or safety factors
as outlined above would constitute more contradictions. Another
dynamically dissimilar scaling pattern is the nonlinear reduction of
maximal speed capacity past moderate sizes, as follows.

Although accurate measurements of maximal speed are
infamously scarce, estimates of these speeds were used in a
highly influential scaling study by Garland (1983), revisited and
corroborated by subsequent papers (Garland and Janis, 1993;
Christiansen, 2002; Iriarte-Diaz, 2002; Li et al., 2011; Meyer-
Vernet and Rospars, 2015, 2016; Fuentes, 2016; Hirt et al., 2017,
Dick and Clemente, 2017; Usherwood and Gladman, 2020; also see
Bakker, 1971). At >100 kg body mass, (absolute) maximal speed
plateaus, then declines at greater sizes (Fig. 5); the relationship
between body mass and maximal running speed is curvilinear, not
linear. Hill’s (1950) theoretical proposition that maximal speed is
mass-independent (which would imply maintenance of dynamic
similarity) is thus incorrect, except for a narrower size range (~10—
100 kg) of mammals, including within clades [e.g. Artiodactyla
(excluding Hippopotamus), Carnivora, Rodentia; Alexander et al.,
1977; Garland, 1983]. No >1000 kg extant terrestrial mammal is
capable of horse-like speeds (Table S2). A common question in the
maximal speed scaling literature is how well limb morphology (e.g.
‘cursoriality”) predicts locomotor performance such as maximal
speed, or, in another sense, whether morphology is optimised for
sprinting speed. The general consensus (contra Bakker, 1971) is
that morphology instead optimises the metabolic cost of transport at
slower ‘cruising’ speeds, whereas maximal speed capacity has
multiple morphological ‘solutions’ (Fig. 5), including in giants
(Garland, 1983; Garland and Janis, 1983; Carrano, 1999; Iriarte-
Diaz, 2002; Christiansen, 2002).
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Box 2. Simple models of locomotion

The scaling of gait biomechanics other than EMA sheds some additional
light on giant tetrapods. Walking and running gaits can be abstracted as
variants on a spring-mass or spring-loaded inverted pendulum (SLIP)
model, and parameters from experimental studies interpreted in light of
that SLIP model and scaling theory. Farley et al. (1993) studied a size
range from rats to small horses, inferring or measuring limb mechanics
for bouncing gaits via a SLIP model. They found that whole-limb stiffness
(force/limb compression) was constant with speed for all species. As
speed increased, there was: (1) a flatter trajectory of the centre of mass;
(2) a larger arc of limb excursion (but for any speed arcs were constant
with size); and (3) greater limb compression (but remaining ~25% of leg
length at a similar speed regardless of size). These changes incurred
larger ground reaction forces (GRFs) with speed owing to lower relative
ground-contact times. Their findings reinforced the concept of dynamic
similarity using the SLIP model, but also prompt questions about the
scaling of gait mechanics beyond horses. If EMA is limited in giant
tetrapods (e.g. Fig. 3), and thus limb excursions and compression
approach some unknown threshold beyond horse sizes, then dynamic
similarity would be disrupted for such species, even at similar relative
speeds or gaits. This would result from nonlinear scaling of SLIP-type
dynamics at larger body sizes. Data from elephants (Ren et al., 2010)
hint at such nonlinearity, with EMA <1 and seemingly lower limb stiffness
at faster speeds. Follow-up studies elaborated on the above ideas. Herr
et al. (2002) found that a SLIP-analogous model of trotting and galloping
could obtain similar dynamics to that of Farley et al. (1993) across a
similar size range, and using a single control program to maintain
stability. Lee et al. (2014) studied a comparable size range with the SLIP
model, revealing that goats differ from similarly sized dogs in their more
upright posture and greater limb stiffness, thus hinting at EMA
divergence between these species (and perhaps Artiodactyla and
Carnivora) that is relevant to the scaling of SLIP dynamics.

Arguably though, little has changed for our understanding of
speed—mass scaling since Garland’s classic study, except better
measurements of speed in some taxa. Of particular importance for
this Review, elephants Loxodonta africana and Elephas maximus
(6000 and 4000 kg, respectively) move at similar maximal speeds
~7 m s~! (Hutchinson et al., 2003, 2006; also maximal field-based
measurements of 5.27 ms~! by Ngene et al., 2010). Speeds of
~9.7ms~! for Loxodonta (Garland, 1983; Hirt et al., 2017;
Table S1) remain speculations. Furthermore, some other maximal
speed estimates used for giant mammals seem excessive (e.g.
16.7ms™! for 1000 kg giraffes versus <11 ms™' in Alexander
et al.,, 1977; Basu et al., 2019a). Regardless, such amendments
would only strengthen the conclusion that maximal speed declines
steeply with mass in giant land mammals. Relative maximal speed
(size-normalised via dynamic similarity; Box 1) also declines
steeply with giant size in land animals (Alexander et al., 1977;
Alexander and Jayes, 1983; Iriarte-Diaz, 2002; Meyer-Vernet and
Rospars, 2015, 2016; Usherwood and Gladman, 2020). As a result,
whole gaits can be lost at giant size. For example, elephants do not
use gaits with aerial phases (see Glossary; Hutchinson et al., 2003).

Locomotor biomechanics of extant giants

Given the various aspects of scaling discussed above, what do we
know about the locomotor biomechanics of existing land giants? Do
these giants make use of similar biomechanical solutions to the
challenges of locomotion? Large (~300-1000 kg) tetrapods raise
the question of what a ‘giant’ is; they lie in a ‘grey area’. Horses are a
prime example — they push the limits of athleticism at large size,
combining cursorial anatomy with high EMA to achieve rapid
speeds. Bovid artiodactyls likewise are good examples of extreme
performers at large or even giant size (some gaurs and other

buffalo/bison). This is probably partly achieved via allometric
scaling of morphology (McMahon, 1975a,b; Alexanderet al., 1977,
1979a,b). A study of EMA scaling up to giant artiodactyls could
give valuable insights, following up on Pike and Alexander’s (2002)
kinematic data for this group. Alexander (1991a) cautioned,
however, that, for their size, horses and bovids are neither faster
nor more energetically efficient than other mammals, such as
carnivores. Some horse-sized mammals can jump and gallop, but
some cannot; reinforcing that >300 kg tetrapods lie near thresholds
of “functional gigantism’ where constraints can reduce athleticism
(Biewener, 1989, 1990, 2005; Rubin and Lanyon, 1984).

With only extant mammals to judge from directly, we should be
wary of phylogenetic biases. Morphology alone does not reveal
which giants are the most athletic, as multiple morphologies can
have similar functional outcomes (Wainwright, 2005). Only with
biomechanical analyses, testing the role that morphological traits
play, can we tease apart where and why specific taxa fall along this
spectrum of size versus performance. However, there are too few
examples of such analyses of megafauna. What do the locomotor
biomechanics of elephants, rhinos, hippos and giraffes (the four
other main clades of extant mammalian megafauna) tell us about
land giants in general?

Elephants are the most studied land giants in biomechanical terms
(Marey and Pages, 1887; Gambaryan, 1974; Hildebrand, 1984;
Hildebrand and Hurley, 1985; Alexander et al., 1979b; Hutchinson
et al., 2003, 2006; Fischer and Blickhan, 2006; Ren et al., 2008,
2010; Genin et al., 2010). Although elephants use a columnar limb
posture during walking, they gradually shift to a more flexed limb
orientation as their speed increases, concurrent with increasingly
more bouncing mechanics that indicate a subtle gait shift into
biomechanical running (spring-mass mechanics; Box 2). Elephants’
EMA never approaches that of a horse at ~1, instead being
remarkably similar to that of walking and running humans at 0.7 and
0.5, respectively (Fig. 3, Table S3) (Biewener et al., 2004; Ren et al.,
2010). This postural shift with speed and gait fits the interpretation
that elephants trade off the ability to surpass a merely walking gait
(despite never approaching an aerial phase and a classical ‘run’) and
the maintenance of safe tissue stresses by reducing their maximal
speed to ~7 m s~!. The reduction of EMA with speed in elephants
should elevate tissue stresses concurrent with increased GRFs, so
faster speeds or gaits should become dangerous. Weissengruber
et al. (2006) showed how the small menisci of elephant knees
correlate with concave proximal cotyles of the tibia for articulation
with the femoral condyles, producing a highly congruent knee joint
articulation that, with a four-bar linkage mechanism of ligaments,
ensures a stable knee throughout the oblique ‘screw-home’ flexion
of the joint, particularly in a columnar pose. This anatomy,
furthermore, provides a ‘search image’ for similar graviportal
specializations in extinct forms.

The biomechanics of (white) rhinoceroses (Ceratotherium
simum) have only once been studied (Alexander and Pond, 1992).
This study showed that peak limb bone stresses, estimated for a
galloping gait of ~7.5ms™!, were about one-third the values
estimated for elephants (Alexander et al., 1979b). This fits with the
explanation that the shorter, more robust bones in rhinos confer a
higher ‘strength indicator’ (Fig. 4) versus elephants (see also
Christiansen and Paul, 2001). Clearly, rhinos are more athletic than
elephants. They are able to gallop with an aerial phase at speeds
faster than an elephant (Gambaryan, 1974; Dagg, 1973; Garland,
1983). Yet it is unclear whether bone strength can explain why
rhinos are so athletic even at ~3000 kg, or whether bone strength is a
side effect of other adaptations that are more closely linked to
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Giraffa camelopardalis
Cursorial, 1000 kg

Loxodonta africana
Graviportal, 5000 kg

Ceratotherium simum
7?2, 2100 kg
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Patagotitan mayorum
Graviportal, 57,000 kg

Tyrannosaurus rex
Cursorial?, 9000 kg

772, 6296 kg

Fig. 2. Morphological specializations of tetrapod limbs across the cursorial-graviportal continuum. Body masses (kg) are from Table S1. Three
extant (upper row) and extinct (lower row) representative giant taxa are shown. ‘???’ emphasizes that a cursorial/graviportal dichotomy does not apply well to

these taxa. Scale bars: 1 m. Images by Oliver Demuth.

maximal speed capacity, such as muscle or tendon strength.
Intriguingly, Prothero and Sereno (1982) found dramatic positive
allometry of long bone diameter versus length in rhinos and their
relatives. Hence, compared with elephants (Fig. 2), rhinoceroses
have much more compact, robust proximal limb bones (femur and
humerus). Bakker (1971), Christiansen and Paul (2001) and Paul
and Christiansen (2000) added that it is the ‘flexed’ limb posture of
rhinos that confers their speed, as compared with the ‘columnar’
posture of elephants (following the morphological logic of Osborn,
1900; for a new morphometric perspective, see Mallet et al., 2019,
2020; also Etienne et al., 2021). There is little question that the limb
posture of thinos and elephants at top (or any) speed is different, but
there is much left to be understood about the locomotion of rhinos.
Christiansen and Paul (2001) found that long bone strength
indicators declined with size from ~40—6000 kg mammals, with
values for elephants (7-13) and Ceratotherium rhinos (12-24)
slightly overlapping, being greater in general for proximal elements
(as per the ‘mixed chain’ hypothesis discussed above). They
cautioned that the rhino from Alexander and Pond (1992) was
juvenile, and their data indicated that juveniles have higher strength
indicators than adults.

No detailed, land-based biomechanical studies have been
performed on either giant common hippos (Hippopotamus

amphibius) or their pygmy cousins (Choeropsis liberiensis). Even
at ~3000 kg, large hippos can trot but do not gallop (Dagg, 1973;
Hildebrand, 1980), and they have limited speeds of ~7ms™!
(Garland, 1983). Limb bone strength indicator estimates from
Christiansen and Paul (2001) are interesting because they are
so low, at even less than elephantine values for a 2400 kg hippo
(range ~6-9). Coughlin and Fish (2009) made the important
observation that hippos ‘punt’ underwater using an asymmetrical
cantering/galloping gait (contra Dagg, 1973), unlike their terrestrial
locomotion. Relaxation from the biomechanical constraints of
gravity, then, might allow large hippos to express a motor control
pattern that is otherwise suppressed; raising the question of
whether dwarf hippos ever express that gait on land, or whether
hippos in general are constrained anatomically or phylogenetically
(e.g. by having large-bodied ancestors with stiffened vertebral joints).

Giraffes, like large bovids, straddle the boundary between large
and giant megafauna, and their locomotor abilities reflect that status.
Their locomotor kinematics and kinematics generally maintain
some dynamic similarity (Box 1) with smaller quadrupeds, except
that they adopt lower stride frequencies, related to their
apomorphically elongate limbs (Basu et al., 2019a). Those long
‘cursorial” limbs might incur penalties to EMA (Basu, 2019; Basu
and Hutchinson, 2021 preprint) and further trade-offs with maximal
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Fig. 3. Effective mechanical advantage
(EMA) versus body mass allometry in
tetrapods, with an elephant forelimb to
explain derivation of EMA. (A) EMA of
most mammals scales as mass®2° up to
274 kg, peaking at 1.2 in horses (Biewener,
2005, black circles). Statistics: linear
regression EMA=-0.56Body mass®2%
(N=12, R?=0.87, P<0.0001; slope 95%
confidence intervals=0.19 to 0.33). Data
are replotted as a linear regression from
Dick and Clemente (2017; from Biewener,
2005). After peaking at 1.2, EMA scaling
becomes highly nonlinear, not exceeding
1.0 in any land giants measured to date,
but varying widely (~0.3-0.7), with the
addition of the data points shown as red
triangles: walking (W) and running (R)
humans (WH, RH) (Biewener et al., 2004)
and elephants (WE, RE) (Ren et al., 2010);
plus two models (T1, T2) ‘bracketing’
potential EMA values of Tyrannosaurus rex

0.01

Body mass (kg)

performance, since giraffes are slower than horse-sized mammals
(maximal speed ~11 m s~!; Dagg and Vos, 1968; Alexander et al.,
1977; Basu et al., 2019a). Sensorimotor responsiveness is also
slower due to the elongate limbs (More et al., 2013). Although large
giraffes can still gallop (but do not trot; Dagg, 1973; Dagg and Vos,
1968), they do so more sedately than smaller individuals, shifting
limb kinematics in ways that reduce peak forces and enable this
athleticism (Basu et al., 2019a,b).

Thus, from the above points, it is evident that modern mammalian
megafauna maintain some locomotor diversity despite their giant
sizes. A large rhinoceros seems able to move faster than a similarly
sized elephant (or hippo), probably because it is built differently and

(Hutchinson, 2004b, with improved input
data from Hutchinson et al., 2005, 2011a,b;
similar to best limb configurations from

fig. 5 in Gatesy et al., 2009); and
preliminary data for giraffes (WG) (Basu,
2019; Basu and Hutchinson, 2021
preprint). All data are provided in Table S2.
(B) Left forelimb of Elephas maximus
(adapted from Ren et al., 2010). The
ground reaction force (GRF; and internal
forces) acting a distance R from a joint
incur a joint moment Mjqin: that must be
balanced by an equal and opposite muscle
moment Muscie, Produced by muscle
forces Fruscie times their moment arm
Imuscle- EMA can be averaged for a limb as
1R for all joints considered.

adopts a different posture, giving it biomechanical benefits that
remain obscure (Alexander et al., 1979b; Alexander and Pond,
1992; Christiansen and Paul, 2001; Paul and Christiansen, 2000;
Ren et al., 2010; Mallet et al., 2019, 2020). From mice to giraffes,
maximal (trot—gallop) stride frequency (strides s!) scales as ~body
mass~%!* (Heglund et al., 1974; Alexander and Maloiy, 1984).
Elephants fit this trend surprisingly well: a 2790 kg adult Asian
elephant ‘ambling’ at 6.8 m s~! has a stride frequency of 1.6 Hz
(Hutchinson et al., 2006), 101% of the predicted value, similar to a
~750 kg white rhinoceros galloping at 1.7 Hz (Alexander and
Jayes, 1983; Alexander and Pond, 1992), 91% of that predicted.
However, a ~1000 kg giraffe galloping at 11 ms~! (Alexander

8

>
(@)
9
Q
(2]
©
o+
C
Q
S
=
()
o
x
L
Y
(©)
©
c
e
-]
(®)
_



https://journals.biologists.com/jeb/article-lookup/DOI/10.1242/jeb.217463

REVIEW

Journal of Experimental Biology (2021) 224, jeb217463. doi:10.1242/jeb.217463

J~a4

|

Sg=J(Ld)~"

%[ OO

et al.,, 1977) has only 66% of the predicted stride frequency at
1.2 Hz, because it takes much longer strides (~9.2 m versus 4.4 m
in the other two giants). Consequently, (smaller) giraffes can obtain
lower duty factors (see Glossary) (~0.23) and greater peak GRFs
when compared with larger giants (duty factors are 0.48 and 0.39 for
the elephant and rhino, respectively). These differences are
consistent with the conclusion (from data above and in Fig. 5)
that stride length may scale with negative, differential allometry at
giant sizes; e.g. the thino has 100% but the elephant only has 62% of
mass-predicted stride lengths (Heglund et al., 1974). This stride
length reduction correlates with reduced limb excursion arcs
(Box 2), and more upright limbs owing to increases in EMA
(Fig. 3), and underpins the reduced athleticism of land giants,
including smaller maximal GRFs (Alexander, 1985a,b).

Yet do only four mammalian lineages really teach us all there is to
know about locomotor diversity in land giants? Just <20,000 years
ago there was a greater diversity of megafauna; before that, dinosaurs
achieved ~170 million years of gigantism. What, then, can the fossil
record teach us about the evolutionary biomechanics of gigantism?

Locomotor biomechanics of extinct giants

What are the main groups of extinct giants and when did they exist?
Fig. 1 and Table S1 emphasise that although no amphibians reached
giant sizes even while amphibious in habit, there were Permian or
later taxa in both the synapsid and reptilian lineages that may have
reached 1000 kg in mass, or at least surpassed 500 kg. Cretaceous or

-F/Zy °+FX/Z1

compression

Fig. 4. Strength index and strength indicator
derivations for limb bones of land giants.
Tyrannosaurus rex right hindlimb shown in side
view; redrawn from Gatesy et al. (2009); femur
used for example formulae. Strength index Sg
(Selker and Carter, 1989) is derived from the polar
moment of inertia J (resistance to torsional
twisting; related to distribution of bone around the
cross-section, i.e. cortical thickness and shape)
divided by bone length and diameter (Ld). Greater

Z~d3

tension ‘
Sg can result from shorter bones or greater ratios
o-(a-mg-x)Z-! of J/d. Strength indicator Sl (Alexander et al.,
SI~Z(a-mg-x)-" 1979a,b, 1986; Alexander and Pond, 1992)

assumes that a force F (proportional to body
weight mg, and the GRF) acting with a moment
arm x around the end of the bone creates a
moment Fx around the midshaft, used to calculate
S| by assuming fraction a of body weight (1 in a
biped) is borne by the limb and the stress ¢
resisted by the section modulus Z (resistance to
bending; related to the ratio of internal versus
external diameters of the bone cortices). Greater
Sl can result from thicker bones (increased Z) or
reduced load on the bone via decreased a or mg
(e.g. GRF) or x (e.g. more upright limb posture
hence greater EMA; shorter bones can also
reduce x). Sg and Sl are analogous to safety
factors (SI more so because it explicitly estimates
bone loads); greater values are ‘safer’ (stronger).

later Crocodylomorpha/Crocodylia repeatedly evolved giant sizes
even while maintaining some degree of terrestriality. Dinosaurian
giants are covered below. The biomechanics of the several giant
(or large) Permian/Triassic synapsids remain almost unstudied,
although judging from their graviportal morphology, they were
relatively slow.

As for mammals, at least one giant marsupial (Diprotodon)
existed until the late Pleistocene — a graviportal and slow scaled-up
version of its wombat kin (Wroe et al., 2004; Price, 2008). Similar
robust, graviportal placental mammals evolved soon after the
extinction of non-avian dinosaurs, within the Palaeocene/Eocene,
including horned Dinocerata and Embrithopoda (followed by
Brontotheriidae), carnivorous Hyaenodontidae and mysterious
Andrewsarchus (known from an enormous skull), and diverse
forms of Notoungulata, Litopterna and proboscidean-like
Astrapotheria. There were also radiations of still-extant (but
now mostly smaller-sized) lineages, such as Xenarthra (giant
ground sloths and armadillos), Proboscidea, rhinoceros-kin
(Paraceratheriidae, long-legged and long-necked giants), at least
one giant equid (Equus giganteus) and giant Carnivora such as
Arctotherium bears. Among Artiodactyla, there were giant short-
necked giraffids (Sivatherium; Basu et al., 2016), even larger hippos
(Hippopotamus gorgops), various large or giant bovids (Bison
latifrons; Pelorovis), and giant camelids and cervids (Table S1).
Few of these lineages have been studied biomechanically, at best
having body mass estimates or bone scaling/strength indicator data

9

)
(@)}
9
je
(2]
©
-+
c
Q
£
—
()
o
x
NN
Y
(©)
‘©
c
—
>
(®)
-_



https://journals.biologists.com/jeb/article-lookup/DOI/10.1242/jeb.217463
https://journals.biologists.com/jeb/article-lookup/DOI/10.1242/jeb.217463

REVIEW

Journal of Experimental Biology (2021) 224, jeb217463. doi:10.1242/jeb.217463

100 —
7]
g .
=
& 10
% -
L
E ]
]
= i
i .
1IIIII:IIIIIIIIIIIIIIIIIIIIIIIIII
0.01 1 100 10,000

Body mass (kg)

Fig. 5. The relationship between maximal running speed and body
mass in mammals is curvilinear. The graph shows a second-order
polynomial fit of data from Dick and Clemente (2017), with modifications
noted in Table S3. logigMaximal speed=0.9778+0.2170 (log;oBody
mass)—0.06015 (logioBody mass)?; N=150, R?=0.76, Sy.x=0.1617. Larger
mammals (>100 kg) cannot reach the top speeds achieved by moderate-
sized mammals; indeed, past 1000 kg, few should surpass 10 ms~".

incorporated into comparative analyses. However, none seem to
have exhibited extreme locomotor adaptations (e.g. high EMA or
fast speed/gait capacity). In contrast, giant dinosaurs — in part
because they feature the largest bipedal and quadrupedal land
animals ever — are well studied from an evolutionary biomechanics
perspective. However, a review of dinosaur biomechanics is
beyond the scope of this paper (see Hutchinson, 2006 and
Alexander, 2006).

The original application of locomotor biomechanics to dinosaurs,
or other extinct giants, in a modern sense is best attributed to
Alexander (1985a,b, 1989, 1991b). He used simple static models to
estimate body mass, centre of mass and thereby bone strength
indicators (Fig. 4), with comparisons to similar estimates for extant
animals, to gauge the athletic abilities of extinct forms. On this
basis, he inferred that giant sauropods (>10 tonnes) should have
been no more athletic than elephants; the >6 tonne bipedal theropod
Tyrannosaurus was about as fast as elephants and sauropods, but the
largest ceratopsids such as Triceratops (elephant-sized at >6 tonnes)
might have been as athletic as rhinos. Alexander (1985a,b) also
estimated that foot pressures of sauropods were higher than in extant
mammals, consistent with allometric scaling (Michilsens et al.,
2009). Farlow et al. (1995) replicated a bone strength indicator for
Tyrannosaurus similar to Alexander (1985a,b) with better data, but
argued that falling risk might limit speed more than bone strength.
Christiansen and Paul (2001) and Paul and Christiansen (2000)
focused on ceratopsian dinosaurs, finding allometric scaling for
long bones comparable to that of (large) mammals and, combined
with arguably higher safety factors as in rhinos versus elephants,
they argued that even giant ceratopsids might have been as athletic
as large rhinos (e.g. able to gallop). These inferences already hinted
at remarkable locomotor diversity in just three dinosaur groups,
although the claims depend on, among other potential weaknesses
noted by Alexander (1991b), how useful bone strength indicators
are. These safety factor-like parameters assume that bone strength is
the key limiting factor on locomotor performance, not other tissues
or stability (see More et al., 2010, 2013; More and Donelan, 2018).
Later studies questioned those claims.

Hutchinson and Garcia (2002), Hutchinson (2004a,b) and Gatesy
et al. (2009) used simple two-dimensional static models of bipedal

dinosaurs to test how well hindlimb muscles could support the
moments (rotational forces) involved in fast running and which limb
postures were feasible at near-maximal speeds. These analyses drew
on emerging biomechanical evidence that muscular force
production limits maximal speed. Muscular force production
determines limb forces, thereby incurring an equal and opposite
GREF (Figs 3B, 4), which is inversely related to ground contact time
or duty factor. By applying these methods to extant taxa for
validation, they found that giant theropods such as Tyrannosaurus
were unlikely to have been able to run quickly (=11 m s~!), but
might have been able to achieve slow running using certain upright
limb poses (Gatesy et al., 2009).

Sellers and Manning (2007) used forward dynamic predictive
simulations for some of the same models of Tyrannosaurus and
obtained similar results, predicting maximal speeds of <9 m s~!,
supported by follow-up studies (Bates et al., 2010, 2012) for other
giant theropods. Further analyses of the various modelling
assumptions used — such as muscle moment arms (Hutchinson
et al., 2005) and centre of mass (Hutchinson et al., 2007, 2011a,b;
Bates et al., 2009) — added reassurance that the fundamental
inferences were sound. Sellers et al. (2013, 2017) conducted the
most sophisticated simulations yet, for a reconstruction of the
~80 tonne sauropod Argentinosaurus and a 7200 kg model of
Tyrannosaurus. These produced slow (~2 m s~!) muscle-driven
walking estimates for the former taxon, whereas results for the latter
suggested that bone strength, rather than muscle strength, limited
speed to <8 m s~!. There are lingering concerns about the above
biomechanical approaches: all contained some unknown inputs
(e.g. muscle properties; body segment dimensions), and it is not
clear whether static models are sufficient representations of dynamic
sprinting, whether predictive simulations are sufficiently valid, or
whether assumptions particular to some approaches are reliable. But
clearly this domain of modelling research has led the way since the
1980s for studying the evolutionary biomechanics of extinct giants
(e.g. Bishop et al., 2018).

As Alexander (1991b) warned, there are pitfalls in analyses of the
biomechanics of giant extinct tetrapods, but the stakes are high.
Extinct taxa offer immense potential to complement what extant
taxa tell us about the biomechanics of land giants, allowing us
to build broader biomechanical theory and knowledge. We
need extinct animals for a full understanding of how giant size
influences terrestrial locomotion; they expand our sample size via
their phylogenetic diversity and morphofunctional disparity.
Experimental biologists may not recognize this huge opportunity,
but palacontologists and some theoretical biomechanists long
have (Bakker, 1971; Alexander, 1985a,b, 1989; Carrano, 2001;
Christiansen and Paul, 2001). For example, Carrano’s (2001) large
dataset on limb bone dimensions in extant and extinct mammals and
dinosaurs shows common patterns of negatively allometric scaling
of length versus diameter, strongest for larger taxa, consistent with
differential scaling. These patterns reinforce the idea that similar
biomechanical constraints have faced giant tetrapods from the
Jurassic to the present, causing repeated convergent evolution to
similar bone allometry and changes of limb posture and athleticism.
Thus, palacontological evidence heavily bolsters insights gained
from depauperate extant megafaunas.

Water-land transitions, gravity and giants

Together, the neontological and palacontological evidence
discussed in the previous two sections reveals that gravity is a
biomechanical constraint that results in specializations in giant
tetrapods that are not normally evident in smaller taxa. The few
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Box 3. Can we predict the maximal mass of land giants?
Hokkanen (1986) — and with lesser success, Economos (1981) — used
state-of-the-art understanding of scaling theory (of static bone and
muscle strength; or in the latter case ‘gravitational tolerance’ via a very
small dataset) to predict the maximal body mass of land animals. The
results of their ambitious efforts were that confidence intervals for
maximal masses were extremely broad, encompassing both known
giants (20,000 kg; Economos, 1981) and masses far beyond those ever
measured for land animals (<1,000,000 kg; Hokkanen, 1986). Although
today we better understand some basic principles of how land
locomotion works (and scales with size), how some giants work and
what limits speed, we have no clearer indication on a purely theoretical,
mechanistic basis of how big giants could become. We, like Hokkanen
(1986) and Economos (1981), remain limited to what we can observe
(Fig. 1, Table S1) — 20 tonne mammals and, among dinosaurs,
>50 tonne sauropods, <10 tonne bipedal theropods and <20 tonne
quadrupedal ornithischians. Additionally, we are limited in that extant
land animals (<10 tonnes) or Cenozoic land mammals alone
(~20 tonnes) would give us a biased impression of what is possible.
Some land animals became bigger at certain times in the past than now,
biasing our current record (due to mass extinctions of giants). Hirt et al.
(2017) proposed a biomechanical mechanism explaining the
curvilinearity of maximal speed versus body mass. This involved a
saturation (in giant land mammals) of the time available to accelerate to
maximal speed, although this mechanism did not take into account the
differential scaling of force production via EMA scaling (Fig. 3). Their
model was approximately similar to those of Meyer-Vernet and Rospars
(2015, 2016). Improvements to such a theoretical model (e.g. Fuentes,
2016; Usherwood and Gladman, 2020) might help us to better predict
how large giant land animals can become, or how they could move.
Encouragingly, Hirt et al.’s (2017) estimates for extinct dinosaurs were
roughly concordant with other biomechanical estimates.

cases where tetrapods have made water—land evolutionary
transitions involved major shifts in gravitational constraints on
locomotor biomechanics — can the study of these transitions
therefore inform us about biomechanical adaptations necessary for
the evolution of terrestrial giants from smaller terrestrial animals?
Arguably the greatest water—land transition was in the ‘rise to land’
of the first tetrapods (Clack, 2012), exapting their limbs from less
gravitationally constrained hydrodynamic roles (e.g. bottom-
walking) to terrestrial walking and eventually running (Pierce
et al., 2012; Reilly et al., 2006). One could view this transition as
equally challenging as the later evolution of land giants from smaller
ancestors. Giant elephant seals maintain moderate athletic
performance (<3 ms™') on land despite their size by relying on
axial undulation (Tennett et al., 2018). Another fascinating, and still
mysterious, shift is that of ancestral, smaller proboscideans to
suddenly large and gigantic forms and their extant elephantid
descendants. Palacocene/Eocene Proboscidea were still largely
amphibious, retaining the aquatic habits, plantigrade foot posture
and perhaps more sprawling limb posture of their tethythere
ancestors (Court, 1993, 1994), but as their body size increased in the
Eocene, their limb dimensions became more like those of extant
elephants, as did their foot morphology (Hutchinson et al.,
2011a,b). Elephants retain some aquatic proficiency and other
traits revealing that distant ancestry (Gaeth et al., 1999). This rare
water—land transition is in contrast to the common land—water
reversals in other tetrapod lineages, in which releases from the
gravitational constraints of land allowed radiation into giant sizes
(Heim et al., 2015; McClain et al., 2015). This makes Proboscidea a
fascinating case study and might help to explain why some of their
current locomotor adaptations are so different from those of other
giants.

Synthesis: evolutionary biomechanics of giant tetrapods

A stronger synthesis is needed to explain how land giants deal with
the challenges noted above. How much convergence or divergence
has there been in the evolutionary history of giant tetrapods on land,
and how many ‘solutions’ are there to the constraints and challenges
involved? Available evidence suggests some trends for allometry of
tissues and control systems, as well as straightened limb posture and/
or increased EMA and decreased locomotor performance with
increasing size. However, there is also persistent variation at giant
sizes in extant and extinct lineages, perhaps explaining why it seems
impossible to predict how large giant tetrapods can become (Box 3).
That variation is analogous to patterns described by Dick and
Clemente (2017) for felid mammals and varanid lizards, two groups
with broad size ranges. Felids are less crouched (have an apparently
higher EMA) than varanid lizards, which maintain safe tissue
stresses via allometrically larger muscles (Dick and Clemente,
2016; Cieri et al., 2020). Felids, then, may simply cope with being
weaker at larger sizes and reducing relative athletic capacity more
steeply with increases in size, but neither felids nor varanids
abandon whole gaits as their size increases. It would be exciting to
know, then, what the maximal performance of the giant varanid
Varanus priscus was; how far did it reduce its athleticism compared
with the extant komodo dragon V. komodoensis (<1000 versus
<300 kg; Fry et al., 2009)?

Future studies should aim to understand land giants in relative,
not just absolute, terms. Both ontogenetic (intraspecific) and
evolutionary (interspecific) scaling involve allometrically reduced
maximal relative performance (Carrier, 1983; Clemente et al., 2009,
2012; Herrel and Gibb, 2006; Pennycuick, 1975; Smith and Wilson,
2013). Which lineages lose discrete modes of locomotion during
ontogeny/growth? Hutchinson et al. (2019) observed that
crocodylian species reduce speed and eventually lose any
asymmetrical gait capacity at only moderate sizes (and probably
during ontogeny). Giant (1000-3000+ kg; Table S1) extant and
extinct Crocodylia can still walk terrestrially and there has been little
study of how they maintain this modest capacity (but see Scheyer
et al., 2019). Giant rodents are another captivating case study.
Although they never evolved to become as large as elephants
(Table S1), extinct >500 kg rodents pushed the limits of what their
lineage could do as large tetrapods on land. It remains enigmatic to
what extent ancestral ‘phylogenetic baggage’ versus biomechanical
constraints have shaped the limits of maximal size or athleticism in
lineages of giants (Box 3).

Conclusions

The paucity of extant giant terrestrial tetrapods challenges us to look
into Deep Time, and integrate these inferences with neontological
data to formulate a comprehensive body of knowledge for
evolutionary biomechanics. But gigantism is rare, and often short-
lived in geological time scales. Larger taxa face greater risks of
extinction during rapid environmental changes (Bakker, 1980; Janis
and Carrano, 1992; Payne et al., 2009). For this reason, Dick and
Clemente (2017) considered gigantism ‘maladaptive’, but this risks
the orthogenetic or teleological thinking that has long plagued the
study of land giants (Cope, 1896; Osborn, 1922). The evolutionary
trade-offs with gigantism (e.g. offence/defence, efficient
locomotion or resource-domination versus slow reproduction and
evolution) will be highly environment-specific, as exemplified by
the >170 million years of evolutionary history in giant dinosaurs,
which only the freak accident of an extraterrestrial impact ended.
Rhinoceroses alone reveal that, even at giant sizes, surprising
locomotor performance can persist, and extinct lineages hint that
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this has evolved repeatedly — the ‘elephant solution’ is not the only
solution for land giants. McPhee et al. (2018) described fragmentary
remains of a giant early-Jurassic sauropodomorph and speculated,
on the basis of its robust forelimb bones, that it adopted more
crouched forelimb poses (~low EMA) relative to giant sauropods
with uncontroversially columnar forelimbs (higher EMA).
Although the robust bones might have been specializations related
to feeding or other behaviours, and need further investigation in a
biomechanical context, they remind us that fossil taxa could have
deviated from prevalent patterns in extant giants. Perhaps giant
bipedal theropods such as Tyrannosaurus could achieve brief aerial
phases or a bouncing ‘grounded run’ (Gatesy et al., 2009; Sellers
et al., 2017). But elephants also reveal that their ‘solution’ is not so
simple as merely sedate walking, either. A nuanced approach to the
evolutionary biomechanics of land giants is important for
unravelling the perplexing mysteries that they continue to pose.
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