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Abstract 

Engineered paths increase efficiency and safety but also incur construction and maintenance 

costs, leading to a trade-off between investment and gain. Such a trade-off is faced by Australian 

meat ants, which create and maintain vegetation-free trails between nests and food sources, and 

thus their trails are expected to be constructed selectively. To test this, we placed an artificial 

obstacle consisting of 300 paper grass blades between a sucrose feeder and the colony, flanked 

by walls of either 10 or 80cm length. To exploit the feeder, ants could detour around the walls 

or take a direct route by traversing through the obstacle. We found that, when confronted with 

a long alternative detour, 76% of colonies removed more grass blades and ants were also 60% 

more likely to traverse the obstacle instead of detouring, with clearing activity favouring higher 

ant flow or vice versa. An analysis of cut patterns revealed that ants did not cut randomly, but 

instead concentrated on creating a trail to the food source. Meat ants were thus able to 

collectively deploy their trail clearing efforts in a directed manner when detour costs were high, 

and rapidly established cleared trails to the food source by focussing on completing a central, 

vertically aligned trail which was then followed by the ants. 
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Summary statement 

Ant colonies adjust their trail clearing effort context-dependently by preferentially creating 

shortcuts when alternative detours are long. 

Introduction 

Trails are often an integral part of collective movements. They are broadly deployed, from game 

trails of herd animals such as elephants (Blake and Inkamba-Nkulu, 2004) or deer (Etzenhouser 

et al., 1998) up to complex road structures built by human (Lämmer et al., 2006; Buhl et al., 

2006) and social insect societies (Latty et al., 2011). The nature of trails depends on their 

function, be it to reduce energy expenditure (Bochynek et al., 2017; Howard, 2001; Halsey, 

2016) or travel time (Ydenberg et al., 1994) or to increase the speed or safety of travel (Loreto 

et al., 2013; Bochynek et al., 2017). Trails are often used by central place foragers - animals 

which make multiple trips between fixed destinations - such as ants (Perna and Latty, 2014; 

McIver, 1991).  

In ants, trails last variable amounts of time, ranging from mere minutes in the form of volatile 

pheromone trails used in some ant species (Czaczkes et al., 2013; Jeanson et al., 2003) or the 

constantly adapting living bridges built by Eciton army ants (Reid et al., 2015), up to months 

or years in large insect societies (Lanan, 2014; Howard, 2001). Longer usage of trails allows 

for more sophisticated trail construction, as their costs can be ameliorated by continued energy 

savings over time (Bochynek et al., 2017). Accordingly, cleared trails are often constructed 

towards stable food sources or resource-rich regions, where ants can disperse to various end 

points (Gordon, 1991; Farji-Brener and Sierra, 2016; Hölldobler and Wilson, 1990; Greaves 

and Hughes, 1974).  

Such large trunk trails, which are actively cleared of vegetation to create and maintain 

highways, are created by many ant species. Removal of vegetation allows for fast travel to 

stable food sources (Lanan, 2014; Bochynek et al., 2017; Bruce and Burd, 2012; Howard, 2001; 

Plowes et al., 2013; Greaves and Hughes, 1974; Hölldobler and Lumsden, 1980; Shepherd, 

1982; Fowler, 1978) and thus differs from most animal trails, which are created passively by 

trampling of vegetation (Blake and Inkamba-Nkulu, 2004; Bates, 1950). Trunk trails leave the 

nest and bifurcate repeatedly, ramifying into the foraging areas (Hölldobler and Wilson, 1990; 

Salo and Rosengren, 2001; Hölldobler and Lumsden, 1980). They allow expansion to new 

resources in their vicinity (Vasconcelos, 1990) and are defended as colony territory (Hölldobler 

and Lumsden, 1980). Trunk trails allow most foragers to navigate easily and efficiently between 

nest and foraging sites while also being provided with guidance by trail pheromones (Czaczkes 
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et al., 2015) and the polarity inherent to the trail (Jackson et al., 2004); trails can thus be 

considered as a form of ‘external memory’ for the colony (Shepherd, 1982).  

Long-term trail networks also connect nests in polydomous colonies, allowing for food and 

brood transfer between the spatially separated nests (van Wilgenburg and Elgar, 2007; Lanan, 

2014; Debout et al., 2007; McIver, 1991). However, trails devoid of vegetation are costly both 

to create and to maintain. Thus, colonies need to attain a balance between efficient travelling 

and time and effort expended on trail maintenance (Bouchebti et al., 2018; Shepherd, 1982; 

Howard, 2001; Bruce and Burd, 2012; Bochynek et al., 2017; Farji-Brener et al., 2015). The 

importance of efficiency is shown by many ants forming trails along fallen tree trunks which 

are not aligned with their goal, but allow for easier travel and faster travel speed (Loreto et al., 

2013; Farji-Brener et al., 2007; Denny et al., 2001; Frank et al., 2018), while decreasing risks 

of predation and substrate contacts (Loreto et al., 2013) as well as construction costs. 

Nonetheless, trails might be optimised to reduce travel time in areas exposed to sun, weather 

events or high predation risks (Farji-Brener et al., 2015) or when built underground (Mintzer, 

1979). 

Large trails devoid of vegetation are constructed by the Australian meat ant (Iridomyrmex 

purpureus), which forms trail networks both between nests and to food trees, where workers 

harvest honeydew from hemiptera (Greaves and Hughes, 1974; van Wilgenburg and Elgar, 

2007). The connections between the nests are usually a trade-off between stability (resilience 

to disruptions) and efficiency (least amount of trails) (Cabanes et al., 2015; Cook et al., 2014). 

However, vulnerability to obstructions like falling branches is high, and trails without 

maintenance can quickly become unusable (Evison et al., 2008). The benefits of more efficient 

travel must surpass costs of clearing, and thus trails are expected to be constructed and 

maintained selectively (Bochynek et al., 2017).  

Many studies of trail clearing focus on unaffixed obstacles on trails (Bochynek et al., 2019; 

Howard, 2001; Cevallos Dupuis and Harrison, 2017), which are easily quantifiable and can be 

dragged off trails quickly. However, grass and other low vegetation can also constitute a 

significant clearing effort (Farji-Brener et al., 2015), especially in ant species living in open 

habitats, as is the case in meat ants (Greaves and Hughes, 1974). A recent study found that meat 

ants prefer shorter routes covered with turf grass to smooth but longer routes, but no preference 

was found for routes of equal length, indicating that meat ants ignored the surface structure 

despite slower walking speeds (Luo et al., 2018). Yet, the use of turf grass as an obstacle did 

not allow clearing outcomes and cutting patterns to be assessed. Another study employed 
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artificial grass obstacles made of 300 hard cardboard or thin paper blades as obstacles to a food 

source. Yet, quantification of clearing effort showed that meat ants allocated the same number 

of workers to both obstacle types, irrespective of the longer clearing times for cardboard 

(Middleton et al., 2019). These studies thus suggest that trail clearing is not an optimized 

process. 

These findings are surprising, as optimisation is to be expected for such costly behaviours, and 

can be seen in trail clearing by leaf-cutter ants (Farji-Brener et al., 2015; Bochynek et al., 2017; 

Howard, 2001; Shepherd, 1982 but see Cevallos Dupuis and Harrison, 2017). In the present 

study, we used an array of artificial grass blades to directly quantify clearing activity, which is 

hard to do in natural settings (Bouchebti et al., 2018). We also analysed clearing patterns and 

their emergence over time. This allowed us to demonstrate, for the first time, cost-dependent 

deployment of goal-directed trail-clearing behaviour. 

Material and methods  

(a) Studied species and field site 

Meat ants (Iridomyrmex purpureus) are a widespread species of Dolichoderinae and endemic 

to Australia. They are polydomous, with their large mounds housing tens of thousands of 

workers (Greaves and Hughes, 1974). Trail networks cleared from vegetation allow the efficient 

exchange of food and brood between nests and access to trees infested by honeydew-secreting 

insects (Greaves and Hughes, 1974; van Wilgenburg and Elgar, 2007).  

All experiments were conducted in a forest area at the Hawkesbury campus of Western Sydney 

University in Richmond, New South Wales, Australia (33°38′S, 150°46′E) between March and 

April 2018. The area has a high density of meat ant colonies which are located along a road 

through a Eucalyptus forest. Only colonies which were on even ground and surrounded by clear 

ground or little vegetation were used for the experiments, resulting in a total of 17 tested 

colonies. 

(b) Experimental procedure  

A 1M sucrose feeder was placed 5cm behind an artificial paper grass obstacle (10cm x 23cm) 

(see fig. 1A). To reach it, ants had to either traverse the obstacle or detour around it. The 

obstacles were identical to those used in Middleton et al. (2019) (see fig. 1B) and ants crossing 

the obstacle were found to be ~3.5 times slower than ants traversing cleared trails (Middleton 

et al., 2019). Obstacles contained 15 rows and 20 columns of laser-cut green paper strips 

(henceforth “paper blades”). Each row comprised 20 paper blades 2mm apart from each other, 

each 2mm wide and 1.5cm high, resulting in a total of 300 artificial paper blades. Rows were 
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1cm apart from each other. An acetate sheet was placed over the obstacle to protect it from 

sporadic rain and falling debris. The obstacle was flanked by 10cm high Corflute™ walls. Meat 

ants were found to rarely climb the walls, thus making it a reliable barrier without any chemical 

treatment. The walls flanking the obstacle where either 10cm or 80cm wide (causing a short ~ 

43cm or long ~183cm detour, respectively). At the end of these detour walls, another sham 

obstacle plate was placed devoid of paper blades to mimic the surface structure of the shortcut 

(see fig. 1A). The walls were partially sunk into the soil to prevent the ants from passing 

underneath. Each colony was tested on both the long and the short detour in a randomised order 

with a break of at least five days (see ESM1) between them during which no setup was present. 

Half of the colonies started with the short treatment, and the treatment sequence of each colony 

was included in the analysis to reveal potential sequence effects. Ambient temperature in the 

shade was recorded directly after the apparatus was installed. 

For each detour length, we revisited the setup 24 and 48 hours after instalment, resulting in four 

data points per colony. Each visit, we noted the number of cut paper blades, and recorded the 

ambient temperature. Incompletely cut paper blades were also counted as ‘cut’ if they lay flat 

on the ground. A camera mounted on a tripod above the setup recorded all ant activity for 1 

minute. From these videos we obtained an ant flow rate, i.e. the number of ants passing through 

the obstacle or sides per minute. The person analysing the video was unaware of the study’s 

hypotheses and instructed to count separately all ants moving through the obstacle and ants 

moving around it. An ant was counted as soon as it moved onto the obstacle. If it traceably re-

entered the obstacle, this did not count as additional visit. Ants which walked through the 5cm 

gap between the walls flanking the obstacle and the feeder box (see fig. 1A) were counted as 

detouring ants. Each video was analysed twice to ensure reliability of the data. 

(c) Statistical analysis 

All analyses were conducted in R version 3.5.1 (R Core Team, 2018). Multiple packages were 

used for data preparation (Dragulescu and Arendt, 2018; Dowle and Srinivasan, 2018; Xie, 

2019), analysis (Brooks et al., 2017; Fox and Weisberg, 2018; Lenth, 2019) and plotting 

(Wickham, 2016; Wilke, 2019). See ESM1 for a protocol leading through all analysis steps. All 

analyses were conducted using generalised linear mixed models (Bolker et al., 2009) and were 

tested for model fit and overdispersion using the DHARMa and sjstats packages (Hartig, 2019; 

Lüdecke, 2019). Post-hoc tests were conducted using estimated marginal means of the 

Emmeans package (Lenth, 2019). 
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Overall clearing activity 

To assess the overall difference in clearing activity between the detour treatments, we compared 

how many of the 300 potential paper blades were cut after 24 and 48 hours on each obstacle. 

The number of cut blades was used as the dependent variable in a negative binomial GLMM 

with detour length (short or long), duration (24 or 48 hours), and the treatment sequence for 

each colony (first long detour or first short detour) as predictors including their interactions and 

colony as random intercept. The model formula was: 

Number of cut blades ~ Detour length (short or long) * Duration (after 24 or 48 hours) * Treatment 

sequence (short or long detour first) + random intercept (Colony). 

To test potential temperature effects on clearing activity, we calculated Spearman’s rank 

correlations between the number of cut blades and the average temperature during 24 and 48 

hours. 

Trail cutting 

As each paper blade was numbered, we could obtain its exact location and were able to 

reconstruct the cutting pattern accordingly. If ants cut a trail from the nest to the food, we would 

expect higher spread of blades along the vertical axis (along rows), as ants cut from the start to 

the end. By contrast, the width of the trail, i.e. the horizontal spread (along columns) of cut 

blades, should be narrow.  

We used the interquartile range (IQR) as a measure of cutting dispersion. The IQR is non-

parametric and provides the range in which 50% of the data is found by subtracting the 25% 

quartile from the 75% quartile. The IQR was calculated for rows and columns separately. In 

our case, an IQRRows of 4 would tell us that 50% of all cut paper blades were found within 4 

rows. This method makes reasonable assumptions: trails are straight, not diagonal, and only one 

main trail exists per obstacle.  

As the obstacles had 15 rows but 20 columns, we then normalised the IQRs by dividing row 

IQRs by 15 and column IQRs by 20, to make rows and columns comparable. This resulted in 

values ranging between 0 – 1. A value of 0.5 means that the IQR was half of the total rows or 

columns. To compare the normalised IQR between rows and columns, we modelled a GLMM 

with a beta distribution (0 < y < 1). The model formula was  

IQRnormalised ~ Detour length (short or long) * Duration (after 24 or 48 hours) * IQR (rows or columns) + 

random intercept (Colony). 

Furthermore, to show that meat ants clear trails rather than cut blades randomly, we also created 

random cut patterns by using a random binomial distribution (see ESM1). For each treatment 

of each colony we created random cut patterns with the exact same number of cut blades. Those 
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patterns underwent the same procedure of calculating IQRs. Then, we again modelled a GLMM 

with a beta distribution followed by estimated marginal means post hoc tests. The model 

formula was  

IQRnormalised ~ Data (empirical or randomly generated) *Detour length (short or long) * IQR (rows or columns) + 

Duration (after 24 or 48 hours) + random intercept (Colony). 

Ant flow rate 

For each treatment, we counted the number of ants traversing the obstacle or detouring around 

it for one minute. In order to test for possible effects of detour length, duration and treatment 

sequence on flow rate, we used a proportional binomial GLMM with colony as random 

intercept. The model formula was:  

Ants shortcut / Ants detour ~ Detour length (short or long) * Duration (after 24 or 48 hours) * Treatment 

sequence (short or long detour first) + random intercept (Colony). 

In addition, we investigated a potential correlation between flow rate and the number of cut 

paper blades. We ran separate Spearman’s rank correlations for the number of ants traversing 

the obstacle, and for the number of detouring ants for each treatment. 

 

Ant movement 

In order to visualise ant movement trails and compare them to cut patterns, we wrote a motion 

tracking program using the OpenCV 3.4.1 library (Bradski, 2000) in Python 3.7 

(https://www.python.org/) to extract ant movement through the obstacle from the ant flow rate 

videos. Each ant was detected via background subtraction and its position was tracked frame to 

frame. As in most videos multiple ants were present simultaneously and ants were not 

individually marked, each ants’ frame-to-frame position was assumed to be that with minimum 

Euclidian distance to the last position. This method is prone to identity switches when ant paths 

cross but probable switches do not affect visualisation. We analysed 20 frames per second for 

the whole duration of the video. The tracking data was then freed from false-positive detections 

and visualised using R. The tracking program and R code are provided in ESM5. 
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Results 

Altogether, 17 colonies were tested for both long and short detours. One colony was missing 

the long detour treatment after 48 hours, and thus only 24 hours data points were used.  

Overall clearing activity 

To see whether colonies allocate more effort towards trail clearing when alternative detours are 

long, we compared the total amount of cut blades by each colony for each detour. In 3 colonies, 

ants managed to rip out parts of the rows without clearing individual paper blades. The 

corresponding parts were removed in all treatments of those colonies (see ESM1).  

A negative binomial GLMM revealed that significantly more blades were cut in the long detour 

treatment compared to the short detour (χ2 = 5.25, p = 0.0219, see fig. 2A), demonstrating that 

ants indeed cut blades in a situation-dependent manner. Furthermore, significantly more paper 

blades were cut after 48 than 24 hours (χ2 = 4.31, p = 0.0379) while the treatment sequence did 

not significantly affect the number of cut blades (χ2 = 0.04, p = 0.8385). No significant 

interactions were found (see ESM1).  

Except for one colony, which never cut, all zero-cutters after 48 hours were exclusively found 

in the short detour treatment (6 out of 17) (χ2 = 0.94, df = 1, p = 0.332). Furthermore, 76% 

(13/17) of the colonies cut more blades in the long detour treatment (χ2 = 3.76, df = 1, p = 

0.0523), resulting in overall 703 (60%) more blades cut in the long detour. After 24 hours, ants 

had already removed 62% (1881/3033) of the 3033 blades cut in total after 48 hours, excluding 

one colony which had no data for 48 hours. Temperature did not correlate significantly with the 

number of blades cut (Spearman rho: -0.10, p = 0.4321).  

Trail cutting 

To see whether ants cut paths through the obstacle, we compared the normalised interquartile 

ranges (IQR) of blade removal for rows (spread of vertical cuts from nest to food) and columns 

(spread of horizontal cuts). We found that column IQRs were significantly smaller than row 

IQRs (beta GLMM, χ2 = 177, p < 0.0001, see fig. 2C). IQRs were altogether higher in the long 

detour treatment (χ2 = 4.67, p = 0.0307) and after 48 compared to 24 hours (χ2 = 4.78, p = 

0.0288), which are both conditions in which more blades were removed. No interactions were 

significant (see ESM1).  

When we also added randomly generated IQRs to the model, we found that the empirical IQR 

was significantly lower than the IQR of randomly distributed cut patterns (beta GLMM, χ2 = 

65.02, p < 0.0001). This was driven by a significant interaction between data type (empirical or 

randomly generated) and IQR type (rows and columns) (χ2 = 85.29, p < 0.0001, see fig. S2). As 
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shown by post hoc tests, the horizontal spread (columns) was significantly lower than random 

spread (ratio = 0.41, p < 0.0001), while the vertical spread (rows) did not differ significantly 

from random (ratio = 1.02, p = 0.7655). As also reported in the above model containing only 

empirical data, the IQRs of columns were significantly smaller (χ2 = 103.9, p < 0.0001) and 

IQRs became larger over time (χ2 = 4.15, p = 0.0416). No effect of detour length was found in 

this model (χ2 = 3.81, p = 0.0509), as the added randomly generated IQRs were very similar 

between treatments. The IQR data thus demonstrate that the cutting pattern of ants formed 

vertically-oriented, narrow trails from the entrance to the exit of the apparatus. Furthermore, 

those vertical trails seem to be predominantly constructed in the middle of the obstacle, 

equidistant from the flanking walls (fig. S3A). In contrast, both the IQRs of rows and the cutting 

activity along the vertical axis were evenly distributed (fig. 2C & fig. S3B). 

 

Ant flow rate 

Overall, significantly more ants traversed the obstacle in the long compared to the short detour 

treatment (proportional binomial GLMM; χ2 = 32.85, p < 0.0001, see fig. 2B). The proportions 

did not differ significantly between 48 and 24 hours (χ2 = 2.27, p = 0. 1315), nor did the 

treatment sequence have a significant effect (χ2 = 0.28, p = 0.5941). However, a significant 

interaction between detour length and treatment sequence (χ2 = 6.93, p = 0.0084) was found: 

while the probability of traversing the obstacle was always higher for the long detour, this 

difference was greater in colonies tested first on the short treatment (see fig. S1B). No effect of 

the remaining interactions was found (see ESM1). Altogether, ants were 60% more likely to 

traverse the obstacle in the long detour treatment. 

We found a significant correlation between the number of blades cut and number of ants 

traversing the obstacle in both treatments (short detour: Spearman rho = 0.67, p < 0.0001, long 

detour: Spearman rho = 0.42, p = 0.0128). Number of ants detouring did not correlate 

significantly with number of cut blades (short detour: Spearman rho = -0.14, p = 0.4467, long 

detour: Spearman rho = 0.14, p = 0.4394).  

Ant movement 

As can be seen in fig. 3 and ESM4, ant movement was often very well aligned with the cutting 

pattern of the colonies. Due to the noisy nature of the field videos and varying ant flow rates, 

we could not obtain quantitatively comparable data for each colony. Nonetheless, visual 

inspection of ant trails and cut patterns clearly demonstrates that ants preferentially travel along 

cleared trails (see fig. 3 & ESM4). 
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Discussion 

Our study demonstrated that meat ants (Iridomyrmex purpureus) readily cleared artificial 

obstacles between a food source and their nest, and that 76% of the colonies removed more 

paper grass blades when they faced longer detours, resulting in 60% more cut blades compared 

to the short detour treatment after 48 hours. This strongly suggests that meat ants can adjust 

their trail-clearing effort in a context-dependent manner. 

While the number of cut blades increased significantly over time, we observed a rapid onset of 

clearing activity. Indeed, 62% of all cut blades were removed within the first 24 hours. Such 

high activity is impressive and may be further facilitated by the close proximity of the setup to 

the nest. However, colonies varied dramatically in their clearing onset speed: some colonies 

had removed all 300 paper blades after 48 hours while others, mainly in the short detour 

treatment, removed none. As multiple colonies were tested on the same day, it is unlikely that 

weather or other environmental factors were the drivers of behavioural variation. Instead, meat 

ant colonies might display different trail clearing propensities, with some colonies consistently 

investing in trails early on. Such colony level behavioural syndromes are usually consistent 

across situations and stable over time (Jandt et al., 2014). This is indicated by our finding that 

some colonies consistently had high or low clearing activity in both treatments (see ESM3: c29, 

c31 and c40). However, the data collected in our study is not sufficient to conclude whether 

meat ant colonies display stable trail clearing behaviour over time.  

Meat ants could reduce both the time costs to foragers traversing the obstacle, and the time 

spent on clearing, by first establishing a passage through the obstacle to increase forager speed, 

and then successively widening the trail. Such creation of trails instead of random cutting was 

demonstrated by the comparisons of the vertical (nest to food) and horizontal (wall to wall) 

spread of cut paper blades (see ESM3). While blades were cut evenly on the food-nest axis (see 

fig. 2C & fig. S3), ants focussed their horizontal blade removal on fewer columns, resulting in 

significantly less spread and often well-cleared trails from the food to the nest (see fig. 2 & fig. 

3, ESM3 & ESM4). This was the case in both detour lengths, indicating that ants generally aim 

to clear trails. The horizontal spread increased over time, suggesting that meat ants focus first 

on establishing a trail to the food source, which is then successively widened.  

Our study found no indications that the ants stopped their clearing activity at a certain stage. 

Some colonies cleared all or almost all artificial blades, which might be wider than needed for 

the observed number of ant foragers. This is in accordance with studies in leaf-cutter ants, where 

trails in the field are often reported as wider than needed by peak traffic (Farji-Brener et al., 
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2012). It was suggested that ants are slowed by encroaching vegetation at the trail’s edges, and 

widely cleared trails thus aid efficiency (Farji-Brener et al., 2012). However, a simple 

behavioural rule such as “cut encountered paper blade with a certain probability” could also 

well explain the clearing patterns found in this study, especially the emergence of trails through 

the obstacles. Ants often moved horizontally along blade rows until they found a missing blade 

to go through (see fig. 3 & ESM4). This favours emergence of trails, as blades directly after a 

removed blade have higher encounter rates. Such encounter-based mechanism could also 

explain the different cut rates between long and short detour treatments. The long walls could 

act as funnel, causing more ants to walk through the obstacle in the middle. Interestingly, we 

did not observe a higher cutting activity along the transition of the wall to the obstacle which 

might have been favoured by a ‘funnel effect’. What we found instead is that most blades were 

cut in the middle of the obstacle, seemingly in equidistance from the walls (fig. S3A), probably 

caused by reflection of horizontally moving ants by the walls towards the middle.  

Consistent with the differences in clearing activity, ant workers predominantly walked through 

the obstacle when facing a long detour, while they did not favour the shortcut in the short detour 

treatment (median ~50%). This is also reflected by the significant correlation between number 

of blades cut and the flow rate of ants through the shortcut. However, it is important to note that 

causation here may be reversed, as a higher ant flow rate could also be caused by the reduction 

of hindering paper blades.  

As with many collective organisation systems based on positive feedback, initial conditions 

may strongly influence cutting behaviour. When and if an initial decision to cut is made will 

strongly influence where the trail forms, and whether it forms at all. This sensitivity to one 

initial, stochastic choice may explain the high variation in cutting behaviour observed among 

colonies. A strictly encounter-based cutting strategy would suggest that each ant has a certain 

threshold to initiate cutting upon contact with an paper blade and continues to do so until it is 

removed  or a certain amount of time has elapsed (Bochynek et al., 2019). This is in accordance 

with findings by Middleton et al. (2019), which report that ants only cleared for 5.5 seconds on 

average before continuing their travel. However, some clearing ants we observed in the field 

were very persistent, consistently biting the stem of single blades for minutes at a time, and 

were also found to switch blades (Oberhauser, pers. obs.). Individuals which are more likely to 

remove obstacles were also reported in leaf-cutter ants (Bochynek et al., 2019; Howard, 2001). 

This suggests that, while ultimately encounter-based, paper blade removal might be driven by 

a few persistent ant workers in meat ants. Such ‘elite worker’ behaviour is widespread in social 

insects, especially ants (Mersch et al., 2018; Hölldobler and Wilson, 1990). It is worth noting 
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that cut-initiation behaviour seems to be stereotyped, with most ants first walking up to the tip 

of the paper blades to then turn around and walk down again until they touch the substrate with 

their head, after which they initiate cutting at the base of the blade (Middleton et al., 2019; 

Oberhauser, pers. obs.). A similar behaviour was reported in grass-cutting ants, were it is 

thought to enable ants to estimate the length of the grass fragment to be cut (Roces and Bollazzi, 

2009). 

While the highest clearing activity clearly took place in colonies facing long detours, around 

65% of colonies nevertheless initiated cutting in the short detour treatment. In other words, 

colonies also began to remove paper blades in situations where they could have easily 

circumvented them with low energetic or time costs. Such removal of blades irrespective of 

alternative low-cost detours in meat ants was also reported in Luo et al. (2018). This low 

threshold to initiate cutting is surprising, but the cost of a clearing workforce consisting of a 

few persistent workers at a time might be comparably low in colonies comprising thousands of 

workers (Greaves and Hughes, 1974). Moreover, the provided sucrose might be perceived as 

stable resource similar to honeydew, which is a crucial source of energy and water required for 

meat ant colony survival and often connected to nests via cleared trails (Greaves and Hughes, 

1974). Such stable and high-quality resources would favour early trail clearing onset to 

maximise gain (Bochynek et al., 2017; Shepherd, 1982) but also to monopolise the resource in 

the territory (Ettershank and Ettershank, 1982). 

Importantly, our results also suggest that prior experience might influence the decision to cut. 

Colonies which were first confronted with the short detour readily established a way around the 

obstacle, resulting in fewer ants traversing the obstacle and little cutting activity. However, 

when colonies first encountered a long detour, they were more likely to traverse the obstacle 

and to initiate cutting also in the short detour (see fig. S1), although the setup was not present 

for at least five days. This is very interesting, as it suggests that prior experience is carried over 

to the new situation. Given the high ambient temperatures and the complete removal and 

exchange of the setup, it is unlikely that this effect is carried by trail pheromones. Instead, it is 

possible that individual foragers recalled the previous situation and initiated cutting, 

irrespective of the possible detour.  
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Our study demonstrated that meat ant colonies clear trails economically, preferentially cutting 

when alternative routes are long. Trail clearing is goal-directed and not random, with meat ants 

tending to first create paths to the food. The low threshold to initiate cutting and the rapid 

emergence of trails indicates a fast and adaptive system, whose cost might be balanced by 

employing only a few workers at a time. Taken together, our results demonstrate that trail 

clearing in meat ants results from a collective decision-making system which allows adaptive 

and robust collective behaviour.  

Acknowledgments 

We cordially thank Chris Reid for designing the obstacle and Simon Garnier for comments on 

this work. We also thank the University of Sydney for funding the accommodation costs of 

FBO and the Western Sydney University for providing access to the field site. 

Competing interest 

The authors declare that they have no conflict of interest. 

Funding 

FBO and TJC were funded by a DFG Emmy Noether grant to TJC (grant no. CZ 237/1-1). TL 

was funded by a grant from the Branco Weiss-Society in Science Fellowship and the Australian 

research council (DP140403643). 

Data availability 

All raw data analysed during this study are available in ESM2, the data handling protocol and 

ant tracker code in ESM1 & ESM5, respectively.  

Ethical approval 

All applicable international, national, and/or institutional guidelines for the care and use of 

animals were followed. 

 

Author Contributions 

TJC, TL and FBO conceived and designed the experiment, FBO and EJTM performed the 

experiment, FBO analysed the data, prepared the figures and wrote the ant tracker, FBO and 

TJC wrote the paper, and all authors reviewed drafts of the manuscript and approved the final 

version.  

  

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



References 

Bates, G. H. (1950). Track making by man and domestic animals. J Anim Ecol 19, 21. 

Blake, S. and Inkamba-Nkulu, C. (2004). Fruit, minerals, and forest elephant trails. Do all roads lead to Rome? Biotropica 

36, 392–401. 

Bochynek, T., Meyer, B. and Burd, M. (2017). Energetics of trail clearing in the leaf-cutter ant Atta. Behav Ecol Sociobiol 

71, 1–10. 

Bochynek, T., Burd, M., Kleineidam, C. and Meyer, B. (2019). Infrastructure construction without information exchange. 

The trail clearing mechanism in Atta leafcutter ants. Proc Royal Soc B 286, 1–9. 

Bolker, B. M., Brooks, M. E., Clark, C. J., Geange, S. W., Poulsen, J. R., Stevens, M. H. H. and White, J.-S. S. (2009). 

Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol Evol 24, 127–135. 

Bouchebti, S., Travaglini, R. V., Forti, L. C. and Fourcassié, V. (2018). Dynamics of physical trail construction and of trail 

usage in the leaf-cutting ant Atta laevigata. Ethol Ecol Evol 36, 1–16. 

Bradski, G. (2000). The OpenCV library. Dr Dobbs https://opencv.org/. 

Brooks, M. E., Kristensen, K., van Benthem, K. J., Magnusson, A., Berg, C. W., Nielsen, A., Skaug, H. J., Maechler, M. 

and Bolker, B. M. (2017). glmmTMB balances speed and flexibility among packages for zero-inflated generalized linear 

mixed modeling. https://journal.r-project.org/archive/2017/RJ-2017-066/index.html. The R Journal 9, 378–400. 

Bruce, A. I. and Burd, M. (2012). Allometric scaling of foraging rate with trail dimensions in leaf-cutting ants. Proc Royal 

Soc B 279, 2442–2447. 

Buhl, J., Gautrais, J., Reeves, N., Solé, R. V., Valverde, S., Kuntz, P. and Theraulaz, G. (2006). Topological patterns in 

street networks of self-organized urban settlements. Eur Phys J B 49, 513–522. 

Cabanes, G., van Wilgenburg, E., Beekman, M. and Latty, T. (2015). Ants build transportation networks that optimize cost 

and efficiency at the expense of robustness. Behav Ecol 26, 223–231. 

Cevallos Dupuis, E. and Harrison, J. F. (2017). Trunk trail maintenance in leafcutter ants. Caste involvement and effects of 

obstacle type and size on path clearing in Atta cephalotes. Ins Soc 64, 189–196. 

Cook, Z., Franks, D. W. and Robinson, E. J. H. (2014). Efficiency and robustness of ant colony transportation networks. 

Behav Ecol Sociobiol 68, 509–517. 

Czaczkes, T. J., Vollet-Neto, A. and Ratnieks, F. L. W. (2013). Prey escorting behavior and possible convergent evolution 

of foraging recruitment mechanisms in an invasive ant. Behav Ecol 24, 1177–1184. 

Czaczkes, T. J., Grüter, C. and Ratnieks, F. L. W. (2015). Trail pheromones: an integrative view of their role in social insect 

colony organization. Annu Rev Entomol 60, 581–599. 

Debout, G., Schatz, B., Elias, M. and McKey, D. (2007). Polydomy in ants. What we know, what we think we know, and 

what remains to be done. Biol J Linn Soc 90, 319–348. 

Denny, A. J., Wright, J. and Grief, B. (2001). Foraging efficiency in the wood ant, Formica rufa. Is time of the essence in 

trail following? Anim Behav 62, 139–146. 

Dowle, M. and Srinivasan, A. (2018). data.table. Extension of ‘data.frame‘. https://CRAN.R-project.org/package=data.table. 

Dragulescu, A.A. and Arendt, C. (2018). xlsx. Read, write, format Excel 2007 and Excel 97/2000/XP/2003 files. 

https://CRAN.R-project.org/package=xlsx. 

Ettershank, G. and Ettershank, J. A. (1982). Ritualised fighting in the meat ant Iridomyrmex purpureus (Smith) 

(Hymenoptera: Formicidae). Aust J Entomol 21, 97–102. 

Etzenhouser, M. J., Owens, M. K., Spalinger, D. E. and Murden, S. B. (1998). Foraging behavior of browsing ruminants 

in a heterogeneous landscape. Landscape Ecol 13, 55–64. 

Evison, S. E.F., Hart, A. G. and Jackson, D. E. (2008). Minor workers have a major role in the maintenance of leafcutter ant 

pheromone trails. Anim Behav 75, 963–969. 

Farji-Brener, A. G., Barrantes, G., Laverde, O., Fierro-Calderón, K., Bascopé, F. and López, A. (2007). Fallen branches 

as part of leaf-cutting ant trails. Their role in resource discovery and leaf transport rates in Atta cephalotes. Biotropica 39, 

211–215. 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



Farji-Brener, A. G., Morueta-Holme, N., Chinchilla, F., Willink, B., Ocampo, N. and Bruner, G. (2012). Leaf-cutting 

ants as road engineers. The width of trails at branching points in Atta cephalotes. Ins Soc 59, 389–394. 

Farji-Brener, A. G., Chinchilla, F., Umaña, M. N., Ocasio-Torres, M. E., Chauta-Mellizo, A., Acosta-Rojas, D., 

Marinaro, S., de Torres Curth, M. and Amador-Vargas, S. (2015). Branching angles reflect a trade-off between 

reducing trail maintenance costs or travel distances in leaf-cutting ants. Ecology 96, 510–517. 

Farji-Brener, A. G. and Sierra, C. (2016). The role of trunk trails in the scouting activity of the leaf-cutting ant Atta 

cephalotes. Écoscience 5, 271–274. 

Fowler, H. G. (1978). Foraging trails of leaf-cutting ants. J New York Entomol S 86, 132–136. 

Fox, J. and Weisberg, S. (2018). Visualizing fit and lack of fit in complex regression models with predictor effect plots and 

partial residuals. J Stat Soft 87, 1–27. 

Frank, E. T., Hönle, P. O. and Linsenmair, K. E. (2018). Time-optimized path choice in the termite-hunting ant Megaponera 

analis. J Exp Biol. https://doi.org/10.1242/jeb.174854. 

Gordon, D. M. (1991). Behavioral flexibility and the foraging ecology of seed-eating ants. Am Nat 138, 379–411. 

Greaves, T. and Hughes, R. D. (1974). The population biology of the meat ant. Aust J Entomol 13, 329–351. 

Halsey, L. G. (2016). Terrestrial movement energetics. Current knowledge and its application to the optimising animal. J Exp 

Biol 219, 1424–1431. 

Hartig, F. (2019). DHARMa. Residual diagnostics for hierarchical (multi-level / mixed) regression models. https://CRAN.R-

project.org/package=DHARMa. 

Hölldobler, B. and Lumsden, C. J. (1980). Territorial strategies in ants. Science 210, 732–739. 

Hölldobler, B. and Wilson, E. O. (1990). The ants. Berlin: Springer. 

Howard, J. J. (2001). Costs of trail construction and maintenance in the leaf-cutting ant Atta columbica. Behav Ecol Sociobiol 

49, 348–356. 

Jackson, D. E., Holcombe, M. and Ratnieks, F. L. W. (2004). Trail geometry gives polarity to ant foraging networks. Nature 

432, 907–909. 

Jandt, J. M., Bengston, S., Pinter-Wollman, N., Pruitt, J. N., Raine, N. E., Dornhaus, A. and Sih, A. (2014). Behavioural 

syndromes and social insects. Personality at multiple levels. Biol Rev Camb Philos Soc 89, 48–67. 

Jeanson, R., Ratnieks, F. L. W. and Deneubourg, J.-L. (2003). Pheromone trail decay rates on different substrates in the 

Pharaoh's ant, Monomorium pharaonis. Physiol Entomol 28, 192–198. 

Lämmer, S., Gehlsen, B. and Helbing, D. (2006). Scaling laws in the spatial structure of urban road networks. Physica A 363, 

89–95. 

Lanan, M. (2014). Spatiotemporal resource distribution and foraging strategies of ants (Hymenoptera. Formicidae). Myrmecol 

News 20, 53–70. 

Latty, T., Ramsch, K., Ito, K., Nakagaki, T., Sumpter, D. J. T., Middendorf, M. and Beekman, M. (2011). Structure and 

formation of ant transportation networks. J R Soc Interface 8, 1298–1306. 

Lenth, R. (2019). Emmeans: Estimated marginal means, aka least-squares means. https://CRAN.R-

project.org/package=emmeans. 

Loreto, R. G., Hart, A. G., Pereira, T. M., Freitas, M. L. R., Hughes, D. P. and Elliot, S. L. (2013). Foraging ants trade off 

further for faster. Use of natural bridges and trunk trail permanency in carpenter ants. Naturwissenschaften 100, 957–963. 

Lüdecke, D. (2019). sjstats. Statistical functions for regression models. https://CRAN.R-project.org/package=sjstats. 

https://doi.org/10.5281/zenodo.1284472. 

Luo, D., Reid, C. R., Makinson, J. C., Beekman, M. and Latty, T. (2018). Route selection but not trail clearing are influenced 

by detour length in the Australian meat ants. Ins Soc 160, 297. 

McIver, J. D. (1991). Dispersed central place foraging in Australian meat ants. Ins Soc 38, 129–137. 

Mersch, D. P., Eckmann, J.-P., Crespi, A. and Keller, L. (2018). Synchronised brood transport by ants occurs without 

communication. bioRxiv, 364273. 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



Middleton, E. J.T., Garnier, S., Latty, T. and Reid, C. R. (2019). Temporal and spatial pattern of trail clearing in the 

Australian meat ant, Iridomyrmex purpureus. Anim Behav 150, 97–111. 

Mintzer, A. (1979). Foraging activity of the Mexican leafcutting ant Atta mexicana (F. Smith), in a sonoran desert habitat 

(Hymenoptera, Formicidae). Ins Soc 26, 364–372. 

Perna, A. and Latty, T. (2014). Animal transportation networks. J R Soc Interface 11, 20140334. 

Plowes, N. J. R., Johnson, R. A. and Hölldobler, B. (2013). Foraging behavior in the ant genus Messor (Hymenoptera: 

Formicidae: Myrmicinae). Myrmecol News 18, 33–49. 

R Core Team (2018). R: A language and environment for statistical computing. Vienna, Austria https://www.R-project.org/: 

R Foundation for Statistical Computing. 

Reid, C. R., Lutz, M. J., Powell, S., Kao, A. B., Couzin, I. D. and Garnier, S. (2015). Army ants dynamically adjust living 

bridges in response to a cost-benefit trade-off. Proc Natl Acad Sci 112, 15113–15118. 

Roces, F. and Bollazzi, M. (2009). Information transfer and the organization of foraging in grass- and leaf-cutting ants. In 

Food exploitation by social insects. Ecological, behavioral, and theoretical approaches (ed. S. Jarau and M. Hrncir), pp. 

261–275. Boca Raton: Taylor & Francis. 

Salo, O. and Rosengren, R. (2001). Memory of location and site recognition in the ant Formica uralensis (Hymenoptera: 

Formicidae). Ethology 107, 737–752. 

Shepherd, J. D. (1982). Trunk trails and the searching strategy of a leaf-cutter ant, Atta colombica. Behav Ecol Sociobiol 11, 

77–84. 

van Wilgenburg, E. and Elgar, M. A. (2007). Colony structure and spatial distribution of food resources in the polydomous 

meat ant Iridomyrmex purpureus. Ins Soc 54, 5–10. 

Vasconcelos, H. L. de (1990). Foraging activity of two species of leaf-cutting ants (Atta) in a primary forest of the Central 

Amazon. Ins Soc 37, 131–145. 

Wickham, H. (2016). ggplot2. Elegant graphics for data analysis. New York http://ggplot2.org: Springer. 

Wilke, C. O. (2019). cowplot. Streamlined plot theme and plot annotations for ’ggplot2’. https://CRAN.R-

project.org/package=cowplot. 

Xie, Y. (2019). knitr. A general-purpose package for dynamic report generation in R. https://yihui.name/knitr/. 

Ydenberg, R. C., Welham, C. V. J., Schmid-Hempel, R., Schmid-Hempel, P. and Beauchamp, G. (1994). Time and energy 

constraints and the relationships between currencies in foraging theory. Behav Ecol 5, 28–34. 

 

  

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



Figures 

 

 

Figure 1. A) Schematic illustration of the setup. The direct path (1) to a newly placed feeder was obstructed by an 

obstacle containing paper blades and flanked by 10cm high walls. The walls were either 10cm wide causing a 

small detour (2) or 80cm wide causing a long detour (3). Note that both detour routes are shown here, but in the 

experiment, both sides always had the same length (either 80cm or 10cm). To retrieve the food, the ants could 

either traverse the obstacle (1) or detour around the wall (2,3). B) The obstacle consisted of 15 rows (A-O) each 

holding 20 paper blades (1-20). Row A was placed next to the nest.  

  

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



 

 

 
 

Figure 2. A) Number of paper blades cut by each colony after 24 and 48 hours in the short and long detour 

treatment. Colonies cut significantly more paper blades when faced with the long detour (binomial GLMM, χ2 = 

5.25, p = 0.0219) and after 48 compared to 24 hours (χ2 = 4.31, p = 0.0379). Sample sizes from left to right: n=17, 

n=17, n=16, n=16. B) Proportion of ants traversing the obstacle or detouring around it after 24 and 48 hours in 

the short and long detour treatment. 1 corresponds to all ants traversing the obstacle. A higher fraction of ants 

was found to traverse the obstacle in the long detour treatment (binomial GLMM, χ2 = 32.85, p < 0.0001), while 

the proportion was not significantly different after 48 compared to 24 hours (χ2 = 2.27, p = 0. 1315). Sample sizes 

from left to right: n=17, n=17, n=17, n=16. C) Normalised interquartile range (IQR) for cutting location of rows 

(vertical spread of cut blades, see obstacle scheme on right) and columns (horizontal spread) after 24 and 48 

hours in the short and long detour treatment. A normalised IQR of 0.5 (dotted line) means that 50% of blades were 

cut in 50% of rows/columns, i.e. were cut randomly. The lower the IQR, the less spread was found. Column IQRs 

were significantly smaller than row IQRs (beta regression GLMM, χ2 = 177, p < 0.0001), while IQRs were 

significantly larger in the long detour treatment and after 48 hours (χ2 = 4.67, p = 0.0307; χ2 = 4.78, p = 0.0288, 

respectively). Sample sizes from left to right (note that only colonies that cut blades were used): n=11, n=11, 

n=13, n=13, n=10, n=10, n=15, n=15. Each colony is represented by a dot. Horizontal lines in boxes are medians, 

boxes correspond to first and third quartiles and whiskers extend to the largest value within 1.5 x IQR. 
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Figure 3. Cut patterns and tracked ant movement through the obstacle from the nest (bottom) to the food 24 and 

48 hours after placing the long detour setup at colony 33. A, B) Representations of obstacle, green rectangles 

correspond to uncleared fractions of the obstacle, brown rectangles depict cut blades. Each black line shows the 

trajectory of an individual ant over time. Note the frequent horizontal movement caused by the blade obstacle 

rows, and the broadening of the cut trail over time. C) Picture of the same obstacle after 48 hours, with a clearly 

visible cleared trail through the blades. 

 

 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



Supplementary Data S1. Raw data 

Click here to Download Supplementary Data

Journal of Experimental Biology: doi:10.1242/jeb.205773: Supplementary information
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Figure S1. Number of cut blades and ant flow rates dependent on the treatment sequence (long

detour first or short detour first). A) Colonies which first faced the long detour initially

displayed similar cutting rates when confronted with the short detour at least 5 days later,

which then increased to twice as much cut blades in the long detour after 48 hours, although

the difference was not significant. Sample sizes from left to right: n =9, n =9, the rest n =8

each. B) As in (B), colonies which first faced the long detour were more likely to also traverse

the obstacle, although significantly more ants traversed the obstacle in the long detour

irrespective of treatment sequence (long first: ratio = .47, p = 0.0267; short first: ratio = 0.13,

p < 0.0001). Sample sizes from left to right: n =9, n =9, n = 9, the rest n =8 each.
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Figure S2. Normalised interquartile range (IQR) obtained from the experiment

(empirical) or from randomly generated cut patterns (random) for columns (horizontal

spread of cut blades) and rows (vertical spread) after 24 and 48 hours in the short and

long detour treatment. A normalised IQR of 0.5 (dotted line) means that 50% of blades

were cut in 50% of rows/columns, i.e. were cut randomly. The lower the IQR, the less

spread was found. Empirical column IQRs were significantly lower than random IQRs (χ2

= 136.79, p < 0.0001), while detour length and duration had no effect (χ2 = 1.6, p =

0.2059; χ2 = 1.94, p = 0.1633, respectively). Empirical row IQRs were not significantly

different from random IQRs (χ2 = 0.25, p = 0.6172), nor had detour length or duration a

significant effect (χ2 = 2.22, p = 0.1362; χ2 = 2.33, p = 0.1272, respectively). The IQR

data thus demonstrate that the cutting pattern of the ants formed narrow, vertically

oriented trails from the entrance to the exit of the obstacle. Sample sizes (identical

between empirical and random, so only one given) clockwise from top left: n = 11, n =

13; top right: n = 10, n = 15; bottom right: n = 10, n = 15; bottom left: n = 11, n = 13.
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Figure S3. Distribution of cut paper blades. The smaller blue curves correspond to the short

detour treatment, the larger brown curves to the long detour treatment. A) Ants cut more

blades along the centre of the obstacle than on its periphery on the vertical axis from food to

nest. This is not the case in simulated data based on random cutting. B) Ants tended to cut

more blades at the beginning and end of the obstacles, although the difference is subtle.

Again, simulated data based on random cutting was evenly distributed. The vertical dotted

line represents the centre of the obstacle from wall to wall (A) or food to nest (B).
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