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1 Summary

Understanding how forces and material properties give rise to tissue shapes
is a fundamental question in developmental biology. Although Drosophila
gastrulation is a major system for investigating tissue morphogenesis, there
does not exist a consensus mechanical model that explains all the key features
of this process. One key feature of Drosophila gastrulation is its anisotropy
- the mesoderm constricts much more along one axis than along the other.
Previous explanations have involved graded stress, anisotropic stresses or
material properties, or mechanosensitive feedback. Here we show that these
mechanisms are not required to explain the anisotropy of constriction. In-
stead, constriction can be anisotropic if only two conditions are met: the
tissue is elastic, as was demonstrated in our recent study, and the contractile
domain is asymmetric. This conclusion is general and does not depend on the
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values of model parameters. This model can explain classical tissue grafting
experiments and more recent laser ablation studies. Furthermore, this model
may provide alternative explanations for experiments in other developmental
systems, including C. elegans and zebrafish.

2 Introduction

A fundamental process in animal development is gastrulation, whereby a sin-
gle epithelial sheet gives rise to a multilayered structure (Sweeton et al. 1991;
Leptin and Grunewald 1990). In Drosophila, gastrulation initiates when the
prospective mesoderm cells, which are located in a rectangular domain in the
ventral part of the embryo, constrict apically (i.e. on the outer surface of
the embryo, see schematic in Figure 1). As the mesodermal cells constrict
across their apical faces, they become wedge-shaped and elongate along the
apico-basal axis (Sweeton et al. 1991; Leptin and Grunewald 1990). Apical
constriction of the mesodermal cells is widely believed to be driven by myosin-
generated active stresses in the apical domains of those cells (Dawes-Hoang
et al. 2005). In accordance with this, the concentration of apically localized
myosin increases dramatically in the constricting cells concomitantly with
the onset of apical constriction (Martin et al. 2010). Following apical con-
striction, the surface of the embryo forms a furrow at the ventral midline.
The furrow deepens and closes off; in this way, the mesoderm is brought into
the interior of the embryo.

The focus of this study is the initial phase of gastrulation when mesoder-
mal cells constrict apically, before the surface begins to fold inward. Notably,
as mesodermal cells shrink, the rectangular mesodermal domain contracts
strongly along its shorter axis and much less so along the longer axis. For
brevity, the length of the mesodermal domain along the shorter mediolateral
axis will be referred to as the “width”, and the length of its longer antero-
posteior axis will be referred to as the “length”. Thus, the length to width
ratio increases drastically in the course of the constriction of the mesoderm,
see schematic in Figure 1. Because mesoderm constriction in Drosophila
melanogaster is not accompanied by appreciable cell rearrangements, the
length to width ratio of individual mesodermal cells must increase in the
course of tissue contraction (Martin et al. 2010; Spahn and Reuter 2013).

This anisotropic constriction has been the subject of considerable inter-
est. One key experiment was done in a classical paper by Maria Leptin and
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Siegfried Roth (Leptin and Roth 1994). There, patches of mesodermal tis-
sue (either nuclei or cytoplasm) were transplanted into mutant embryos that
lacked mesoderm. If the contractile domain were symmetric (e.g. round or
square) it would constrict symmetrically, while if the contractile domain were
elongated, it would constrict anisotropically. Furthermore, the geometry of
contraction of mesodermal patches was independent of the position and ori-
entation of those patches within the embryo and was only dependent on the
geometry of the patch. This showed that anisotropic constriction is a locally
autonomous effect, and is not for example induced by maternal gradients
(i.e. factors that localize in a patterned manner in a freshly laid egg, no-
tably bicoid, nanos, torsolike and dorsal). The mechanism driving anistropic
constriction remained unclear, however. Two more recent papers proposed
graded tension (Spahn and Reuter 2013) or mechanosensitivity (in particu-
lar, feedback between stress and nematic order of actin filaments, Chanet et
al. 2017) as the source of anisotropy. Here, we propose a simple mechanis-
tic explanation for anisotropic constriction of the mesoderm that does not
invoke any of these effects.

3 Results

3.1 The model

We start by describing model assumptions, then present the correspond-
ing equations below. We model the surface of the embryo as a flat (two-
dimensional) elastic sheet. This elastic sheet may be pictured as a network
of spheres connected by springs as shown in Figure 1. The model sheet will
contain a rectangular contractile domain with horizontal and vertical dimen-
sions L, (length) and L, (width) respectively (see Figure 1). The size of the
contractile domain is taken to be much smaller than the size of the simulated
sheet in order to avoid boundary effects. In order for this contractile domain
to shrink it must carry active contractile stress, or “tension”, which is mea-
sured in units of force per unit length. In Figure 1, the presence of active
stress in the contractile domain is illustrated by red arrows, which are di-
rected in parallel with the springs. It is assumed that the active stress within
the contractile domain is uniform (having the same magnitude everywhere)
and isotropic (same magnitude in every direction). In particular, in Figure
1, all motors are the same regardless of the orientation of the correspond-
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ing spring or the position of the spring. Outside of the contractile domain
the actively-generated stress is absent. In the real embryo, active contractile
stress is generated by active myosin motors. Since active contractile stressess
do not depend on instantaneous displacement, there is no feedback to force
generation in this model.

The above assumptions make up a complete description of the model.
Combining these assumptions with standard equations of linear elasticity,
assuming that the elastic sheet is in mechanical equilibrium (see (Landau
and Lifshitz 1970), in particular Equation 13.4 therein), we have:

E
2

mVU‘FmVV'U‘FV'M—O ) (1)
where u is the in-plane deformation of the sheet, E is Young’s modulus (more
accurately, this quantity represents Fh, where E is the three-dimensional
Young’s modulus, and A is the thickness of the sheet), o is the Poisson’s
ratio, and p is the active stress tensor within the contractile mesodermal
domain (and does not, in general, correspond to a conservative force, see e.g.
Jiilicher et al. 2007). We take active stress to be isotropic, pu = ¢I, with I
being the identity matrix, and ¢(r) = ¢oll(z/L,)(y/L,), where II denotes
the “top hat” function that equals identity between -0.5 and 0.5 and zero
otherwise. The magnitude of active stress is constant in the mesodermal
domain and zero outside. (If some uniform active stress is present outside
the contractile domain, ¢y may be considered the difference between the ac-
tive stress inside and that outside. Since Equation 1 takes a derivative of
stress, the solution depends only on the difference in contractility between
the domains.) Note that we ignore viscous relaxation of stresses since it was
found experimentally that those stresses persist on a time-scale compara-
ble with (not singificantly shorter than) the time-scale of tissue dynamics
(Doubrovinski et al. 2017). Finally, we note that the assumption that the
elastic sheet is in mechanical equilibrium is an idealization: it is not known
whether developmental dynamics proceed adiabatically.

The model is schematically illustrated in Figure 1. The elastic sheet is rep-
resented by a spring network with nodes illustrated as spherical beads. Note
that for simplicity the illustration was made somewhat misleading: a network
of squares is not isotropic, whereas Equation (1) describes an isotropic elas-
tic material. Note that direct rheological measurements have demonstrated
that the membrane surface of embryonic tissue is highly elastic and that
elasticity persists on a time-scale that is well comparable to the time-scale
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of gastrulation (Doubrovinski et al. 2017). Myosin-generated tension in the
mesodermal domain is well established (Dawes-Hoang et al. 2005; Martin et
al. 2009; Martin et al. 2010).

Additionally, the proposed model involves only a few dimensional param-
eters. The elastic sheet that represents the epithelium has Young’s modulus
E which determines the force required to stretch material a given amount
and may be thought of as a multi-dimensional counterpart of a spring con-
stant. An elastic material is further characterized by its Poisson’s ratio o,
which determines how much a material shrinks in one direction when it is
being stretched along a perpendicular direction. Finally, the active stress
(or, equivalently, tension) inside the contractile domain has magnitude ¢.
Since tension is assumed to not vary with either space or direction within the
contractile domain, only one number is needed to describe this active stress.

3.2 Analysis of the model: constriction geometry

To analyze the behavior of the minimal model (1) we performed numerical
simulations; implementation details are given in Appendix A. If the con-
tractile domain is chosen to be asymmetric (i.e. L, >> L,, or length larger
than width), simulations reveal constriction to be greater along the shorter
axis of the domain, see Figure 2a,b,c, and Figure S1. In contrast, when the
contractile domain is chosen to be symmetric (i.e. L, = L,), constriction is
equal along both axes, Figure 2f. Thus, this simple model, which involves
only elastic material and an isotropic contractile force, replicates the key
experimental finding that the anisotropy versus isotropy of constriction is
dependent on geometry (Leptin and Roth 1994).

To examine the influence of model parameters on these predictions we
performed a parameter sweep (Figure 2d,e). The non-dimensionalized ver-
sion of Equation 1 has the following dimensionless parameters: the ratio of
Young’s modulus to active stress magnitude E /¢, Poisson’s ratio o, and the
length to width ratio of the contractile domain L, /L,. The value of Poisson’s
ratio o was varied over the whole physically relevant range, which is between
0 and 1/2 (Greaves et al. 2011). It is seen that the qualitative nature of
the solution does not vary appreciably with the value of the Poisson’s ratio.
Simulation results for three different choices of the active stress to stiffness
ratio ¢g/F are given in Figure 2d. Note that since equation 1 is linear, the
displacement is proportional to active stress and therefore the solutions (i.e.
the u, and w, components of the displacement, shown for one particular
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choice of parameters in Figure 2c¢) for different ¢o/FE are related by simple
scaling. From this it easily follows that anisotropy is zero in the limit of zero
force and increases arbitrarily for sufficiently high values of ¢o/E. Addition-
ally we systematically examined the influence of the initial aspect ratio of
the contractile domain on the final equilibrium geometry (Figure 2e); to this
end, we used analytical expressions given in the appendix. It was found that
contraction is always asymmetric although the degree of the asymmetry may
vary. Symmetric domains contract symmetrically (Figure 2e). In summary,
our results are not sensitive to the choice of the elasticity parameters.

To examine the influence of the domain in which the contractile domain
is embedded, we performed additional simulations. To this end we simu-
lated square as well as rectangular contractile domains embedded in either
square or rectangular stress-free domains. The deformation of the contractile
domain becomes essentially independent of the geometry of the embedding
domain provided the embedding domain was chosen to be sufficiently large,
Figure S2c. To further formally examine the influence of the geometry of
the embedding domain, we systematically determined the final equilibrium
aspect ratio of the contractile domain as a function of model parameters and
the size of the embedding domain. Figure S3 shows that for a fixed geometry
of the contractile domain and fixed model parameters, the equilibrium ratio
converges to a limit as the embedding domain is made larger and larger. Fi-
nally, to further study the influence of the boundary conditions, we compared
simulations with both free and fixed boundaries using finite element simula-
tions (Figure S2b). Our results indicate close quantitative agreement in this
case as well, again confirming that the boundary effects are irrelevant as long
as the embedding domain is chosen to be sufficiently large. Note that since
convergence with respect to the size of the embedding domain is reached for
very modest sizes of the embedding domain (for the relevant aspect ratio of
the contractile domain, see Figure S3), we believe that our results are fully
relevant to the biological situation.

It is important to notice that if the contractile domain is not embedded in
an elastic continuum, the equilibrium configuration will not be anisotropic,
as may be seen by directly solving Equation (1) analytically. In this simpler
case, a solution can be found by assuming that the solution is linear, i.e.
Uy = b2, uy = byy, with b, , - constants, and using the boundary conditions.
Thus, the conclusion that the deformation remains anisotropic at long times
appears a consequence of the particular geometry in our problem. Note that
the main effect described in our model is a special case of a more general
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phenomenon when an (elastic) solid body is subjected to uniform isotropic
active stress: when mechanical equilibrium sets in, total stress needs not
remain either isotropic or uniform. A further discussion of a similar effect in
the context of a different developmental model, C. elegans, may be found in
(Vuong-Brender et al. 2017). Also, related effects for the case of a viscous
model were previously discussed in (Salbreux at al. 2009).

3.3 Analysis of the model: laser ablations

Next, we tested whether the model correctly predicts the outcome of laser
ablation experiments. Specifically, it has been shown that when the sur-
face of the mesoderm is laser ablated to create an initially round hole, the
hole will expand predominantly along the longer axis of the embryo. This
anisotropy of the response to ablation appears to increase as gastrulation pro-
ceeds: immediately after the onset of gastrulation the response to ablation is
approximately isotropic; later ablations become gradually more anisotropic
with time (Martin et al. 2010).

To simulate these experiments, we implement the model with a rectan-
gular contractile domain as before, but after the deformation field is evolved
to mchanical equilibrium edges within a circular region to mimic a laser ab-
lation, Figure 3a. The initially round hole expands anisotropically, with its
long axis aligned with the long axis of the contractile domain. This result
qualitatively agrees well with the experiments.

To see this intuitively, let us again consider the model in Figure 2b,c.
After the onset of contraction, the domain will shrink more along the shorter
vertical direction and less along the perpendicular horizontal direction. Now,
consider what would happen if one were to remove a single vertical spring-
edge in the interior of the contractile domain after contraction sets in (Figure
3b). This vertical spring-edge has two adjacent vertical edges, colored blue
in Figure 3b. If the contractile domain had already undergone some contrac-
tion, those adjacent vertical neighbors would have shrunk to become shorter
than their preferred rest length. Spring forces in those adjacent spring edges
would tend to expand those adjacent springs, thus counteracting the expan-
sion of the “hole” along the vertical direction. Now, instead, consider what
would happen if a horizontal spring-edge is removed. The adjacent horizontal
spring-edges (colored green in Figure 3b) are under relatively less compres-
sion (i.e. deviate less from their rest length). Thus, elastic forces in those
springs will counteract the expansion of the “hole” to a lesser extent than
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was the case with the vertical spring-edge. In this argument, it has been
assumed that active forces on every spring in the interior of the contractile
domain are the same on every edge of the network. Note that in order to
correctly interpret the outcome of the ablation experiments it is absolutely
necessary to distinguish between “total stress”, “elastic stress” and “active
stress”. Elastic stress is due to the springs. Active stress is due to the mo-
tors (myosin). Total stress is the sum of the two. Ablation experiments
measure total stress which becomes increasingly anisotropic in the course of
the contraction. Active stress, however, remains isotropic throughout the
course of the dynamics. Previously, the anisotropy in response to ablation
was interpreted as evidence for anisotropy of the active stress (Martin et al.
2010). The present model provides a significantly simpler interpretation: to-
tal stress must become anisotropic if the domain is asymmetric (and if the
tissue is elastic), whereas active stress need not be anisotropic. Also, in the
present model, the asymmetry of contraction is the cause, not a consequence,
of anisotropic total stress as measured by laser ablation.

4 Discussion

This paper introduces a simple model that can explain the asymmetry of
contraction of the mesoderm in Drosophila melanogaster. In the proposed
model, the asymmetry of contraction is a consequence of the asymmetry of
the geometry of the contractile domain and not because of e.g. anisotropies in
active stressess or graded distribution of those stresses within the contractile
domain. Importantly, in our model, anisotropy arises from interactions of
the mesoderm with the ambient tissue and is not an inherent property of the
mesoderm itself. Let us now compare and contrast the proposed mechanism
with a number of alternative models.

One alternative possibility is that active stresses in the contractile domain
are anisotropic, i.e. the cells have a preferred axis along which to exert active
stress. We believe that this scenario is unlikely. First, there is no evidence
of planar cell polarity in prospective mesodermal cells of the ventral furrow.
Moreover, this interpretation is at odds with the observations by Leptin and
Roth (Leptin and Roth 1994), where it was shown that contractile grafts
of mesodermal tissue contract along their shorter dimension regardless of
their position or orientation within the embryo. If active stresses in those
contractile patches were anisotropic, there has to exist a mechanism to align
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those active stresses with the shorter axis of the domain through some self-
organized process. This general idea has been proposed, but a concrete
mechanism has not been demonstrated (Chanet et al. 2017). Although not
impossible, this appears a much more complicated explanation than the one
we propose. Additionally, if active stresses were anisotropic at the onset of
contraction, the anisotropy as measured by laser ablation experiments would
be present immediately after the onset of contraction, rather than building
up gradually, as has been shown experimentally (Martin et al. 2010).

A second model could hold that material properties of the contractile
domain are anisotropic. For instance, one can imagine that the cells of the
contractile domain are easier to contract along the mediolateral axis than
along the anteroposterior direction. This possibility may be refuted on the
same basis as the possibility of anisotropic active stresses.

Other possible explanations include spatial nonuniformity of active stresses
within the contractile domain, or spatial nonuniformity of material proper-
ties. For instance, much like in the model proposed in e.g. (Mayer et al. 2010;
Behrndt et al. 2012), one could imagine that active stresses are isotropic but
form a gradient that peaks at the center of the contractile domain and de-
cays gradually along the mediolateral direction. In this case, it can be shown
that contraction would be directed along the mediolateral axis of the embryo
(Spahn and Reuter 2013). In fact, there are gradients of gene expression for
two regulators of myosin, t/8 and fog (Lim et al. 2017), and there may be a
gradient of myosin density along the mediolateral axis of the embryo (Lim et
al. 2017; Spahn and Reuter 2013), though it is unclear from published data
whether the myosin gradient appears early enough to be the cause rather
than the consequence of anisotropic constriction. Although these data sug-
gest that graded tension might contribute to anisotropic constriction, this
potential mechanism is not sufficient to explain all experimental data. In
particular, Leptin and Roth demonstrated (Leptin and Roth 1994) that a
patch of transplanted mesodermal cells will consistently constrict along its
shorter axis. In these experiments, the patch of transplanted mesodermal
cells descended from a small number of transplanted nuclei and it seems
highly unlikely that any gradient would be preserved in this process. There-
fore, some alternative mechanism must drive anisotropic constriction in this
case.

Anisotropy of mesoderm contraction has been the focus of a recent ex-
perimental paper (Chanet et al. 2017). There, the authors modified the
geometry of the contractile domain by genetic means. The observations ob-
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tained in (Chanet et al. 2017) are fully consistent with and complementary to
the results from (Leptin and Roth 1994): more symmetric domains constrict
less anisotropically. In (Chanet et al. 2017) the anisotropy of constriction
was attributed to a mechanosensitive response of mesodermal cells leading
to re-orientation of actin filaments perpendicularly to the axis of contrac-
tion. Although our work does not rule out this possibility, it shows that such
effects are not necessary to explain the key aspects of tissue dynamics.

Crucially, the phenomenology presented in this manuscript may apply
widely to other developmental systems. In a number of recent publications
(Mayer et al. 2010; Behrndt et al. 2012), the response of embryonic tissue to
laser ablation was examined in zebrafish or C. elegans. In these studies, the
initially round hole generated through ablation expanded asymmetrically to
become ellipse-shaped; as mentioned, the same results have been reported
in gastrulating Drosophila tissue (Martin et al. 2010). In particular, the
hole expands more in the direction perpendicular to the axis of tissue con-
traction. In the former papers, the observation was interpreted as an effect
of anisotropic viscous shear (Mayer et al. 2010; Behrndt et al. 2012). In
the latter paper, this result was interpreted to mean that actively generated
tension was anisotropic (Chanet et al. 2010). In the present manuscript, it
is shown that neither anisotropic viscous shear nor anisotropic active tension
is required for an anisotropic response to laser ablation. Furthermore, it is
shown that an anisotropic response to ablation is an inevitable consequence
of tissue elasticity. In this way, the present study provides a simple parsimo-
nious explanation of a series of important observations that we believe may
have previously been interpreted incorrectly.

An earlier theoretical work by Spahn et al. (Spahn and Reuter 2013)
used a vertex model to study the mechanisms that underlie anisotropic tis-
sue constriction during Drosophila gastrulation. Based on this modeling,
the authors proposed two potential mechanisms to generate anisotropic con-
striction. One of these models relied on a gradient of contractility along
the dorso-ventral axis; as discussed in the previous paragraph, work from
Leptin and Roth (Leptin and Roth 1994) indicates that such a gradient is
dispensable for anisotropic constriction. In the second model proposed by
Spahn et al. anisotropic constriction could be due to the contractile domain
being rigidly anchored at the anterior and posterior domain boundaries (i.e.
anisotropy being essentially a boundary effect). This solution seems biolog-
ically irrelevant: Drosophila mesoderm does not appear to be flanked by a
row of cells that are being artificially held fixed at one end. Furthermore,
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our model explains anisotropic constriction without invoking such effects.

The model presented here qualitatively agrees with the available exper-
imental data. In the future, this model could be tested more rigorously by
systematically mapping the distribution of material properties of the tissue
(similar to the approach in (Doubrovinski et al. 2017)) and the distribution
of total stress (using e.g. laser ablation). With these data, the pattern of
deformation can be determined uniquely without fitting.
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A Appendix

A.1 Analytical treatment

In this section we solve Equation (1) using Fourier transform. We will be
considering Equation (1) on a rectangular domain with side lengths A, and
Ay,. Rectangular contractile region zy < o < Ly — 2o, %o < y < L, — o
is assumed to be under constant isotropic active stress of magnitude ¢. We
Fourier-expand u = [u,(x,y), u,(z,y)] as

Uy = Z Z By sin (Wff) cos <7r/r\r;y> )
uy =35 Ay cos (A_) sin (Ty)

n=0 m=0 Y

It is useful to introduce simplified notation o = E/(2(1 4+ 0)), = E/(2(1 —
0)). Substituting (A.1) into Equation (1) and collecting coefficients corre-
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sponding to the same modes we obtain
™\’ ™\’ ™\’ w2

{‘0‘ (&) (%) ] (%) }B”m‘ﬁ(AxAy>”mA"m+¢ﬁm:“’
™\’ mm\° m\ > 2

(e[ ()] -G - (55 om0

(A.2)
where the constant coefficients ¢? | ¢¢ —are given by
2 L, —
Zo = A¢A0 [sin W/T\w:o — sin Ll X 9:0)] (Ay —2y0)
Tily T T
Ay—yo
A g 0 m(Ay — x0) / cos T 4
" AN, A, A, A, Y
2% (A, w) (49)
. mm . mm(A, —
oo = A Xy {sm ASJO — sin /‘;Jy Yo ] (Ay —2z0)
Ar—xo
o _ 4% sin %0 _ gin mm(Ay = o) / cos % 4
AN, A, A, A,
zo
With the obvious identifications, Equations (A.2) have the form
—va+0b+ ¢, =0 (AA)
—vb+da+ ¢pp =0 '
which is readily solved as
_1 |:¢a+¢b ¢a_¢b:|
a= = + 7
A ) y+9 (A.5)
b:l ¢a+¢b_¢a_¢b
2| yv—0 v+0

Combining Equations (A.1)-(A.5), one obtains an explicit expression for dis-
placement u as a function of position. Since the complete expression is rather
lengthy and not especially telling, we do not give it here. Instead, we present
plots showing the solution u obtained by directly evaluating the (truncated)
Fourier-expansion in Figure Sla.
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A.2 Numerical Simulations 1

The code for all simulations is included as a supplemental file. Simulations
in Figure 2 were implemented as follows. We solve boundary problem 1 by
introducing an additional term 0,u on the right hand side and evolving the
resulting equation to equilibrium. All spatial derivatives were approximated
as second order central differences. The displacement of the (outermost)
boundary was initially set to zero and not updated (fixed boundary condi-
tions). Since the deformation remained localized away from the boundary
throughout the course of the simulation, the particular choice of the bound-
ary conditions is expected to not influence the result. Time integration was
done by Euler-forward (explicit) scheme. The domain was discretized into
a regular grid of size 800x800; Euler forward step was dt = 107°. In order
to avoid development of singularities, we “smeared out” the forces at the
boundaries of the contractile domain over a region of finite size. Specifically,
force distribution had Gaussian profile exp(—r?/£%), with £ = 0.3 (this was
however found not to be necessary as no singularities developed in the limit
of much smaller £). Parameters are listed in the corresponding figure caption.

Figures 2d,e was generated by evaluating the Fourier-expanded expres-
sions given in the next section. The 600 lowest Fourier modes were summed.
We checked explicitly that analytical results closely matched the results of
the numerical simulations. Note that although our treatment focuses on the
description of a flat elastic sheet, it may readily be modified to describe a
semi-infinite three-dimensional elastic continuum by replacing the coefficient
in front of the last term of Equation 1 with F/(1 + o)(1 — 20). The major
conclusions about the anisotropy of the asymptotic state hold in this case as
well.

Simulations in Figure 3 were done using a numerical scheme that dif-
fered from simulations in Figure 2 in order to simplify the implementation
of ablation. Specifically, instead of using a finite difference scheme, we dis-
cretized the domain as an (unstructured) grid of equilateral triangles whose
edges are linear springs. It has been shown that this approximation reduces
to the equations of linear elasticity (i.e. Equation (1)) in the limit of small
strains, see e.g. (Seung and Nelson 1998) and (Liang and Mahadevan 2011).
Simulation parameters were chosen as follows. The simulated domain had a
size of 2x2, the length of an individual spring edge was 0.03. Stiffness of an
individual spring edge was set to 50. The contractile domain had a length
of 1.2 and a width of 0.6, and was positioned in the center of the simulated
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domain. Edges within the contractile domain wre subjected to compressive
force of 2.5. We used fixed boundary conditions (as in Figure 2). Ablation
was simulated after mechanical equilibrium was reached (¢ = 5) by effectively
removing all nodes and edges within a circle of radius 0.025 in the center of
the domain. Integration was done using Euler-forward scheme with a time
step of 5-107%.

For the parameter sweep of (1), we non-dimensionalized the equation.
Dividing throughout by ¢, and rescaling length by the width of the con-
tractile domain L, one obtains the re-scaled equation in the same form as
Equation (1), except ¢y set to one, and Young’s modulus F replaced by the
dimensionless ratio F/¢y. The non-dimensionalized version of Equation 1
has the following three dimensionless parameters: the ratio of Young’s mod-
ulus to active stress magnitude E/¢g, Poisson’s ratio o, and the length to
width ratio of the contractile domain L,/L,,.

The plots in Figures S2c and S3 were constructed using analytical expres-
sions for the solution in terms of Fourier-expansion, see Appendix A.1.

A.3 Numerical Simulations II: Finite Element Imple-
mentation
The displacement profiles shown in Figures S2a,b were obtained by solving

Equation 1 with the finite element method (FEM) (Zienkiewicz and Taylor,
1991). To that end, we first rewrite Equation 1 in its compact form as:

V.s+V-(¢I) =0, (A.6)

where ¢(x,y) is the distribution of the active stress introduced in the main
text, I is the identity tensor and s is the Cauchy stress tensor in the en-
tire domain. This tensor is related to the displacement field u through the
constitutive relation :

s =X (V-u)I+2use(u), (A.7)

1
where €(u) = 5 (Vu+ VuT) is the strain tensor and A, and p, are elastic

constants which are, in the plane stress approximation, given by:

Eo E
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Here, E and o are, respectively, the Young’s modulus and Poisson’s ratio
introduced in the main text.

A.3.1 Weak formulation

In order to obtain the displacement field using FEM, we use a test function
v and rewrite Equation (A.6) in the following weak form :

/ (s-n)vd(@Q)—// As(V-u)(V-v) + 2u.e(u) : €(v)] dQ-I—// Vo-vdQ = 0.
o9 Q Q (A8)

In Equation (A.8), Q and 0 are respectively the bulk and boundaries of the

numerical domain, while n is the outward normal vector to 0f2.

At this stage, it is straightforward to account for the boundary conditions
on the boundaries on the embedding domain. Both in the case of traction-free
conditions and zero displacement conditions, the first term of Equation (A.8)
vanishes. In the former case, this is easily obtained, since s-n = 0 on 0¢). In
the latter case, that term can be reduced to zero by choosing test functions
v that vanish on 0Q. Therefore, Equation (A.8) can be simplified as:

_ / /Q (Y - 0)(V - v) + 2piee(u) : €(v)] A + / /Q Vo vdQ=0. (A9)

Next, we discretize Equation (A.9) by expanding the displacement field in
the basis of shape functions (chosen to be the same as the test functions):
u= Z;V:1 u;v;, where the u; are scalar unknown to be found and N is the
number of nodes of the computational domain. Inserting this decomposition
into the weak form and letting v = v;, the displacement field is obtained by
inverting the following linear system:

N
j=1

where A;; = [[ AV - ViV - v; + 2p,€(v;) : €(v;)] dQ are components of the
stiffness matrix and F; = [, Vé-v;dQ are components of the forcing arising
from the active stress.

We discretize the domain 2 with a triangular mesh, choose P2-elements
as shape functions and solve the system of equation (A.10) using the finite
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element open software FreeFem++ (Hecht, 2012). In building the mesh,
we ensure that the contractile (or inner) domain is much more refined than
the embedding (or outer) domain. In order to ensure a smooth transition
of the mesh between the contractile and embedding parts, we include an
intermediate zone where the mesh progresses from being very refined near
the inner domain to being lesser refined as one approaches the outer domain.
Figure S4 shows the mesh used to obtain the displacement field that we plot
on Figure S2b’” and Figure S2b’.

A.3.2 Boundary conditions treatment

A.3.2.1 Case of zero displacement condition

In the case of fixed boundary conditions, we use a penalty technique to
enforce u; = 0 on the nodes corresponding to the domain boundary. That is,
if p is the index of a node located on the boundary, we ascribe to it a very large
number and write A,, = 10 as well as F, = 0 x 10%°. Consequently, on the
row of the stiffness matrix corresponding to that node, we have Z;VZI Apjuj =
10*%u, = 10%° x 0, thus leading to u, = 0.

A.3.2.2 Case of zero traction condition

In the case of traction-free boundary conditions, we simply solve Equa-
tion (A.10) which was obtained from Equation (A.8) with the traction term
(s-n) put to zero on 0f2, the boundary of the embedding domain.

However, unlike in the case of zero displacement conditions on 052, the
embedding domain here is kinematically unconstrained. As a result, we find
numerical solutions of Equation (A.10) that contain contributions from rigid
modes of the system, i.e. the eigenmodes of the stiffness matrix with zero
eigenvalue. Indeed, if ug is a solution of Equation (A.10), and if wu, is an
eigenmode of the matrix A;; with zero eigenvalue, then clearly u;, = u, +u,
is also a solution of Equation (A.10).

In order to compare the displacement field obtained under the conditions
of zero displacement to that obtained under the condition of zero traction on
0f), we must first remove the rigid modes contributions from the numerical
solution (uy). This ensures that both displacement fields correspond to the
elastic deformations due the active force only and, in absence of the latter
force, the displacement fields would uniformly zero. To that end, we proceed
as follow.
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We first rewrite the numerical solution in the basis of the eigenmodes
m; of the stiffness matrix, i.e u, = Zjvzl @;m;, where the coefficients of the
expansion are given by the dot products (uy, - m;) = @;. Then, by identifying
the rigid modes as those of the stiffness matrix with zero eigenvalue, we find
three such modes (two translations and one rotation) that we note my, with
k =1,2,3. Last, by removing these rigid displacements from the previously
computed solution, we obtain the following displacement field due to the

active force only:
3

u, = u;, — Z (up, - my) my. (A.11)

k=1
It is the displacement field ug that we show in Figure S2b and Figure S2b’.
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Figures

Contraction directed mainly along the width of the

T contractile domain
Epithelium Cross section

actile domain

&44

length

- Ly= width

—®&— Motor
= Force
; w
Figure 1

Model for gastrulation. Upper panel: schematic of tissue dynamics. Lower
panels: illustration of the model. Left: Cross section through Drosophila
embryo. The embryo consists of a single layer of epithelial cells surrounding
a central unstructured yolk sack. Apical surfaces face outward, basal sur-
faces face inward. Middle: the contractile domain (mesoderm) is comprised
of a rectangular patch of cells some 20 cells wide and 80 cells long. Elas-
tic elements are illustrated as springs and active forces are represented by
“motors” (circles with letter “M”). Both are attached to the two adjacent
“beads” in parallel. Beads are assumed to feel viscous drag from the ambi-
ent environment when moving. Note that it is assumed that forces exerted
by motors are constant in time and space. Right: contractile region shrinks
anisotropically, contracting much stronger along the width than along the
length.
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Figure 2

Simulations of the model. a). Schematic showing the geometry of the prob-
lem and the quantities describing the resulting deformation. After the de-
formation sets in, a point located at spatial position r displaces to a new
spatial position r 4+ u(r), where u has components u, and u,. b). An exam-
ple of a final mechanical equilibrium state. Parameters are: £ =1, 0 = 0.2,
¢o = 0.5, (see main text for notation), entire domain size is 50x50, contractile
domain is 10x2. For readability only the noticeably deformed middle portion
of the domain is shown. Simulation was done using finite differences. c).
Same simulation as b) showing the distribution of the deformation as a field
of displacement vectors. d). Asymptotic (equilibrium) aspect ratio of the
contractile domain as a function of Poisson’s ratio (x-axis) and contractile
active stress (three different curves). All parameters (except the ones that are
varied) are as in b,c). Black, red, and green curves correspond to ¢y = 0.5,
¢o = 0.75, and ¢y = 1 respectively. e). Equilibrium length to width ratio
(Ly/L,) of the contractile domain as a function of the initial ratio at time
zero for three values of active contractile stress. All parameters except those
being varried are as in b). ). Symmetric domains contract isotropically. All
parameters except domain size are as in b). Contractile domain size is 4x4.

)
Q
-
O
0
S
C
©
S
©
()
-+
Q
(0]
(O]
O
<
L]
-
C
()
£
Q
9
()
>
()
)




A Simulation of an ablation experiment: the hole
is wider along the length of the contractile domain

w0

Before the cut After the cut
Recoil is weak since it is opposed Recoil is strong since it is not opposed
B by the force from a vertical spring by the (less contracted) horizontal spring
= g E i g g g
more
contracted "’”"; "””"g W’g ""”’g e
" less ; . ; ; ; N
contracted
Before the cut (domain Horizontal cut Vertical cut
already contracted along
the width)
Figure 3

Simulation of an ablation experiment. a). Final state following a simulated
laser ablation. A set of vertices in the center of the contractile domain are
removed (“ablated”) after a finite deformation sets in. Parameters and the
details of implementation are given in Appendix. b). Schematic intuitively
explaining the outcome of the simulation in a), see main text for the details.
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Development: doi:10.1242/dev.167387: Supplementary information

Figure S1

Color plots showing the magnitude of deformation calculated in Figures 2b,c.
a). The x-component of the deformation field (u,) is shown with red colors
(positive values) indicating rightwards displacement, and blue colors (neg-
ative values) indicating leftwards displacement. b). The y-component of
the deformation field u,; red (positive) indicates upwards displacement, blue
(negative) indicates downwards displacement.
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Numerics vs analytics
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Figure S2

Convergence of solution with respect to the boundary conditions. a). Val-
idation of the numerical scheme. x- and y-components of the displacement
field (u, and w,) along the vertical and the horizonal cross sections of the
simulated domain (at equilibrium). Three curves compare results using two
numerical schemes (finite differences and finite elements) and the analytical
results using Fourier expansion. Parameters are as in Figure 2b. b). x- and
y-components of the displacement field for the case of fixed (black) and free
(red) boundary conditions obtained using finite elements. Note particularly
close agreement in the vicinity of the contractile domain. All parameters
except domain size as in Figure 2b. ¢). Final shapes of square and rectangu-
lar contractile domains embedded in either square or rectangular stress-free
domains. The dimensions of the embedding domains were taken to be either
100x100 or 200x100. Initial size of the contractile domain is either 4x4 (left)
or 10x2 (right). The two curves essentially coincide, indicating that the ge-
ometry of the contractile domain is essentially independent of the boundary
conditions (for the chosen domain sizes).
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Varying Poisson’s ratio Varying Young’s modulus

1 1 I I 1 1 12 1 1 1 I 1 1
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Figure S3

Convergence of the aspect ratio of the contractile domain in the limit of large
embedding domain (plotted using analytical expressions). Left: Equilibrium
aspect ratio as a function of embedding domain size and Poisson’s ratio.
Right: Equilibrium aspect ratio as a function of embedding domain size and
Young’s modulus. For both plots, the length of the embedding domain is
labeled on the x-axis; its width is smaller by 8 units (the difference between
the length and the width of the contractile domain). The curves were plotted
using the Fourier-expansion given in the appendix. Parameters are as in
Figure 2b.
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Supplemental code

The content of the zip file with supplemental code is as follows:
[inite_differences/cont_elast.cpp C++ source file for finite difference sim-
ulation of an elastic shell harboring a rectangular contractile domain.

Janalytics/el_anal_xy_LxLy_comments.mws Maple file for deriving
Fourier coefficients from model parameters.

.Janalytics/el_anal.cpp C++ source file that uses the Fourier coefficients
which can be found from ./analytics/el_anal_xy LxLy_comments.mws to
construct the deformation field by summing the Fourier series.

/finite_elements/ScriptFreeFem_LameFixedFree.edp A script to be used
with FreeFem++ for simulating an elastic shell harboring a rectangular
contractile domain using finite element analysis.

.Jablation/string_tri.cpp A C++ source file to simulate ablation
experiments.

Must be compiled together with ./ablation/outpt.h. The ./ablation/meshfiles
folder contains files serving input (initial conditions) for this simulation.
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Figure S1

Color plots showing the magnitude of deformation calculated in Figures 2b,c.
a). The x-component of the deformation field (u,) is shown with red colors
(positive values) indicating rightwards displacement, and blue colors (neg-
ative values) indicating leftwards displacement. b). The y-component of
the deformation field u,; red (positive) indicates upwards displacement, blue
(negative) indicates downwards displacement.
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Numerics vs analytics
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Figure S2

Convergence of solution with respect to the boundary conditions. a). Val-
idation of the numerical scheme. x- and y-components of the displacement
field (u, and w,) along the vertical and the horizonal cross sections of the
simulated domain (at equilibrium). Three curves compare results using two
numerical schemes (finite differences and finite elements) and the analytical
results using Fourier expansion. Parameters are as in Figure 2b. b). x- and
y-components of the displacement field for the case of fixed (black) and free
(red) boundary conditions obtained using finite elements. Note particularly
close agreement in the vicinity of the contractile domain. All parameters
except domain size as in Figure 2b. ¢). Final shapes of square and rectangu-
lar contractile domains embedded in either square or rectangular stress-free
domains. The dimensions of the embedding domains were taken to be either
100x100 or 200x100. Initial size of the contractile domain is either 4x4 (left)
or 10x2 (right). The two curves essentially coincide, indicating that the ge-
ometry of the contractile domain is essentially independent of the boundary
conditions (for the chosen domain sizes).
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Varying Poisson’s ratio Varying Young’s modulus
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Figure S3

Convergence of the aspect ratio of the contractile domain in the limit of large
embedding domain (plotted using analytical expressions). Left: Equilibrium
aspect ratio as a function of embedding domain size and Poisson’s ratio.
Right: Equilibrium aspect ratio as a function of embedding domain size and
Young’s modulus. For both plots, the length of the embedding domain is
labeled on the x-axis; its width is smaller by 8 units (the difference between
the length and the width of the contractile domain). The curves were plotted
using the Fourier-expansion given in the appendix. Parameters are as in
Figure 2b.
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Click here to Download Supplemental code files
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