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Summary statement:  Blood flow rate along arteries is analysed in relation to arterial 

size, body mass and basal metabolic rate in mammals at rest. 
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ABSTRACT 

This meta-study investigates the relationships between blood flow rate (Q
.
 ; cm3 s-1), wall 

shear stress (; dyne cm-2) and lumen radius (ri; cm) in 20 named systemic arteries of nine 

species of mammals, weighing from 23 g mice to 652 kg cows, at rest.  In the dataset, 

derived from 50 studies, lumen radius varies between 3.7 µm in a cremaster artery of a rat 

to 11.2 mm in the aorta of a human.  The 92 logged data points of Q
.
 and ri are described by 

a single second-order polynomial curve with the equation, log Q
.
  = -0.20 log ri

2 +1.91 log ri + 

1.82.  The slope of the curve increases from approximately 2 in the largest arteries to 

approximately 3 in the smallest ones.  Thus, da Vinci’s Rule (Q
.
  ri

2) applies to the main 

arteries and Murray’s Law (Q
.
  ri

3) applies to the microcirculation.  A subset of the data, 

comprising only cephalic arteries in which Q
.
 is fairly constant, yielded the allometric power 

equation, Q
.
  = 155 ri

2.49.  These empirical equations allow calculation of resting perfusion 

rates from arterial lumen size alone, without reliance on theoretical models or assumptions 

on the scaling of wall shear stress in relation to body mass.  As expected, Q
.
 of individual 

named arteries is strongly affected by body mass, however, Q
.
 of the common carotid artery 

from six species (mouse to horse) is also sensitive to differences in whole-body basal 

metabolic rate, independent of the effect of body mass. 

KEY WORDS:  Artery, Blood flow rate, Circulation, da Vinci’s Rule,  Murray’s Law, Wall 

shear stress 

 

List of abbreviations 

  blood viscocity (dyne s cm-2) 

 wall shear stress (dyne cm-2)  

BMR basal metabolic rate (ml O2 h-1) 

Mb body mass (kg) 

Q
.
 volume blood flow rate (cm3 s-1) 

ri internal radius (cm) 
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INTRODUCTION 

The systemic arteries of mammals carry oxygenated blood to the tissues to support their 

aerobic metabolic demands.  Therefore, there is a functional link between the size of the 

arteries, the rate of blood flow they transmit, and the metabolic demand of the supplied 

tissues.  Metabolic rate scales allometrically with body size, so there are likely to be patterns 

of cardiovascular variables that relate to body size in a functionally meaningful way.  The 

empirical relationships between mammalian body size and heart mass, stroke volume, heart 

rate, cardiac output and blood pressure have each been shown to be related to metabolic 

rate, either directly or indirectly (Calder, 1996; Hillman and Hedrick, 2015; Seymour and 

Blaylock, 2000).  The branching morphology of the arterial system has been measured and 

modelled to test the optimality theory of a space-filling fractal network that supplies 

oxygenated blood with the least energy cost (Brummer et al., 2017; Hunt and Savage, 2016; 

Huo and Kassab, 2012; Huo and Kassab, 2016; Kassab, 2006; Newberry et al., 2015; Price et 

al., 2007; Tekin et al., 2016).  However, most of these studies focus only on the morphology 

of the network, and so it is difficult to extract the relationships between arterial sizes and 

actual blood flow rates.  To address this limitation, the present study takes an empirical 

approach by searching the literature and collecting paired measurements of arterial lumen 

radii and blood flow rates in 20 named systemic arteries of mammals.  We hypothesize that 

the sizes of branching arteries should be related to the rate of blood flow within them, 

which depends directly on the absolute metabolic demand of the tissues, and indirectly on 

body size.   

Correlations between the metabolic rates of animals and the structure of supply 

networks are well known, but the direction of dependence is confusing in the literature.  

West, Brown and Enquist began a revolution in thinking about physiological scaling by 

suggesting that quarter-power scaling of metabolic rate and other traits should arise if 

vascular networks are selected to fill space while minimising the energy required to 

distribute resources (Brummer et al., 2017; West et al., 1997).  The vascular system has 

therefore been hypothesised to determine rates of metabolism (Newberry et al., 2015).  An 

alternative perspective is that the allometric scaling of metabolic rate arises for reasons 

unrelated to the geometry of the vascular system (Kozłowski and Weiner, 1997).  The need 

to deliver oxygen and nutrients to fuel rates of metabolism would then determine the 

structure of the vascular system.  Distinguishing between the evolutionary explanations for 

the origin of metabolic scaling is challenging, but there are numerous examples 

demonstrating that metabolic demand determines the structure of the circulatory system.  

For example, the number and size of arteries are dynamically and reversibly adjusted 

throughout life to match the required rates of blood flow.  Arteriogenesis (the increase in 

arterial diameter and wall thickness) and angiogenesis (the increase in the number of 

vessels by splitting or sprouting) occur in response to increases in metabolic demand of 
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growing organs (Heil et al., 2006).  The same phenomena occur in skeletal muscles during 

athletic training (Prior et al., 2004; Thijssen et al., 2012).  Tumour metabolism becomes 

limited by perfusion during rapid growth, resulting in anaerobic metabolism and lactate that 

stimulates angiogenesis and subsequent oxygenation (Polet and Feron, 2013).  Experimental 

changes in blood flow regime of major arteries result in appropriate changes in diameter 

and wall thickness (Caro et al., 2012; Kamiya et al., 1984; Kamiya and Togawa, 1980; 

Langille, 1999; Smiesko and Johnson, 1993; Tronc et al., 1996; Wolinsky and Glagov, 1967).  

The success of coronary bypass surgery in which a vein is substituted for the diseased artery 

is due to the fact that the vein assumes the morphology similar to that of a healthy artery in 

a matter of weeks (Owens, 2010).  It is clear that the morphology of the arteries is 

responsive to changes in metabolic demand, through changes in blood flow rate and blood 

pressure. 

The physiological mechanisms responsible for controlling arterial size involve 

reversible interactions between blood flowing adjacent to the endothelium of the vessels, 

and circumferential wall tension caused by blood pressure (Lu and Kassab, 2011).  Higher 

blood flow rates over the glycocalyx of the endothelium initiate a series of responses 

involving inflammation, nitric oxide, vascular endothelial growth factor receptor proteins, 

metalloproteinases, cytokines and extracellular matrix proteins (Baeyens et al., 2015; 

Reitsma et al., 2007; Silvestre et al., 2013).  The result is cellular proliferation in the vessel 

wall that enlarges the lumen and reduces blood velocity near the wall (Lehoux et al., 2006).  

Because the effects are reversible, they are thought to normalize wall shear stress (WSS), 

which is an indirect measure of the stress on the glycocalyx of the endothelium.  WSS (, 

dyne cm-2) can be measured directly as the derivative of the velocity gradient adjacent to 

the wall (Papaioannou and Stefanadis, 2005).  WSS can also be calculated from blood flow 

rate (Q
. 

, cm3 s-1), blood viscosity (, dyne s cm-2) and arterial lumen radius (ri, cm) according 

to the Poiseuille ‘shear stress equation’,  = (4 Q
.
  )/( ri

3), assuming that the flow conforms 

to the Poiseuille regime of a Newtonian fluid in a straight cylinder where the velocity profile 

is parabolic (Lehoux and Tedgui, 2003).  However, the quantitative connection between the 

level of WSS and the extent of vascular remodeling is obscure, because WSS is either 

measured by the velocity gradient far from the wall or it is calculated from the shear stress 

equation without reference to the wall at all.  Thus the site of measurement in larger 

arteries is much farther from the wall than the very short (<5 m) length of the glycocalyx 

(Reitsma et al., 2007). 

Much of the twentieth century literature includes the idea that WSS has a narrow 

‘set-point’ range, typically ∼10–20 dyne cm−2, throughout the circulatory system (Glagov et 

al., 1988; Ku, 1997).  However, Langille realized that WSS in any particular artery is 

dependent on body mass (Mb; kg) (Langille, 1993).  Based on his assumed scaling of cardiac 

output ( Mb
0.8) and geometrically proportional scaling of arterial linear dimension ( 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



Mb
0.33), he calculated that aortic WSS should scale allometrically with Mb

-0.2.  More recently, 

data from mouse to human indicated that WSS scales with Mb
-0.38 for the infrarenal aorta 

(Greve et al., 2006; Weinberg and Ethier, 2007), Mb
-0.23 for the common carotid artery (from 

Fig. 2 in (Cheng et al., 2007)), and Mb
-0.21 for the common carotid artery (from data in 

(Weinberg and Ethier, 2007)).  For primates, WSS appears to scale with Mb
-0.20 for the 

internal carotid artery (Seymour et al., 2015) and Mb
-0.22 for the vertebral artery (Boyer and 

Harrington, 2018a).   

Few studies consider the scaling of both the anatomy and the physiology of the 

cardiovascular system of mammals.  In a now classic paper, Holt and colleagues measured 

the sizes of the main arteries and veins of seven species of mammals ranging in body mass 

from mice (∼0.02 kg) to horses and cows (∼500 kg) (Holt et al., 1981).  The internal radius (ri; 

cm) of the ascending aorta scaled with body mass according to ri = 0.33 Mb
0.36.  The authors 

estimated the scaling of cardiac output to be proportional to Mb
0.79 and, since radius scaled 

with Mb
0.36, radius squared (proportional to aortic cross sectional area) scaled with Mb

0.72, 

and therefore the mean velocity of the blood scaled with Mb
(0.79-0.72) = Mb

0.07.  Although the 

authors concluded that mean blood velocity is body-mass-independent, the exponent of 

0.07 produces a doubling of velocity between the mice and the horses and cows.  WSS is 

also shown to decrease in the same artery of larger species; assuming that   Q
. 

/r3, then  

 Mb
(0.79-(3x0.36) = Mb

-0.29.   

In the present study, we hypothesized that the negative scaling of WSS with body 

mass is due to differences in the scaling of metabolic rate that would be reflected in the 

blood flow rates and the morphology of the arterial system.  Rather than approaching the 

question from a theoretical model of fractal branching, we used an empirical approach to 

gather data from recent imaging studies of blood flow rate and arterial lumen size.  This 

meta-study was designed to determine if there are patterns of blood flow rate and WSS in 

relation to in vivo arterial size among mammals over a wide range of body mass, and to 

determine if blood flow rate is associated with whole-body basal metabolic rate, 

independent of body mass.  The unexpected finding of our meta-study is that allometric 

equations can be used to estimate blood flow rates in mammalian arteries from their radius 

alone, without reference to theoretical equations, or knowledge of wall shear stress, 

metabolic rate or body mass.   
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METHODS 

Data collection 

Recent advancements in ultrasonic, X-ray and magnetic resonance imaging, allowed us to 

collect data on systemic arterial radii and blood flow rates in mammals.  The literature was 

searched for individual studies that included both pressurized internal radius and volume 

blood flow rate in the same arteries and the same species.  All studies that presented data 

for both variables together were accepted, and none were excluded.  No record was made 

of the number of searched papers that failed to present data for both variables.  However, 

because the literature was strongly biased toward human studies, followed by laboratory 

rodents, a deliberate effort was made to search for other species. 

Arterial lumen size and volume blood flow rate were taken as reported means from 

control groups.  In some instances, flow rate was calculated from mean velocity multiplied 

by cross sectional lumen area.  Arterial radius was calculated from either reported diameter 

or cross-sectional area, assuming the geometry of a perfect circle.  WSS was calculated from 

the Poiseuille shear stress equation, given in the Introduction, assuming a constant blood 

viscosity of 0.04 dyne s cm-2 (Amin and Sirs, 1985; Schmid-Schönbein et al., 1969).  There 

was good correlation between WSS calculated this way and values reported in some 

individual studies that used the derivative of near-wall blood velocity gradients.  Flow in a 

given artery was considered constant, laminar and Newtonian.  Turbulent flow occurs only 

occasionally for the descending aorta or near a stenosis, valve or aneurysm (Winkel et al., 

2015), so such conditions were excluded.  Most animal studies involved some level of 

general anesthesia or sedation, in which case the anesthetic was recorded.  Data from 

exercising animals were also recorded but excluded from the dataset because too few 

records were available.  Body masses were taken from individual studies, either as a 

reported mean, or as the average of a reported range.  Missing body mass data were 

replaced with means from laboratory and domestic species (Jones et al., 2009; Seymour and 

Blaylock, 2000).  Data for basal metabolic rate (BMR) were taken from a published 

compilation (Sieg et al., 2009) and supplemented with additional data for horses (Eisenberg, 

1981; Evans and Rose, 1988).  BMR data for crab-eating macaques Macaca fascicularis were 

unavailable, so BMR data for similarly-sized rhesus macaques M. mulatta were substituted. 

  

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

cc
ep

te
d 

m
an

us
cr

ip
t



 

Statistics 

Values are presented as means with 95% confidence intervals (CI), calculated with Microsoft 

Excel add-in StatistiXL (www.statistixl.com).  Data for Q
.
 , ri, τ, Mb and BMR were log10-

transformed for analysis.  Polynomial or power regression equations were fitted with 

graphing and statistical software (GraphPad Software Inc., La Jolla, CA, USA).  The 

relationships between Q
.
 , Mb and BMR were analysed using linear mixed models with 

species identity as a random effect in the lme4 v1.1-7  (Bates et al., 2014) and lmerTest 

v2.0-25 (Kuznetsova et al., 2015) packages of R v3.1.3 (R Core Team, 2015).  The significance 

of fixed effects was assessed using t-tests with Satterthwaite approximations to degrees of 

freedom and models fitted using maximum likelihood.  One value for rats was excluded 

from this analysis, because the individuals for which blood flow rate was determined were 

much smaller (100 g) than the individuals for which BMR was determined (290 g).  For the 

remaining species, the log body masses of animals used for blood flow rate measurement 

were strongly correlated with the log body masses of animals used for metabolic rate 

measurement (R2 = 0.99). 

 

RESULTS 

Blood flow rate and WSS in relation to arterial size 

Data for arterial blood flow rate and lumen radius were obtained from 50 studies that 

included both variables in the same paper and were measured from mammals at rest (see 

Electronic supplementary material).  The nine species comprised Homo sapiens and various 

domesticated or laboratory mammals.  In total, there were 92 data points collected from 20 

named systemic arteries.  Body mass ranged from 23 g mice to 652 kg cows.  Lumen radius 

varied between 3.65 µm in a cremaster artery of a rat to 11.2 mm in the supraceliac aorta of 

a human.  Blood flow rate ranged from 0.16 µm3 s-1 in the cremaster artery in a rat to 20 

cm3 s-1 in the femoral artery of a horse.  

The entire dataset is described by a single second-order polynomial equation 

relating log blood flow rate to log lumen radius: log Q
.
  = -0.20 log ri

2 +1.91 log ri +1.82 (R2 = 

0.97; n = 92) (Fig. 1).  The derivative (slope of the line at any point) of this equation reveals a 

gradual increase in slope with decreasing arterial size, from approximately 2 in the largest 

arteries to approximately 3 in the smallest ones. 

WSS is normally calculated according to the assumption of laminar flow with the 

Poiseuille shear stress equation, given in the Introduction.  The data show increasing WSS 

from 1.1 dyne cm-2 in the infrarenal aorta of humans to 163 dyne cm-2 in the small 
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cremaster artery of a rat (Fig. 2).  A polynomial equation set to the data is log τ =-0.20 log ri
2 

-1.09 log ri + 0.53 (R2 = 0.62; n = 92). 

 

Blood flow rate in the cephalic arteries only 

A subset of the data was selected to include only the major cephalic arteries, because the 

blood flow regimes in these vessels are relatively constant (Fig. 3).  These include the 

common carotid, internal carotid, vertebral, basilar, anterior cerebral, middle cerebral and 

posterior cerebral arteries.  An allometric power regression was set to these data yielding 

the equation, Q
.
  = 155 ri

2.49 ± 0.17 (R2 = 0.94; n = 57).  The exponent is midway between 2 and 

3 of the entire dataset. 

 

Effect of body mass on blood flow rate and wall shear stress in the femoral artery, aorta 

and common carotid artery 

Three major arteries provided sufficient data to relate resting Q
.
  to Mb allometrically (Fig. 4).  

The exponents are 0.80 for the femoral artery, 0.74 for the aorta and 0.80 for the common 

carotid artery.  WSS calculated for these arteries yield exponents of -0.49 for the femoral 

artery, -0.44 for the aorta and -0.14 for the common carotid artery (Fig. 5).  See captions to 

Figs 4 and 5 for complete equations. 

 

Effect of basal metabolic rate (BMR) on blood flow rate in the common carotid artery 

For species in which data on common carotid artery Q
.
  were available, we found that their 

whole-body BMR (ml O2 h-1) scales as 6.09 Mb
0.71 ± 0.07.  Common carotid artery Q

.
  (cm3 s-1) 

scales as 0.24 Mb
0.80 ± 0.09 and as 0.000157 BMR1.11 ± 0.09.  The correlation between common 

carotid artery Q
.
  and BMR remains positive and significant (t11.6

 = 3.49, p = 0.005) (Fig. 6), 

after accounting for the effect of Mb on Q
.
 , which is not significant in the model that includes 

BMR (t11.6
 = -0.90, p = 0.38), log Q

.
  = -4.90 + 1.49 log BMR – 0.279 log Mb.  The effect of 

whole-body BMR on common carotid artery Q
.
  remains significant (t30

 = 3.60, p = 0.001) in a 

model that includes vessel radius (ri, t30
 = 2.14, p = 0.04) and Mb (t30

 = -1.53, p = 0.14), log Q
.
  

= -3.02 + 1.23 log BMR + 1.03 log ri – 0.411 log Mb. 
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DISCUSSION 

Blood flow rate and arterial size in resting mammals 

The data gathered from 20 different systemic arteries in nine species of mammals differing 

in body mass by 4.5 orders of magnitude fall remarkably along a single, second-order 

polynomial regression line (Fig. 1).  This close relationship is not simply a result of the 

influence of body mass.  Although body mass is related to the size of individual named 

arteries, the six smallest arteries in the data set include rats, cats and humans that differ 

greatly in body mass.  The relationship between Q
.
 and ri is curved, with the derivative 

decreasing from a slope of approximately 2 in the largest arteries to about 3 in the smallest 

ones.  The pattern is also apparent in different-sized arteries from humans and rats (Fig. 1). 

The explanation for this phenomenon has been sought in the following theoretical models. 

The circulatory system has been analysed as a fractal-like branching network.  

Although the distal arteries appear to be close to geometrically dichotomously self-similar at 

every level (Family et al., 1989), the proximal arteries are not fractal, branching is not 

uniform, and arterial anastomoses occur (Huo and Kassab, 2016).  There are two classical 

models for anatomical branching pattern of the arterial tree.  The first is the minimum 

energy loss hypothesis known as Murray’s Law, which predicts that Q
.
  r3, such that r3 of a 

parent artery is equal to the sum of r3 of two daughter arteries (Murray, 1926).  The other 

model, known as da Vinci’s Rule because the anatomist and artist Leonardo da Vinci 

recorded that the cross-sectional area of a parent artery is equal to the combined areas of 

the daughter arteries (Richter, 1970), predicts that Q
.
  r2 (Zamir et al., 1992).  Both are 

cases of the common relationship, rp
n = rd1

n + rd2
n, where rp is the radius of the parent artery 

and rd1 and rd2 are the radii of the two daughter arteries.  The exponent, n, is 3 for Murray’s 

Law and 2 for da Vinci’s Rule. 

The present study shows that neither model holds for the entire arterial system.  

Rather, Murray’s Law applies to the smaller arteries, as the derivative of the regression is 

close to 3, but da Vinci’s Rule applies to the larger arteries, where the derivative is 

approximately 2.  These results confirm other indications from the literature.  For example, 

in small arteries, Q
.
  r2.76 in human retinal arteries (Riva et al., 1985), similar to retinal 

arteries of rhesus monkeys (Zamir and Medeiros, 1982), Q
.
  r3.01 in the cremaster muscle 

arteries of rats (Mayrovitz and Roy, 1983), and Q
.
  r2.98 in pial arteries on the surface of the 

brain of cats (Kobari et al., 1984). 

For the larger arteries, several studies conclude that Q
.
 should be proportional to 

radius squared.  A meta-study of five species of mammals indicated that WSS is related to 

arterial diameter to the -0.50 power, which indicates that Q
.
  r2.5 (Cheng et al., 2007).  
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Zamir et al. (1992) measured diameters in casts made from human central arteries and 

found that n is closer to 2 than 3.  An intraspecific analysis of all major arteries with 3 – 10 

branch levels in the human head and torso revealed high variability, but a mean empirical 

exponent equivalent to 2.04 or 2.44, depending on the estimation model employed 

(Newberry et al., 2015).  The exponents for arterial size of vascular trees in organs of 

humans and laboratory animals range widely, approximately from 2 to 4 (Kassab, 2006).  An 

alternative model to Murray’s Law, but also based on fractal-like branching of the arterial 

tree with minimal energy loss, concludes that the exponent is between 2 and 3 (Huo and 

Kassab, 2016). 

The shift from da Vinci’s Rule in larger arteries to Murray’s Law in the small ones has 

been explained in theoretical studies (Savage et al., 2008; West et al., 1997; West et al., 

1999).  The area-preserving relationship of da Vinci’s Rule (where exponent n = 2) ensures 

that energy loss by reflected pressure waves is minimized in the major arteries (Gafiychuk 

and Lubashevsky, 2001).  If the mean velocity in the parent is equal to the mean velocity in 

the daughters, and the wall characteristics are the same in the parent and daughters, then 

changes in velocity at the junction are not converted to reflected waves (Caro et al., 2012).  

Murray’s Law (where exponent n = 3) minimizes frictional-related energy loss, because wall 

shear stress is equal in parent and daughter arteries, and permits the velocity of the blood 

to slow down at the level of the capillaries to allow sufficient time for gas exchange. 

 

Scaling of blood flow rate and arterial size in the cephalic arteries only 

The entire data set contains arteries that service tissues of varying metabolic rate.  In 

particular, the inferior aorta, femoral arteries and brachial arteries largely supply skeletal 

muscles, while the common carotid and vertebral arteries and their branches supply mainly 

the brain.  Flow regimes in these two categories are vastly different.  For instance, flow rate 

in the femoral artery can increase 10-fold between rest and activity (Jorfeldt and Wahren, 

1971).  Therefore, the diameter of the femoral artery is matched better with maximum flow 

rate than resting flow rate.  In contrast to muscle perfusion, brain perfusion is autoregulated 

and relatively constant globally, although there may be regional redistribution of blood 

(Ogoh and Ainslie, 2009; Payne, 2016).  For example, blood flow rate in the common carotid 

artery of humans is independent of heart rate (Wilcox et al., 1970).  During moderate, 

steady-state cycling exercise that causes a doubling of cardiac output, global cerebral blood 

flow rate increases only 28% above resting rates after 3 min and returns to resting rates 

after 13 min of continuing exercise (Hiura et al., 2014).  Blood flow rate in the middle 

cerebral and internal carotid arteries increases by only 14% and 17%, respectively, despite 

doubling of heart rate during moderate cycling exercise (at 60-67% of maximal aerobic 

capacity), and the increase in blood flow rate along these arteries is even less during more 
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intense cycling exercise (80-90% of maximal aerobic capacity) (Hellström et al., 1996).  In a 

similar experiment, Japanese women increased cardiac output by 260% during moderate 

cycling exercise, but increased internal carotid arterial flow rate by only 18% and vertebral 

artery flow by 33% (Sato and Sadamoto, 2010).  The diameters of the cerebral arteries also 

change very little between rest and activity (Hellström et al., 1996) or in response to 

changes in blood pressure and blood gas levels (Payne, 2016).  There is also almost no 

difference in cerebral blood flow rate when humans engage in mental arithmetic (Sokoloff 

et al., 1955) or between awake and sleeping states (Townsend et al., 1973).  Cerebral blood 

flow rate of humans decreases gradually with age in absolute terms, but not when 

expressed relative to brain mass, despite rising arterial blood pressure (Meltzer et al., 2000; 

Tarumi and Zhang, 2018; van Es et al., 2010).  However, cerebral blood flow rate in humans 

is responsive to short-term experimental alterations in mean arterial blood pressure (Tan, 

2012; Willie et al., 2014), defending more strongly against increases in pressure than 

decreases (Numan et al., 2014). 

The relationship between blood flow rate and arterial size in the cephalic arteries is 

best described by an allometric power equation (Fig. 3).  The relationship is determined 

mainly by the data for the common carotid arteries from a 27 g mouse to a 500 kg horse.  

The exponent of the equation is 2.49 and the 95% CI of the exponent is 0.17.   Thus, the 

exponent lies midway between, but is significantly different from, those expected for da 

Vinci’s Rule (where n = 2) and Murray’s Law (where n = 3). 

 

Wall shear stress in relation to arterial size and body mass 

The general trend in this meta-study indicates that WSS increases as blood passes into 

progressively smaller arteries (Fig. 2), in contrast to a generally assumed independence of 

WSS from vessel size and body mass according to Murray’s Law.  Thus our results from 50 

studies of nine species of mammals confirms the pattern from seven studies of five species 

of mammals, which showed that WSS in the common carotid artery increases from 

approximately 11 to 65 dyne cm-2 from humans to mice (Cheng et al. 2007).  Our data 

indicate an increase from 14 to 42 dyne cm-2 over the same body mass range. 

Blood flow rate in three major arteries scales with body mass with exponents 

between 0.74 and 0.80 (Fig. 4), which is consistent with the scaling of cardiac output in 

resting mammals, ca. 0.80 (Calder, 1996; Holt et al., 1981).  Calculated WSS in these arteries 

decreases with increasing body mass, with large negative exponents in the femoral artery (-

0.49) and aorta (-0.44), but a smaller negative exponent in the common carotid artery (-

0.14) (Fig. 5).  By comparison, the exponent was reported to be -0.38 in the aorta (Greve et 

al., 2006; Weinberg and Ethier, 2007) and between -0.20 and -0.23 in the common carotid, 

internal carotid and vertebral arteries (Boyer and Harrington, 2018a; Cheng et al., 2007; 
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Greve et al., 2006; Seymour et al., 2015; Weinberg and Ethier, 2007).  This may represent a 

decreased sensitivity of WSS to body size in arteries that supply mainly nervous tissue as 

opposed to arteries that supply a large fraction of blood to muscles during activity, but are 

measured at rest.  In fact, WSS is quite low in the femoral artery at rest, but increases during 

activity to be comparable to those in the similarly-sized common carotid artery at rest 

(Kornet et al., 2000). 

The standard shear stress equation assumes that WSS is inversely proportional to ri
3.  

If Q
.
  is also proportional to ri

3, then WSS is a constant (i.e.,   ri
0).  If Q

.
  is proportional to ri

2, 

then WSS should increase in smaller arteries (  ri
-1) , which appears to be the case (Fig. 2).  

However, we found that the exponent in fact varies between 3 and 2 depending on arterial 

size, so we can calculate wall shear stress according to a modified shear stress equation,  = 

(4 Q
.
  )/( ri

n) , where n is the derivative of the polynomial equation for Q
.
  and ri.  The 

descriptive equation for the curve based on the derivative is log τ = 0.200 log ri
2 - 0.017 log ri 

+ 0.530 (R2 = 0.70; n = 92) (Electronic supplementary material Fig. S1).  This modified 

equation also shows that WSS increases with decreasing arterial size, from nearly 3 dyne 

cm-2 in the largest arteries to above 1500 dyne cm-2 in the cremaster arteries of rats, which 

is certainly unrealistically high.  All of the calculations of WSS should be approached with 

caution for three reasons.  First, the standard equation assumes that WSS is inversely 

proportional to ri
3, which is doubtful.  Second, they are based on flow rates during rest, but 

flow rates in large arteries supplying muscles can increase greatly, without a complete 

compensatory increase in radius (Cheng et al., 2003).  Third, they assume that blood 

viscosity is constant, but the effective viscosity near the wall of the smallest arteries might 

be reduced (Sriram et al., 2014). 

 

Blood flow rate in relation to basal metabolic rate 

The most represented artery in the dataset is the common carotid artery.  When the effect 

of body mass is accounted for, there is a positive relationship between common carotid 

artery blood flow rate and whole-body BMR (Fig. 6).  This implies that species with higher 

BMR also have higher cephalic perfusion rates and brain metabolic rates.  This positive 

relationship is similar to the relationship observed between brain size and metabolic rate in 

several studies of eutherian mammals.  Body-mass-independent brain size is positively 

correlated with body-mass-independent metabolic rate in humans (Javed et al., 2010; 

Müller et al., 2011) and inbred strains of mice (Konarzewski and Diamond, 1995), and in 

eutherian mammals in general (Navarrete et al., 2011; Weisbecker and Goswami, 2010).  In 

contrast, there is no relationship between brain size and metabolic rate in marsupials 

(Weisbecker and Goswami, 2010), birds (Isler and van Schaik, 2006), or teleost fishes (Killen 

et al., 2016).  
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The correlation between brain size and metabolic rate, where present, and the 

correlation between common carotid artery blood flow rate and whole body BMR, may 

arise because the brain is energetically expensive to maintain and contributes significantly 

to whole-body metabolism.  The human brain is certainly expensive, accounting for around 

20% of BMR, but the contribution is much smaller (2 - 8%) in most non-primate species 

(Mink et al., 1981), although there are some notable exceptions (Nilsson, 1996).  The 

proximate cause of the relationship between body-mass-independent BMR and body-mass-

independent brain size has long been controversial (McNab and Eisenberg, 1989).  It may 

arise indirectly via extrinsic factors that influence both brain size and metabolic rate, rather 

than directly as a functional consequence of the contribution of the brain to whole-body 

metabolism (Glazier, 2018; McNab and Köhler, 2017; White and Kearney, 2013).  It is 

possible that mammals with high BMR are generally more active and require greater ability 

to process sensory information quickly. 

 

Practical use of the equations 

If the size of the lumen of an artery subject to normal physiological blood pressures is 

known, the flow rate can be estimated.  The second-order polynomial equation for the 

entire dataset (Fig. 1) is useful over the broad range of vessel size and can be applied loosely 

to any mammal, even if the destination of the arterial blood (e.g., neural or muscular) is not 

known.  Because the flow rate in the cephalic arteries is rather constant, the power 

equation (Fig. 3) can be used more precisely to estimate blood flow rate to the brain.  The 

usefulness of the equations is enhanced over previous attempts, because they do not 

involve adherence to theory (Q
.
   ri

3), and there are no assumptions about the scaling of 

WSS on body mass.  In particular, we previously used the relationship, Q
.
 = (  ri

3)/(4 ), and 

assumed that  = 167 Mb
-0.20, based on data from only humans and rats, to estimate blood 

flow rates through the internal carotid artery from the radius of the carotid foramen 

(Seymour et al., 2015).  This assumption was tenuous, not only because it was based on just 

two species, but also because the functional relationship between WSS and body mass was 

quite obscure.  This aspect of our method was criticized (Boyer and Harrington, 2018a), 

defended (Seymour and Snelling, 2018) and then supported (Boyer and Harrington, 2018b).  

With the present analysis, however, we can circumvent the issue altogether and not involve 

WSS or body mass.  The new empirical equations apply well to a broad range of arteries 

over a broad range of body size under resting conditions, so they offer the prospect of 

estimating blood flow rate (and hence, oxygen delivery and metabolic rate) in organs 

according to the size of their supply arteries.   
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Figures 
 
 
 

 
 

Figure 1.  Relationship between log blood flow rate (Q
.
 ; cm3 s-1) and log systemic arterial 

lumen radius (ri; cm) in nine genera of mammals at rest.  The equation for the polynomial 

regression line is: log Q
.
  = -0.20 log ri

2 +1.91 log ri +1.82.  95% confidence bands for the 

regression line are shown.  The value of the slope of the line at any point (derivative n) is 

given on the top axis. 
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Figure 2.  Relationship between log wall shear stress (τ; dyne cm-2) and log systemic arterial 

lumen radius (ri; cm) in mammals at rest, calculated from the Poiseuille shear stress 

equation,  = (4 Q
.
  )/( ri

3).  The equation for the polynomial mean regression line is: log τ 

=-0.20 log ri
2 -1.09 log ri + 0.53.  95% confidence bands for the regression line are shown. 
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Figure 3.  Subset of the data for blood flow rate (Q
.
 ; cm3 s-1) in relation to lumen radius (ri; 

cm) in the major cephalic arteries only, including the common carotid, internal carotid, 

vertebral, basilar, anterior cerebral, middle cerebral and posterior cerebral arteries for six 

species of mammals (Mus, Rattus, Oryctolagus, Canus, Homo, Equus) at rest. The allometric 

equation for the power mean regression line of these arteries is Q
.
  = 155 ri

2.49±0.17.  95% 

confidence bands for the regression line are shown.  Note that arithmetic data are plotted 

on logged axes. 
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Figure 4.    Effect of body mass (Mb; kg) on blood flow rate (Q
.
 ; cm3 s-1) in three major 

arteries of mammals at rest.  The allometric equations are: femoral artery, Q
.
  = 0.12 

Mb
0.80±0.34 (R2 = 0.88; n = 7); aorta, Q

.
  = 1.15 Mb

0.74±0.24 (R2 = 0.95; n = 6); common carotid 

artery, Q
.
  = 0.24 Mb

0.80±0.06 (R2 = 0.97; n = 31).  95% confidence bands for each regression line 

are shown. Note that arithmetic data are plotted on logged axes. 
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Figure 5.  Effect of body mass (Mb; kg) on wall shear stress (τ; dyne cm-2) in three major 

arteries of mammals at rest.  The allometric equations are: femoral artery, τ = 61 Mb
-0.49±0.32 

(R2 = 0.76; n = 6); aorta, τ = 18 Mb
-0.44±0.29 (R2 = 0.82; n = 7); common carotid artery, τ = 25 

Mb
-0.14±0.06 (R2 = 0.45; n = 31).  95% confidence bands for each regression line are shown. 

Note that arithmetic data are plotted on logged axes. 
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Figure 6.  Relationship between the residuals of log common carotid artery blood flow rate 

(Q
.
 , cm3 s-1) and the residuals of log whole-body basal metabolic rate (BMR, ml O2 h-1).  

Because both variables are significantly related to body mass (Mb, kg), residuals of each 

variable from linear regressions that relate Q
.
  and BMR to Mb are shown.  The line 

represents the parameter estimate for the effect of BMR on Q
.
 , accounting for Mb, in a 

linear mixed model including a random effect of species identity (log Q
.
  = -4.90 + 1.49 log 

BMR - 0.279 log Mb). 
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Figure S1.  Relationship between log wall shear stress (τ; dyne cm-2) and log systemic arterial 
lumen radius (ri; cm) in mammals at rest, calculated from the ‘modified’ Poiseuille shear 
stress equation,  = (4 Q

.
  )/( ri

n), where n is the derivative of the equation in Fig. 1 of the 
main manuscript.  The equation for the polynomial mean regression line is: log τ = 0.200 log 

ri
2 - 0.017 log ri + 0.530 (R2 = 0.70; n = 92). 

Raw data

Click here to Download Raw Data 

Journal of Experimental Biology: doi:10.1242/jeb.199554: Supplementary information
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stress equation,  = (4 Q

.
  )/( ri

n), where n is the derivative of the equation in Fig. 1 of the 
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