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Abstract 

Despite the use of fish models to study human mental disorders and dysfunctions, knowledge 

of regional telencephalic responses in non-mammalian vertebrates expressing alternate stress 

coping styles is poor. Since perception of salient stimuli associated with stress coping in 

mammals is mainly under forebrain limbic control, we tested region-specific forebrain neural 

(i.e. mRNA abundance and monoamine neurochemistry) and endocrine responses at basal 

and acute stress conditions for previously characterised proactive and reactive Atlantic 

salmon. Reactive fish show a higher degree of the neurogenesis marker proliferating cell 

nuclear antigen (pcna) and dopamine activity under basal conditions in Dl (proposed 

hippocampus homologue) and higher post-stress plasma cortisol levels. Proactive fish 

displayed post-stress higher serotonergic signalling (i.e. higher serotonergic activity and 

expression of the 5-HT1A receptor abundance) in the proposed amygdala homologue (Dm), 

increased expression of the neuroplasticity marker brain derived neurotropic factor (bdnf) in 

both Dl and Vv (lateral septum homologue), as well as increased expression of the 

corticotropin releasing factor 1 (crf1) receptor in the Dl, in line with active coping neuro-

profiles reported in the mammalian literature. We present novel evidence of proposed 

functional equivalences in the fish forebrain with mammalian limbic structures.  
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Introduction 

Many studies reported consistent and correlated behavioural and physiological traits in 

vertebrates, including the correlation between dominant behaviour and lower stress reactivity. 

Notably, individuals perceive and react differently to their environment, and this affects their 

robustness to challenges such as stress and diseases (Dingemanse et al., 2010; Koolhaas, 

2008; Koolhaas et al., 1999; Seiffge-Krenke, 2011; Øverli et al., 2007). In this context, 

animals have to balance attention, inhibition of active behaviour and cognitive flexibility in 

relation to internal and external feedback in an ever-changing environment (Bari and 

Robbins, 2013). Coping styles have been defined as “a set of individual behavioural and 

physiological responses to stress which are consistent over time”, and are commonly used to 

study individual variations in the stress response of vertebrates, including fish (Koolhaas, 

2008; Koolhaas et al., 2007; Øverli et al., 2007). Behaviourally, proactive animals tend to be 

bolder, more aggressive, dominant and less flexible to changes in routines. Physiologically, 

proactive individuals are characterised by lower hypothalamic-pituitary-adrenal axis 

reactivity (i.e. lower post-stress cortisol), as well as lower brain serotonergic and higher 

dopaminergic activity, while reactive individuals exhibit an opposite behavioural and 

physiological profile (Koolhaas et al., 2007; Koolhaas et al., 2010; Koolhaas et al., 1999). 

Notably, while differences between coping styles in behaviour, hypothalamic-pituitary-

interrenal (HPI) axis reactivity (the fish’s HPA equivalent) and monoaminergic activity in 

multifunctional brain regions, such as the telencephalon, hypothalamus and the brain stem, 

have been reported in fish (Johansen et al., 2012; Schjolden et al., 2006; Silva et al., 2014; 

Øverli et al., 2001; Øverli et al., 2007), a more precise, region-specific, characterisation of 

telencephalic areas is still lacking. Region-specific studies of functional subdivisions and 

limbic nuclei are notoriously difficult in fish, as a result of their relatively small size. Yet, by 

characterisation of conserved neural circuits that regulate adaptive behavioural responses, a 

neural basis for individual variation can be discerned in teleosts (Maruska et al., 2013). As 

fish models are becoming increasingly popular to study central nervous systems diseases 

(Panula et al., 2006), comprehensive, functional and regional neural studies are needed to 

allow extrapolation of obtained results to mammalian models.       

In contrast to mammals, the fish’s telencephalon lacks a 6-layered pallium. Instead, 

teleostean telencephalic pallial areas contain aggregates of neurons (Ito and Yamamoto, 

2009), similar to birds (Karten, 1991; Shimizu, 2007). Interestingly, a lack of a 6-layered 

pallium does not imply an absence of so-called “higher functions”, and telencephalic cortical-

like functions have been reported in several fish species indeed (Bshary and Brown, 2014; 

Demski, 1983; Grosenick et al., 2007; Ito et al., 2007; Ocaña et al., 2015). The fish’s 

dorsomedial (Dm) and dorsolateral (Dl) pallium have been characterised as functional 

homologues to the mammalian amygdala and hippocampus, respectively, and are implicated 

in stimuli salience, memory and learning (Goodson and Kingsbury, 2013; O'Connell and 

Hofmann, 2011; Vargas et al., 2009). Furthermore, in terms of stimuli salience and emotional 

coding, the mammalian lateral septum appears to work in conjunction with the amygdala and 

hippocampus to regulate emotional reactivity and goal-oriented behaviour, respectively (Luo 

et al., 2011; Singewald et al., 2011). The ventral part of the ventral telencephalon (Vv) in fish 

has been proposed as putative homologue to the mammalian lateral septum (Goodson and 

Kingsbury, 2013; O'Connell and Hofmann, 2011).  
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By use of a behavioural paradigm, we characterised contrasting stress coping styles in a 

individually tagged domestic population of Atlantic salmon (Salmo salar L.). That is, fish 

that escaped an imposed hypoxia by swimming into an adjacent normoxic tank and fish that 

did not, were characterised as proactive and reactive coping styles, respectively. Following a 

resting period in their home tanks after coping style selection, target regions in the 

telencephalon were micro dissected to determine differences in monoamine neurochemistry 

and gene expression of serotonergic and corticotropin releasing factor (crf) systems (both 

important systems in the regulation of the HPI axis), as well as neural plasticity and 

proliferation genes, both in control conditions and following an acute stressor. Plasma 

cortisol levels were assessed as a direct indicator of HPI axis activity, which also gives 

physiological support to the assessment of proactive and reactive behavioural patterns. In situ 

hybridisation (ISH) analysis was conducted post-stress in order to visualise and identify 

activated telencephalic areas. We hypothesise that region-specific differences in monoamine 

neurochemistry and transcript abundance profiles within the telencephalon of proactive and 

reactive fish will be comparable to those reported for contrasting coping styles in mammals 

(Koolhaas et al., 2010; Veenema and Neumann, 2007) and believe that our results are 

important for understanding the association between individual behavioural differences and 

regulatory monoaminergic and neural plasticity substrates.  

Materials and Methods 

Statement on ethics  

This work was approved by the Norwegian Animal Research Authority (NARA), following 

the Norwegian laws and regulations with respect to experiments and procedures on live 

animals in Norway.  

Animals, facilities and hypoxia-response sorting  

The study was conducted at the Aquaculture Research Station in Tromsø (Norway), using 0+ 

Atlantic salmon (Atlantic QTL-innova IPN). The fish were reared at 10°C, continuous light 

regime and feeding ad libitum (Skretting Nutra). The fish were individually tagged using 

internal 12 mm PIT-Tags (HPT12 tags in pre-loaded tray, Biomark, Boise, US), injected with 

an MK-25 implant gun. The fish population (n = 480, divided over 8 groups) was reared in 

circular holding tanks (~ 116 L) with flow-through freshwater. Mean body mass two weeks 

prior to the experiment was 57.1 ± 7.3 g. The experimental setup for the hypoxia sorting 

consisted of two custom-made circular tanks (~ 200 L, diameter 65 cm, water depth 60 cm, 

Cipax AS, Bjørkelangen, Norway), i.e. one low oxygen/hypoxia and one normal 

oxygen/normoxia tanks. The tanks were connected at the surface level by a tube (inner 

diameter 9 cm). This tube was integrated with a custom-made spool PIT-Tag antenna 

(Biomark Ltd, Boise, US), which was linked to a Biomark FS2001 reader and tag manager 

software. In this way, we were able to identify fish leaving into the normoxia tank (i.e. 

proactive) and those staying (i.e. reactive) independent of the declining oxygen level. Each 

tank had a separate water in- and outlet.  In the hypoxia tank, the inlet was connected to a N2 

gas exchanger (15 mg N2 L
-1), which deoxygenated the inflowing water. Oxygen levels (mg 

O2 L-1) in the tanks were monitored every min, using an O2-monitoring system (Loligo 

Systems, Tjele, Denmark). Control tests, prior to the experiment, demonstrated that the 

oxygen depletion in the hypoxia tank was homogenous throughout the water column. Two 

video cameras were mounted on top of the tanks to observe the fish passing the tube between 
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the tanks. Each test took approximately five hours and started at 08:30 h. All tests were 

conducted in an equal manner. Prior to the test, the tanks were cleaned, water temperature 

regulated if necessary, and the water flow in each tank set to 3.5 L min-1. The fish were 

transferred from their holding tanks to the hypoxia tank as carefully as possible and left 

undisturbed (behind an opaque curtain) for the duration of the test. The fish were allowed to 

acclimatise in the system for two hours prior to the drop in oxygen levels.  During the decline 

in oxygen, water flow in the hypoxia tank was directed through the N2 gas exchanger, and a 

sliding door between the hypoxia and normoxia tank was opened, allowing fish to swim 

freely between the tanks. The experiment was terminated when oxygen levels reached 25% 

saturation in hypoxic tank, after which all fish were transferred back to their holding tanks. 

This test was conducted twice to assure consistency of the behavioural response.  

Sampling protocol  

After the sorting experiment, fish were left undisturbed in their holding tanks for a period of 

two-and-a-half months, after which they were sampled at basal and acute stress conditions.  

Reactive and proactive fish were sampled either straight from holding tanks (n = 22; 10 

reactive, 12 proactive) or after lowering the water level to 5 cm for 30 min (acute stress test; 

n = 28; 17 reactive, 11 proactive). Both proactive and reactive fish were collected 

simultaneously by netting them directly from their holding tanks (each tank contained mixed 

proactive and reactive fish). Immediately after netting, individuals were euthanised with an 

overdose of 1 g L-1 MS-222 (Finquel, Argent Chemical Laboratories, Redmond, WA, 

USA) buffered with 25 mg L-1 NaHCO3, which rendered them completely motionless (no 

opercular movement) within 10 s of immersion. Fish were rapidly weighed, fork length 

measured and a blood sample was taken from the caudal vessels with a 1-ml syringe fitted 

with a 23G needle containing the anticoagulant Heparine. Following centrifugation for 5 min 

at 9,289 rcf and 4C, plasma samples were frozen and stored at -80C for later analysis. Brain 

samples were processed in two different ways: (1) fish were deeply anaesthetised with 

buffered MS-222 and fixed by vascular perfusion with 4% paraformaldehyde (PF) in 0.1 M 

Sørensen’s phosphate buffer (PB; 28 mM NaH2PO4, 71 mM Na2HPO4, pH 7.2). The brains 

were dissected out and post fixed in fresh 4% PF in Sørensen’s PB for 16 h at 4°C. The tissue 

was washed three times 20 min in PB, cryopreserved overnight in 25% sucrose in PB at 4°C, 

embedded in Tissue-Tek OCT-Compound (Sakura Fintek) and stored at -80°C until 

sectioning for in situ hybridisation. (2) Fish were decapitated and whole heads placed in 

containers with Tissue-Tek O.C.T compound and immediately frozen in liquid nitrogen. 

Frozen brains were then placed in individually labelled tubes and stored at -80°C until 

sectioning and microdissection for monoamine and gene expression analyses. Right and left 

lobes were randomised to control for any possible lateralisation differences. Since we did not 

find a lateralisation effect between right and left lobes the data were pooled (data not shown).      

Cortisol radioimmunoassay 

Undiluted plasma (in duplicates) was assayed using a radioimmunoassay (RIA) following the 

procedure described by Gorissen et al. (2012). Intra- and inter-assay variations were 3.5 and 

12.5%, respectively, and cross-reactivity of the cortisol antibody (antibody [xm210]; Abcam, 

Cambridge, MA, USA) was as follows: cortisol 100%, 11-deoxycortisol 0.9%, prednisolone 

5.6%, corticosterone 0.6%, 11-deoxycorticosterone, progesterone, 17-hydroxyprogesterone, 

testosterone, oestradiol and oestriol all < 0.01%.  
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Brain sectioning and microdissections 

Frozen whole heads were sliced in 100 µm serial sections using a Leica CM1950 cryostat 

(Leica, Wetzlar, Germany), at -18°C. The sliced tissue was thaw-mounted on glass slides, 

and refrozen at -80°C for micro dissection. 

The glass slides were placed on a cooling plate set at -14°C. Using a microscope, three areas 

were microdissected using a modified 23G needle, the Dl as a whole (for the purposes of this 

study, we did not distinguish between Dl sub-regions), the Dm and the Vv as depicted in Fig 

1. Brain regions were identified using several salmonid stereotaxic atlases (Carruth et al., 

2000; Navas et al., 1995; Northcutt and Davis, 1983). Microdissections for the Vv area were 

collected until the appearance of the central part of the ventral telencephalon (Navas et al., 

1995). On average, between 33-42 punches were taken for the Dl, 33-43 for the Dm and 10-

12 for the Vv area. Micro-dissected tissue (alternating left and right lobe of the 

telencephalon) was either injected into 50 µl Trizol® (Invitrogen, Carlsbad, CA, USA) for 

later analyses of gene expression, or into 50 µl sodium acetate buffer (pH = 5) containing an 

internal standard (3,4-Dihydroxybenzilamine Hydrobromine; DHBA) for monoamine 

analysis. All samples were stored at -80°C immediately after extraction.  

Monoaminergic neurochemistry  

Frozen samples were thawed and centrifuged for 10 min at 15,493 rcf and 4C. The 

supernatant was used in order to analyse monoamine neurochemistry by means of high-

performance liquid chromatography (HPLC), while the remaining pellet was refrozen at  

-80°C for later analysis of protein concentration by means of a Bradford protein assay. Both 

the HPLC and the protein analysis methodology were performed as described in Vindas et al. 

(2014) 

Relative transcript abundance 

Total RNA from telencephalic microdissected tissue was extracted by thawing frozen 

samples (immersed in 50 µl Trizol®), which were then vortexed and left for 5 min at room 

temperature before spinning for 20 min at 13,000 × g. Ice-cold 70% EtOH was then added to 

the samples. Next, samples were transferred into an RNAeasy column in 2-ml tubes and 

manufacturer’s instructions for the RNeasy® Plus Mini kit (QIAGEN, West Sussex, UK) 

were followed from this step onwards. RNA concentrations were assessed using a 

NanoDrop® ND-1000 UV–Vis Spectrophotometer (NanoDrop Technologies, Rockland, DE, 

USA). RNA quality was inferred from RNA integrity numbers (RINs) calculated using a 

2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, USA). A RIN ≥ 8 was accepted as 

sufficient RNA quality. First-strand cDNA was synthesised from 0.15 μg DNase I-treated 

(DNA-free™ Kit, Ambion Applied Biosystems) total RNA using Superscript III reverse 

transcriptase (Invitrogen, Carlsbad, CA, USA) with oligo dT12–18 primers synthesised by 

Invitrogen. 

Gene sequences were retrieved using NCBI (www.ncbi.nlm.nih.gov/; accession numbers are 

given in Table S1). Gene specific primers for Atlantic salmon for the remaining interest 

genes were designed using the web-based Primer3 programme 

(http://frodo.wi.mit.edu/cgibin/primer3/primer3_www.cgi) and synthesised by Invitrogen. 

Four primer pairs or more were designed, overlapping intron-exon junctions for each gene, 

and primer pairs with the lowest Cq-values in the PCR, and a single peak in the melting 
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curve, were chosen and are listed in Table S1. The qPCR products were sequenced to verify 

that the primers amplified the right cDNA. qPCRs were carried out using a Roche LC480 

light cycler® (Roche Diagnostics, Penzberg, Germany) as described by Johansen et al. 

(2011). The reference genes used were ef1aα, S20 and hprt1. As S20 yielded the lowest Cq-

values and least variance both between and within plates, this gene was therefore chosen as 

internal control for calculation of relative expression (ΔΔCq). All Cq values  40 were 

eliminated since such high numbers imply low efficiency. Furthermore, all Cq values above 

35 were rejected based upon comparison between the Cq of the lowest concentration 

unknown and non-template controls, following procedures described by Bustin et al. (2009). 

 In situ hybridisation (ISH) 

ISH for bdnf and cfos transcript abundance (post-stress) was conducted on parallel sections of 

three Atlantic salmon per coping style. Adjacent transversal 12-µm sections were cut using a 

Leica CM 1850 cryostat (Leica Microsystems, Wetzlar, Germany), collected on SuperFrost 

Ultra Plus glasses (Menzel Glaser) and dried at 65°C for 10 min. Digoxigenin-labeled 

riboprobes were prepared using a digoxigenin (DIG)-RNA labelling mix in accordance with 

the manufacturer’s instructions (Roche Diagnostics, Mannheim, Germany). The ISH probes 

for cfos and bdnf were 906 and 485 nucleotides long, respectively. Forward 

ACTCCGCTTTCAACACCGAC and reverse TGTAGAGAGGCTCCCAGTCC and forward 

TCACAGACACGTTTGAGCAGGTGA and reverse ATGCCTCTTGTCTATTCCACGGCA 

primers were used to clone the cfos and bdnf probes, respectively. The quality and quantity of 

the synthesised riboprobes were assessed by agarose gel electrophoresis. Pre-treatment and 

treatment of sample for ISH was conducted as specified by Ebbesson et al. (2011).  

 Statistical analyses.  

Two-way analysis of variance (ANOVA) was used to compare cortisol levels, 

monoaminergic neurochemistry and gene expression data, with coping style (reactive vs. 

proactive) and treatment (basal conditions vs. acute stress) as independent variables. Models 

were assessed by their capacity to explain the variability and interaction effects and were 

accepted or rejected according to total model “lack of fit” probabilities (provided by the 

ANOVA model). In addition, when an interaction effect between stress and coping style was 

found, planned contrast effect tests were conducted in order to ascertain differences between 

groups. A corrected α = 0.01 was used to establish significance for this four-way multiple 

comparisons. Before final acceptance of the model, diagnostic residual plots were examined 

to ensure that no systematic patterns occurred in the errors (e.g. fitted values vs. observed 

values and q-q plots). When necessary values were either log- (concentrations) or arcsine-

transformed (ratios). Rejection criteria for Cq values resulted in several values being omitted, 

in particular for genes with a low transcript abundance. Therefore, these samples were not 

taken into consideration in the statistical analysis. Please see Table S2 for ‘n’ numbers for 

each gene of interest. An overview of average Cq values and efficiencies for all target genes 

can be found in the Table S3.    
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Results    

Hypoxia-response sorting 

There was a clear difference in the individual reaction to an increasingly hypoxic 

environment. Approximately 45% of the fish remained in the hypoxic tank during the entire 

test period (i.e. reactive); whereas ~55% left the hypoxic conditions after some time and 

swam into the neighbouring normoxic tank (i.e. proactive). After the onset of the oxygen 

decline in the hypoxia tank we observed there was a linear reduction in oxygen levels 

between 0.05 and 0.10 mg O2/min. Most of the salmon remained inactive in the hypoxia tank 

until approximately 60 min after oxygen decline (at approximately 40% O2 saturation), from 

that moment onwards, there was a steady flow of proactive fish migrating towards the 

normoxic tank. Notably, while some fish crossed back and forth between tanks during the 

first 60 min of O2 decline, movement was exclusively unidirectional towards the normoxic 

tank thereafter. On average, proactive fish left the hypoxic tank after 69 min (at 

approximately 30.4% O2 saturation), while reactive fish remained inactive in the hypoxia 

tank throughout the experiment (the end point of the experiment was set at 25% O2 

saturation, which was reached at approximately 80 min).  

Plasma cortisol levels 

Cortisol basal and post-stress values were 5 ± 1 ng ml-1 and 150 ± 24 ng ml-1 for reactive and 

6 ± 2 ng ml-1 and 96 ± 17 ng ml-1 (means ± SEM.) for proactive fish, respectively. As 

predicted, both groups reacted with a significant increase in cortisol levels to acute stress (p < 

0.005). However, reactive individuals had significantly higher cortisol (p < 0.001) than 

proactive fish, after the aforementioned acute stressor. ANOVA statistics: Style: F(3,108) = 14,  

p < 0.001, Stress: F(3,108) =  143, p < 0.001, Interaction (style × stress): F(3,108) =  9.36, p = 

0.002. 

Monoamine neurochemistry 

Regarding serotonin (5-hydroxytryptamine, 5-HT) and its main catabolite 5-

hydroxiindoleacetic acid (5-HIAA), we found that only proactive fish displayed higher 5-

HIAA concentrations after stress in the Dm (p < 0.001; Fig. 2), with a tendency for 5-HIAA 

levels to be higher in proactive compared to reactive post-stress (p = 0.03; corrected α ≤ 

0.01). Fish from both coping styles responded with an increase in 5-HIAA levels after stress 

in the Dl (Fig. 2). No significant changes in Dl or Dm 5-HT levels were found.  Surprisingly, 

5-HT and 5-HIAA levels in the Vv were below level of detection. 

Reactive fish had overall higher concentrations of both dopamine (DA; p = 0.02) and its main 

catabolite 3,4-dihydroxyphenylacetic acid (DOPAC; p = 0.007) compared to proactive 

individuals in the Dl. No other statistically significant differences were evident in the Dm or 

Vv (Fig. 2). Interestingly, DA and DOPAC concentrations in the Vv where nine and seven-

fold higher, than those in the Dl and Dm, respectively. This suggests that DA signalling in 

this area may be particularly important, but perhaps not under the present conditions of our 

study.    
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Relative transcript abundance 

We analysed two paralogues for both the 5-HT1A receptor (5-HT1Aα and 5-HT1Aβ) and the 5-

HT transporter (5-HTTA and 5-HTTB). Region-specific analysis showed an overall higher 

transcript abundance (i.e. at both basal and acute stress conditions) of both 5-HT1Aα and 5-

HT1Aβ in the Dm (p ≤ 0.02) and 5-HT1Aβ in the Vv (p ≤ 0.04) in proactive, compared to 

reactive fish (Fig. 3). Both 5-HT transporter paralogues had a low transcript abundance in the 

micro dissected telencephalic areas. In fact, 5-HTTB was below detection levels and 5-HTTA 

was mainly expressed in the Dm. 

The relative mRNA abundance of the neural plasticity marker bdnf was significantly 

increased in response to stress in both Dl (p = 0.002) and Vv (p = 0.005), of proactive 

individuals only (Fig. 3). The neural proliferation marker proliferating cell nuclear antigen 

(pcna) was higher in the Dl of reactive fish at basal conditions, compared to proactive 

individuals (p = 0.008) and downregulated in the Dl post-stress in reactive fish only (p = 

0.01, Fig. 3). There were no statistically significant differences in transcript abundance of the 

cell differentiation marker neurod in any of the studied areas and experimental groups.  

We also analysed transcript abundance of crf, crf-binding protein (crfbp) and the CRF 

receptors 1 (crf1) and 2 (crf2). We found that relative levels of crf mRNA showed no 

differences in the Dl or Dm. There were no effects in crfbp expression in the Dl, but there 

was a tendency for proactive individuals to have higher expression of crfbp compared to 

reactive fish after stress in the Dm (p = 0.03, corrected α ≤ 0.01). The crf1 expression in the 

Dl was elevated overall in proactive, compared to reactive fish (p = 0.02). No differences in 

crf1 expression were found in the Dm (Fig. 4). Expression of crf2 was not detectable in any of 

the microdissected areas. In addition, we found little to none expression of any of the studied 

genes of the CRF system in the Vv.        

An overview of coping style and stress-induced differences for all studied variables is given 

in Table S2. Average Cq values and efficiencies for genes are provided in Table S3.     

 In situ hybridisation (ISH) 

ISH analysis of cfos and bdnf transcript abundance showed clear post-stress activation of our 

target telencephalic areas, viz. Dl, Dm and Vv, in both coping styles (Fig. 5). In addition, we 

found differences in spatial distribution of cfos and bdnf positive cells between coping styles, 

which suggests a heterogeneity of activation within target regions. Notably, basal levels of 

transcript abundance were not detectable, most likely due to the fact that since all samples 

were processed together, we had to stop the colouring reaction before any cells were clearly 

labelled at basal conditions to avoid background staining in post-stress samples.  
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Discussion 

We demonstrate that in response to stress, individual salmon react with a different 

behavioural output, which is accompanied by specific changes in transcript abundance and 

monoamine neurochemistry in forebrain areas. We found clear differences between proactive 

and reactive fish, at both basal and post-stress conditions, with respect to abundance of 

signalling molecules in the (cortical-like structures) dorsolateral (Dl) and dorsomedial (Dm) 

pallium, as well as the subpallial ventral part of the ventral telencephalon (Vv). These 

signalling molecules include monoamines, downstream genes for the serotonin (5-HT) and 

corticotropin-releasing factor (CRF) systems, and markers for neural plasticity and cell 

proliferation. In addition, we found a differential effect of post-stress plasma cortisol 

concentrations, between coping styles. These results provide evidence that distinct 

telencephalic neuronal networks in fish are important centres for processing stimuli, which 

result in distinct and individual behavioural responses; e.g. we show how changes in neuronal 

plasticity and serotonergic signalling in the Dm appear to be characteristic to proactive fish in 

response to an acute stressor. These results will be fundamental for the advancement of fish 

animal models, which are increasingly being used in studies on central nervous system 

(dys)function.    

In response to an increasing hypoxic environment, not all individuals showed the same 

behavioural response. We observed that most of the individuals that, proactively, escaped 

their immediate hypoxic surroundings into the neighbouring normoxic tank, did so once 

oxygen saturation declined to ~30%. Once left, they never went back into the hypoxic tank, 

while others chose a more passive response and remained in their original tank, even at very 

low oxygen levels (25% O2 saturation). Notably, the response of fish to hypoxia as a group-

based test for selection of coping styles, has been found to be highly consistent in European 

seabass (Dicentrarchus labrax, L.; (Ferrari et al., 2015), as well as Atlantic salmon 

(Thörnqvist et al., 2015 and Damsgård et al. in preparation). We found that the fish that 

stayed exhibited a passive response to hypoxia, accompanied by higher post-stress cortisol 

levels to acute stress compared to the ones that left, which is indicative of reactive and 

proactive coping styles, respectively (Ruiz-Gomez et al., 2011; Ruiz-Gomez et al., 2008; 

Schjolden et al., 2005; Øverli et al., 2007).  

Mechanisms that aid an organism to cope with environmental changes regulate individual 

differences in motivation, which is only possible through differences regulation of the neural 

network and processing of environmental input (Ebbesson and Braithwaite, 2012; Zupanc 

and Lamprecht, 2000). It is now well-accepted that a complex structural and functional 

activation of neural networks (in particular forebrain cell populations), molecular processes 

and neurotransmitter systems (e.g. the CRF and the 5-HT system) underlie different coping 

styles (Koolhaas et al., 2010; Puglisi-Allegra and Andolina, 2015). In our study, proactive 

fish where characterised by increased serotonergic signalling, particularly in the Dm 

(proposed homologue of the amygdala). That is, proactive fish responded to stress with a 

significant increase in serotonergic activity (measured as changes in 5-HT’s main catabolite, 

5-HIAA (Shannon et al., 1986)) in the Dm and had an overall higher expression (at both basal 

and acute stress conditions) of both the 5-HT1A receptor paralogs in the Dm and of 5-HT1Aβ in 

the Vv (proposed lateral septum homologue). In agreement with our results, proactive 
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animals are characterised by higher 5-HT neurotransmission, particularly after acute stress 

(Koolhaas et al., 2007; Koolhaas et al., 2010; Koolhaas et al., 1999), specifically in the 

mammalian amygdala and lateral septum (Veenema and Neumann, 2007). Notably, regional 

differences in 5-HT1A transcript abundance are important since these results support the 

notion that differential 5-HT receptor distribution in neuronal networks (at least partially) 

determines active and passive coping strategies (Puglisi-Allegra and Andolina, 2015).    

Proactive fish responded to the stressor with increased bdnf mRNA abundance in the Dl  

which is the proposed hippocampus homologue (Goodson and Kingsbury, 2013; O'Connell 

and Hofmann, 2011; Vargas et al., 2009) and the Vv. Synaptic plasticity is promoted by bdnf, 

as is neurogenesis, cell survival, and the strengthening of learning and memory (Mattson et 

al., 2004). Recently, Smith et al. (2014) characterised forebrain bdnf expression in mice that 

displayed differential behavioural responses to social aggression and fear conditioning. They 

reported that mice that chose to escape an aggressive conspecific, showed higher bdnf 

abundance in the amygdala, compared to individuals that did not escape. Similarly, we also 

found increased bdnf mRNA abundance after an acute stressor in proactive animals, which 

had previously chosen to leave an increasingly unfavourable (i.e. hypoxic) environment, 

although this was in the Dl and Vv and not in the Dm. The increase of bdnf in different 

functional brain areas might be due to the nature of the stressful stimuli utilised in each 

experiment (in Smith and colleagues’ study, the mice were subjected to an aggressive 

conspecific, while in our experiment fish were subjected to crowding stress). In mammals, 

the hippocampus and lateral septum are associated with memory, learning and goal-oriented 

behaviour (Jarrard, 1993; Luo et al., 2011; O’Connell and Hofmann, 2012). When we 

extrapolate these functional roles to the fish’s proposed telencephalic equivalents, it is 

tempting to hypothesise that this increase in bdnf may help proactive fish in displaying a 

greater behavioural reactivity to acute stressors (i.e. active coping), particularly considering 

that the fish Dl has been highly associated with memory and spatial navigation (Broglio et al., 

2015; Vargas et al., 2009). It would therefore be interesting to characterise the learning 

ability of proactive and reactive individuals in response to different stressful situations to 

further explore this hypothesis.  

Interestingly, reactive fish had higher basal proliferating cell nuclear antigen (pcna) 

transcript abundance in the Dl, compared to proactive individuals. In agreement with our 

results, Johansen and colleagues (2012) report higher pcna abundance in reactive compared 

to proactive rainbow trout after short-term confinement (i.e. acute stress). This may be 

particularly important since reactive fish show greater behavioural flexibility regarding 

routine formation than proactive individuals (Ruiz-Gomez et al., 2011). Notably, we believe 

that our results compliment the information previously reported by Johansen and colleagues, 

since it pin-points a specific telencephalic subregion, the Dl, in which there is higher pcna 

abundance in reactive fish. However, in our experiment we did find an increase in pcna 

abundance to acute stress in the studied telencephalic subregions, in fact, there was an overall 

downregulation in pcna to stress in the Vv. We believe that this illustrate the importance of 

studying region-specific areas within the brain, since it may allow for a better understanding 

of the activation of specific neuronal populations in response to stimuli. In our experiment, 

reactive fish also exhibited higher dopamine (DA) activity in the Dl. DA signalling in limbic 

areas is associated with increased attention and arousal (Alcaro et al., 2007; Redgrave et al., 

1999). Notably, in a previous study, we found that Atlantic salmon experiencing 
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unpredictability of reward where characterised by a potentiated brain dopaminergic system 

(Vindas et al., 2014), which suggest that the link between DA signalling and increased 

attention is also present in salmon. Our current results suggest that, compared to proactive 

fish, reactive individuals express elevated markers for increased perception and attention in 

the Dl, which are important for memory and learning (O’Connell and Hofmann, 2012).  

The biological effect of corticotropin-releasing factor (CRF) is mediated through its receptors 

(CRF1 and CRF2) and binding protein (CRFBP), which regulate the stress response, appetite 

and modulates the immune response (Flik et al., 2006; Manuel et al., 2014). We found that 

crf1 mRNA levels in the Dl were higher in proactive fish (at both basal and acute stress 

conditions). In mammals, telencephalic CRF mediates an array of responses such as anxiety-

like behaviour, increased arousal and altered locomotor activity (Owens and Nemeroff, 

1991). Presently, we cannot say if this holds in fish, but considering our results and the fact 

that crf receptors have been associated with alternate coping styles in fish (Puglisi-Allegra 

and Andolina, 2015), further investigation should be focused towards the role of this system 

in the regulation of alternate coping styles. Notably, we found that the abundance of crf, and 

crfbp (as well as the crf1 and crf2 receptor) genes was low in the Vv (see S3 Table for Cq 

values). There is evidence that both crf and crfbp are expressed in the Vv of zebrafish 

(Alderman and Bernier 2007), so either there are notable species-specific differences amongst 

teleosts, or the conditions studied in our experiment result in downregulation of these genes 

in the Vv. It is likely, that these genes may show higher regulation in hypothalamic areas, like 

the preoptic area, since it is there that the stress axis is activated. Therefore, it would be 

interesting to study this area under similar conditions in future studies.  

Interestingly, our ISH results on bdnf and c-fos mRNA abundance show differences in spatial 

distribution of post-stress labelled cells between coping styles, which suggests heterogeneity 

of activation within target regions. That is, while c-fos labelled cells in the Dm of proactive 

fish show an even distribution over the whole region, this is not the case in reactive fish, in 

which labelled cells are found mainly in the upper part of the Dm. Similarly, c-fos labelled 

cells in the Vv of proactive individuals were found mainly in the upper area of this region, 

while they were distributed throughout the Vv in reactive fish. Interestingly, while bdnf 

labelled cells in the Vv of both reactive and proactive fish show similar activation, this 

appears to be the result of not only the same, but also different subpopulations within the 

Vv´s neuronal network. It has become increasingly clear that telencephalic neuronal 

populations are highly heterogenic in teleost fishes, where subpopulations within regions, 

such as the Dl, contain functionally equivalent structures to mammalian nuclei (Broglio et al., 

2015). In the present study, the entire Dl, Dm and Vv were sampled; the differential 

activation within these regions remains to be determined. Further research should be directed 

towards dissecting these complexes within distinct teleostean telencephalic areas, especially 

since it is becoming increasingly clear that the brain in early vertebrates is not as simple as it 

once was thought (Ocaña et al., 2015). 
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Conclusion 

Vertebrate models, such as fish, are increasingly being used to study human mental disorders 

and dysfunctions (Panula et al., 2006). Notably, knowing the evolutionary history of 

mammalian forebrain networks, as well as their functional equivalents in fish, is crucial for 

the advancement and correct interpretation of these translational models. Here we present 

original data on the proposed teleostean functional equivalents to the amygdala, hippocampus 

and lateral septum, in a fish population screened for different coping styles. We found that 

there are marked differences between reactive and proactive fish, particularly after stress that 

find resemblance in mammalians. Proactive fish were characterised by a stress-induced 

increase in 5-HT signalling in the Dm as well as higher bdnf transcript abundance in the Dl 

and Vv, accompanied by lower post-stress cortisol levels, compared to reactive individuals. 

At basal levels, however, reactive fish showed increased pcna mRNA levels and DA activity 

in the Dl. We hope that these results inspire more functional neuroanatomical research in fish 

to understand how evolutionarily conserved and complex neural systems regulate perception, 

attention and stimuli salience to the surrounding environment, as well as their link to disease 

vulnerability.  
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Figures 

 

 

 
Fig. 1 Sagittal (A) and the telencephalic transverse (B) view of an Atlantic salmon brain. The 

transverse section of the telencephalon consists of, on the right, a diagram depicting the 

location of the dorsolateral pallium (Dl), the dorsomedial pallium (Dm) and the ventral part 

of the ventral telencephalon (Vv) and, on the left, microdissected areas on a Cresyl Violet 

Nissl stained section showing removed tissue sections for each telencephalic subregion. BS: 

brain stem, Cer: cerebellum, Hyp: hypothalamus, OB: olfactory bulb, OC: optic chiasm, OT: 

optic tectum, P: pituitary. 
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Fig. 2 Effect of coping style (proactive vs. reactive) and stress (basal vs. acute stress) on 5-

HIAA (A) dopamine (DA; B) and DOPAC (C) neurochemistry in the dorsolateral pallium 

(Dl), the dorsomedial pallium (Dm) and in the ventral part of the ventral telencephalon (Vv) 

of Atlantic salmon. Lower case letters indicate significant ANOVA differences within style 

and/or stress groups in each telencephalic subregion (i.e. not between subregions). Data are 

presented as mean ± SEM. 
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Fig. 3 Effect of coping style (proactive vs. reactive) and stress (basal vs. acute stress) on the 

relative mRNA abundance (to the S20 reference gene) of the serotonin receptors 5-HT1Aα (A) 

and 5-HT1Aβ (B), the proliferating cell nuclear antigen (pcna, C), and the brain derived 

neurotrophic factor (bdnf, D) in the dorsolateral pallium (Dl), the dorsomedial pallium (Dm) 

and in the ventral part of the ventral telencephalon (Vv) of Atlantic salmon. Lower case 

letters indicate significant ANOVA differences within style and/or stress groups in each 

telencephalic subregion (i.e. not between subregions). Data are presented as mean ± SEM. 
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Fig. 4 Effect of coping style (proactive vs. reactive) and stress (basal vs. acute stress) on the 

relative mRNA abundance (to the S20 reference gene) of the corticotropin releasing factor 

(crf, A), crf-binding protein (crfbp, B) and the CRF receptor 1 (crf1, C) in the dorsolateral 

pallium (Dl) and the dorsomedial pallium (Dm) of Atlantic salmon. Lower case letters 

indicate significant ANOVA differences within style and/or stress groups in each 

telencephalic subregion (i.e. not between subregions). Data are presented as mean ± SEM. 
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Fig. 5 In situ hybridisation (ISH) of the immediate early gene c-fos and brain derived 

neurotrophic factor (bdnf) after an acute stress challenge in the dorsolateral (Dl) and 

dorsomedial (Dm) pallium as well as in the ventral part of the ventral telencephalon (Vv) of 

proactive and reactive fish. Arrows in pictures indicate stained cells. The scale bars represent 

100 μm. 
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Supplementary Table 1 Primer sequences for target genes 

Gene Primer Sequence 5’  3’ Accession nr. Reference 

ef1aα Fw  CCCCTCCAGGACGTTTACAAA 

Rev  CACACGGCCCACAGGTACA 

BT059133.1 Ingerslev et al. (2006). Expression profiling and validation of reference gene candidates in immune 
relevant tissues and cells from Atlantic salmon (Salmo salar L.). Molec Immunol 43, 1194-1201. 

S20 Fwd  GCAGACCTTATCCGTGGAGCTA 

Rev  TGGTGATGCGCAGAGTCTTG 

NM_001140843.1 Olsvik et al. (2005). Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic 
salmon. BMC Molec Biol 6, 21 

hprt1 Fwd  CGTGGCTCTCTGCGTGCTCA 

Rev  TGGAGCGGTCGCTGTTACGG 

BT043501.1 Andreassen et al. (2009). Characterization of full-length sequenced cDNA inserts (FLIcs) from 
Atlantic salmon (Salmo salar). BMC Genomics 10, 502. 

bdnf Fwd  ATGTCTGGGCAGACCGTTAC 

Rev  GTTGTCCTGCATTGGGAGTT 

GU108576.1 

 

Vindas et al. (2014). Coping with unpredictability: Dopaminergic and neurotrophic responses to 
omission of expected reward in Atlantic salmon (Salmo salar L.). PLoS ONE 9, e85543. 

pcna Fwd  TGAGCTCGTCGGGTATCTCT 

Rev  CTCGAAGACTAGGGCGAGTG 

BT056931.1 Vindas et al. (2014). Coping with unpredictability: Dopaminergic and neurotrophic responses to 
omission of expected reward in Atlantic salmon (Salmo salar L.). PLoS ONE 9, e85543. 

neurod Fwd  CAATGGACAGCTCCCACATCT 

Rev  CCAGCGCACTTCCGTATGA 

BT058820.1 Leong et al. (2010). Salmo salar and Esox lucius full-length cDNA sequences reveal changes in 
evolutionary pressures on a post-tetraploidization genome. BMC Genomics 11, 279-279. 

5-HT1Aα Fwd  ATGCTGGTCCTCTACGGGCG 

Rev  CGTGGTTCACCGCGCCGTTT 

AGKD01067361.1 

: 7182-7844* 

Thörnqvist et al. (2015). Natural selection constrains personality and brain gene expression 
differences in Atlantic salmon (Salmo salar). J Exp Biol 218, 1077-1083. 

5-HT1Aβ Fwd  TTGATCATGCGTTCCCAGCCGA 

Rev  AAAGGAATGTAGAACGCGCCGA 

DY694524 Thörnqvist et al. (2015). Natural selection constrains personality and brain gene expression 
differences in Atlantic salmon (Salmo salar). J Exp Biol 218, 1077-1083. 

5HTTA Fwd  ACAAACCACTCCCTCCTCCT 

Rev  CGGCTACATGGCTGAAATGC 

AGKD03016701.1 

: 3425-5030* 

Thörnqvist, et al. unpublished 

5HTTB Fwd  TCATGGCCATCTTTGGAGGG 

Rev  TTGTCACAGTTGGTCCAGGG 

AGKD03016179.1 

: 111470-112049* 

Thörnqvist, et al. unpublished 

crf Fwd  AACCAGCTCGACGACTCGATGG 

Rev  GCTATGGGCTTGTTGCTGTAACTG 

BT057824 Leong et al. (2010). Salmo salar and Esox lucius full-length cDNA sequences reveal changes in 
evolutionary pressures on a post-tetraploidization genome. BMC Genomics 11, 279-279. 

crfbp Fwd  TGAGCCCAACCAGGTCATCAATGT 

Rev  TCCCTTCATCACCCAGCCATCAAA 

BT059529 Leong et al. (2010). Salmo salar and Esox lucius full-length cDNA sequences reveal changes in 
evolutionary pressures on a post-tetraploidization genome. BMC Genomics 11, 279-279. 

crf1 Fwd  TGACCATCTGGGCTGTTGTGATCT 

Rev  TAAGATTGGTGGACAGCAGGAGCA 

------------ Nilson et al., unpublished 

crf2 Fwd  ACCATGGATGCTACGATTTACCA 

Rev  CTGTCTTGAAATGAATCCATCACACTGC 

------------ Nilson et al., unpublished 
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Supplementary Table 2 Mean (± SEM) relative transcript abundance of target genes (to the reference gene S20), serotonin (5-HT) and 

dopamine (DA) neurochemistry, as well as plasma cortisol in reactive and proactive fish at basal and acute stress conditions in dorsolateral 

pallium (Dl), dorsomedial pallium (Dm) and ventral part of the ventral telencephalon (Vv). Two-Way ANOVA statistics for effect of coping 

style, stress and the interaction between style and stress (if it was maintained in the model which was indicated by "lack of fit" analysis), are 

given for each variable.   
 Reactive  Proactive   ANOVA  

 Control (n = 10) Stress (n = 14) Control (n = 12) Stress (n =8) Style Stress Interaction 

Dl        

pcna 0.27 ± 0.12 0.08 ± 0.02 0.07 ± 0.02 0.15 ± 0.05 F(3,26) = 1.71, p = 0.2 F(3,26) = 1.05, p = 0.31 F(3,26) = 8.04, p = 0.009 

bdnf 0.17 ± 0.04 0.17 ± 0.02 0.17 ± 0.03 0.38 ± 0.08 F(3,35) = 4.02, p = 0.05 F(3,35) = 6.2, p = 0.02 F(3,35) = 4.62, p = 0.04 

neurod 0.06 ± 0.03 0.03 ± 0.005 0.04 ± 0.008 0.05 ± 0.01 F(2,24) = 1.47, p = 0.24 F(2,24) = 0.13, p = 0.72 ------ 

5-HT1Aα 0.01 ± 0.004 0.03 ± 0.01 0.02 ± 0.001 0.02 ± 0.005 F(2,27) = 0.02, p = 0.88 F(2,27) = 3.3, p = 0.08 ------ 

5-HT1Aβ 0.02 ± 0.004 0.01 ± 0.001 0.02 ± 0.008 0.01 ± 0.006 F(2,13) = 0.02, p = 0.89 F(2,13) = 1.56, p = 0.23 ------ 

5-HTTA ------ 0.006 ± 0.001 0.005 ± 0.001 0.004 ± 0.001 ------ ------ ------ 

5-HTTB ------ ------ ------ ------ ------ ------ ------ 

crf 0.04 ± 0.02 0.02 ± 0.003 0.02 ± 0.004 0.02 ± 0.003 F(2,31) = 1.47, p = 0.24 F(2,31) = 1.79, p = 0.19 ------ 

crfbp 0.04 ± 0.01 0.03 ± 0.005 0.03 ± 0.007 0.04 ± 0.01 F(2,29) = 0.12,  p = 0.73 F(2,29) = 0.35, p = 0.55 ------ 

crf1 0.005 ± 0.001 0.006 ± 0.001 0.005 ± 0.001 0.009 ± 0.001 F(2,26) = 6.55, p = 0.02 F(2,26) = 4.25, p = 0.05 ------ 

crf2 ------ 0.009 ± 0.002 0.02 ± 0.006 0.01 ± 0.002 ------ ------ ------ 

5-HT 125 ± 11 131 ± 11 125 ± 11 105 ± 6 F(2,40) = 1.41, p = 0.24 F(2,40) = 0.31, p = 0.58 ------ 

5-HIAA 26 ± 4 42 ± 4 22 ± 2 31 ± 3 F(2,40) = 4.16, p = 0.05 F(2,40) = 14.9, p < 0.001 ------ 

DA 92 ± 11 82 ± 12 72 ± 12 48 ± 10 F(2,39) = 5.98, p = 0.02 F(2,39) = 2.89, p = 0.1 ------ 

DOPAC 10 ± 1 9 ± 2 6 ± 2 5 ± 1 F(2,39) = 8.13, p = 0.007 F(2,39) = 0.27, p = 0.6 ------ 

Dm        

pcna 0.09 ± 0.02 0.08 ± 0.01 0.08 ± 0.01 0.07 ± 0.01 F(2,34) = 0.12, p = 0.73 F(2,34) = 0.41, p = 0.53 ------ 

bdnf 0.14 ± 0.03 0.1 ± 0.02 0.14 ± 0.03 0.14 ± 0.02 F(2,33) = 0.5, p = 0.48 F(2,33) = 0.99, p = 0.33 ------ 

neurod 0.03 ± 0.01 0.02 ± 0.002 0.01 ± 0.002 0.02 ± 0.006 F(2,34) = 1.04, p = 0.31 F(2,34) = 0.35, p = 0.56 ------ 

5-HT1Aα 0.01 ± 0.002 0.009 ± 0.001 0.01 ± 0.002 0.02 ± 0.004 F(2,34) = 5.78, p = 0.02 F(2,34) = 0.03, p = 0.86 ------ 

5-HT1Aβ 0.003 ± 0.0004 0.004 ± 0.0005 0.005 ± 0.001 0.008 ± 0.001 F(2,22) = 13.7, p = 0.001 F(2,22) = 4.3, p = 0.05 ------ 

5-HTTA 0.004 ± 0.001 0.003 ± 0.001 0.004 ± 0.0001 0.004 ± 0.001 F(2,13) = 0.62, p = 0.44 F(2,13) = 0.1, p = 0.76 ------ 

5-HTTB ------ ------ ------ ------ ------ ------ ------ 

crf 0.03 ± 0.01 0.01 ± 0.003 0.01 ± 0.002 0.02 ± 0.002 F(2,30) = 0.52, p = 0.48 F(2,30) = 3.19, p = 0.08 ------ 

crfbp 0.01 ± 0.001 0.009 ± 0.002 0.008 ± 0.001 0.01 ± 0.002 F(3,26) = 0.39, p = 0.54 F(3,26) = 0.05, p = 0.83 F(3,26) = 6.16, p = 0.02 

crf1 0.006 ± 0.001 0.005 ± 0.001 0.005 ± 0.001 0.006 ± 0.002 F(2,37) = 0.05, p = 0.83 F(2,37) = 0.04, p = 0.83 ------ 

crf2 ------ ------ ------ ------ ------ ------ ------ 

5-HT 208 ± 4 174 ± 6 163 ± 8 205 ± 17 F(2,37) = 0.01, p = 0.92 F(2,37) = 0.4, p = 0.53 ------ 

5-HIAA 22 ± 4 23 ± 2 18 ± 2 33 ± 4 F(3,39) = 0.9, p = 0.35 F(3,39) = 7.2, p = 0.01 F(3,39) = 5.15, p = 0.03 

DA 76 ± 24 65 ± 12 36 ± 5 49 ± 10 F(2,37) = 1.44, p = 0.24 F(2,37) = 0.16, p = 0.69 ------ 
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DOPAC 10 ± 3 9 ± 2 8 ± 2 4 ± 1 F(2,35) = 1.69, p = 0.2 F(2,35) = 1.41, p = 0.24 ------ 

Vv        

pcna 0.17 ± 0.07 0.06 ± 0.02 0.17 ± 0.04 0.09 ± 0.02 F(2,24) = 0.33, p = 0.57 F(2,24) = 5.45, p = 0.03 ------ 

bdnf 0.16 ± 0.05 0.05 ± 0.01 0.07 ± 0.02 0.39 ± 0.14 F(3,23) = 3.22, p = 0.09 F(3,23) = 1.59, p = 0.22 F(3,23) = 11.69, p = 0.002 

neurod 0.26 ± 0.25 0.04 ± 0.01 0.02 ± 0.005 0.03 ± 0.009 F(2,12) = 0.43, p = 0.53 F(2,12) = 3.9, p = 0.07 ------ 

5-HT1Aα 0.02 ± 0.008 0.02 ± 0.002 0.04 ± 0.01 0.03 ± 0.004 F(2,24) = 2.75, p = 0.11 F(2,24) = 0.33, p = 0.57 ------ 

5-HT1Aβ 0.01 ± 0.002 0.008 ± 0.0006 0.02 ± 0.006 0.01 ± 0.005 F(2,19) = 4.84, p = 0.04 F(2,19) = 1.32, p = 0.26 ------ 

5-HTTA 0.006 ± 0.001 0.003 ± 0.0004 0.01 ± 0.005 ------ ------ ------ ------ 

5-HTTB ------ ------ ------ ------ ------ ------ ------ 

crf ------ ------ ------ ------ ------ ------ ------ 

crfbp ------ ------ ------ ------ ------ ------ ------ 

crf1 ------ ------ ------ ------ ------ ------ ------ 

crf2 ------ ------ ------ ------ ------ ------ ------ 

5-HT ------ ------ ------ ------ ------ ------ ------ 

5-HIAA ------ ------ ------ ------ ------ ------ ------ 

DA 577 ± 69 462 ± 26 545 ± 72 503 ± 87 F(2,33) = 0.01, p = 0.93 F(2,33) = 1.65, p = 0.21 ------ 

DOPAC 34 ± 12 22 ± 2 36 ± 7 29 ± 9 F(2,28) = 0.01, p = 0.97 F(2,28) = 0.57, p = 0.46 ------ 

Plasma        ------ 

Cortisol 5 ± 1 150 ± 24 6 ± 2 96 ± 17 F(3,108) = 14, p < 0.001 F(3,108) = 143, p < 0.001 F(3,108) = 9.36, p = 0.002 
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Supplementary Table 3 Mean (± SD) Cq values and efficiencies for target genes in reactive and proactive fish at basal and acute stress 

conditions in dorsolateral pallium (Dl), dorsomedial pallium (Dm) and ventral part of the central telencephalon (Vv). The total number of 

individuals per group is depicted as N, while n indicates the number of individuals with a Cq ≤ 34.5 per target gene.    
Reactive Proactive 

Efficiency Control N = 10 Stress N = 14 Control N = 12 Stress N = 8 

Dl 

pcna 1.84 ± 0.02 29.6 ± 1.8 n = 6 30.5 ± 1.8 n = 10 30.3 ± 2.2 n = 11 29.3 ± 2 n = 8 

bdnf 1.87 ± 0.004 30 ± 2 n = 9 28.4 ± 1.6 n = 14 28.6 ± 2 n = 12 28.1 ± 2.3 n = 8 

neurod 1.81 ± 0.01 30.6 ± 3.1 n = 3 32.3 ± 2 n = 11 30.4 ± 3.4 n = 10 31.9 ± 1.4 n = 7 

5-HT1Aα 1.86 ± 0.01 32.2 ± 2.4 n = 6 31.3 ± 1.2 n = 10 31.9 ± 1 n = 12 31.4 ± 0.2 n = 6 

5-HT1Aβ 1.83 ± 0.004 33.7 ± 0.6 n = 3 33.2 ± 0.7 n = 5 32.9 ± 0.5 n = 4 33.5 ± 0.7 n = 4 

5-HTTA 1.86 ± 0.02 ---- ---- 33.2 ± 0.8 n = 4 33.7 ± 0.6 n = 6 33.2 ± 0.6 n = 2 

5-HTTB 1.81 ± 0.03 25.2 ± 0.4 n = 2 ---- ---- ---- ---- ---- ---- 

crf 1.89 ± 0.003 32.1 ± 1.8 n = 7 31.9 ± 1.4 n = 13 31.2 ± 1.3 n =11 31 ± 1.1 n = 7 

crfbp 1.84 ± 0.004 33.2 ± 1.5 n = 7 31.9 ± 1.6 n = 11 31.3 ± 1.5 n = 12 32.5 ± 2.9 n = 7 

crf1 1.88 ± 0.02 33.7 ± 0.9 n = 4 33.2 ± 0.6 n = 9 32.8 ± 0.9 n = 10 32.7 ± 1 n = 8 

crf2 1.8 ± 0.006 ---- ---- 33.7 ± 0.7 n = 3 33.7 ± 0.5 n = 3 33.6 ± 0.9 n = 2 

Dm 

pcna 1.85 ± 0.009 28.7 ± 1.3 n = 10 28.6 ± 1.3 n = 14 28.9 ± 1.2 n = 11 29.3 ± 1.9 n = 7 

bdnf 1.88 ± 0.007 27.6 ± 1.4 n = 10 27.1 ± 1.3 n = 14 27.1 ± 2 n = 11 27.3 ± 1.9 n = 8 

neurod 1.82 ± 0.001 32.7 ± 1.4 n = 9 32.6 ± 1 n = 12 32.4 ± 1.6 n = 10 32.9 ± 1 n = 7 

5-HT1Aα 1.88 ± 0.009 31.4 ± 0.8 n = 10 31 ± 0.6 n = 14 31 ± 1 n = 11 30.8 ± 0.9 n = 7 

5-HT1Aβ 1.84 ± 0.003 33.4 ± 0.8 n = 4 32.8 ± 0.8 n = 10 33.4 ± 0.9 n = 6 32.8 ± 1.2 n = 6 

5-HTTA 1.87 ± 0.02 33.6 ± 0.5 n = 4 33.4 ± 0.7 n = 5 32.7 ± 0.5 n = 3 33.1 ± 1 n = 4 

5-HTTB 1.82 ± 0.04 ---- ---- 28.9 ± 6.5 n = 2 ---- ---- ---- ---- 

crf 1.89 ± 0.003 31 ± 1.4 n = 9 31 ± 1.5 n = 13 31.1 ± 1.4 n = 10 30.5 ± 1.1 n = 6 

crfbp 1.83 ± 0.008 32.7 ± 0.9 n = 7 33.1 ± 0.9 n = 12 32.7 ± 1.2 n = 8 32.7 ± 0.8 n = 6 

crf1 1.89 ± 0.01 32.5 ± 0.7 n = 10 32.6 ± 0.7 n = 14 32.4 ± 0.8 n = 10 32.7 ± 0.6 n = 7 

crf2 1.77 ± 0.004 ---- ---- ---- ---- ---- ---- ---- ---- 

Vv 

pcna 1.84 ± 0.02 29.4 ± 2.3 n = 6 30 ± 2.4 n = 10 30.1 ± 1.5 n = 9 30.8 ± 2.6 n = 6 

bdnf 1.87 ± 0.01 29.4 ± 3.1 n = 7 30.3 ± 2.2 n = 12 29.2 ± 2.2 n = 8 30.3 ± 2.4 n = 7 

neurod 1.83 ± 0.02 33.2 ± 0.7 n = 6 32.1 ± 1.3 n = 7 32.7 ± 1.3 n = 8 33.8 ± 0.4 n = 6 

5-HT1Aα 1.86 ± 0.02 32.2 ± 1.8 n = 6 31.8 ± 1.7 n = 10 31.3 ± 1.9 n = 8 32.1 ± 2 n = 5 

5-HT1Aβ 1.83 ± 0.03 33.2 ± 0.8 n = 7 32.9 ± 1.3 n = 8 33 ± 1 n = 7 33.2 ± 1.1 n = 3 

5-HTTA 1.86 ± 0.03 33.2 ± 0.6 n = 2 33.9 ± 0.7 n = 2 33.9 ± 0.5 n = 3 ---- ---- 

5-HTTB 1.84 ± 0.01 ---- ---- ---- ---- 

crf 1.84 ± 0.01 32.5 ± 0.5 n = 3 33 ± 0.5 n = 7 32.7 ± 0.6 n = 5 32.9 ± 0.4 n = 2 
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crfbp 1.85 ± 0.02 32.9 ± 0.9 n = 3 33.3 ± 0.3 n = 4 31.8 ± 0.5 n = 4 ---- ---- 

crf1 1.87 ± 0.02 33 ± 0.5 n = 3 33 ± 0.3 n = 5 33.6 ± 0.2 n = 4 32.9 ± 0.2 n = 2 

crf2 1.79 ± 0.01 ---- ---- 34.3 ± 0.04 n = 2 34.4 ± 0.1 n = 2 ---- ---- 
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Supplementary Data file

Click here to Download Data file 

http://www.biologists.com/JEB_Movies/JEB153213/Datafile.xlsx


Table S1 Primer sequences for target genes 

Gene Primer Sequence 5’  3’ Accession nr. Reference 

ef1aα Fw  CCCCTCCAGGACGTTTACAAA 

Rev  CACACGGCCCACAGGTACA 

BT059133.1 Ingerslev et al. (2006). Expression profiling and validation of reference gene candidates in immune 
relevant tissues and cells from Atlantic salmon (Salmo salar L.). Molec Immunol 43, 1194-1201. 

S20 Fwd  GCAGACCTTATCCGTGGAGCTA 

Rev  TGGTGATGCGCAGAGTCTTG 

NM_001140843.1 Olsvik et al. (2005). Evaluation of potential reference genes in real-time RT-PCR studies of Atlantic 
salmon. BMC Molec Biol 6, 21

hprt1 Fwd  CGTGGCTCTCTGCGTGCTCA 

Rev  TGGAGCGGTCGCTGTTACGG 

BT043501.1 Andreassen et al. (2009). Characterization of full-length sequenced cDNA inserts (FLIcs) from 
Atlantic salmon (Salmo salar). BMC Genomics 10, 502. 

bdnf Fwd  ATGTCTGGGCAGACCGTTAC 

Rev  GTTGTCCTGCATTGGGAGTT 

GU108576.1 Vindas et al. (2014). Coping with unpredictability: Dopaminergic and neurotrophic responses to 
omission of expected reward in Atlantic salmon (Salmo salar L.). PLoS ONE 9, e85543. 

pcna Fwd  TGAGCTCGTCGGGTATCTCT 

Rev  CTCGAAGACTAGGGCGAGTG 

BT056931.1 Vindas et al. (2014). Coping with unpredictability: Dopaminergic and neurotrophic responses to 
omission of expected reward in Atlantic salmon (Salmo salar L.). PLoS ONE 9, e85543. 

neurod Fwd  CAATGGACAGCTCCCACATCT 

Rev  CCAGCGCACTTCCGTATGA 

BT058820.1 Leong et al. (2010). Salmo salar and Esox lucius full-length cDNA sequences reveal changes in 
evolutionary pressures on a post-tetraploidization genome. BMC Genomics 11, 279-279. 

5-HT1Aα Fwd  ATGCTGGTCCTCTACGGGCG 

Rev  CGTGGTTCACCGCGCCGTTT 

AGKD01067361.1 

: 7182-7844* 

Thörnqvist et al. (2015). Natural selection constrains personality and brain gene expression 
differences in Atlantic salmon (Salmo salar). J Exp Biol 218, 1077-1083. 

5-HT1Aβ Fwd  TTGATCATGCGTTCCCAGCCGA 

Rev  AAAGGAATGTAGAACGCGCCGA 

DY694524 Thörnqvist et al. (2015). Natural selection constrains personality and brain gene expression 
differences in Atlantic salmon (Salmo salar). J Exp Biol 218, 1077-1083. 

5HTTA Fwd  ACAAACCACTCCCTCCTCCT 

Rev  CGGCTACATGGCTGAAATGC 

AGKD03016701.1 

: 3425-5030* 

Thörnqvist, et al. unpublished 

5HTTB Fwd  TCATGGCCATCTTTGGAGGG 

Rev  TTGTCACAGTTGGTCCAGGG 

AGKD03016179.1 

: 111470-112049* 

Thörnqvist, et al. unpublished 

crf Fwd  AACCAGCTCGACGACTCGATGG 

Rev  GCTATGGGCTTGTTGCTGTAACTG 

BT057824 Leong et al. (2010). Salmo salar and Esox lucius full-length cDNA sequences reveal changes in 
evolutionary pressures on a post-tetraploidization genome. BMC Genomics 11, 279-279. 

crfbp Fwd  TGAGCCCAACCAGGTCATCAATGT 

Rev  TCCCTTCATCACCCAGCCATCAAA 

BT059529 Leong et al. (2010). Salmo salar and Esox lucius full-length cDNA sequences reveal changes in 
evolutionary pressures on a post-tetraploidization genome. BMC Genomics 11, 279-279. 

crf1 Fwd  TGACCATCTGGGCTGTTGTGATCT 

Rev  TAAGATTGGTGGACAGCAGGAGCA 

------------ Nilson et al., unpublished 

crf2 Fwd  ACCATGGATGCTACGATTTACCA 

Rev  CTGTCTTGAAATGAATCCATCACACTGC 

------------ Nilson et al., unpublished 
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Table S2 Mean (± SEM) relative transcript abundance of target genes (to the reference gene S20), serotonin (5-HT) and dopamine (DA) 

neurochemistry, as well as plasma cortisol in reactive and proactive fish at basal and acute stress conditions in dorsolateral pallium (Dl), 

dorsomedial pallium (Dm) and ventral part of the ventral telencephalon (Vv). Two-Way ANOVA statistics for effect of coping style, stress 

and the interaction between style and stress (if it was maintained in the model which was indicated by "lack of fit" analysis), are given for 

each variable.   
Reactive Proactive ANOVA 

Control (n = 10) Stress (n = 14) Control (n = 12) Stress (n =8) Style Stress Interaction 

Dl 

pcna 0.27 ± 0.12 0.08 ± 0.02 0.07 ± 0.02 0.15 ± 0.05 F(3,26) = 1.71, p = 0.2 F(3,26) = 1.05, p = 0.31 F(3,26) = 8.04, p = 0.009 

bdnf 0.17 ± 0.04 0.17 ± 0.02 0.17 ± 0.03 0.38 ± 0.08 F(3,35) = 4.02, p = 0.05 F(3,35) = 6.2, p = 0.02 F(3,35) = 4.62, p = 0.04 

neurod 0.06 ± 0.03 0.03 ± 0.005 0.04 ± 0.008 0.05 ± 0.01 F(2,24) = 1.47, p = 0.24 F(2,24) = 0.13, p = 0.72 ------ 

5-HT1Aα 0.01 ± 0.004 0.03 ± 0.01 0.02 ± 0.001 0.02 ± 0.005 F(2,27) = 0.02, p = 0.88 F(2,27) = 3.3, p = 0.08 ------ 

5-HT1Aβ 0.02 ± 0.004 0.01 ± 0.001 0.02 ± 0.008 0.01 ± 0.006 F(2,13) = 0.02, p = 0.89 F(2,13) = 1.56, p = 0.23 ------ 

5-HTTA ------ 0.006 ± 0.001 0.005 ± 0.001 0.004 ± 0.001 ------ ------ ------ 

5-HTTB ------ ------ ------ ------ ------ ------ ------ 

crf 0.04 ± 0.02 0.02 ± 0.003 0.02 ± 0.004 0.02 ± 0.003 F(2,31) = 1.47, p = 0.24 F(2,31) = 1.79, p = 0.19 ------ 

crfbp 0.04 ± 0.01 0.03 ± 0.005 0.03 ± 0.007 0.04 ± 0.01 F(2,29) = 0.12,  p = 0.73 F(2,29) = 0.35, p = 0.55 ------ 

crf1 0.005 ± 0.001 0.006 ± 0.001 0.005 ± 0.001 0.009 ± 0.001 F(2,26) = 6.55, p = 0.02 F(2,26) = 4.25, p = 0.05 ------ 

crf2 ------ 0.009 ± 0.002 0.02 ± 0.006 0.01 ± 0.002 ------ ------ ------ 

5-HT 125 ± 11 131 ± 11 125 ± 11 105 ± 6 F(2,40) = 1.41, p = 0.24 F(2,40) = 0.31, p = 0.58 ------ 

5-HIAA 26 ± 4 42 ± 4 22 ± 2 31 ± 3 F(2,40) = 4.16, p = 0.05 F(2,40) = 14.9, p < 0.001 ------ 

DA 92 ± 11 82 ± 12 72 ± 12 48 ± 10 F(2,39) = 5.98, p = 0.02 F(2,39) = 2.89, p = 0.1 ------ 

DOPAC 10 ± 1 9 ± 2 6 ± 2 5 ± 1 F(2,39) = 8.13, p = 0.007 F(2,39) = 0.27, p = 0.6 ------ 

Dm 

pcna 0.09 ± 0.02 0.08 ± 0.01 0.08 ± 0.01 0.07 ± 0.01 F(2,34) = 0.12, p = 0.73 F(2,34) = 0.41, p = 0.53 ------ 

bdnf 0.14 ± 0.03 0.1 ± 0.02 0.14 ± 0.03 0.14 ± 0.02 F(2,33) = 0.5, p = 0.48 F(2,33) = 0.99, p = 0.33 ------ 

neurod 0.03 ± 0.01 0.02 ± 0.002 0.01 ± 0.002 0.02 ± 0.006 F(2,34) = 1.04, p = 0.31 F(2,34) = 0.35, p = 0.56 ------ 

5-HT1Aα 0.01 ± 0.002 0.009 ± 0.001 0.01 ± 0.002 0.02 ± 0.004 F(2,34) = 5.78, p = 0.02 F(2,34) = 0.03, p = 0.86 ------ 

5-HT1Aβ 0.003 ± 0.0004 0.004 ± 0.0005 0.005 ± 0.001 0.008 ± 0.001 F(2,22) = 13.7, p = 0.001 F(2,22) = 4.3, p = 0.05 ------ 

5-HTTA 0.004 ± 0.001 0.003 ± 0.001 0.004 ± 0.0001 0.004 ± 0.001 F(2,13) = 0.62, p = 0.44 F(2,13) = 0.1, p = 0.76 ------ 

5-HTTB ------ ------ ------ ------ ------ ------ ------ 

crf 0.03 ± 0.01 0.01 ± 0.003 0.01 ± 0.002 0.02 ± 0.002 F(2,30) = 0.52, p = 0.48 F(2,30) = 3.19, p = 0.08 ------ 

crfbp 0.01 ± 0.001 0.009 ± 0.002 0.008 ± 0.001 0.01 ± 0.002 F(3,26) = 0.39, p = 0.54 F(3,26) = 0.05, p = 0.83 F(3,26) = 6.16, p = 0.02 

crf1 0.006 ± 0.001 0.005 ± 0.001 0.005 ± 0.001 0.006 ± 0.002 F(2,37) = 0.05, p = 0.83 F(2,37) = 0.04, p = 0.83 ------ 

crf2 ------ ------ ------ ------ ------ ------ ------ 

5-HT 208 ± 4 174 ± 6 163 ± 8 205 ± 17 F(2,37) = 0.01, p = 0.92 F(2,37) = 0.4, p = 0.53 ------ 

5-HIAA 22 ± 4 23 ± 2 18 ± 2 33 ± 4 F(3,39) = 0.9, p = 0.35 F(3,39) = 7.2, p = 0.01 F(3,39) = 5.15, p = 0.03 

DA 76 ± 24 65 ± 12 36 ± 5 49 ± 10 F(2,37) = 1.44, p = 0.24 F(2,37) = 0.16, p = 0.69 ------ 
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DOPAC 10 ± 3 9 ± 2 8 ± 2 4 ± 1 F(2,35) = 1.69, p = 0.2 F(2,35) = 1.41, p = 0.24 ------ 

Vv        

pcna 0.17 ± 0.07 0.06 ± 0.02 0.17 ± 0.04 0.09 ± 0.02 F(2,24) = 0.33, p = 0.57 F(2,24) = 5.45, p = 0.03 ------ 

bdnf 0.16 ± 0.05 0.05 ± 0.01 0.07 ± 0.02 0.39 ± 0.14 F(3,23) = 3.22, p = 0.09 F(3,23) = 1.59, p = 0.22 F(3,23) = 11.69, p = 0.002 

neurod 0.26 ± 0.25 0.04 ± 0.01 0.02 ± 0.005 0.03 ± 0.009 F(2,12) = 0.43, p = 0.53 F(2,12) = 3.9, p = 0.07 ------ 

5-HT1Aα 0.02 ± 0.008 0.02 ± 0.002 0.04 ± 0.01 0.03 ± 0.004 F(2,24) = 2.75, p = 0.11 F(2,24) = 0.33, p = 0.57 ------ 

5-HT1Aβ 0.01 ± 0.002 0.008 ± 0.0006 0.02 ± 0.006 0.01 ± 0.005 F(2,19) = 4.84, p = 0.04 F(2,19) = 1.32, p = 0.26 ------ 

5-HTTA 0.006 ± 0.001 0.003 ± 0.0004 0.01 ± 0.005 ------ ------ ------ ------ 

5-HTTB ------ ------ ------ ------ ------ ------ ------ 

crf ------ ------ ------ ------ ------ ------ ------ 

crfbp ------ ------ ------ ------ ------ ------ ------ 

crf1 ------ ------ ------ ------ ------ ------ ------ 

crf2 ------ ------ ------ ------ ------ ------ ------ 

5-HT ------ ------ ------ ------ ------ ------ ------ 

5-HIAA ------ ------ ------ ------ ------ ------ ------ 

DA 577 ± 69 462 ± 26 545 ± 72 503 ± 87 F(2,33) = 0.01, p = 0.93 F(2,33) = 1.65, p = 0.21 ------ 

DOPAC 34 ± 12 22 ± 2 36 ± 7 29 ± 9 F(2,28) = 0.01, p = 0.97 F(2,28) = 0.57, p = 0.46 ------ 

Plasma        ------ 

Cortisol 5 ± 1 150 ± 24 6 ± 2 96 ± 17 F(3,108) = 14, p < 0.001 F(3,108) = 143, p < 0.001 F(3,108) = 9.36, p = 0.002 
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Table S3 Mean (± SD) Cq values and efficiencies for target genes in reactive and proactive fish at basal and acute stress conditions in 

dorsolateral pallium (Dl), dorsomedial pallium (Dm) and ventral part of the central telencephalon (Vv). The total number of individuals 

per group is depicted as N, while n indicates the number of individuals with a Cq ≤ 34.5 per target gene.    
Reactive Proactive 

Efficiency Control N = 10 Stress N = 14 Control N = 12 Stress N = 8 

Dl 

pcna 1.84 ± 0.02 29.6 ± 1.8 n = 6 30.5 ± 1.8 n = 10 30.3 ± 2.2 n = 11 29.3 ± 2 n = 8 

bdnf 1.87 ± 0.004 30 ± 2 n = 9 28.4 ± 1.6 n = 14 28.6 ± 2 n = 12 28.1 ± 2.3 n = 8 

neurod 1.81 ± 0.01 30.6 ± 3.1 n = 3 32.3 ± 2 n = 11 30.4 ± 3.4 n = 10 31.9 ± 1.4 n = 7 

5-HT1Aα 1.86 ± 0.01 32.2 ± 2.4 n = 6 31.3 ± 1.2 n = 10 31.9 ± 1 n = 12 31.4 ± 0.2 n = 6 

5-HT1Aβ 1.83 ± 0.004 33.7 ± 0.6 n = 3 33.2 ± 0.7 n = 5 32.9 ± 0.5 n = 4 33.5 ± 0.7 n = 4 

5-HTTA 1.86 ± 0.02 ---- ---- 33.2 ± 0.8 n = 4 33.7 ± 0.6 n = 6 33.2 ± 0.6 n = 2 

5-HTTB 1.81 ± 0.03 25.2 ± 0.4 n = 2 ---- ---- ---- ---- ---- ---- 

crf 1.89 ± 0.003 32.1 ± 1.8 n = 7 31.9 ± 1.4 n = 13 31.2 ± 1.3 n =11 31 ± 1.1 n = 7 

crfbp 1.84 ± 0.004 33.2 ± 1.5 n = 7 31.9 ± 1.6 n = 11 31.3 ± 1.5 n = 12 32.5 ± 2.9 n = 7 

crf1 1.88 ± 0.02 33.7 ± 0.9 n = 4 33.2 ± 0.6 n = 9 32.8 ± 0.9 n = 10 32.7 ± 1 n = 8 

crf2 1.8 ± 0.006 ---- ---- 33.7 ± 0.7 n = 3 33.7 ± 0.5 n = 3 33.6 ± 0.9 n = 2 

Dm 

pcna 1.85 ± 0.009 28.7 ± 1.3 n = 10 28.6 ± 1.3 n = 14 28.9 ± 1.2 n = 11 29.3 ± 1.9 n = 7 

bdnf 1.88 ± 0.007 27.6 ± 1.4 n = 10 27.1 ± 1.3 n = 14 27.1 ± 2 n = 11 27.3 ± 1.9 n = 8 

neurod 1.82 ± 0.001 32.7 ± 1.4 n = 9 32.6 ± 1 n = 12 32.4 ± 1.6 n = 10 32.9 ± 1 n = 7 

5-HT1Aα 1.88 ± 0.009 31.4 ± 0.8 n = 10 31 ± 0.6 n = 14 31 ± 1 n = 11 30.8 ± 0.9 n = 7 

5-HT1Aβ 1.84 ± 0.003 33.4 ± 0.8 n = 4 32.8 ± 0.8 n = 10 33.4 ± 0.9 n = 6 32.8 ± 1.2 n = 6 

5-HTTA 1.87 ± 0.02 33.6 ± 0.5 n = 4 33.4 ± 0.7 n = 5 32.7 ± 0.5 n = 3 33.1 ± 1 n = 4 

5-HTTB 1.82 ± 0.04 ---- ---- 28.9 ± 6.5 n = 2 ---- ---- ---- ---- 

crf 1.89 ± 0.003 31 ± 1.4 n = 9 31 ± 1.5 n = 13 31.1 ± 1.4 n = 10 30.5 ± 1.1 n = 6 

crfbp 1.83 ± 0.008 32.7 ± 0.9 n = 7 33.1 ± 0.9 n = 12 32.7 ± 1.2 n = 8 32.7 ± 0.8 n = 6 

crf1 1.89 ± 0.01 32.5 ± 0.7 n = 10 32.6 ± 0.7 n = 14 32.4 ± 0.8 n = 10 32.7 ± 0.6 n = 7 

crf2 1.77 ± 0.004 ---- ---- ---- ---- ---- ---- ---- ---- 

Vv 

pcna 1.84 ± 0.02 29.4 ± 2.3 n = 6 30 ± 2.4 n = 10 30.1 ± 1.5 n = 9 30.8 ± 2.6 n = 6 

bdnf 1.87 ± 0.01 29.4 ± 3.1 n = 7 30.3 ± 2.2 n = 12 29.2 ± 2.2 n = 8 30.3 ± 2.4 n = 7 

neurod 1.83 ± 0.02 33.2 ± 0.7 n = 6 32.1 ± 1.3 n = 7 32.7 ± 1.3 n = 8 33.8 ± 0.4 n = 6 

5-HT1Aα 1.86 ± 0.02 32.2 ± 1.8 n = 6 31.8 ± 1.7 n = 10 31.3 ± 1.9 n = 8 32.1 ± 2 n = 5 

5-HT1Aβ 1.83 ± 0.03 33.2 ± 0.8 n = 7 32.9 ± 1.3 n = 8 33 ± 1 n = 7 33.2 ± 1.1 n = 3 

5-HTTA 1.86 ± 0.03 33.2 ± 0.6 n = 2 33.9 ± 0.7 n = 2 33.9 ± 0.5 n = 3 ---- ---- 

5-HTTB 1.84 ± 0.01 ---- ---- ---- ---- 

crf 1.84 ± 0.01 32.5 ± 0.5 n = 3 33 ± 0.5 n = 7 32.7 ± 0.6 n = 5 32.9 ± 0.4 n = 2 
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crfbp 1.85 ± 0.02 32.9 ± 0.9 n = 3 33.3 ± 0.3 n = 4 31.8 ± 0.5 n = 4 ---- ---- 

crf1 1.87 ± 0.02 33 ± 0.5 n = 3 33 ± 0.3 n = 5 33.6 ± 0.2 n = 4 32.9 ± 0.2 n = 2 

crf2 1.79 ± 0.01 ---- ---- 34.3 ± 0.04 n = 2 34.4 ± 0.1 n = 2 ---- ---- 
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Table S4 All monoamine neurochemistry and gene expression data used for the statistical analysis 

Click here to Download Table S4 

http://www.biologists.com/JEB_Movies/JEB153213/TableS4.xlsx



