
© 2016. Published by The Company of Biologists Ltd 

Automated detection of feeding strikes by larval fish using continuous high-

speed digital video: a novel method to extract quantitative data from fast, sparse 

kinematic events 

 

Eyal Shamur1*, Miri Zilka2*, Tal Hassner1, Victor China3,4, Alex Liberzon5, Roi 

Holzman3,4 

 

1 Department of Mathematics and Computer Science, The Open University of 

Israel, 1 University Road, P.O.B. 808, Raanana 43107, Israel 

2 Department of Physics, Faculty of Exact Sciences, Tel Aviv University; current 

address: Department of Physics, University of Warwick, Coventry, CV4 7AL, UK.  

3 Department of Zoology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 

69978, Israel. 

4 The Inter-University Institute for Marine Sciences, POB 469, Eilat 88103, 

Israel. 

5 School of Mechanical Engineering, Faculty of Engineering, Tel Aviv 

University, Tel Aviv 69978, Israel. 

 

* These authors contributed equally 

 

Correspondence should be sent to: Roi Holzman, holzman@post.tau.ac.il, 

telephone 972-8-6360111, Coral Beach, Eilat 88103 Israel, P.O.B 469. 

  

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

dv
an

ce
 a

rt
ic

le

 http://jeb.biologists.org/lookup/doi/10.1242/jeb.133751Access the most recent version at 
J Exp Biol Advance Online Articles. First posted online on 18 March 2016 as doi:10.1242/jeb.133751

http://jeb.biologists.org/lookup/doi/10.1242/jeb.133751


Abstract 

Using videography to extract quantitative data on animal movement and kinematics 

constitutes a major tool in biomechanics and behavioral ecology. Advanced recording 

technologies now enable acquisition of long video sequences encompassing sparse 

and unpredictable events. While such events may be ecologically important, analysis 

of sparse data can be extremely time-consuming and potentially biased; data quality is 

often strongly dependent on the training level of the observer and subject to 

contamination by observer dependent biases. These constraints often limit our ability 

to study animal performance and fitness. Using long videos of foraging fish larvae, 

we provide a framework for the automated detection of prey acquisition strikes, a 

behavior that is infrequent yet critical for larval survival. We compared the 

performance of four video descriptors and their combinations against manually 

identified feeding events. For our data, the best single descriptor provided a 

classification accuracy of 77-95% and detection accuracy of 88-98%, depending on 

fish species and size. Using a combination of descriptors improved the accuracy of 

classification by ~2%, but did not improve detection accuracy. Our results indicate 

that the effort required by an expert to manually label videos can be greatly reduced to 

examining only the potential feeding detections in order to filter false detections. 

Thus, using automated descriptors reduce the amount of manual work needed to 

identify events of interest from weeks to hours, enabling the assembly of an unbiased 

large dataset of ecologically relevant behaviors.  
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Introduction 

Quantitative analysis of animal movements constitutes a major tool in 

understanding the relationship between animal form and function, and how animals 

perform tasks that affect their chances of survival (Alexander, 1992; Dickinson et al., 

2000; Marey, 1874). This discipline benefited greatly when filming technology 

enabled the freezing of fast movements and determination of the sequence of events 

that occur when animals move. Stroboscopic filming and multiple cameras, first used 

in the early 1900s, has evolved to using designated 16 mm movie cameras capable of 

filming at hundreds of frames per second. In the last decades, digital high-speed 

videography has enabled the collection of detailed kinematics of animal motion. Due 

to technological and practical limitations such as camera memory and data analysis 

constraints, analysis is often focused on short video clips, usually <1 second. 

Commonly, events of interest, such as the movement of animals while jumping, 

landing, or striking prey are captured on video by manually triggering the camera at 

the right time, and saving the relevant range within each video sequence. The data are 

then digitized and analyzed to resolve temporal patterns in the sequence of events, 

variables such as speed and acceleration, and other quantitative kinematic data. This 

framework has enabled researchers to understand the mechanistic and behavioral 

aspects of diverse behaviors such as jumping, flying, running, gliding, feeding and 

drinking in many animal species (e.g. (Altshuler et al., 2004; Holzman et al., 2007; 

James et al., 2007; Reis et al., 2010; Ribak and Swallow, 2007; Toro et al., 2004) 

among many others). 

Manually triggering the camera to save short sequences is only suitable for events 

that can be either easily identified in real time, easy to induce, or are repetitive and 

frequent. For events that do not adhere to these criteria or that are unpredictable in 
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space and time, manual triggering and saving short clips limits the possible scope of 

research. One such example of the latter constraint is suction feeding by larval fish. 

Newly hatched fish subsist on a limited supply of yolk and thus must encounter and 

successfully capture food before their energy resources become depleted (Fyhn, 1989; 

Hunter, 1981). To capture their prey, larval fishes swim towards it and then open their 

mouth while expanding the oral cavity. The expansion of the larvae’s mouth generates 

a strong flow of water into it, and this flow is key to successful suction feeding, 

drawing the prey into the predator’s mouth (Day et al., 2015; Lauder, 1980; Lauder, 

1985; Westneat, 2006). However, the body of a hatchling larva is a few millimetres 

long, and its mouth diameter is as small as 100 m. The high magnification optics 

required to film these minute larvae leads to a small depth-of-field and limited 

visualized area. Actively swimming larvae remain in the visualized area for only a 

few seconds. A low feeding rate (especially in the first days post hatching) results in a 

scarcity of feeding attempts in the visualized area (Holzman et al., 2015). Similar to 

adults, prey capture in larvae takes a few tens of a millisecond (China and Holzman, 

2014; Hernandez, 2000; Holzman et al., 2015); easily missed by the naked eye or 

conventional video.  

Recently, continuous high-speed photography of long sequences (~100000 

frames) has shown that the prey capture success rates of early-stage larvae are 

substantially lower than those of their older counterparts (China and Holzman, 2014; 

Holzman et al., 2015). This method was instrumental in testing the hypothesis that the 

hydrodynamic regime of low Reynolds numbers experienced by small larvae directly 

impedes the suction feeding mechanism, possibly leading to larval starvation and 

mortality (China and Holzman, 2014). While these systematic observations of larval 

feeding attempts have proven critical for understanding the feeding process, they were 
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extremely labour intensive, limiting the widespread application of this method in 

larval fish research. For example, we estimate data acquisition rate as 0.8-3 strikes/hr 

(depending on larval age) when using traditional, burst-type high-speed cameras. 

Using continuous high speed filming can mitigate some of these shortcomings by 

providing good spatio-temporal resolution by integrating over several minutes of 

feeding and thereby increase the probability of observing prey-capturing strike. Still, 

the strikes then have to be identified by observing the videos at x30 – x100 folds 

slower then the recorded speed, a time-consuming task. Our goal was therefore to 

develop a visualization method by which to computationally characterize rapid, sparse 

events in a non-intrusive, quantitative, and objective way. Specifically, we set out to 

detect and classify prey-capture strikes from continuous high speed movies of larval 

fishes. This procedure provides an unbiased, high-throughput method to measure 

feeding rates, feeding success, prey selectivity, and handling time, as well as 

swimming speed and strike kinematics. 

 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

dv
an

ce
 a

rt
ic

le



Materials and Procedures:  

Model organisms 

We focused on three fish species: two age groups of Sparus aurata Linnaeus, 

1758 (13 and 23 days post-hatching (DPH) gilthead sea bream; Sparidae, Perciformes, 

Actinoperygii), Amatitlania nigrofasciata Günther, 1867 (14-16 DPH; Cichlidae, 

Perciformes Actinopterygii), and Hemichromis bimaculatus Gill, 1862 (8-15 DPH; 

Cichlidae, Perciformes Actinopterygii). S. aurata is a marine fish of high commercial 

importance, commonly grown in fisheries, while the two cichlid species are 

freshwater fish that are grown for the pet trade. Sparus aurata has a life history that is 

characteristic of pelagic and coastal fishes, while the cichlids provide parental care to 

their offspring. Thus, the cichlid larvae hatch at a much larger size and are more 

developed (Table 1). The experiments described below complied with IACUC 

approved guidelines for the use and care of animals in research at Tel Aviv 

University, Israel. 

Experimental set up:  

During experiments, the larvae were placed in a small rectangular experimental 

chamber (26 x 76 x 5 mm). Depending on fish age and size, 5-20 larvae were placed 

in the chamber and were allowed several minutes to acclimate before video-recording 

began. Larval density was adjusted so that at least one larva would be present in the 

field of view throughout most of the imaging period. Typical feeding sessions lasted 

5-10 minutes. Rotifers (Brachionus rotundiformis; ~160 m in length) were used as 

prey for all fish species as they are widely used as the standard first-feeding food in 

the mariculture industry.  

Visualization of feeding larvae was done using a continuous high-speed digital 

video system (Vieworks VC-4MC-M/C180), operating at 240 frames per second with 
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resolution of 2048×1024 (Holzman et al., 2015). The camera was connected to a PC, 

and controlled by Streampix 5 video acquisition software (Norpix, Montréal, Canada). 

A 25 mm f /1.4 C-mount lens (Avenir CCTV lens, Japan) was mounted on an 8 mm 

extension tube, providing a field of view of 15 x 28 x 3 mm (height, width, and depth, 

respectively) at f=5.6. We used backlit illumination, using an array of 16 white LEDs 

(~280 lumen) with a white plastic diffuser. The original videos were used for our core 

algorithm in order to capture every image detail; however, for the pre-processing 

stage the original videos were rescaled to 1024x512 pixels per frame to increase 

computation efficiency. This size was empirically determined to accelerate pre-

processing computations while having a minimal impact on the final accuracy. 

Manual identification of feeding strikes: 

Following recording, videos were played back at reduced speed (10 fps) in order 

to manually identify feeding attempts (Fig 1). We defined feeding attempts as 

instances in which the mouth was opened at a time when a prey item was present at a 

distance of <1/5 body length in front of the larvae, while it was swimming towards 

the prey. Feeding attempts can be visually distinguished from breathing based on the 

size of the mouth opening and the opening speed. During a feeding attempt, the mouth 

opens fast and wide, typically >70% of its maximal diameter, whereas breathing is 

characterized by a slower and smaller mouth opening (<30%) (Brainerd and Ferry-

Graham, 2006; Westneat, 2006). Overall, we obtained ~75 feeding events for each of 

the four groups used in this study (Table 1; two S. aurata age groups, A. nigrofasciata 

and H. bimaculatus).  

Classification of feeding strikes 

In addition to the 75 feeding events identified for each group, short clips 

sampled at random space/time points were used to generate 75 non-feeding events. 
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Each of these non-feeding events was viewed to verify the lack of feeding activity. 

These 600 clips were used as the underlying database for the machine learning 

classification algorithms (Table 1). The database was divided into Database-A, which 

comprised A. nigrofasciata and H. bimaculatus, and Database-B, which comprised 

the two age groups of S. aurata. Each of the two databases was analyzed separately. 

A diagram describing the detection process of feeding events is provided in Fig 

2. Key to the process was the separation into two stages of the classification process: 

First, fish detection and pose normalization, i.e, adjusting the frame of view so that 

the larva would always be oriented in the same way. Second, classification of the 

local spatio-temporal regions, and the determination of either feeding or non-feeding 

events. We began by pre-processing the entire video in order to detect individual fish, 

discriminating between them and their background and other noise and artifacts in the 

video (step a in Fig 2; Section a below). Following this step, the shape of the detected 

fish was analyzed to determine the location of its mouth and to rotate it to a roughly 

horizontal position to provide orientation invariance (step b, Section b). These steps 

(detection and mouth localization) used the compressed 1024x512 videos to locate 

spatio-temporal volumes (“clips”) around each mouth. Clips were 21 frames, 121x121 

pixels for Database-A and 41 frames 241x241 pixels for Database-B (~1 body length 

in both cases). Clips were extracted and represented using robust video descriptors 

(step d, Section c), using the original high resolution 2048x1024 videos. Finally, 

classification into feeding / non-feeding was performed using a radial basis function 

(RBF) support vector machine (SVM) classifier (step e, Section d). 

Due to the high ratio between frame rate (240 fps) and the duration of feeding 

attempts (usually < 60 ms), the classification processing did not need to be applied for 

every frame in order to reliably identify feeding attempts. We therefore empirically 
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set the system to process 21 frame volumes only every 10th frame for A. nigrofasciata 

and H. bimaculatus or 41 frame volumes only every 20th frame for the slower feeding 

S. aurata. Extracted volumes overlapped by 11 and 21 for database A and B, 

respectively. Because the duration of our clips was twice as long as the gap between 

the center frames, no frame is left unprocessed. Each larva was monitored for the 

entire duration in the field of view with every potential feeding event captured by at 

least two clips, as the extracted volumes overlapped. In the following sections we 

describe each of these steps in detail. 

Stage a) Video pre-processing and fish localization 

In our data, typical video frames contained measurement noise, resulting from 

floating food particles, light/shadow speckles, and dirt on the bottom of the chamber 

(Fig 3a). Our processing thus began by attempting to remove much of this clutter. We 

first apply a standard image segmentation technique (Otsu, 1975), which provides a 

binary separation of the video to foreground/background pixels, used to separate the 

background from noise and fish blobs (Fig 3 a-b; supplementary Fig S1).  

The fish species in our videos were of similar size and length-to-height (maximal 

dorso-lateral distance) ratio, making them geometrically different than most of the 

other shapes in the video. We therefore removed foreground blobs having less than a 

set threshold number of pixels 𝑇𝑠𝑚𝑎𝑙𝑙_𝑠𝑖𝑧𝑒  or having more than 𝑇𝑏𝑖𝑔_𝑠𝑖𝑧𝑒 . Non fish-

shaped blobs were then removed by considering the ratio between the two eigenvalues 

𝜆𝑚𝑖𝑛  and 𝜆𝑚𝑎𝑥  of each foreground segment (i.e the length along the longest and 

shortest axis of an equivalent ellipsoid). A blob 𝐵𝑘 was removed if the following 

condition did not hold: 

𝛵𝑐𝑖𝑟𝑐 <
𝜆𝑚𝑖𝑛

𝜆𝑚𝑎𝑥
< 𝛵𝑒𝑙𝑜𝑛𝑔 
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The value for 𝑇𝑠𝑚𝑎𝑙𝑙_𝑠𝑖𝑧𝑒 was set to 350 pixels for 13DPH S. aurata and 800 pixels for 

the other groups. The value for 𝑇𝑏𝑖𝑔_𝑠𝑖𝑧𝑒  was set to 10,000 pixels. 𝛵𝑒𝑙𝑜𝑛𝑔  and 

𝛵𝑐𝑖𝑟𝑐 were set to 100 and 1, 𝛵𝑒𝑙𝑜𝑛𝑔  , reflecting long and thin segments, and 𝛵𝑐𝑖𝑟𝑐  

nearly circular shapes. These values were determined by experimenting with several 

arbitrarily-selected images, and remained unchanged throughout our experiments.  

The above process eliminated most of the non-fish foreground blobs (Fig 3 c), but 

some blobs may still share the same size or shape of these fish. These blobs were 

identified by considering the texture within each blob (Fig 3 d; supplementary Fig 

S1); blobs produced by noise typically present flat appearances compared to the 

textured fish bodies. Specifically, we evaluated the following expression for each 

foreground blob: 

∑ 𝑓(‖∇𝐵𝑘,𝑖‖)

𝑖∈𝐵𝑘

< 𝑇𝑡𝑥𝑡 

Where  

𝑓(𝑥) = {
𝑥 > 𝑇𝑆𝑜𝑏𝑒𝑙 1

else 0
 

Here, ‖∇𝐵𝑘,𝑖‖ = √𝐼(𝑘, 𝑖)𝑥
2 + 𝐼(𝑘, 𝑖)𝑦

2 , where 𝐼𝑥 is the horizontal image gradient and 𝐼𝑦 

the vertical gradient, both at the i’th pixel of k’th blob and both approximated using 

standard 3x3 Sobel filters. The values for 𝑇𝑆𝑜𝑏𝑒𝑙  and 𝑇𝑡𝑥𝑡 were set to 120 and 140, 

and used throughout our experiments. These steps are visualized in Fig 3. 

Stage b) Orientation normalization 

As the fish swim freely in their tank, their heads may be oriented in any direction. 

This is quite different from standard action recognition applications, in which actions 

are typically performed oriented in the same manner: a video of a human actor 
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walking would typically have the motion of the legs appearing at the bottom of the 

frame, below the rest of the body. Representations used to capture and discriminate 

between human actions are therefore not designed to be invariant to the rotational 

differences exhibited by our fish. Here, this invariance is introduced prior to feature 

extraction by rotating all fish-head spatio-temporal blobs to a canonical position, in a 

manner similar to that employed by low-level descriptors such as SIFT (Lowe, 2004). 

Specifically, at the particular larval developmental stage considered here, the head is 

substantially bigger than any other part of its anatomy. The head can therefore be 

detected simply by locating the max-bounded circle of the fish segment. The spatio-

temporal volume around each head region is then rotated to align the X-axis of the 

entire fish blob with the frame’s horizontal axis (Fig 3) using standard principle 

component analysis (PCA). Additional invariance to reflection is then introduced by 

reflecting all spatio-temporal volumes in order to produce horizontally-aligned, right-

facing fish. 

The two steps of detecting fish mouths and rotating the segments are visualized in Fig 

3 (see also supplementary Fig S1). The result of this stage, mouth detection, is a 

defined area around each detected mouth. For dataset A (A. nigrofasciata and H. 

bimaculatus), we extracted 121x121 pixels centered on the mouth’s central pixel for 

21 frames, extracted from the compressed 1024x512 video (10 frames before and 

after the central frame). For dataset B (S. aurata), we extracted 241x241 pixels 

centered on the mouth’s central pixel for 41 frames (20 frames before and after the 

central frame), extracted from the original high resolution 2048x1024 video (Fig 1). 

Extracted clips overlapped by 50% of their length. This choice of spatial dimensions 

allowed coverage of the entire head along with sufficient margins for possible food 

floating around the fish. The temporal dimension was empirically determined to be 
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long enough to span feeding. Note that fish could appear in the frame for longer time 

frames. In such cases, several 41 frame-long clips would be generated and analyzed 

for each fish (i.e. long sequences were divided with overlapping between divisions, 

not trimmed).  

Stage c) Video representation 

The pose-normalized video clips produced in the previous step are next 

converted to robust representations (descriptors), whose function is to represent 

actions appearing in videos as a set of floating point numbers (in our case 96 - 512 

numbers). Each descriptor is produced by an algorithm that represents (describes) a 

video clip based on features of the image sequence (e.g. spatial or temporal 

derivatives or integral across the image sequence). Effectively, going from video to 

feature descriptor representations (i.e. a set of floating point numbers) allowed us to 

reduce the dimensionality of the analysis problem at hand. It further allows us to 

represent videos in a manner which is invariant to confounding appearance variations 

(e.g., changes in illumination, imaging noise, etc.) yet varies with relevant appearance 

variations (e.g., is assigned with different values for eating vs. non-eating events). In 

general, three low-level representation schemes have been central in action 

recognition systems. These are the local descriptors, optical flow, and dynamic-

texture based representation schemes. Local descriptors locate "interesting points" in 

space-time and extract representations only for these points and their immediate 

surroundings. An entire video is represented by pooling these points in various 

manners (e.g., by counting how many times different representations appear in a 

video). Optical flow methods compute the per-pixel flow (the motion at that pixel, 

from one frame to the next) and represent a video by analyzing this motion. Finally, 

dynamic-texture based methods apply low-level, space-time filters to the entire video 
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(to all pixel locations in all frames) and represent videos by statistics of these filter 

responses. Because detection of larval feeding strikes is an unexplored computer 

vision problem, we felt it necessary to evaluate all three of these representation 

schemes (see below). 

We used representations that are known and tested algorithms that have been 

designed to capture and recognize different actions by extracting discriminative 

information unique to each action, but remain robust to small differences in how each 

action is performed, the actor performing it, the viewing conditions, and more. We 

experimented with a number of recent video representations, previously shown to 

provide excellent action recognition performance, and chose three descriptors  – the 

best performed descriptors from each scheme. Thus, each pose-normalized clip of a 

larva’s mouth was encoded using the following action descriptors: (1) The Space 

Time Interest Points (STIP), a local descriptor (Laptev, 2005); (2) The Motion 

Interchange Patterns (MIP), a dynamic-texture based descriptor (Kliper-Gross et al., 

2012) (3) The Dense trajectories and Motion Boundary Histogram (MBH), an optical 

flow based descriptor presented in (Wang et al., 2011) and (4) the VIF, Violent Flows 

descriptor, developed to particularly identify violent action (Hassner et al., 2012). The 

first three have been shown to provide excellent action classification performance on 

videos of humans performing a wide range of actions. Because feeding strikes could 

easily be categorized as violent action, it is but natural to check this ViF descriptor as 

well. All four have been shown in the past to be complementary of each other (e.g., 

(Kliper-Gross et al., 2012)). As we later show, combining these representations 

indeed substantially elevated detection accuracy. We note that there are other, more 

elaborate methods of comparing video representations (e.g., (Kliper-Gross et al., 
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2011)), however we found their substantial computational overhead to be unnecessary 

for our purposes.  

Stage d) Classification 

Binary classification of each clip, 𝑉𝑘, as either representing an interaction with prey / 

non-interaction with prey, was performed by first extracting feature descriptors 

𝑓𝑑𝑒𝑠𝑐(𝑉𝑘), where 𝑑𝑒𝑠𝑐  represents STIP, MIP, MBH, or VIF, and then classifying 

these feature vectors using standard support vector machines (SVM) with radial basis 

function (RBF) kernels (Cortes and Vapnik, 1995). SVM was directly applied to 

discriminate between descriptors 𝑓𝑑𝑒𝑠𝑐(𝑉𝑘) extracted from each clip. In addition, we 

performed tests with stacking SVM classifiers - of these descriptors - a machine 

learning paradigm in which multiple learners (of the four descriptors mentioned in our 

case: MIP, STIP, VIF, MBH) are combined to solve the same problem (classification 

as feeding or non-feeding). Multiple descriptors were evaluated by stacking SVM 

classifiers (Wolpert, 1992) as stacking SVM has been proven to outperform the single 

SVM. Specifically, decision values of SVM classifiers applied separately to each 

representation were collected in a single vector. These vectors of decision values were 

then classified using an additional linear-SVM.  

The final output of our analysis is a list of frame numbers and in-frame x-y locations, 

where larva – prey interaction occurs.  

 

Evaluation  

We conducted a two-step evaluation of our method. In the first step, we tested 

the classification scheme, which is the core of our identification method. In the 

second step, we tested our overall identification method. Classification tests of the 

first step were conducted in order to learn and evaluate the classification models while 
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seeking to classify clips as feeding or as non-feeding events. The best models were 

kept and later used as the classification’s core algorithm. Classification tests asses the 

probability of the classifier to make a correct classification of a clip; the accuracy it 

reports (ACC) should be compared with a random guess of weather or not the clip 

shows a feeding or non-feeding event, which provides a baseline accuracy of 50% in 

our benchmark. Classification tests are the standard way to evaluate the performance 

of a classifier in the computer science machine learning literature (Hassner, 2013; 

Hassner et al., 2012; Kliper-Gross et al., 2012; Kliper-Gross et al., 2011). Detection 

tests were performed in the second step to evaluate the entire pipeline, by testing the 

detection correctness of feeding/non-feeding events in the original videos. These tests 

demonstrate how the entire framework performs on a typical use case, where unseen 

new videos are provided for analysis. It is a different metric, which reflects the ability 

of the framework to detect relevant instances of an event in a movie. This is the 

practical implementation of the whole system, because it is related to the quality of 

results that the end user (who is interested in the organism) would want to evaluate. 

The detection tests used the models learned previously during the classification tests. 

Note that these models need to be learned only once, whereas they can be used 

multiple times. In both classification and detection, our tests were applied separately 

to the faster feeding fish, A. nigrofasciata and H. bimaculatus, and to the slower S. 

aurata.  

 

Classification tests 

Our classification benchmarks include clips which were extracted using the 

process described in Fig 2. We measured binary classification rates for larval-prey 

interaction vs. non larval-prey interaction events. We then compared our system’s 
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performance vs. manually-label ground truthing. We note that testing the 

classification in this manner is standard practice in evaluating action recognition 

systems (Hassner, 2013), particularly when positive events are very rare, as they are 

here. 

This benchmark contains two databases. Database-A contained 150 videos of feeding 

events and 150 videos of non-feeding events, of A. nigrofasciata and H. bimaculatus. 

Both species have a similar morphology and strike kinematics, and consequently were 

treated collectively in the same database. Database-B contained 150 videos of feeding 

events and 150 videos of non-feeding events of S. aurata .We used a leave-one-out, 

six-fold, cross-validation, test protocol. For each set of 6 clips, we took 5 as the 

training set used by the algorithm and employed the 6th event to test the algorithm. 

Each fold contained 50 video-exclusive clips; that is, a clip only belongs to one fold, 

thereby preventing biases from crossing over from training to testing. In total, for 

each of the six tests the database is divided into two: One division contained 250 

volumes and is used to train the SVM classifiers and the second division contained 50 

volumes and is used for testing. In each test division, half of the volumes portray 

feeding events and half portray non-feeding events. 

We report the mean accuracy (ACC), ± standard error (SE), computed over all six 

divisions. Here, mean accuracy is the average number of times our system predicted 

an feeding vs. non-feeding event on our sets of volumes. Standard error was measured 

across the six test divisions. We also provide the overall AUC: the area under the 

receiver operator curve (ROC), as well as the sensitivity (true positive / positives) and 

specificity (true negative / negative). ROC is a graphical plot that illustrates the 

performance of a binary classifier system, and the area under the curve (often referred 

to as AUC) is generally used as a statistic for model comparison (Metz, 1978). 
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Detection tests  

We next measured the rate at which our workflow correctly detected feeding events in 

videos. Our tests were performed on a video with 6,000 frames of H. bimaculatus 

fish, which included 14 manually-labeled feeding events. Our pipeline decomposed 

this video into a total of 535 potential clips. Separate tests were performed on a video 

of 4,200 frames depicting S. aurata larvae. Here, only five feeding event were 

manually labeled, compared to a total of 451 potential clips automatically extracted 

by our system. 

In our detection tests, reported in the results, we provide the following performance 

measures for each video: True positive (TP) and true negative (TN) which is the 

number of times a larval-prey interaction and a non-larval-prey interaction were 

detected as such, respectively. Accuracy was defined as the percentage of clips 

correctly detected as either positive or negative. We also provide the confusion 

matrices for each test, showing the detection rates (in percentages) of predicted 

positive and negative events vs. actual labels for each event. Here too, as with our 

classification tests, we report performance for all descriptors and their combinations. 
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Results 

Our tests were conducted on a standard Win7, 1 core Intel i7 4770 CPU 64 bit 

3,4 GHz processor, 16 GB RAM machine. Table 2 provides a breakdown of the times 

required for each of the steps in our workflow.  

In general, our classification and detection tests demonstrated our ability to 

automatically classify time-space visual information with fuzzy definitions (Tables 3- 

5). In terms of efficiency, out of all the action description algorithms incorporated, the 

major bottleneck is the MIP representation. This is because only a non-optimized 

MATLAB code exists for this descriptor. As we later show, the accuracy of the two 

fastest descriptors, MBH and VIF, is nearly as high as the accuracy obtained by 

combining all descriptors. These two descriptors may therefore be used on their own 

whenever computational costs must be considered.  

Classification benchmark- 

Our benchmark results for A. nigrofasciata and H. bimaculatus are presented in Table 

3. The highest performance was obtained by combining all the representations, with 

high accuracy of 92.7% ± 1.4, high values of area under the curve (0.97; see also 

supplementary Fig S2), high sensitivity (96.0), and high specificity (89.3). The fastest 

descriptor, MBH, performed almost as well on its own, (ACC = 1.7; AUC = 0.01; 

sensitivity = 1.3; specificity = 2), making it an attractive option whenever 

computational resources are limited (Table 3; supplementary Fig S2).  

Our benchmark results for Sparus aurata are reported in Table 4. These slower-

feeding fish were harder to classify, as the differences in the descriptor encodings are 

more subtle. This was most evident in the VIF descriptor, originally designed to 

capture fast, violent actions, and which preformed much better on the other sets 

(Table 4, row d). The best performance was obtained by a combination of descriptors 

Jo
ur

na
l o

f E
xp

er
im

en
ta

l B
io

lo
gy

 •
 A

dv
an

ce
 a

rt
ic

le



with an accuracy of 72.7% ± 2.1, area under the curve of 0.81 (see also supplementary 

Fig S2), sensitivity of 75.3, and specificity of 70.0. Again, the fastest descriptor, 

MBH, had only marginally inferior performance (ACC = 1.7; AUC = 0.05; 

sensitivity = 3.3; specificity = 0; Table 3; supplementary Fig S2). 

Detection results 

Detection results are provided in Table 5 for H. bimaculatus and in Table 6 for S. 

aurata. In both cases, MBH was the best representation compared to other 

representations and even representation combinations. For both cases, our system 

gave no false positives (upper right cells of confusion matrix) and a very low rate of 

false negatives (lower left cells) of 5% and 25% for H. bimaculatus and S. aurata, 

respectively.  

Our results indicate that no true larva-prey interaction events were missed, and only a 

negligible number of false detections (false negatives) are left over to examine and 

manually filter. Thus, the effort required by an expert to manually label videos (~20 

min per 10,000 frames for a well-trained individual depending on the number of 

larvae in the frame and the number of feeding events) can be reduced to examining 

only a few potential feeding detections, a process taking less than one minute pre 

feeding event. 
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Discussion 

Visualization of larval feeding is challenging due to size, timescale, and rarity 

of feeding events at the early larval stages. However, visualization is essential for 

measuring the rate of feeding attempts and failed attempts. Here, we present a novel 

method that can be used to automatically identify and classify prey acquisition strikes 

in larval fishes, facilitating the acquisition of large datasets from swift, sparse events.  

In the case of larval fish, this method can be used to facilitate the assessment of 

feeding rates and success, and to determine the fate of food particles during the 

feeding cycle. Following automatic identification, detailed kinematic analysis of prey 

acquisition strikes can be carried out. For example, the spatial resolution and frame 

rate reported here enable (manual) frame-by-frame digitization of landmarks on the 

fish’s body to extract larval swimming speed during foraging and during prey-

acquisition strikes, determination of mouth size during prey-acquisition strikes, and 

the distance between prey and predator during the strike (Holzman et al., 2015). 

Clearly, the frame rate we used (250 fps) may limit the resolution and accuracy of 

these measurements, however better (already commercially available) hardware 

should now allow filming at 500-1000 fps at megapixel resolution for extended time 

periods and improve the accuracy of such measurements. 

The method we developed combines complex algorithms to classify time-space 

visual information with fuzzy definitions of the event for the post-manual review by 

human observers. This approach is therefor not limited to fish, and can be applied to 

any model system where specific tasks cannot be easily actuated. This could be 

especially important in studies of natural behaviors in field conditions, or when 

considering infrequent events. In bats, for example, the movement of the ears is fast 

and unpredictable, and is of special importance due to the bats’ superior localization 
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ability. Researchers have previously used high-speed video to capture this movement 

(Gao et al., 2011), but have not benefited from automated detection of events. 

Similarly, the method can be used to analyze interactions between cleaner fish and 

their clients (Bshary and Grutter, 2002; Bshary and Würth, 2001) that hitherto 

required laborious processing of videos and may be strongly biased by the subjective 

identity of the observer. In that system, important parameters such as interaction time, 

frequency of interactions and identity of the initiator and terminator can be automated 

and save many human working hours.  Our method can also be used for purely 

physical processes. For example, the resuspension of particles from the bottom by 

turbulent flows is a strongly stochastic process (Shnapp and Liberzon, 2015; Traugott 

et al., 2011) and therefore it is impossible to predict where and when particles 

dislodge from the surface. Yet, an understanding of the physical mechanism that leads 

to the event of dislodgement requires high spatial and temporal resolution in order to 

quantify the fluid field near the particle and solve the component forces that are 

exerted on it. Thus, it is necessary to visualize the close proximity of the particle and 

its own motion at high spatial (mm) and temporal (millisecond) resolution. 

Traditionally, enormous manual labor is needed to select all the relevant events from 

the videos that document them (Shnapp and Liberzon, 2015; Traugott et al., 2011). 

An automatic image processing methods, such as the presented here, can be designed 

to identify the first moment of particle movement, and mark the event for the later 

processing. A very similar case is the development of a crack in solid surfaces in 

response to stress (Matsuyama et al., 2010), which is a highly non-linear and 

unpredictable physical process that should benefit from an automatic marking of the 

events for the consequent analysis of, for instance, initial crack size, its location, and 

its speed of propagation. 
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High-speed cameras are a common tool in the study of feeding kinematics 

(Ferry-Graham et al., 2002; Oufiero et al., 2012; Wainwright and Bellwood, 2002; 

Wainwright et al., 2007; Wainwright et al., 2001; Westphal and O'Malley, 2013), they 

are often used to record short videos (lasting a few seconds) and the analysis is 

usually focused on feeding kinematics and prey response. Here, we use a digital 

video-recording system that is geared to collect continuous high-speed videos and 

facilitate the unbiased identification and isolation of behavioral events in the field of 

view. Combined with further analysis of strike kinematics performed on the isolated 

clips, our method will help provide a better understanding of how kinematics affect 

the larval feeding performance (a possible proxy of fitness). We believe that our 

approach can advance computational work for the modeling of larval feeding, leading 

to a better understanding of the specific larval failure mechanisms in the feeding 

process. Our method can be employed in a wide range of studies on larval feeding: the 

effect of inter- and intra- specific competition, food preferences and feeding 

selectivity, prey escape response, and predator-prey co-evolution. All of these 

represent some of the enormous potential our approach can offer. Automatic software 

identification of feeding attempts will eliminate the current bottleneck when acquiring 

data. Identifying feeding attempts by means of the human eye is a time-consuming 

process; by automating this process, we will not only ensure objectivity but also 

enable data acquisition on a larger scale than obtained to date in the field of larval 

feeding. 
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Supplementary methods 

The full MATLAB code for the framework is available at 

https://github.com/EyalShamur/Identification-of-Larval-feeding-strikes, including 

Short description and guide for this repository, and brief introduction of the code 

structure and use.  
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List of symbols  

     
∇𝐵𝑘,𝑖 = 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙 𝑖 𝑎𝑡 𝑏𝑙𝑜𝑏 𝑘                        

‖∇𝐵𝑘,𝑖‖ = 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑀𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒                                     

𝐼(𝑘, 𝑖)𝑥 = 𝐻𝑜𝑟𝑖𝑧𝑜𝑛𝑡𝑎𝑙 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙 𝑖 𝑎𝑡 𝑏𝑙𝑜𝑏 𝑘

𝐼(𝑘, 𝑖)𝑦 = 𝑉𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙 𝑖 𝑎𝑡 𝑏𝑙𝑜𝑏 𝑘      

𝑇𝑆𝑜𝑏𝑒𝑙 = 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡 𝑚𝑎𝑔𝑛𝑖𝑡𝑢𝑑𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑                   
𝑇𝑡𝑥𝑡 = 𝑇𝑒𝑥𝑡𝑢𝑟𝑒 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑  

                                        𝑇𝑠𝑚𝑎𝑙𝑙_𝑠𝑖𝑧𝑒 = 𝑀𝑖𝑛 𝑛𝑢𝑚 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑓𝑜𝑟 𝑎 𝑓𝑖𝑠ℎ 𝑏𝑙𝑜𝑏

                                       𝑇𝑏𝑖𝑔_𝑠𝑖𝑧𝑒 = 𝑀𝑎𝑥 𝑛𝑢𝑚 𝑜𝑓 𝑝𝑖𝑥𝑒𝑙𝑠 𝑓𝑜𝑟 𝑎 𝑓𝑖𝑠ℎ 𝑏𝑙𝑜𝑏 

                                          𝛵𝑐𝑖𝑟𝑐 = 𝑀𝑖𝑛 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑟𝑎𝑡𝑖𝑜 
                                            𝑤ℎ𝑖𝑐ℎ 𝑘𝑒𝑒𝑝𝑠 𝑜𝑢𝑡 𝑡𝑜𝑜 𝑐𝑖𝑟𝑐𝑢𝑙𝑎𝑟 𝑠ℎ𝑎𝑝𝑒𝑠

                                            𝛵𝑒𝑙𝑜𝑛𝑔 = 𝑀𝑎𝑥 𝑎𝑙𝑙𝑜𝑤𝑒𝑑 𝑣𝑎𝑙𝑢𝑒 𝑓𝑜𝑟 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑟𝑎𝑡𝑖𝑜 

                                                𝑤ℎ𝑖𝑐ℎ 𝑘𝑒𝑒𝑝𝑠 𝑜𝑢𝑡 𝑡𝑜𝑜 𝑒𝑙𝑜𝑛𝑔𝑎𝑡𝑒𝑑 𝑠ℎ𝑎𝑝𝑒𝑠
                         𝜆𝑚𝑖𝑛 = 𝑇ℎ𝑒 𝑠𝑚𝑎𝑙𝑙𝑒𝑟 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎 𝑏𝑙𝑜𝑏
                       𝜆𝑚𝑎𝑥 = 𝑇ℎ𝑒 𝑏𝑖𝑔𝑔𝑒𝑟 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒 𝑜𝑓 𝑎 𝑏𝑙𝑜𝑏

          𝑉𝑘 = 𝑆𝑝𝑎𝑐𝑒 𝑡𝑖𝑚𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 𝑛𝑢𝑚𝑒𝑟 𝑘 

                                    (𝑠ℎ𝑜𝑟𝑡 𝑣𝑖𝑑𝑒𝑜 𝑐𝑙𝑖𝑝 𝑜𝑓 𝑓𝑖𝑠ℎ ℎ𝑒𝑎𝑑) 

                  𝑓𝑑𝑒𝑠𝑐(𝑉𝑘) = 𝐹𝑒𝑎𝑡𝑢𝑟𝑒 𝑑𝑒𝑠𝑐𝑟𝑖𝑝𝑡𝑜𝑟 𝑜𝑓 𝑉𝑘 

     𝐵𝑘 = 𝐵𝑙𝑜𝑏 (𝑠𝑒𝑔𝑚𝑒𝑛𝑡) 𝑛𝑢𝑚𝑏𝑒𝑟 𝑘
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Tables 

 

Table 1: Life-history traits for species used in the study. 

 Sparus aurata Amatitlania 

nigrofasciata 

Hemichromis 

bimaculatus 

Egg diameter at 

hatching [mm] 
~1 ~1.3 ~1.3 

Length hatched 

larvae [mm] 
3.5 5.0 4.9 

Age at filming 

[DPH] 
13, 23 8, 11, 15 8, 14, 16 

Length at filming 

[mm] 
4.5, 6.5 5.6-6.1 5.5-5.9 

Number of events 

used for 

classification 

300                     300 
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Table 2: Break-down of the time required for each of the components of our system. 

All steps of our method were implemented in MATLAB except STIP and MBH 

encodings and the SVM classification, which were available as (much faster) pre-

compiled code. The only element that performs differently in the learning (0.01 s) vs 

execution (<0.001 s) is the SVM classifier. Manual detection of feeding events took 

~20 min per 10,000 frames for a well-trained individual. 

Step Time (sec.) 

Per-frame  

Compression 0.042 

Fish head detection 1.07 

Per-volume 

Pose normalization (rotation and 

mirroring) 

0.21 

STIP encoding  7.35 

MIP encoding 7.01 

MBH encoding 1.02 

VIF encoding 4.01 

SVM classification 0.01 
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Table 3: Classification benchmark- results for A. nigrofasciata and H. bimaculatus. 

Classification tests were conducted to evaluate the classification models while seeking 

to classify clips as feeding or as non-feeding events. The best models were kept and 

later used as the classification’s core algorithm. Data are classification accuracy 

(ACC) ± standard error (SE), the area under the Receiver operating characteristic 

curve (AUC), the sensitivity and specificity of each of the tested methods. Shaded 

row indicates the best result. 

Specificity 
Sensit

ivity 
AUC 

ACC ± SE 

(%) Descriptor Type 
 

70.0 69.3 0.81 69.7 ± 3.9 STIP a 

66.7 75.3 0.93 86.0 ± 2.1 MIP b 

87.3 94.7 0.98 91.0 ± 1.1 MBH c 

78.0 71.3 0.78 74.7 ± 2.3 VIF d 

88.0 94.0 0.96 91.0 ± 1.2 MBH +VIF e 

86.0 94.0 0.97 90.0 ± 2.0 STIP +MIP +MBH f 

88.0 96.0 0.97 92.0 ± 1.0 MIP +MBH +VIF g 

89.3 96.0 0.97 92.7 ± 1.4 
STIP +MIP+ MBH 

+VIF 
h 
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Table 4: Classification benchmark results for S. aurata. Classification tests were 

conducted to evaluate the classification models while seeking to classify clips as 

feeding or as non-feeding events. The best models were kept and later used as the 

classification’s core algorithm. Data are classification accuracy (ACC) ± standard 

error (SE), the area under the Receiver operating characteristic curve (AUC), the 

sensitivity and specificity of each of the tested methods. Shaded row indicates the best 

result. 

Specificity Sensitivity AUC ACC ± SE (%) Descriptor Type  

74.0 63.3 0.75 68.3 ± 2.3 STIP a 

66.0 66.7 0.77 66.3 ± 1.9 MIP b 

70.0 72.0 0.77 71.0 ± 2.6 MBH c 

60.0 64.0 0.66 62.0 ± 1.1 VIF d 

70.0 70.0 0.77 70.0 ± 1.1 MBH+VIF e 

67.3 74.0 0.81 70.7 ± 2.1 STIP+MIP+MBH f 

69.3 72.0 0.80 70.7 ± 2.3 MIP+MBH+VIF g 

70.0 75.3 0.82 72.7 ± 2.1 STIP+MIP+MBH+VIF h 
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Table 5: Detection results for a video of H. bimaculatus. Detection tests evaluate the 

entire pipeline by evaluating how it performs on unseen new videos, reflecting the 

ability of the framework to detect a relevant event from a movie. Each row provides 

detection performance using a different video representation. Results include the 

confusion matrix for true vs. predicted feeding and non-feeding events (shaded cells), 

the True positive rate (TP), true negative rate (TN) and the accuracy (ACC).  

 Descriptor   Confusion Matrix 

(%) 

TP 

(%) 

TN 

(%) 

AC

C 

(%) 

   Pred. 

feed 

Pred. no-

feed 

   

a STIP 
Feed 100.0 0.0 100 

 

66 83 

No-feed 34.2 65.8 

b MIP 
Feed 92.8 7.14 93 

 

83 

 

88 

 No-feed 17.2 82.77 

c MBH 
Feed 100.0 0.00 100 

 

95 

 

98 

 No-feed 5.5 95.0 

d VIF 
Feed 92.9 7.1 93 

 

70 

 

81 

 No-feed 30.3 69.7 

e MBH+VIF 
Feed 100.0 0.00 100 

 

91 

 

95 

 No-feed 9.0 91.0 

f 
STIP+MIP+MB

H 

Feed 100.0 0.0 100 

 

86 

 

93 

 No-feed 13.5 86.5 

g MIP+MBH+VIF 
Feed 100.0 0.0 100 

 

89 

 

94 

 No-feed 11.4 88.6 

h 
STIP+MIP+MB

H+VIF 

Feed 100.0 0.0 100 83 92 

No-feed 16.6 83.4 
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Table 6: Detection results for a video of S. aurata. Detection tests evaluate the entire 

pipeline by evaluating how it performs on unseen new videos, reflecting the ability of 

the framework to detect a relevant event from a movie. Each row provides detection 

performance using a different video representation. Results include the confusion 

matrix for true vs. predicted feeding and non-feeding events (shaded cells), the True 

positive rate (TP), true negative rate (TN) and the accuracy (ACC).  

 

 Descriptor   Confusion Matrix 

(%) 

TP 

(%) 

TN 

(%) 

AC

C 

(%) 

   Pred. 

feed 

Pred. no-

feed 

   

a STIP 

Feed 100.0 0.0 100 

 

63 

 

82 

No-

feed 

37.0 63.0 

b MIP 

Feed 100.0 0.0 100 

 

70 

 

85 

 No-

feed 

30.0 70.0 

c MBH 

Feed 100.0 0.0 100 

 

75 88 

 No-

feed 

24.6 75.3 

d VIF 

Feed 100.0 0.0 100 

 

60 80 

 No-

feed 

39.7 60.3 

e MBH+VIF 

Feed 60.0 40.0 60 

 

75 

 

68 

 No-

feed 

24.9 75.1 

f STIP+MIP+MBH 

Feed 100.0 0.0 100 

 

74 

 

87 

 No-

feed 

25.6 74.4 

g MIP+MBH+VIF 

Feed 100.0 0.0 100 

 

75 

 

88 

 No-

feed 

24.8 75.2 

h 
STIP+MIP+MBH+
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Figures 

 

 

 

 

Fig 1: Extracted spatio-temporal volume in canonical views (horizontal, right-facing 

views) of a feeding fish. The prey is marked by a red circle, and enters the mouth at 

60 ms. The mouth closes at 120 ms.  
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Figure 2: Five main blocks of the classification algorithm (left column) and their 

outputs (right column). 
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Fig 3: Video processing to identify fish and determine mouth location (stages a-b in 

Fig 2). a) an image is selected from the video (here, 23 DPH S. aurata). b) binary 

separation of the foreground and background is followed by blob extraction (blue and 

brown insets in b). c) blobs qualified by an eigenvalue ratio test (having appropriate 

length/width ratios) are maintained, while small blobs are removed. d) gradient 

analysis is used to identify textured elements (fish) from non-textured ones (noise). e) 

pose normalization is applied to the blobs. The fish head is located by examining the 

radius of the maximum bounded circle. f) the main axis of the fish body and the head 

are visualized, and projected onto the original image: green circles point to fish 

mouths, and red lines represent fish bodies’ main (long) axis.   
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Journal of Experimental Biology 219: doi:10.1242/jeb.133751: Supplementary information 

Fig S1: examples of pose normalizing and mouth detection of larval fish 
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Journal of Experimental Biology 219: doi:10.1242/jeb.133751: Supplementary information

Fig S2: area under the curve (AUC) for A. nigrofasciata and H. bimaculatus (A) and  S. 

aurata (B), for the different descriptors used in this study. Descriptor combinations (e.g. 

MBH+VIF) are marked by dashed, two color lines. The combination of all descriptors (STIP

+MIP+MBH+VIF), which had the best performance is marked by a black thick line. 
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Movie 1. Video processing (first two stages of Fig. 2 in the main text) automatically identified fish 
and determined mouth location, indicated by green circles. 
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http://www.biologists.com/movies/JEB_Movies/JEB133751/Movie1.mp4



