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Abstract

Sonic hedgehog (Shh) signaling patterns the vertebrate spinal cord by activating a group of
transcriptional repressors in distinct neural progenitors of somatic motor neuron and
interneuron subtypes. To identify the action of this network, we performed a genome-wide
analysis of the regulatory actions of three key ventral determinants in mammalian neural tube
patterning: Nkx2.2, Nkx6.1 and Olig2. Previous studies have demonstrated that each factor
acts predominantly as a transcriptional repressor, at least in part, to inhibit alternative
progenitor fate choices. Here, we reveal broad and direct repression of multiple alternative
fates as a general mechanism of repressor action. Additionally, the repressor network targets
multiple Shh signaling components providing negative feedback to ongoing Shh signaling.
Analysis of chromatin organization around Nkx2.2, Nkx6.1 and Olig2 bound regions,
together with co-analysis of engagement of the transcriptional activator Sox2, indicate that
repressors bind to, and likely modulate the action of, neural enhancers. Together, the data
suggest a model for neural progenitor specification downstream of Shh signaling wherein
Nkx2.2 and Olig2 direct repression of alternative neural progenitor fate determinants, an
action augmented by the overlapping activity of Nkx6.1 in each cell type. Integration of
repressor and activator inputs, notably activator inputs mediated by Sox2, is likely a key
mechanism in achieving cell type-specific transcriptional outcomes in mammalian neural

progenitor fate specification.
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Introduction

Sonic hedgehog (Shh) signaling is critical for the specification of ventral neural progenitor
types that give rise to molecularly and functionally distinct classes of ventral neurons in the
developing vertebrate central nervous system (Dessaud et al., 2008). Several lines of evidence,
including the direct binding of Gli transcription factors to their cis-regulatory modules, have
identified Nkx2.2, Nkx6.1 and Olig2 as direct transcriptional targets of Shh’s ventral neural
patterning activity (Lei et al., 2006; Oosterveen et al., 2012; Peterson et al., 2012; Wang et al.,
2011). Each of these factors has been shown to function as a transcriptional repressor in
neural patterning: Olig2 is required for specification of somatic motor neuron progenitors,
Nkx2.2 for the specification of V3 interneuron progenitors, while Nkx6.1 expression overlaps
V2 and V3 interneurons and somatic motor neuron progenitors and is essential for normal
specification of both populations (Briscoe et al., 2000; Briscoe et al., 1999; Lu et al., 2002;
Mizuguchi et al., 2001; Mubhr et al., 2001; Novitch et al., 2001; Sander et al., 2000; Vallstedt
et al., 2001; Zhou and Anderson, 2002; Zhou et al., 2001) (Fig.1A). Although their general
roles in specifying respective neural progenitor types downstream of Shh pathway have been
documented through mis-expression studies (Briscoe et al., 2000; Mizuguchi et al., 2001;
Novitch et al., 2001), their direct DNA associated regulatory actions and target specificity is

not understood.

In this report, we undertook an integrative, functional genomic approach to identify genomic
binding regions and target genes of Nkx2.2, Nkx6.1, and Olig2 in embryonic stem cell
derived neural progenitors. Our data highlight previously unappreciated breadth of direct fate
exclusion, modulation of ongoing upstream Shh signaling input through multiple signaling
nodes (Lek et al., 2010), and Sox2 input into available enhancers with a resulting cell-type
specific output directing a specific neural progenitor type (Oosterveen et al., 2012; Peterson

etal., 2012).
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Materials and Methods

Chromatin immunoprecipitation analysis

Neural progenitors were derived from mouse ESCs in serum-free suspension culture in all-
trans retinoic acid (RA, 500nM) (Sigma) and SAG (Calbiochem; 100-800nM) as described
previously (Peterson et al., 2012; Wichterle et al., 2002). ChlIP-seq was performed as
described in (Peterson et al., 2012) and analyzed using CisGenome 2-sample conditional
binomial algorithm in an mm9 genome assembly; data is accessible through GEO
(GSE65462). In bioinformatics studies, the nearest genes 5° and 3’ of the transcription factor
binding region where considered potential transcriptional targets. Conformational and
potential isoform bias in ChlP-seq was minimized by employing a cocktail of factor specific
antibodies: Millipore [AB9610] for Olig2, the cocktail of (DSHB [74.5A5], Sigma
[HPA003468], and custom rabbit polyclonal [gift from T. Jessell]) for Nkx2.2, and the
cocktail of (DSHB [F55A10, F55A12, F64A6B4, and F65A2], RD Systems [AF5857], and
custom rabbit polyclonal [gift from T. Jessell]) for Nkx6.1. Gli3-FLAG ChIP was performed
with anti-FLAG (M2, Sigma) on a mouse ESC line with a 3XFLAG-Avi tag inserted
immediately upstream of the GIi3 start codon. Motif analysis was performed on the top
2,000 peaks with CisGenome or DREME combined with TOMTOM (Bailey, 2011).
Aggregate plot and heatmap clustering were performed with HOMER (Heinz et al., 2010).
Gene ontology annotation was performed through the DAVID program
(http://david.abcc.nciferf.gov/). Sox2 [ESC] (GSE11724), Glil, Sox2, H3K4me2, and
H3K27ac [all NPC] (GSE42132), H3K4me2 [ESC] (GSE11172), H3K27ac [ESC]

(GSE24164), and DNasel-seq [E14.5 brain] (GSM1014197) were used in this study. A crude
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neural tube preparation for ChIP-gPCR was performed on limbless, decapitated E10.5 mouse

trunk samples, in biological and technical duplicates. See Table S3 for primer sequences.

Ectopic expression study

Open reading frames (ORF) were targeted to the engineered HPRT locus in the mA2.lox.Cre
mESC line to express the ORFs under the control of a tetracycline response element
(lacovino et al., 2011). Neural progenitors were induced with 500nM RA as described in the
previous section and the transgene was activated with 1ug/ml doxycycline (Dox) after two
days of RA treatment. RNA samples were collected up to 24hr post Dox induction and
subjected to RNA-seq or BioMark (Fluidigm) RT-gPCR assay. RNA-seq was performed at
12hr post induction in biological duplicates and technical triplicates and analyzed with STAR
aligner and DEseq2 (GEO accession number: GSE65462). The following DNA binding
deficient mutant forms of each repressor factor were employed in the study: WFQNHRY
[Nkx2.2] (Pradhan et al.,, 2012), WFQNRRT [Nkx6.1](Lee et al., 2008), NSRERKR

[Olig2](Longo et al., 2008)). See Table S3 for primer sequences.

Protein binding microarray (PBM) experiments

Full-length mouse Olig2 was purified from E. coli as a GST fusion. PBM experiments were
conducted using 200 nM Olig2 in the PBM binding reactions essentially as described
previously, with the addition of 0.023% Triton X-100 to the binding buffer, using two custom
“all-10mer” array designs (AMADID #015681 and #016060) (Berger and Bulyk, 2009).
PBM data were quantified and normalized, and data from the two arrays were combined as
described previously (Berger and Bulyk, 2009) to determine the in vitro DNA binding
specificity of Olig2. The resulting PWMs were trimmed as described previously (Gordan et

al., 2011) to remove flanking sequence of low information content.
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Results and Discussion

To examine the direct regulatory actions of the Shh-initiated transcriptional network (Lei et
al., 2006; Oosterveen et al., 2012; Peterson et al., 2012), we performed ChlP-seq for Nkx2.2,
Nkx6.1 and Olig2 on neural progenitors derived in vitro from mouse embryonic stem cells
(mESCs); a model system that recapitulates in vivo patterning processes (Peterson et al.,
2012; Wichterle et al., 2002) (Table S1). The binding events were reproducibly detected in
biological replicates (Fig. S1A); moreover, binding was confirmed in neural tube
preparations from E10.5 embryos at 28 out of 36 loci tested (Nkx2.2: 7/11, Nkx6.1: 11/11,
Olig2: 10/14) (Fig. S1B). DNA regions bound by each factor showed considerable overlap
(Fig. 1B); an even greater overlap was observed in the potential target genes: assigned as the
nearest 5” and 3’ neighboring gene to the bound region (Fig. 1C). These data suggest that the
three factors engage a common set of target genes though cis-regulatory elements many of
which bind all three factors, as well as discrete regulatory elements engaging specific

members of the regulatory trio.

To assess the significance of the predicted target gene overlap, we performed Gene
Ontology (GO) term analysis. “Neural Differentiation” and ‘“Transcription Regulator
Activity” GO terms were strongly enriched in the gene sets targeted by all three repressors
(3.1 fold and 2.0 fold) when compared to single or pair-wise targeted gene sets. This data
suggests that co-targeting defines the most relevant neural targets within the repressor
network in neural fate specification. Detailed analyses showed that a number of known neural
fate determinants as well as components of the Hedgehog pathway were co-targeted (Fig. 1D-
F, S1-4). Targeted neural fate regulators included both progenitor expressed transcription

factors (eg. Pax6, 1rx3) as well as transcriptional regulators active in post-mitotic neurons (eg.
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Isl1, Enl) (Fig. S1). These results are consistent with at least two regulatory strategies for the
ventral repressor program: the repression of alternative neural subtype fates at both
progenitor and post-mitotic levels and feedback modulation of the Hedgehog pathway.
Interestingly, though Nkx2.2, Nkx6.1 and Olig2 mediate tissue patterning as Shh primary
targets (Lei et al., 2006; Oosterveen et al., 2012; Peterson et al., 2012; Wang et al., 2011),
intersectional analysis showed a limited overlap with Glil and Gli3 bound regions overall
(Fig. 1G, S6D), with the exception of putative cis-regulatory regions around ventral neural
progenitor sub-type specifiers including Nkx2.2, Olig2 and Nkx6.1 (Fig. S2) (Lei et al., 2006;
Oosterveen et al., 2012; Peterson et al., 2012; Wang et al., 2011). At the target gene-level, Gli
factors showed extensive overlap, particularly with genes targeted by all three repressors (Fig.
1H, S6E). Thus, the initial Shh/Gli input, and downstream Nkx2.2, Nkx6.1 and Olig2
repressor programs, share common target genes but act through distinct cis-regulatory

modules.

To functionally address predicted repressor program, we used a doxycycline-inducible
transgenic mESC system (lacovino et al., 2011; Mazzoni et al., 2011) to ectopically express
Nkx2.2, Nkx6.1 and Olig2 singly, or in pairwise combinations: Nkx2.2 and Nkx6.1 (Nkx6.1-
2A-Nkx2.2) and Olig2 and Nkx6.1 (Nkx6.1-2A-0Olig2). Samples were subjected to global
analysis of transcriptional activity by RNA-seq 12 h post-Dox induction, and targeted
analysis of a subset of genes by microfluidic-based RT-qPCR (Fluidigm) (Fig. 2A, B). At the
global level, we observed an extensive set of targets displaying reduced mRNA levels on
individual or pairwise activation of Nkx2.2, Nkx6.1, and Olig2, as well as their pairwise
combinations (Fig. 2C, Table S2), in good agreement with predictions of the direct DNA
interaction data (Fig. 1B-E, S1). Factor specific effects were only evident for a small set of
genes (clustered toward the left in Fig. 2C). Overall, 76-96 genes were downregulated by

individual factor expression, and 172 to 192 in pairwise combinations, setting a 2-fold cutoff
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in target gene repression (Table S2). Of these down-regulated genes, 57-71% were
associated with binding of the respective factors, a 1.9 - 4.7 fold enrichment over random
expectation (p<<0.01) (Table S2). Consistent with the ChIP-seq GO profile, the RNA-seq
GO profile showed enrichment for neural differentiation and transcription factor terms (Table
S2). Importantly, alternative fate determinants and Shh pathway components were strongly

represented in the highly down-regulated gene set (Fig. 2C).

Select genes representing ventral and dorsal neural progenitor fate determinants and Shh
pathway components were subjected to a more extensive temporal analysis of regulation by
RT-gPCR (Fluidigm). Consistent with the RNA-seq data, Nkx2.2, Nkx6.1 and Olig2 reduced
MRNA levels for all tested ventral fate determinants individually (Fig. 2D); their effects were
evident within 6 hrs of Dox-mediated induction. Interestingly, Nkx6.1 enhanced the
repressive phenotype observed with Olig2 and Nkx2.2 (Fig. 2D). Together, the results
suggest a direct repressive action of the ventral patterning factors on the expression of other
transcriptional determinants of neural patterning that is likely through independent regulatory
mechanisms given the additive effects observed in the co-expression analysis. However,
genes encoding dorsal neural progenitor fate determinants showed a marked weighting in
their specific responses to individual factors: some genes showed little response (e.g. Msx2
and Zicl) while expression of others was reduced on activation of a specific factor, or
combination of factors (e.g. Pax3, Pax7, Msx1) (Moore et al., 2013) (Fig. 2E, Table S2).
Such differential sensitivities to repressor input suggest the regulatory systems restricting
dorsal and ventral progenitor fates are largely distinct programs (Briscoe et al., 2000). The
targets of the repressor network revealed here are notably broader than previously appreciated
(Briscoe et al., 2000; Moore et al., 2013; Oosterveen et al., 2012). This likely reflects

redundancies in the regulatory circuitry that obscure de-repression effects in mutant analysis
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and an emphasis on a restricted set of local cross-repressive interactions from ectopic

expression studies.

Repression was also highly selective for Hedgehog signaling components with Nkx2.2
displaying a stronger inhibitory activity on gene expression than Olig2. Though expression of
genes enhancing (e.g. Gli2, Gasl, and Boc) and inhibiting (e.g. Gli3) Shh signaling showed
reduced expression, the strongest effect was observed on key genes that promote Shh
signaling including Gli2, the predominant transcriptional activator in the Hedgehog pathway,
and Gasl, a co-receptor in Shh signaling (Fig. 2F). These results are consistent with the
notion that Nkx2.2 exerts its patterning action in part by negative feedback regulation of

Hedgehog pathway components (Lek et al., 2010).

To determine whether the observed repressive effects were dependent on DNA binding,
point mutations predicted to abolish direct DNA binding (see Methods) were introduced into
the DNA-binding domains of Nkx2.2, Nkx6.1 and Olig2 producing transgenes. Each mutant
form showed a loss of repression in the assay (Fig. S5). Thus direct binding to target DNA
binding sites within cis-regulatory elements is likely the primary mode whereby each
regulatory factor controls gene activity. This conclusion is supported by motif analysis that
recovered centrally positioned DNA recognition motifs for each of the factors in factor

specific ChlP-seq (Fig. 3A-C).

To gain additional mechanistic insights into regulatory control processes within the regions
identified by Nkx2.2, Nkx6.1 and Olig2 interactions, we analyzed bound regions for
overrepresented motifs. The clear similarity of the primary ChIP motif to motifs determined
by in vitro binding of factors supports the argument of direct DNA engagement by each
factor (Fig. 3A-C). Moreover, the data revealed additional features of DNA engagement

modes: the Nkx6.1 primary motifs appear to contain the Nkx6.1 in vitro binding motif and an
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additional motif separated by a spacer, consistent with complex formation, possibly with Pbx
(Fig. 3B, compare Nkx6.1 (c-2), Nkx6.1 (P), and Pbx (c)). bHLH factors like Olig2 bind an
E-box motif (CAXXTG). Comparison between the unambiguous in vitro Olig2 homodimer
motif (CATATG) and the more flexible in vivo motifs (CA T/G A/G TG), as well as
inspection of E-box sequences at ChlIP peaks (data not shown) suggest that Olig2 binds as
both homo- and hetero-dimers (Fig. 3B). Interestingly, centered Fox and nuclear hormone
receptor (NHR) motif predictions in Nkx2.2 bound regions, and a Pbx motif recovered from
Nkx6.1 bound regions suggests a direct regulatory interplay (Fig.3A, B). SoxB1 transcription
factors (Sox1, 2, and 3) play key roles in the active maintenance and fate determination of
neural progenitors (Bergsland et al., 2011; Bylund et al., 2003; Graham et al., 2003;
Oosterveen et al., 2012; Peterson et al., 2012). Examination of the Nkx2.2, Nkx6.1 and Olig2

data sets showed a consistent enrichment of a Sox motif in bound regions (Fig. 3A-C).

We explored a potential Sox factor association at repressor bound regions by intersecting
Sox2 binding data in neural progenitors (Peterson et al., 2012). Sox2 is best known in the
neural lineage for its role in progenitor state maintenance, a general property shared by all
progenitors independent of progenitor specificity (Bylund et al., 2003; Graham et al., 2003).
In our data, we uncovered extensive overlap of Sox2 binding and DNA regions targeted by
all three repressors: 57% of Sox2 associated regions intersected with DNA domains bound by
Nkx2.2, Nkx6.1, or Olig2 (Fig. S6A). Collectively, these data suggest that both repressor and
activator inputs governing progenitor programs are mediated through a common set of
enhancers (Fig. 4A). Similarly, Sox3 DNA target interactions in neural progenitors
(Bergsland et al., 2011) showed an extensive overlap with the repressor trio (46%) (Fig. S6B).
As only a small percentage of these Sox2/repressor trio bound regions can be identified in
Sox2’s ESC regulatory profile (Marson et al., 2008) (9%: Fig. S6C) the data reveal a distinct

Sox2 engagement with the neural regulatory genome.
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To address the regulatory role of the repressor and activator bound enhancers, we analyzed
the presence of histone modifications associated with active cis-regulatory elements
accompanying neural progenitor specification in vitro (Fig. 4B) (Creyghton et al., 2010;
Heintzman et al., 2007; Rada-Iglesias et al., 2011). Regions bound by Nkx2.2, Nkx6.1 and
Olig2 associated overall with acetylation of lysine 27 on histone 3 (H3K27ac) in the mixed
populations of dorsal and ventral neural progenitors (Fig. 4C-E, S7G) suggesting that
repressors likely engage at active transcriptional enhancers (Creyghton et al., 2010; Rada-
Iglesias et al., 2011). Interestingly, Nkx2.2, Nkx6.1, or Olig2 binding regions that do not
overlap with Sox2 binding showed only low levels of H3K27ac modification in neural
progenitors, or in ESC-derivatives prior to neural specification (Fig. 4H), while those
overlapping with Sox2 showed markedly elevated H3K27ac levels in a primarily neural
progenitor specific manner (Fig. 4G). Thus, Sox2 engagement correlates with an active
enhancer signature at this subset of the repressor targeted genome. Importantly, Sox2 binding
regions that do not overlap with Nkx2.2, Nkx6.1, or Olig2 bound regions showed similar
enrichment of H3K27ac suggesting these are also active enhancers (Fig. 4F). Nkx2.2, Nkx6.1,
and Olig2 bound regions that do not show significant H3K27ac signal could act as
transcriptional silencer domains, a possibility that requires further study. Overall, we
observed similar observations and correlations to those with H3K27ac analyzing H3K4me2, a
second chromatin modification linked to enhancer signatures (He et al., 2010) (Fig. S7TA-F,
H). Whether the set of enhancers identified here is engaged by distinct repressor networks in
more dorsally located neural progenitors, or acts independent of repressor networks, remains

to be determined.

In sum, our data support a model wherein neural progenitor diversity in the developing
mammalian central nervous system follows from the suppression of alternative neural

pathway choices by the action of Shh-dependent transcriptional repressors coupled with Sox-
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family-mediated transcriptional activation of available cis-regulatory modules within a given
progenitor type. The core dorso-ventral neural patterning network is ancient: the spatial
arrangements and actions of several key transcriptional components including vnd/Nkx2,
ind/Gsh and msh/Msx are conserved from insects to mammals (Cornell and Ohlen, 2000). In
the mammalian pancreas, transcriptional networks involving Nkx2.2 and Nkx6.1 also play
central roles in islet cell specification together with a number of other factors linked to neural
fate determination including Foxa2, Mnx1 and Isl1 (Arda et al., 2013). Exploring the
mechanisms at play in neural systems in invertebrate organisms and patterning in mammalian
pancreatic development may prove useful for further defining the underlying operating

principles of these repressor networks in cell fate specification in animal development.
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Figure 1. Characteristics of Nkx2.2, Nkx6.1 and Olig2 target genes

(A) Immunofluorescence assay on transverse E10.5 neural tube section at forelimb level with
indicated antibodies. (B) Venn diagram intersection of Nkx2.2, Nkx6.1, and Olig2 binding
regions. (C) Venn diagram intersection of Nkx2.2, Nkx6.1, and Olig2 target genes. (D) Gene
Ontology analysis summary for genes targeted by different combinations of factors. (E)
Target gene Venn diagram highlighting neural progenitor fate determinants and Sonic
Hedgehog pathway components. (F) genome browser snapshots showing indicated ChlIP-seq
signal. Cons: Phastcon 30 conservation score. (G, H) Venn diagram for binding region

overlap (G) and target gene overlap (H) between Nkx2.2, Nkx6.1, Olig2, and Gli3.
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Figure 2. Nkx2.2, Nkx6.1, and Olig2 overexpression assay in neural progenitors

(A) A schematic describing transgene structures. (B) A schematic of overexpresssion
experiment design. Cell aggregates were generated from mESC and subjected to neural
differentiation and transgene activation. RA: all-trans retinoic acid. Dox: doxycycline. (C)
Hierarchical clustering of genes displaying a two-fold or greater change in mRNA-seq data
relative to the parental reference population 12 hours following Dox-mediated activation of
transcriptional repressors. Fold change to the parental cell line is shown. (D-F) RT-gPCR
time course repression assay. See panel A for color designations. X-axis: hours post Dox
induction, y-axis: fold change from Dox induction (t=0). Error bars: standard error based on 3
biological replicates. Asterisks indicate significant difference from non-transgenic control

based on the standard errors.
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Figure 3. Analysis of enriched binding motifs

(A-C) Occurrence of ChlIP-recovered and in vitro-determined motifs. c: CisGenome motif

recovery, d.: DREME motif recovery, P: protein binding microarray. Grey: E14.5 brain

DNasel-seq control data set. Black: ChlPseq data. (left) Motif distribution histogram relative

to binding peak center. X-axis: cumulative motif occurrence, y-axis: bp from peak center.

Grey: E14.5 brain DNasel-seq control, light blue: ChlPseq data.
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Figure 4. Analysis of Sox2 inputs into ventral repressor-bound regions

(A) Venn diagram intersection between Sox2 binding regions and the union of Nkx2.2,
Nkx6.1, and Olig2 binding regions. (B) A schematic describing neural progenitor
differentiation protocol. Each condition analyzed in (C-H) is annotated with a solid box with
the corresponding color. (C-H) Aggregate analysis of H3K27ac modification status along

neural progenitor differentiation paths. Black: ESCs, green: pre-neural induction, blue: dorsal
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neural progenitors, red: ventral neural progenitors. Also see (B) for color coding. (C-E)
Individual plot for Nkx2.2, Nkx6.1, and Olig2 binding regions. (F) Sox2 binding regions that
do not overlap with Nkx2.2, Nkx6.1, or Olig2. (G) Sox2 binding regions that overlap with
Nkx2.2, Nkx6.1, or Olig2. (H) Nkx2.2, Nkx6.1, or Olig2 binding region that do not overlap

with Sox2 binding.
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Figure S1. Characterization of Nkx2.2, Nkx6.1, and Olig2 binding and their target genes

(A) Heatmap analysis of two ChIP-seq biological replicates. (B) ChIP-gPCR analysis on
E10.5 embryonic trunk preparation. Error bars are standard error based on 2 biological
replicates. (C) Genes co-targeted by Nkx2.2, Nkx6.1, and Olig2 that fall into Neuron
Differentiation GO term are shown. SAG: agonist for Shh pathway. Genes upregulated and
downregulated by SAG are associated with ventral and dorsal progenitor identities,

respectively.
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Ventral progenitor fate determinants
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Figure S2. Transcription factor binding and H3K27ac status at ventral neural fate

determinants

Indicated transcription factor binding is shown as ticks and H3K27ac signal and phastcon

conservation score as heatmap at ventral neural fate determinant loci. RA: neural progenitor

culture treated with RA for 72hrs. RA/SAG: neural progenitor culture treated with RA and

SAG for 72hrs.
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Dorsal progenitor fate determinants
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Figure S3. Transcription factor binding and H3K27ac status at dorsal neural fate

determinants

Indicated transcription factor binding is shown as ticks and H3K27ac signal and phastcon
conservation score as heatmap at dorsal neural fate determinant loci. RA: neural progenitor
culture treated with RA for 72hrs. RA/SAG: neural progenitor culture treated with RA and

SAG for 72hrs.
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Hedgehog signaling components
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Figure S4. Transcription factor binding and H3K27ac status at Hedgehog pathway

components

Indicated transcription factor binding is shown as ticks and H3K27ac signal and phastcon
conservation score as heatmap at Hedgehog pathway component loci. RA: neural progenitor
culture treated with RA for 72hrs. RA/SAG: neural progenitor culture treated with RA and

SAG for 72hrs.
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Figure S5. Overexpression assays with DNA binding deficient Nkx2.2, Nkx6.1, Olig2

mutants

(A) A schematic describing transgene structures. (B-D) Expression change plot. See panel A
for color and stroke designations. X-axis: hours post Dox induction, y-axis: fold change from

Dox induction (t=0). Error bars: standard error based on 3 biological replicates.
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Figure S6. Sox2 and Glil binding region intersectional analysis

(A) 4-way intersectional analysis between Nkx2.2, Nkx6.1, Olig2, and Sox2. (B) Venn

diagram intersection between the union of Nkx2.2, Nkx6.1, and Olig2 binding regions, Sox2,

and Sox3. (C) Venn diagram intersection between the union of Nkx2.2, Nkx6.1, and Olig2

binding regions, Sox2 binding regions in neural progenitors, and Sox2 binding regions in

ESCs. (D, E) Venn diagram for binding region overlap (D) and target gene overlap (E)

between Nkx2.2, Nkx6.1, Olig2, and Glil.
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Figure S7. Analysis of active chromatin signatures at Nkx2.2, Nkx6.1, Olig2 and Sox2

binding regions

(A-F) Aggregate plot for H3K4me2 at Nkx2.2, Nkx6.1, Olig2, and Sox2 binding regions. (A-
C) Individual binding regions. (D) Sox2 binding regions that do not overlap with Nkx2.2,
Nkx6.1, or Olig2. (E) Sox2 binding regions that overlap with Nkx2.2, Nkx6.1, or Olig2. (F)
Nkx2.2, Nkx6.1, or Olig2 binding region that do not overlap with Sox2 binding. (G, H)

Heatmap clustering analysis of H3K4me2 and H3K27ac modifications at Nkx2.2, Nkx6.1,
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Table S1. Nkx2.2, Nkx6.1, and Olig2 binding regions

(Tab1-3) Primary peak call and annotation. Column A: peak rank according to peak score.
Column B-D: binding peak coordinates. Column E-U: genes associated with the peak.
Nearest gene: the gene whose transcriptional start site is the closest to the peak. Nearest left
gene: the closest gene located left to the peak, Nearest right gene: the closest gene located
right to the peak. 5x Nearest left/right genes: five closest genes to the left and to the right
from the peak. Gene symbol: official gene name. refseq: Refseq ID. Relative2peak: relative
location of the peak to the gene. TSS_upstream: the binding peak is upstream of the
transcriptional start site of the gene. TES_downstream: the binding peak is downstream of
the transcriptional end site of the gene. Dist2TSS: relative distance of the peak to the
transcriptional start site of the gene in bp. (Tab4) Integrated peak list and annotation for
Nkx2.2, Nkx6.1, Olig2, Sox2, and Glil. See above for designations for column B-L. Column
M-Q: binding peak count for indicated transcription factors. Column R-AK: transcription
factor binding motif count in the binding region. See Fig. 3A-C for motif details. Column

AL-AP: mouse pronuclear injection enhancer assay test results from http://enhancer.Ibl.gov/.

Click here to Download Table S1
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http://www.biologists.com/DEV_Movies/DEV124636/TableS1.xlsx
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Table S2. Repression assay RNAseq data

(Tabl) rpkm values for all samples and all analyzed genes. (Tab2) Expression value ratio
between indicated overexpression line and the parental line for genes repressed by 2-fold or
greater in at least one overexpression group. This data was used for hierarchical clustering
shown in Fig 3C. (Tab3) List of genes down-regulated in each transgene expression
experiment. Down-regulation cutoff was 2-fold relative to parental cell line using replicate
average. Genes associated with binding of respective factor(s) are indicated in red. (Tab4-9)
DAVID GO term analysis on down-regulated genes. (Tab4) Genes down-regulated at least in

one cell line. (Tab5-9) Genes down-regulated in each cell line from Tab3.

Click here to Download Table S2

Table S3. Primers used in this study

(Tabl) Primer sequences for the RT-qPCR assays in this study. Column A: target gene.
Column B,C: left primer. Column D,E: right primer. (Tab2) Primers used in the embryonic
ChIP-gPCR assay. Column A: target gene. Column B: distance from the assay region to the
TSS of the target gene. Column C: transcription factor bound to the assay region. Column D,

E: left primer. Column F, G: right primer.

Click here to Download Table S3
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http://www.biologists.com/DEV_Movies/DEV124636/TableS2.xlsx
http://www.biologists.com/DEV_Movies/DEV124636/TableS3.xlsx

