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Drosophila acquires seconds-scale rhythmic behavior

Masayoshi lkarashi and Hiromu Tanimoto*

ABSTRACT

Detection of the temporal structure of stimuli is crucial for prediction.
While perception of interval timing is relevant for immediate
behavioral adaptations, it has scarcely been investigated,
especially in invertebrates. Here, we examined whether the fruit fly,
Drosophila melanogaster, can acquire rhythmic behavior in the range
of seconds. To this end, we developed a novel temporal conditioning
paradigm utilizing repeated electric shocks. Combined automatic
behavioral annotation and time—frequency analysis revealed that
behavioral rhythms continued after cessation of the shocks.
Furthermore, we found that aging impaired interval timing. This
study thus not only demonstrates the ability of insects to acquire
behavioral rhythms of a few seconds, but highlights a life-course
decline of temporal coordination, which is also common in mammals.
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INTRODUCTION

Information of time in the environment is crucial to optimize
physiology and behavior of organisms from amoebae to humans
(Buhusi and Meck, 2005; Saigusa et al., 2008). Insects, for example,
change their behavior according to a wide range of time scales, from
sub-second to a day, such as in the generation of courtship songs and
in circadian rhythm (Chouhan et al., 2015; Dubowy and Sehgal,
2017; Konopka and Benzer, 1971; Kyriacou and Hall, 1982;
Shirangi et al., 2013; von Philipsborn et al., 2011). Perception of
interval timing in the seconds range has scarcely been investigated,
especially in invertebrates, despite its relevance to immediate
behavioral adaptations (Buhusi and Meck, 2005; Gallistel and
Gibbon, 2000).

Temporal conditioning is a direct experimental procedure which
can behaviorally demonstrate the perception of interval timing
(Lockhart, 1966; Pavlov, 1927). It was first developed more than a
century ago and has been applied to multiple different species
(Lockhart, 1966; Pavlov, 1927; Saigusa et al., 2008; Sumbre et al.,
2008; Toda et al., 2017). In temporal conditioning, animals receive
repeated stimuli that induce behavioral responses (unconditioned
stimulus, US) at a regular interval. After a given number of US
presentations, the subject is tested to see whether it retains its
behavior responses at the trained interval (Pavlov, 1927). Dogs and
amoeba acquire a rhythmic conditioned response (CR) at minutes-
range intervals (Pavlov, 1927; Saigusa et al., 2008). Fish and
mammals can remember seconds-range intervals after dozens to
hundreds or even thousands of training stimulations (Lockhart,
1966; Sumbre et al., 2008; Toda et al., 2017). While it is known that
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insects use temporal information for associative learning (Boisvert
and Sherry, 2006; Galili et al., 2011; Ito et al., 2008; Shuai et al.,
2011; Szyszka et al., 2011; Tanimoto et al., 2004; Vogt et al., 2015;
Yarali and Gerber, 2010), it is still unclear whether they can measure
precise time intervals.

Electric shock is a powerful US, given the accurate temporal
control and strong punitive effects on behavior. As a result, it has
been employed for associative learning of Drosophila for decades
(Aso et al., 2014; Chadha and Cook, 2014; Quinn et al., 1974; Vogt
et al., 2016). Electric shocks induce a wide range of behavioral
responses in flies (Chadha and Cook, 2014), although avoidance of
the shock has been most widely measured (Appel et al., 2015; Hu
et al, 2018). The difficulty of measuring shock responses,
especially in freely moving flies, lies in their fast and diverse
locomotor changes (i.e. jumping, flying, etc.).

By establishing a novel experimental system for temporal
conditioning using repeated electric shocks, we report here that
Drosophila melanogaster can remember seconds-range time
intervals. By devising an image-based behavioral classification
method, we efficiently detected shock responses. To quantify
rhythmic behaviors, we applied time—frequency analysis, revealing
that CRs continued after cessation of the shocks. We also examined
variables critical for the acquisition of rhythmic behavior, such as
inter-stimulus interval (ISI) and aging.

MATERIALS AND METHODS

Flies

Male wild-type Drosophila melanogaster strain Canton S were used
for the entire study. Flies were reared in a mass culture at 24°C under
a 12 h:12 h light:dark cycle on a standard cornmeal-based food. The
male flies were transferred to the conditioning arenas right before
the experiment. All flies were handled without anesthesia
throughout the study. We used 2—7 day old flies unless otherwise
specified.

Conditioning apparatus

To enable simultaneous video recording and the presentation of
electric shocks, a transparent shock grid was used, similar to Vogt
etal. (2014) (Fig. 1A). Briefly, laser-structured indium tin oxide on
a glass plate delivered a foot shock (9%9 cm; Diamond Coatings
Ltd). Delivery of the shocks was controlled by a custom-written
program via a PCl-interface and a custom device.

A single fly was introduced into a spatially confined arena using a
plastic ring (diameter 26 mm, height 8§ mm) and a glass lid
(30 mmx30 mm) placed on the shock grid. The inner surface of
the plastic ring and the glass lid were coated with Fluon and
Sigmacote, respectively, to prevent climbing (Insect-a-Slip
PTFE30, BioQuip Products, Sigma-Aldrich). Typically, 8 arenas
were used simultaneously for one measurement.

The behavior of the individual fly in the arena was video recorded
from above via a camera with a frame rate of 60 frames s~! (Nikon 1
J5, Nikon). Flies were illuminated from beneath the shock grid using
an LED light box (400-TBL003, SANWA supply).
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Fig. 1. Video recording of behavioral responses to electric shocks. (A) Setup for video recording and image-based classification of behavior. Single flies were
placed in the circular arenas, sandwiched between a glass lid and the transparent shock grid, and were backlit using an LED light box. Eight arenas were video
recorded from above at a frame rate of 60 frames s~". Using the fly tracking software TPro, basic information on individual flies, such as the position of the centroid
and the body axis, was extracted from time series image data. Behavioral classification (resting, small movements, jumping, walking) was performed mainly
based on the time course of linear velocity (see Materials and Methods for details). ¢, time at position i and position i+1; 8, body angle. (B) The four types of behavioral
responses to a 50 V (AC) electric shock pulse lasting 100 ms. The upper row shows representative time courses of distinct locomotor behaviors, where each frame is
presented in a unique color (scale bar: 2 mm). The bottom row shows histograms of shock responses (n=31). Vertical dashed lines indicate the onset of the shock.

Behavioral classification

Behavior was classified as jumping, walking, small movements,
righting and resting, based on linear velocity, which was measured
using open-source tracking software, TPro (Fig. 1A,B; Okuno et al.,
2019; Sirigrivatanawong et al., 2017). Consecutive frames from each
local minimum to the next local minimum of linear velocity were
defined as a single unit and each unit was classified into a behavior
based on the local maximum. Except for jumping, we set the minimal
duration of behavior to 83 ms (5 frames). Jumping and walking were
defined as showing a local maximum of the linear velocity at more than
63 mm s~ and between 8 and 63 mm s~!, respectively. Climbing
attempts with a local maximum of the linear velocity above 11 mm s~!
were excluded from the walk behavior based on the circularity of the
elipse fitted to the fly. To distinguish walking from righting responses,

which are often induced by electric shocks, those bouts above
21 mm s~! in a local maximum of the sideways velocity were excluded
from walking. We checked the accuracy of these filters with manual
annotation and the accuracy was 92% and 99% for jumping and
walking, respectively. Movement with a local maximum of the linear
velocity below 10 mm s~! was classified into small movements or rest,
by applying the 1.5 mm s~! threshold. The whole behavioral analysis
was performed with R version 3. 5. 2 (http:/www.R-project.org/).

Temporal conditioning

A single male fly was directly transferred from a food vial into each
arena by using an aspirator, 15 min prior to conditioning. Ten pulses
(each 0.1 s) of 50 V (50 Hz AC) electric shocks were presented at
regular or variable intervals (Fig. 2). We chose 9 different intervals
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Fig. 2. Experimental design and data processing to detect periodicity of the conditioned response. Flies of the experimental and control groups were both
presented with 10 pulses of electric shocks at regular and random interstimulus intervals (ISls), respectively. For each behavior, power spectral density was

calculated by wavelet transformation. Power (a.u., arbitrary units) at the trained frequency was extracted from the experimental (Exp.) and control (Con.) groups,
and values for the first expected shock after conditioning (dashed rectangle) were compared by permutation test. Vertical dashed lines indicate the onset of the

first (left) and last (right) electric shocks.

and shuftled those intervals randomly in order to make variable ISI
protocols. The 9 intervals were evenly distributed between 0.4 s and
twice ISI (e.g. from 0.4 to 4 s for an ISI of 2 s). We used 19-30
different variable ISI protocols for each condition. The test phase of
experimental and control groups started at the same time (Fig. 2).
We excluded flies that did not receive an electric shock even once, as
a result of sticking on the wall or ceiling, from subsequent analysis.

Time-frequency analysis

Behavioral time series data were expanded into time—frequency
space in order to quantify the periodicity, which is equal to the
trained interval, of the flies’ behavior by using wavelet
transformation (Carmona et al., 1998; Cohen, 2014). Specifically,
we used a complex Morlet wavelet function, which is created by
multiplying a complex-valued sine wave by a Gaussian. The wavelet
function (y) is defined as follows:

12
(1) = e 20272 (1)
with
n
0= ﬁv (2)

where ¢ is time, ¢ is standard deviation of the Gaussian, f is
frequency from 0.06 to 30 Hz in 135 logarithmically spaced steps,
and n represents the number of cycles within the width of the
Gaussian (set to 6 here). The parameter n controls the trade-off
between temporal precision and frequency precision; higher values
provide lower temporal precision and higher frequency precision,
and vice versa.

We compared the power of the experimental and control groups at
the trained frequency in the time window of 0.5 s, centered on the
time of the first expected shock after training. Generally, lower
frequency components have lower temporal precision. Therefore,
periodicity in training can be detected in adjacent time points, thus
potentially confounding the CR. We controlled this ‘leakage’ by
confirming no significant power differences before training (see
also Results).

Permutation test

We performed a permutation test to assess the statistical significance
of the trained periodicity of the flies” behavior (Fig. 2). For the test,
experimental and control animals were pooled and then randomly
classified into simulated datasets of the same size as in the original
data. The power of the trained periodicity was calculated for each of
1000 randomly permutated datasets, and the normal distribution
was fitted to describe the histogram of the differences between the
permutated ‘experimental’ and ‘control’ groups. The P-value was
defined as twice the area fraction from the tail at the observed
difference in the fitted distribution. The bootstrap estimate of the
standard error was calculated as the standard deviation of the
bootstrap distribution. The bootstrap distribution of trained
periodicity was created by random resampling (1000 times) of
data points with replacement from the raw data pool. Other datasets
(Fig. 6C,F) were analyzed by the Kruskal-Wallis test followed by
the Mann—Whitney test with Bonferroni correction. The
significance level of all statistical tests was set to 0.05 (two-sided
test). All statistical analyses were performed with R version 3.5.2
(http:/www.R-project.org/).

RESULTS
Diverse behavioral responses to electric shocks
The temporal precision of US presentations is a critical factor in
temporal conditioning with short ISIs. Flies show an array of electric
shock responses, some of which are too fast for manual scoring. To
systematically characterize the shock responses, we developed a
system for high-speed image acquisition and behavioral classification
(Fig. 1A). We video recorded an individual fly in a circular arena on
transparent shock grids at 60 frames s=' (Fig. 1A). Intense LED
backlight allowed high-contrast capturing of the fly shape at the
shutter speed of 0.5 ms (Vogt et al., 2016). The positions and angles
of flies in each frame were determined using TPro open-source
tracking software (Okuno et al., 2019; Sirigrivatanawong et al.,
2017). We categorized the behavioral state of the fly into four classes:
jumping, walking, small movements and resting (Fig. 1 A,B).

In response to a single 50 V shock lasting 100 ms, flies sharply
increased movements, such as jumping and walking, with short
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latency: 70 and 220 ms of the peak time of jumping and walking,
respectively (Fig. 1B). These immediate locomotor responses
ceased within 1 s (Fig. 1B). In contrast, a single electric shock
induced a longer-lasting decrement in resting, perhaps shifting
behavioral states (Fig. 1B). Therefore, ISI in temporal conditioning
should be longer than 1 s in order to detect rthythmic jumps and
walks.

Time-frequency analysis reveals the acquisition of rhythmic
behavior in temporal conditioning

To examine whether flies can perceive time intervals in the range of
seconds, we sought to establish temporal conditioning by presenting
the experimental group with repeated electric shocks at regular
intervals (Fig. 2). Subsequently, we measured whether the subject
retained behavioral responses at the trained interval (Lockhart,
1966; Pavlov, 1927). We presented the same number of electric
shocks over the same total duration to the control group but with

A Experimental

50 |

Jump rate (%)

-10 -6 -2 2 6 10 14 18 22 26

Time (s)

Frequency (Hz)

N
<
>
[$]
c
Q
=}
o
(0]
—
[T
18 20 22
Time (s)
Jumping Walking
3x10~~ * 3%10~ o 5%10~4
= 4x10-4+
© 2x10744 2x104 -
= T 3x10-4]
g
2x10-4"]
O 1x101 T 1x104 - *
1x1074
0- 0 - 0-
Con. Exp. Con. Exp.

variable ISIs (Fig. 2). The CR was defined by the post-training
difference in periodic behavior of the experimental and control
groups (Fig. 2).

To quantify whether flies acquired behavioral periodicity, we
applied time—frequency decomposition using a complex Morlet
wavelet to the time course of behavioral rate (Fig. 2). Wavelet
analysis detects the periodicity characteristics of data over time
(Berman et al., 2014). The time course of the data series for each
behavioral component was converted into a spectrogram by wavelet
transformation. To measure the CR, we analyzed the power of the
trained frequency at the time of the first expected shock after
training (Fig. 2). Finally, we quantitatively compared the power of
the experimental and control groups using a permutation test (for
further details, see Materials and Methods).

We subjected flies to a repetition of 10 electric shocks ata 2 s ISI.
First, we applied wavelet analysis to velocity data of each fly, and
averaged spectrograms for the experimental and control groups. The

Control

50 |

-10 —6 -2 2 6 10 14 18 22 26

Time (s)

2x103
5
S
[}
E
o
o
1x10-3
5
S
[}
E
o
o
18 20 22
Time (s)
Small
Restin mpin
movements esting Jumping
1x1074 - 3x1074 -
T 3
© 2x10~ 4
5x10°5 )
T %1072
3
g 11044 T
0- 0-
Con.  Exp. Con. Exp. Con.  Exp.

Fig. 3. Behavioral rhythm lasts after temporal conditioning. (A) The time course of jumping in the experimental (2 s ISI) and control (variable ISI) groups.
Vertical dashed lines indicate the onset of the first (left) and last (right) electric shocks. (B) Spectrograms of jumping in the experimental and the control groups
(shown below at higher magnification). Arrowheads indicate the trained frequency (0.5 Hz). Conditioning induced periodic jumping at the trained frequency
selectively in the experimental group. (C) Comparison of the power of the experimental and control groups (post-training) in response to 0.5 Hz stimulation

at the time of the expected shock for the different behaviors. (D) Power of the experimental and control groups ( pre-training) in response to 0.5 Hz stimulation, 2 s
before the first shock (—2.25 to —1.75 s). Error bars represent the bootstrap estimate of the standard errors. *P<0.05; n=233 and 214 for the control and

experimental groups, respectively.
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trained frequency component of the experimental group was clearly
increased during the training phase, although a significant post-
training power difference was not detected (Fig. S1). This result
motivated us to analyze the time course of each behavioral
component, because various responses were represented in the
velocity data and these behavioral responses contributed differently
to the power.

The time course of jumps in the experimental group showed clear
regularity in response to each shock (Fig. 3A). However, the
histogram data do not distinguish individuals with variable
behavioral responses. Analysis of selected flies that consistently
jumped during conditioning revealed clear post-training anticipated
jumps peaked at the expected timing of shock (Fig. S2). In the time—
frequency representation of jump data of the entire population, the
regularity of jumps was notable during the training phase, and lasted
even after termination of the shock (Fig. 3B). This post-training
periodicity in jumping was much reduced in the variable ISI control
group (P<0.05; Fig. 3B,C). While wavelet transformation is suited
to localizing dynamic frequency structures in time, power at a given
time point is also influenced by neighboring time points (Cohen,
2014). To control the carry-over of large power during training, we
artificially created a ‘pseudo-control’ with the hybrid time series of
the experimental (until the last shock) and control (post-training)
jump rates. Wavelet transformation of the pseudo-control showed
decreased post-training periodicity compared with the experimental

group (Fig. S3). Furthermore, we analyzed pre-training periodicity
at equal timing, where frequency information during training has a
similar influence, and found no significant difference between the
experimental and control groups (Fig. 3D). We thus conclude that
the post-training power at the expected shock represents sustained
rhythmic jumping.

For the other types of behavior, post-training power differences
were not statistically significant, despite a strong tendency for small
movements (Fig. 3C). These results indicate that flies acquired 2 s
rhythmic behavior following the presentation of repeated electric
shocks.

Critical factors influencing acquired rhythmic behavior

Effective numbers of stimulus presentations in temporal
conditioning are different among species (Saigusa et al., 2008;
Sumbre et al., 2008; Toda et al., 2017). Mice, for example, need to
be trained with hundreds of repeats to acquire a robust CR (Toda
et al., 2017). To examine whether higher numbers of stimulus
presentations improve the CR in the fly, we conditioned flies with 4,
10, 20 and 40 regular shocks (Fig. 4A). We found that post-training
periodicity in jumping peaked at conditioning with 10 shocks, and
extended training did not improve performance (Fig. 4B,C). This
may be due to fatigue upon repeated shock responses. We indeed
observed a delay in shock-induced jumps after many trials (data not
shown). Other than jumping, we did not detect statistically
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significant post-training power differences in any stimulus
repetitions (data not shown). Thus, flies acquire rhythmic jumps
optimally with around 10 shocks.

To characterize the time range over which flies can acquire
behavioral rhythms, we trained them with four different ISIs: 1.4, 2,
3 and 5 s. For all tested ISIs, periodic jumping in the experimental
groups tended to be higher than that of the corresponding control
groups, while a statistically significant difference was only detected
for the group with the 2 s ISI (Fig. 5A,B). We examined other types
of CRs, and identified an increase of periodicity in small
movements (Fig. 5C,D). The periodic small movements were
significant for the 1.4 s ISI group, but not for ISIs of 2 s or longer
(Fig. 5D). It is intriguing that the optimal CR changes depending on
the ISI. These results suggest that flies can acquire behavioral
thythms up to an IST of 2 s.

Past studies in mammals have suggested an association between
age and the accuracy of interval timing (Rannie and Russell, 2017;
Wild-Wall et al., 2008). To address this in the fly, we examined
standard temporal conditioning of flies in four different age groups
ranging from 1 to 4 weeks old. We found that shock-induced jump
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bouts declined with age (Fig. 6C). Post-conditioning periodic
jumping in 1 and 2 week old flies persisted strongly (Fig. 6A,B), but
was dramatically decreased in 3 and 4 week old flies (Fig. 6A,B).
Interestingly, the period of jumping right after conditioning became
shorter than the trained frequency in the older flies (Fig. 6A). An
age-dependent decline in jumping and a post-training shift of
periodicity can thus explain the decreased power of periodic jumps
in the older flies.

As jumping may be a demanding locomotor behavior for aged
flies, we examined the periodicity of walking in the same age groups
during and after temporal conditioning. Shock-induced walking
bouts indeed did not decrease with age (Fig. 6F). Interestingly, there
was robust post-training periodic walking in the older groups,
whereas younger flies performed much less (Fig. 6D,E). Periodic
walking at the trained frequency between the experimental and
control groups was significantly different in the 3 week old flies
(P<0.05, Fig. 6E). Although the 3 week old flies did not show
significant conditioned jumping (Fig. 6A,B), they still can acquire
interval timing, but they perhaps shift the behavioral expression to
the less demanding walking behavior.
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DISCUSSION

New temporal conditioning paradigm in fruit flies

To study seconds-range interval timing in D. melanogaster, we
developed a new temporal conditioning task and established an
analysis pipeline to characterize acquired rhythmic behavior. After
presenting repeated electric shocks at regular intervals to the flies,
we showed that they can acquire thythms of various behaviors up to
an ISI of at least 2 s.

While studies on time perception of animals with fixed interval
tasks have a history of more than 100 years (Pavlov, 1927), our new
behavioral paradigm has several advantages over existing ones.
First, our control group with the US presentations at variable ISIs is
critical to precisely interpret conditioning-dependent rhythms
(Fig. 2). The US is known to induce late-onset behavioral
changes in addition to immediate responses (Lockhart, 1966). In
our case, the resting behavior was decreased more than 5 s following
the electric shock application (Fig. 1B). Baseline jumping also
increased during repetitive shock delivery via conditioning
(Fig. 3A). These timing-irrelevant behavioral changes can
confound the CR, especially if these changes emerge at the same
time as the trained interval.

Thus far, the most widely used evaluation method of interval
timing is the peak procedure (Roberts, 1981). This is useful when
the time course of behavioral counts has a bell shape (Roberts,
1981). In contrast, the time—frequency analysis we applied here can
detect periodicity in time—series data of complex dynamics as well
as simpler peaks (Fig. 3; Fig. S2). This versatility is powerful as the
time courses of shock responses are distinct among different
behavioral measures (Fig. 1B).

Understanding the control of time perception and

locomotion

Time perception is a delicate cognitive faculty influenced by many
internal and external variables (Buhusi and Meck, 2005; Matthews
and Meck, 2014). Flies acquired interval timing with much less
repetition than mice (Fig. 4; Toda et al., 2017); however, many
studies with mice used an appetitive stimulus as the US (Balci et al.,
2008; Narayanan et al., 2012; Toda et al., 2017). Acquisition speed
of temporal conditioning might thus depend on the valence of the
US (Saigusa et al., 2008; Sumbre et al., 2008).

Aging is a widely known factor that can affect time perception
(Turgeon et al., 2016). Our evaluation of the CR with multiple
behavioral metrics indeed identified age-dependent changes in
shock responses and CRs (Fig. 6). Post-training rhythms of jumping
in older flies became shorter than the trained interval, as shown by
the upward frequency shift of the power spectrogram (Fig. 6A).
Similarly, aged human subjects were reported to reproduce shorter
intervals than the trained interval when they were asked to reproduce
intervals in the supra-second range, such as 1.5 s (Bangert and
Balota, 2012; McAuley et al., 2006). Interestingly, 3 week old flies
are indeed capable of perceiving interval timing as expressed by
periodic walking (Fig. 6D,E). This behavior-selective impairment
implies that jumping and walking may be controlled by different
interval timing systems. Alternatively, aging can simply alter
sensory thresholds of shocks, such that the same intensity of shocks
does not induce jumping in older flies (Simon et al., 2006).

As in Parkinson’s disease, the dopaminergic system is known to
deteriorate with aging in different species including Drosophila,
although the pathology of dopamine neurons is species dependent
(Naoi and Maruyama, 1999; Navarro et al., 2014; Riemensperger
etal., 2013; Rodriguez et al., 2015). Intriguingly, dopamine circuits
in mammalian brains are proposed to play a central role in seconds-

range time perception (Buhusi and Meck, 2005; Narayanan et al.,
2012; Soares et al., 2016; Turgeon et al., 2016). Dopamine neurons
in the fly are known to convey electric shock reinforcement (Aso
et al., 2012; Claridge-Chang et al., 2009; Schwaerzel et al., 2003)
and are amenable to aging (Riemensperger et al., 2013). It would
therefore be exciting to examine the commonality in circuit usage
between time perception and other associative learning tasks (Vogt
et al., 2014).

Beyond aging, future studies can examine critical factors for
interval timing, such as feeding state, temperature and genetic
mutations, as they drastically affect locomotion (Aggarwal et al.,
2019; Lee and Park, 2004; Ostrowski et al., 2018). Combined with
precise genetic manipulation, temporal conditioning in Drosophila
will provide a useful experimental platform to tackle the neuronal
mechanism of seconds-range time perception.
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Figure S1. Application of wavelet transformation to linear velocity.

(A, B) Spectrograms of log-transformed individual velocities were averaged for the
experimental (A) and control group (B). These flies were the same samples as in Figure 3.
Velocity values less than 0.1 mm s were replaced with 0.1 mm s'1 because zero can not be
log-transformed. Dashed lines represent the onset of the 15t and last electric shocks.
Arrowheads indicate the trained frequency (0.5 Hz). (C) Comparison of the 0.5 Hz power at
the time of the expected shock for linear velocity. Error bars represent standard error of the
means. n = 233 and 214 for the control and experimental groups, respectively.
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Figure S2. Anticipated jumping behavior by consistently jumping flies during training.

(A) The time course of jumping of selected flies which consistently responded to the last
three electric shocks with jumping within 0.25 sec in the experimental and control groups.
Dashed lines represent the onset of the last three electric shocks and 1St expected shock.
(B) The spectrograms of jumping. Arrowheads indicate the trained frequency (0.5 Hz). n =
26 and 26 selected from 560 control flies and 540 experimental flies, respectively.
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Figure S3. Controlling the temporal precision of wavelet transformation.

(A) Procedure for checking the trained periodicity in the test phase. Pseudo-control group
was created by merging the data from the experimental group until the last shock and the
data from the control group after the last shock. Pseudo-experimental group was created by
the other way around. Original data was the same as the data used in figure 3. (B)
Comparison of the 0.5-Hz power of at the time of the expected shock.
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