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ABSTRACT

Advanced 3D imaging modalities, such as micro-computed tomography
(micro-CT), have been incorporated into the high-throughput embryo
pipeline of the International Mouse Phenotyping Consortium (IMPC).
This project generates large volumes of raw data that cannot be
immediately exploited without significant resources of personnel and
expertise. Thus, rapid automated annotation is crucial to ensure that
3D imaging data can be integrated with other multi-dimensional
phenotyping data. We present an automated computational mouse
embryo phenotyping pipeline that harnesses the large amount of
wild-type control data available in the IMPC embryo pipeline in order to
address issues of low mutant sample number as well as incomplete
penetrance and variable expressivity. We also investigate the effect of
developmental substage on automated phenotyping results. Designed
primarily for developmental biologists, our software performs image
pre-processing, registration, statistical analysis and segmentation of
embryoimages. We also presenta novel anatomical E14.5 embryo atlas
average and, using it with LAMA, show that we can uncover known and
novel dysmorphology from two IMPC knockout lines.

KEY WORDS: Automated, Computational, Embryo, Micro-CT,
Mouse, Phenotyping

INTRODUCTION

A major goal in biomedical research is to assign functional roles to all
genes in order to shed light on disease mechanisms, and to identify
disease-associated genes and novel drug targets. However, almost
two decades since the human and mouse draft genomes were
published (Lander et al., 2001; Waterston et al., 2002), the proportion
of genes in the dark genome, defined as those having minimal gene
function or disease-association annotations, remains high at over 30%
(Oprea, 2019). The International Mouse Phenotyping Consortium
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(IMPC) is a high-throughput functional genomics project tasked with
generating a genome-wide catalogue of gene function by
phenotyping gene knockouts on a uniform genetic background
(Brown and Moore, 2012; Lloyd et al., 2020). Phenotype annotations
for over 7000 genes are currently available on the IMPC web portal
(mousephenotype.org), data that have already contributed to the
identification of many novel candidate disease genes and new mouse
models of human disease (Cacheiro et al., 2020; Meehan et al., 2017,
Bowl et al., 2017; Moore et al., 2018).

Postnatal lethality or subviability is observed in approximately
one-third of knockout mouse lines from both the IMPC (Dickinson
et al., 2016) and its precursor EUMODIC (Hrabé de Angelis et al.,
2015). These classes of genes provide important insights into
developmental processes and disorders. The IMPC seeks to
phenotype these classes of gene through the embryo phenotyping
pipeline at key embryonic developmental stages (E14.5, E15.5 and
E18.5) via the generation and analysis of high resolution, whole
embryo, 3D images (Adams et al., 2013). There are currently several
thousand 3D images across hundreds of mutant lines at the IMPC,
which will be impractical to manually annotate by domain experts as
this can take several hours per image (Wilson et al., 2016). Therefore,
a high-throughput, generalisable analysis method is needed to extract
phenotype associations from these data. An automated method will
also mitigate any user bias that may negatively affect reproducibility.

One approach is to automate phenotypic annotation using voxel-
based morphometry (VBM) in which 3D images are spatially
aligned to allow voxel intensities or deformation fields to be
statistically analysed in order to identify morphological differences.
This approach, originally developed for human brain MRI images
(Wright et al., 1995), proved to be suitable for the analysis of MRI
whole-embryo images of E15.5 mice (15.5 days post coitum) which
was able to identify morphological differences between wild-type
inbred strains (Zamyadi et al., 2010). This work was expanded to the
analysis of micro-CT images of mutant E15.5 embryos, showing
that known dysmorphology could also be identified using this
approach (Wong et al., 2014).

Statistical parametric heatmaps obtained from VBM analysis can
be overlaid onto the registered images in order to highlight regions
of dysmorphology, facilitating manual annotation by an expert
anatomist. But in order to automate the assignment of anatomical
phenotypes, an atlas is required. An atlas consists of an image
volume where visible anatomical structures have been manually
delineated and identified, which enables the automatic calculation
of organ volume when combined with VBM. An atlas can be
derived from a single reference image, but a population average
consensus reference image formed from spatially normalising
multiple specimens provides increased signal to noise and contrast
(Holmes et al., 1998) making it easier to segment. The population
average also provides a less biased registration target from which to
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propagate anatomical labels. Mouse embryo population average
models and associated atlases have been developed for the E15.5
developmental stage using MRI (Cleary et al., 2011) and micro-CT
(Wong et al., 2012) where six and 48 anatomical structures were
segmented, respectively.

Sample sizes of both mutant and wild-type embryos are
important considerations in any phenotyping experiment. Wong
et al. (2012, 2014) proposed using eight wild types and eight
mutants in their pipeline; however, knockout lines submitted to the
IMPC often have much lower sample sizes. Despite the fact that
knockout lines are generated from isogenic inbred mice, they
frequently exhibit incomplete penetrance and variable expressivity
of phenotypes (Wilson et al., 2017; Dickinson et al., 2016),
reducing the statistical power to uncover gene-level phenotypes.
One solution to this problem is to increase the number of control
specimens in order to increase statistical power. However, there are
two features of the previous method (Wong et al., 2014) that place
restrictions on increasing sample numbers. First, the groupwise
registration steps increase computational cost exponentially with
increased sample number, and second, the wild-type controls must
be registered along with specimens from each mutant line into a
unique coordinate space and so cannot be reused for the analysis of
other genes.

Another complicating factor in the study of mouse embryos is the
presence of inter- and intra-litter variability in developmental stage
and in associated morphological differences, which are frequently
observed even with inbred wild-type mice (Miyake et al., 1996;
Geyer et al., 2017). Indeed, fertilisation time is only estimated by the
presence of vaginal plugs, and therefore may vary within a litter
along with rate of development. Therefore, embryos harvested from a
litter will present a range of developmental sub-stages that can span
up to several hours, which corresponds to significant morphological
differences in embryos. Therefore, to avoid spurious annotations
or masking of real dysmorphology, it is essential to control for
developmental stage. These issues of both partial penetrance and of
developmental stage variability have yet to be studied in the context
of automated phenotyping using 3D images.

In this article, we introduce a new automated phenotyping
pipeline (LAMA) that is designed to address the issues arising from
the high-throughput analysis of 3D mouse embryo data from the
IMPC pipeline. One of the main differences in LAMA when
compared with previous work (Wong et al., 2014) is the use of a
registration strategy where all baseline and mutant specimens are
registered directly towards a population average target in a pairwise
manner with no groupwise registrations. This allows a large increase
in the number of wild-type controls that can be used when analysing
mutant lines, which greatly increases statistical power. Using E14.5
embryo images, a timepoint yet to be subject to this form of
automated annotation, we show that with this increase in power,
LAMA is able to identify sex differences using a low sample
number, and that previously known and novel phenotypes can be
uncovered from two knockout lines. Importantly, in one of these
lines, LAMA is able to assign known phenotypes to individual
specimens, which has not been shown previously for the automated
analysis of mouse embryos. We report the results of the effect of
developmental substage on automated analysis and include an
updated statistical model to account for this. To accompany the
pipeline, we present a novel, highly detailed anatomical atlas of an
E14.5 population average with 184 labels and associated Mouse
Developmental Anatomy Ontology (EMAPA) terms (Hayamizu
et al., 2013), which is the most-detailed atlas of a micro-CT
population average embryo that is currently available. Finally, we

have made LAMA open source and simple to install on all major
operating systems and have included tools for preprocessing of data,
distributed computing to speed up analysis, and the production of
various plots and reports to help users understand the registration
process and statistical analyses. These tools, resources and insights
presented here will greatly increase the ability to uncover useful
phenotype information from embryo imaging data and it is currently
being optimised to work with IMPC data from other developmental
timepoints.

RESULTS
Overview of the LAMA phenotyping pipeline
LAMA is a voxel-based morphometry (VBM) approach to automate
the detection of anatomical dysmorphology in mouse embryos. It
is written in the Python programming language and is distributed
as a PyPi package (https:/pypi.org/) enabling installation with a
single command (see Materials and Methods). It features spatial
normalisation of images, using a registration process to iteratively
align micro-CT embryo images to a population average image,
putting them into the same coordinate space. Internally, it uses elastix
(Klein et al., 2010; Shamonin et al., 2014) for multi-resolution 3D
image registration. First, LAMA constructs a population average
model embryo from wild-type derived images (Fig. 1A) if one does
not exist already. This serves as a target image for the subsequent
spatial normalisation of the phenotyping images, and as the template
for a hand-labelled atlas of mouse organs and anatomical structures
(described below) (Fig. 1A). The next step involves spatially
normalising each wild-type and mutant image that will be used in
the downstream statistical analysis, by registering it towards the
population average (Fig. 1B), resulting in morphologically similar
images with homologous anatomical structures occupying identical
coordinates and existing in the same coordinate space as the atlas.
Each individual specimen image is then automatically segmented
by applying the inverse of its registration transformation to the atlas
labels (Fig. 1B). Whole-embryo volumes (WEVs) and organ
volumes are calculated from these segmentations. Each set of organ
segmentations also serves as a specimen-specific visual atlas that
can aid in identifying structures in the original inputs and visually
detecting segmentation errors. Organ volumes are fitted to a linear
model organ volume/WEV~genotype+WEV. In this model, the
organ volumes are first normalised by WEV to control for overall
embryo size and the WEV fixed effect accounts for differences
due to developmental substage (see the section ‘Developmental
substage’). Modelling organ volumes is orders of magnitude less
complex than with voxel-based deformation measures (hundreds of
data points per line instead of millions), allowing us to employ a
more robust permutation-based method for multiple testing
correction (see Materials and Methods and Hrabé de Angelis
etal., 2015). For this article, we focus on the organ volume analysis
as this is linked to the atlas, resulting in automated phenotype calls at
the organ level that are more robust and interpretable than those at
the individual voxel level. However, we also include statistical
parametric heat maps from the voxel-level Jacobian determinants
analysis (which indicate local volume shrinkage/expansion during
spatial normalisation) for illustrative purposes. The statistical
analysis is carried out by combining specimens with the same
gene deletion to give gene-level phenotype calls. Each specimen is
also analysed individually to give a specimen-level phenotype call,
which aims to uncover phenotypes with variability in penetrance or
expressivity (see Materials and Methods). During analysis, various
plots and information files are generated, including registration
metric plots to aid in registration optimisation, organ volume
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Fig. 1. LAMA pipeline workflow. (A) Population average construction. A random initial image is used as a target to rigidly align all other images, creating a rigid
population average. This is repeated with affine and deformable registration, refining the population average and using it as the target for the next level.

(B) Generation of data for phenotype detection. Each testimage is registered to the final population average obtained in A, but using the same rigid/affine/B-spline
registration levels. (C) Jacobian determinant volumes, registered images and organ volumes are statistically analysed. Top panel: organ volumes (shown here) or
voxel values are fitted to a linear model by genotype and whole embryo volume. The resulting genotype effect P-values are corrected for multiple testing in
one of two ways. (1) permutation-based FDR correction (organ volumes only). The orange histogram shows the null distribution from permuting the wild-type
organ volumes and the blue histogram is the alternative distribution derived from testing the organ volume from all mutant lines tested. The vertical green line
indicates the calculated P-value threshold for this organ, with values lower than this annotated as significant. (2) Benjamini Hochberg FDR correction for
voxel-level or organ volume data. k/m=P-value rank divided by number of values. The straight blue line indicates the threshold under which values are annotated

as significant.

plots and heatmaps that give an overview of the statistical results,
and QC report montages showing a snapshot of the automated
segmentation results.

Creation of a novel E14.5 mouse embryo atlas

The E14.5 population average used in this study was created from
16 specimens (eight male and eight female), with a resulting crown-
rump length of 9.18 mm (s.d. 0.52 mm) and an isotropic voxel size
of 14 um?® (Fig. 2A). The visible organs were segmented using a
mixture of manual and semi-automatic segmentation (see Materials
and Methods) producing an E14.5 atlas containing 184 unique
labels (Fig. 2B,D; Table S1; Movie 1). The 184 labels were mapped
to gross anatomy terms from the EMAPA developmental ontology
(Hayamizu et al., 2013), where a one to one relationship existed,
allowing the automatic integration of the resulting gene-to-
phenotype data from LAMA with other data sources that also use
this ontology, such as the other IMPC pipelines and MGI (Bult
et al., 2019). Through visual inspection of registration results, a
number of labels, including blood vessels, nerves and small
muscles, were identified as being too small or too thin, leading to

difficulty in assessing their registration accuracy. With this in mind,
we identified such labels in the atlas (see Materials and Methods) to
exclude them from downstream analyses, resulting in a final set of
103 labels that were used in the current analysis (Table S1). These
103 labels were distributed across the majority of the EMAPA high-
level organ system terms (Fig. 2C) and range in size from the largest
(forebrain at 7.0 mm?) to smallest (metatarsals 0.04 mm?).

Developmental substage

As the developmental substage (DSS) of E14.5 embryos has been
shown to be an important consideration when manually phenotyping
embryos (Geyer et al., 2017), we did a series of experiments to
gauge the effect that DSS has on our automated phenotyping results.
To account for overall embryo size, we normalised organ volumes,
derived from automatically segmented labels, to whole embryo
volume (WEV). Similarly, we removed rigid and affine
transformations from the analysis of Jacobian determinants so that
the determinants correspond to local deformable transformations (see
Materials and Methods) as described previously (Wong et al., 2012)
for E15.5 embryos. To assess whether these normalisations are
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sufficient to account for differences due to DSS, we made two wild-
type datasets from the 93 wild-type controls where either the smallest
or largest specimens (WEV mean z-score of —1.7 and 1.9,
respectively) were relabelled as ‘mutant’. We applied the LAMA
Jacobian determinant analysis to each dataset using the linear model
deformable Jacobians~genotype (Fig. 3A), simulating the scenario of
two mutant lines containing embryos at early or late E14.5 DSS. Both
tests returned significant Jacobian determinant voxels, suggesting that
the relabelled wild types had morphological differences that were
dependent on the developmental stage of the specimens. WEV was
then included as a fixed effect in the following model deformable
Jacobians~genotypetWEV to act as surrogate for DSS. This
experiment returned no significant genotype effect voxels, showing
that DSS variability can be thus controlled for. To gain a more
detailed view on the voxel-level DSS-dependent relative size
differences, Jacobian determinants from 93 wild-type specimens we
fitted to the linear model deformable Jacobians~WEV (Fig. 3B),
which further highlighted regions that are proportionally larger at later
stages (red) or proportionally smaller at later stages (blue). The
equivalent test using organ volume analysis organ volume/
WEV~WEYV similarly resulted in significant calls for 78/103 labels

Fig. 2. E14.5 atlas creation. (A) Sagittal view of
the E14.5 population average created from 16
wild-type female and male E14.5 C57BL/6 mice.
(B) Sagittal view of the E14.5 atlas consisting

of 184 individual structures overlaid on the
population average. Only a subset of labels is
shown for illustrative purposes. Numbers indicate
the labels assigned to segmented organs, which
can be looked up in Table S1. (C) Breakdown of
labels into corresponding organ systems for the
whole atlas (All), and those remaining after
filtering small or spindly labels (Filtered) (see
Materials and Methods). (D) Expanded region
from area outlined in B, highlighting more labels.
Scale bars: 1 mm. S, superior; |, inferior;

A, anterior; P, posterior.

(Table S2), including organs that were proportionally larger (n=58)
later in development such as thymus and lung lobes (Fig. 3C,D),
and those that were proportionally smaller (n=23), including brain
ventricles and trigeminal glands (Fig. 3E,F). To summarise,
normalising the Jacobian determinants or organ volumes before
statistical analysis is not sufficient to account for DSS, and failure to
model DSS can lead to false-positive results. Our method resolves this
issue by regressing out the DSS effect in the statistical analysis.

Optimal sample size for phenodeviance testing

In order to validate LAMA with a positive control we applied it to
wild-type embryos where females were relabelled as ‘mutant’. After
removing specimens with indeterminate sex, our test data set
contained 49 males and 40 females, in which we expected gross
morphological differences between the two sets to be located at the
gonads only (see Fig. SIA for example gonad images). These
data were fitted to the linear model organ volume/WEV~sex+WEV
and we found that, along with the gonad (FDR-corrected
g-value=1.3¢72%) (Fig. 4A), the lens of the eye unexpectedly also
had a significant sex effect (FDR-corrected g-value=0.028) (Fig. 4B;
Fig. S1B,C). We next wanted to address the effect of sample size on
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Fig. 3. Effect of E14.5 developmental substage on local volume changes detected by LAMA. (A) Simulation of the analysis of mutant lines with large
(top panels) or small (bottom panels) wild types relabelled as mutants. Genotype effect t-statistics where q values (FDR-corrected P-values)<0.05 were overlaid
on the E14.5 population average. Left images show the results from the model deformable Jacobians~genotype, with red voxels highlighting regions that are
significantly larger in the test group and blue voxels highlighting regions that are significantly smaller in the test group. Right images show results from the model:
deformable Jacobians~genotype+WEV, where no voxels passed the q<0.05 threshold. (B) Result from fitting 93 wild-type specimens to the linear model
deformable Jacobians~WEYV, indicating regions where the normalised organ volume is positively correlated (red) or negatively correlated (blue) to WEV.
(C-F) lllustrative examples of differences in organ size relative to embryo volume. Each panel shows three representative wild types from the smallest set (top) and
largest set (bottom) of specimens. Images are affinely registered towards the population average to account for overall embryo volume. Arrows indicate
relevant anatomy. Thymus (C) and lung (D) show larger relative sizes in larger specimens. Lateral ventricles (E) and trigeminal gland (F) show smaller relative
sizes in larger specimens. Scale bars: 1 mm. S, superior; |, inferior; A, anterior; P, posterior; L, left; R, right.

the sensitivity of phenodeviance detection (in this case the ability to
differentiate between male and female gonads and lenses). To do this,
the previous experiment was repeated, but with varying numbers of
male or female specimens, in this way replicating the effect of testing
mutant lines containing various sample numbers and with different
baseline control sample numbers (ranging from two to eight females
and from 10 to 49 males). Each experiment was repeated 50 times
with random specimen selection and permutation-based multiple
testing correction (see Materials and Methods for further details).
Owing to the large difference between male and female gonad sizes,
significant gonad volume differences were identified in almost every
replication of each experiment (Fig. 4C), and significant Jacobian
determinant voxels were identified within, or close to, the gonad, with
significant voxels covering a larger area with increasing male sample
size (Fig. 4E,F). For the lens of the eye, significant volume
differences were detected only with a male sample size of 32 or
over, with the maximum male and female sample size (49 male and
eight female) resulting in significant hits in over half of the tests
(Fig. 4D). To assess the rate of false-positive detection, any
significant organ volumes other than gonad or lens of the eye were
classed as false positives. The rate of false positives was found to be
well controlled with only 1 out of 103 organs called as significant in
more than 1% of tests (epiglottis in 1.6% of all the replications), and
with a mean false-positive rate of 0.07% per label. These experiments
show that LAMA is able to identify sex-specific differences in wild-
type embryos and that even with a low mutant sample size,
differences in morphology can be detected, although the detection
becomes more reliable as the control sample size is increased.

Automated identification of developmental phenotypes in
E14.5 mice embryos

The initial aim of LAMA was to automatically identify
dysmorphology from IMPC-generated data. To demonstrate its
effectiveness on IMPC-generated data, we have chosen two
exemplar mutant lines that illustrate its use in embryos with
multiple dysmorphologies throughout the body and embryos with
very specific, localised abnormalities.

The first example is Wfdc2, which encodes a protease inhibitor
protein that is expressed in several tissues during mouse
development prior to El14.5 (Lizio et al., 2015), including
intestines, lungs and pancreas. WFDC?2 plays a role in cancer
development (Bingle et al., 2002; Li et al., 2013) and two articles
have recently shown Wfdc2 homozygous mutant mice display
severe pulmonary phenotypes, including collapsed lungs at
perinatal day 1.5 (P1.5) (Nakajima et al., 2019), and alveolar
abnormalities, dyspnea and reduced blood oxygen saturation at birth
(Zhang et al., 2020), but are otherwise anatomically normal. The
IMPC viability screen reported that Wfdc2~'~ animals were viable at
E18.5 but displayed a partially penetrant preweaning lethality with
5.5% of the alive pups being homozygous for the mutation. Our
analysis of four E14.5 Wfdc2~'~ specimens uncovered significantly
smaller bronchi and trachea at the gene level (using all four mutants
in the analysis) (Fig. 5A) but no significant specimen-level
differences (analysing each specimen individually) were observed
for this gene. The Jacobian determinant analysis identified two
significant regions that largely overlap with one of the bronchi after
the FDR-corrected P-value threshold was raised to 0.1 (Fig. 5B).
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Fig. 4. Identification of sex differences in wild-type E14.5 mice. (A,B) Plots showing WEV normalised organ volume against WEV for ovary (A) and lens (B).
(C,D) A series of statistical tests was carried out with various combinations of male and female wild-type sample size (with females relabelled as ‘mutant’).
Each test was repeated 50 times with randomly selected specimens. The values reported are the number of times the gonad volume was reported as
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This means that, for this gene, the whole organ volume statistics
were more sensitive than the Jacobian determinants. In all four
mutants, the trachea and bronchus are visibly smaller in diameter
(Fig. 5C,D), but otherwise appear normal.

Acan encodes for the protein aggrecan, which is the primary
proteoglycan in articular cartilage, is present in the extracellular
matrix of long bone epiphyseal growth plates and is required for
normal bone development. Acan™~ mice exhibit phenotypes
associated mainly with abnormal bone morphology, including
long bones, ribs and vertebrae, as well as enlarged liver and
pulmonary hypoplasia (Table 1). Human diseases associated with
ACAN mutations include osteochondritis (Stattin et al., 2010) and
skeletal dysplasia (Tompson et al., 2009). The IMPC viability
screen reports that Acan~'~ embryos are viable up to E18.5, but have
a completely penetrant preweaning lethality phenotype. Other
IMPC-assigned phenotypes include a reduced bone area
composition and increased circulating cholesterol levels in adult
heterozygous animals. We analysed six E14.5 Acan™~ specimens
with LAMA, identifying 28 statistically significantly gene-level
organ volume differences (Fig. 6A; Fig. S2A). Twelve of the
significant organs are bones, including all those present in the
Mouse Genome Informatics (MGI) annotations for this gene
(Table 1). These include smaller cervical vertebrae, scapula,
humerus, ribs and exoccipital bones (Fig. 6C,D). Importantly,
LAMA was able to assign statistical significance to organ volume
differences for 15 of the gene-level annotated organs to individual
specimens. Of these organs, most were bones and had the largest
mean volume difference, relative to wild-type controls. The
specimen-level annotations are similar across all specimens, but

with some exceptions, e.g. specimen 15.1a appeared largely
unaffected (Fig. 6A). From a total of 42 specimen-level calls,
there were four significantly different organ volumes highlighted
by the specimen-level analysis that were not present at the gene
level, including a tail vertebra annotation (Fig. 6A). The significant
Jacobian determinant voxels indicated a smaller Meckel’s cartilage
in the mutants, which is not identified in previous literature or by
our organ volume difference test, but is visibly smaller in these
mutants (Fig. 6D). We did not find a significantly smaller lung
volume difference for any of the lung lobes that would indicate
hypoplasia as previously reported (Houghton et al., 1989), but
visual inspection of the lung lobe segmentation labels indicated
acceptable registration accuracy (Fig. S2B). The position of the
lungs within the thoracic cavity, however, looked altered, possibly
owing to changes in the thoracic cavity size. We did not identify the
remaining previously reported phenotype of tracheal cartilage
morphology either.

DISCUSSION

In this paper we presented a new automated computational
phenotyping pipeline for dysmorphology detection in mutant
mouse embryos along with a new E14.5 anatomical atlas. We
have undertaken validation of the pipeline and provide insights on
the effect of developmental substage and sample size on
phenotyping results, as well as showing that LAMA can uncover
previously reported and novel phenotypes from E14.5 IMPC
knockout mice embryos. This pipeline and atlas will accelerate the
automatic analysis of 3D embryo data at this developmental stage
within the IMPC (where it is being adapted for other developmental
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stages), other large scale projects, and smaller challenge-led
projects, driving forward the use of disease models in scientific
discovery.

The image registration approach in LAMA provides significant
advantages for high-throughput phenotyping compared to previous
work (Wong et al., 2012, 2014). The major difference is the
registration strategy in which all data is registered at once, directly
towards a pre-made population average and atlas, which puts all the
specimens from all mutant lines and controls into the same
coordinate space. This contrasts with the approach of Wong et al.
(2014) where specimens from a mutant line and a small number of
wild types are registered into a unique coordinate space. With our

Fig. 5. Automated identification of
pulmonary system phenotypes in a
Wfdc2 knockout mouse line. (A) Organ
volume plots of statistically significant
organs. (B) Jacobian determinant
analysis t-statistics (FDR corrected to
g<0.1) overlaid on the E14.5 population
average. Blue regions indicate smaller
bronchi in the mutants. (C,D) Rigidly
aligned sections of Wfdc2 mutants
(bottom) and whole-embryo volume-
matched wild-type rigidly aligned
specimens (top), with arrows indicating
the location of affected organs.

(C) Coronal sections highlighting the
bronchi. (D) Sagittal sections
highlighting the trachea. Scale bars:

1 mm. A, anterior; P, posterior;

S, superior; |, inferior; L, left; R, right;
Tr, trachea; Br, bronchus.

approach, we were able to dramatically increase the number of wild
type control embryos used in the phenotype analysis stage of the
pipeline. This is due to the lack of a groupwise registration stage,
which decreases computational expense, as well as the ability to
reuse wild-type registered specimens in statistical analysis across
many mutant lines. A further advantage of our approach is that it
facilitates the distributed processing of images as each registration
requires only the fixed population average and the moving specimen
images.

We have shown that even after normalising organ volumes by
whole-embryo volume (WEV), there remains a significant WEV
effect, which we interpret as substage-dependent differential organ
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Fig. 6. Analysis of Acan~"- mutants by LAMA. (A) Heatmap showing statistically significant organ volume differences at the gene level and of individual
specimens. The first column (Acan) are gene-level results and the remaining columns are results from individual specimens. Statistically significant organ
volume differences for genotype effect are coloured according to mean normalised volume difference between wild type and mutants. White cells indicate no
significant genotype effect. (B) Jacobian determinant t-statistics for genotype effect (FDR corrected to q<0.05) overlaid onto the E14.5 population average.
(C,D) lllustrative sagittal slices from rigidly aligned Acan~'- mutants (bottom) and whole embryo volume-matched wild-type specimens (top) highlighting
identified dysmorphology. Scale bars: 1 mm. Mc, Meckels’s cartilage; Ex, exoccipital bone; Cv, cervical vertebrae; H, humerus; Sc, scapula; R, ribs; F, femur;
A, anterior; P, posterior; S, superior; |, inferior.

growth rates. This variation in organ volume after normalising by  to include as many wild-type specimens as possible in order to
WEYV agrees with findings by Wong et al. (2012), who reported an  increase the power of our analyses. However, we have shown that
organ volume standard deviation of 8-13% among wild-type E15.5  we can control for developmental substage variability by adding a
embryos after normalising organ volumes by WEV. Developmental WEV term in our linear regression model. Without this substage
substage variability is prevalent in our control set because we sought  correction, the statistical model can lead to false-positive results
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Table 1. Correspondence of phenotypes for Acan—— mutant mice assigned by LAMA with phenotypes reported in the MGI database

Identified with Identified with Phenotype MGI
LAMA organ LAMA Jacobian summary publication
Allelic composition Genetic background Annotated term volume analysis analysis category reference
Acan®md-Be/pcgnemd-Be BALB/cGaBc-Acan®™d-B¢  Cleft palate No atlas label Yes* Craniofacial J:58755
Acan°®md-BejAcgnemd-Be BALB/cGaBc-Acan®™®8¢  Short snout No atlas label Yes* Craniofacial J:58755
Acan°mY/Acancmd STOCK T t°% Itpr3t Short basicranium ~ Smaller organ Yes* Craniofacial J:30795
volume
(exoccipital)*
Acan®md-Be/pcgnemd-Be BALB/cGaBc-Acan®™d-B¢  Distended No atlas label Yes* Growth/size/ J:58755
abdomen body region
Acan®md-Be/acgnemd-Be BALB/cGaBc-Acan®™d-B¢  Protruding tongue No No Growth/size/ J:58755
body region
Acan°md-Be/Acgnomd-Be BALB/cGaBc-Acan®™dB¢  Small thoracic Yes (pleural and Yes* Growth/size/ J:65316
cavity pericardial body region
cavities)*
Acan®mY/Acancmd STOCK T to% Itpr3t Flattened snout Not in atlas Yes* Growth/size/ J:5952
body region
Acan°™Y/Acancmd STOCK T t°% Itpr3t Abnormal limb Yes* Yes* Limbs/digits/tail ~ J:30795
morphology
Acan®™9/Acan°™d STOCK T tow Itpr3t Absent caudal Yes (specimen Yes* Limbs/digits/tail ~ J:30795
vertebrae level)*
Acan®™9/Acan°™d STOCK T tow Itpr3t Brachydactyly No (digits not Some significant Limbs/digits/tail ~ J:30795
analysed) voxels in
forelimb
phalanges*
Acan®™¢/Acan°™d STOCK T t°% |tpr3tf Enlarged liver Yes* Yes* Liver/biliary J:5952
system
Acan®md-Be/Acgnemd-Be BALB/cGaBc-Acan®™d-B¢  Pulmonary No No Respiratory J:65316
hypoplasia system
Acan®™9/Acan°™d involves: STOCK T tlow Abnormal lung No Yes* Respiratory J:23353
Itpratf morphology system
Acan®™9/Acan°™d STOCK T tow Itpr3t Abnormal tracheal ~ No Yes Respiratory J:5952
cartilage system
morphology
Acantmb(EUCOMM)Hmgu; C57BL/6N- Abnormal bone Yes* Yes* Skeleton J:211773
Acan* Acantm1b(EUCOMM)Hmgu; structure
H
Acan®™¢/Acan°™d STOCK T t°% Itpr3tf Abnormal cartilage  Yes (abnormal Yes* Skeleton J:30795
development bones)*
Acan®™Y/Acancmd STOCK T t°% Itpr3t Abnormal No Yes* Skeleton J:30795
craniofacial bone
morphology
Acan®™9/Acan°™d STOCK T tow |tpr3t Abnormal rib Yes* Yes* Skeleton J:30795
morphology
Acan®mY/Acancmd STOCK T t°% Itpr3t Abnormal Yes* Yes* Skeleton J:30795
trabecular bone
morphology
Acan®™9/Acan°™d STOCK T tow |tpr3t Abnormal Yes* Yes* Skeleton J:5952
vertebrae
morphology
Acan®™9/Acan°™d STOCK T tow Itpr3t Decreased length Yes* Yes* Skeleton J:5952
of long bones
Acan®™9/Acan°™d STOCK T tow |tpr3t Short femur Yes* Yes* Skeleton J:5952
Acan®™9/Acan°™d STOCK T tow Itpr3t Short humerus Yes* Yes* Skeleton J:5952
Acan®™9/Acan°™d STOCK T tow |tpr3tf Short vertebral Yes* Yes* Skeleton J:5952
column

*Concordance with recorded phenotype.
A subset of MGI annotations is included (see Materials and Methods).

(Fig. 3A,B). WEV is a convenient staging metric as it can be easily
calculated after embryo spatial normalisation, and is correlated with
crown-rump length and whole-body weight, both previously used
to stage embryos (Dagg, 1963; Peterka et al., 2002). Alternative
methods that rely on the appearance of external features of the
embryo (Theiler, 1989; Boehm et al., 2011; Geyer et al., 2017) may
be more accurate, but these methods have yet to be automated for
whole embryo 3D images. An alternative approach to automated

staging involves spatially and temporally normalising embryos to a
4D (3D+time) dimensional population average, with developmental
stage as the temporal dimension (Wong et al., 2015). This method
was shown to provide high-resolution staging information and
could identify developmental asynchrony across all organs. This 4D
atlas was not used in this study as the latest developmental stage
in the atlas, E14.0, does not overlap with our E14.5 dataset. The
generation of a new 4D micro-CT atlas covering the E14.5 stage
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would require the breeding of a large number of embryos at various
gestational timepoints, which is not currently possible. With our
analysis, we identified 81 organs that show a statistically significant
WEV effect (Table S2), which likely reflects different relative
growth rates of various organs at different E14.5 developmental
substages. This represents the most detailed embryo-wide data of
E14.5 substage-specific organ growth rates that we are currently
aware of.

Stratifying our wild-type specimens by sex enabled us to test the
ability of LAMA to identify specific anatomical differences, as
males and females are anatomically similar except for clear gonad
differences. We found that we were able to uncover statistically
significant gonad volume differences while keeping false positives
low. To assess the performance on mutant data, we tested LAMA on
two IMPC-generated knockout lines. The first (Wfdc2™") was
predicted to display specific pulmonary abnormalities; the second
(Acan™") to produce severely dysmorphic phenotypes across the
whole embryo. Our automated analysis of E14.5 Wfdc2~/~ embryos
revealed two significantly smaller organ volumes: those of the
trachea and bronchi, which are novel findings for this gene. These
overlap broadly with the locations of the previously reported
pulmonary-specific abnormalities in Wfdc2~'~ mice, including the
absence of mature club cells from the bronchi and trachea,
postnatally collapsed Iung, reduced lung surfactant levels
(Nakajima et al., 2019) and alveoli abnormalities (Zhang et al.,
2020). The novel phenotypes reported here bring forward the time
when gross abnormalities due to loss of Wfdc2 first become visible
during embryo development (previously postnatally), and therefore
add new temporal information to the role of Wfdc2 in pulmonary
development. In addition, LAMA could recapitulate the majority of
previously reported Acan™~ phenotypes, which will greatly speed
up the annotation of this severely affected mutant. There were four
significant organ volume differences for Acan™~ that have not
previously been reported. It is possible that these are novel
phenotypes, but it is difficult to confirm this by inspection of the
micro-CT images alone. It is possible that the apparent abnormality
is due to proximity to actual severe dysmorphology, which, during
the registration process was warped along with the abnormal organ.
For example, two of these organs without previous reports,
sympathetic ganglia and the spinal cord marginal layer, are
located close to the affected vertebra. Another reason for this
discrepancy could be the different background strains used in this
study and the previous studies.

As efforts are under way to reduce the numbers of animals used
in scientific experiments, we wanted to test whether LAMA could
identify dysmorphology with low mutant sample numbers. In
addition, being able to use low sample numbers would let us
investigate the effects of incomplete penetrance and variable
expressivity, as well as providing phenotype data from mutant
lines where many specimens do not reach the developmental stage
being tested. To begin to answer this, in the sex difference test we
show that increasing the control sample size from 10 to 49 greatly
increases the power to detect anatomical differences, and that by
using many controls, it is possible to sometimes uncover phenotype
information even with a low mutant sample size of two. We also
show that for six Acan™~ specimens, 42 specimen-level organ
difference annotations were generated (Fig. 6A). Support for these
specimen-level annotations comes from the fact that they mostly
overlapped with the gene-level annotated organs (only 4/42 did not).
These specimen-level annotations were strongly enriched for organs
that had the largest volume difference relative to the control mean,
which is expected due the reduced power of these tests being unable

to detect smaller volume differences. There were differences
between the annotations of the individual specimens, with
specimens 15.1a and 9.2¢ lacking many of the bone annotations
(Fig. 6A). These results show that, by using a large wild-type control
sample number, useful phenotype information can be obtained
when analysing low N mutant lines or even specimens individually.

Developmental delay is a common phenotype of knockout mice
and such animals could pose a problem for this analysis as they
could be smaller than the smallest mice in the baseline controls. In
future, one way round this would be to include some E14.0 or E13.5
animals into our wild-type control set to extend the range to where
we might expect to see developmental delay and improve the
reliability of the model. In lieu of this, the whole embryo volume
z-score (standard deviations from the wild-type mean) of each
specimen, which is reported by LAMA, can be used to identify, and
exclude, potentially delayed animals from analysis.

The choice of registration parameters can involve a compromise
of balancing good registration accuracy on some organs with
misregistration at others. We found that gonad registration, for
example, could be improved by removing most of the registration
constraints, but this led to over-warping at the heart. One solution to
this could be to use multiple sets of registration parameters, each
optimised to different parts of the atlas. Alternatively, approaches that
directly segment organs without registration have been previously
proposed (Yan et al., 2017; Ashish and Brusniak, 2018) but only on a
limited number of organs, and these have yet to be applied to
embryonic mice. LAMA is able to perform statistical analysis on the
voxel intensities of the spatially normalised images, but we found that
the image data used in this study contained large differences in
intensity profiles that were possibly due to the different users and
imaging equipment involved in image acquisition over a number of
years. For this reason, we have concentrated our current analysis on
organ volume differences and Jacobian determinant analysis, which
are both more robust to varying intensity profiles. Future work will
look towards employing more sophisticated image normalisation
methods and exploring the use of other image features, such as
textures, that may be less susceptible to intensity profile differences.
Current work includes optimising registration parameters for E15.5
and E18.5 developmental timepoints (see Fig. S3 for current
population average images), the latter being a key developmental
time point for the analysis of gene mutations that result in perinatal
lethality and subviability. Earlier stages, such as E12.5, may also
be amenable to this analysis, but even earlier stages such as E9.5 may
prove difficult for a registration-based approach due to the
rapid developmental changes at this time point and extreme
dysmorphology that is often caused by mutations that are lethal
early in development. LAMA has been applied successfully to mouse
bones that were dissected and scanned separately (N.R.H.,
unpublished) and can readily be adapted to other model systems
where good registration between subjects is possible. This requires no
software changes to the pipeline and only the registration parameters
need to be optimised. Finally, we believe that the tools, resources and
insights introduced in this article will accelerate the use of the rapidly
increasing amounts of mouse embryo image data at the IMPC and
within the wider mouse developmental biology community.

MATERIALS AND METHODS

Mice

All animals were housed and maintained in the Mary Lyon Centre at the
MRC Harwell Institute under specific pathogen-free (SPF) conditions in
individually ventilated cages adhering to environmental conditions, as
outlined in the Home Office Code of Practice. All animal studies were
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licensed by the Home Office under the Animals (Scientific Procedures) Act
1986 Amendment Regulations 2012 (SI142012/3039), UK, and additionally
approved by the Institutional Ethical Review Committee. The Acan™!®
allele was obtained by cre deletion of C57BL/6N-Acan™!2(FUCOMMHmeu /by
(EM:10224) mice as described previously (Birling et al., 2019 preprint).
Homozygous mutants are named Acan™~ here. The C57BL/6NTac-
Widc2em IMPO/H (EM: 11407, homozygous mutants named Wfdc2~/~
here) was obtained by genome editing as described previously (Mianné
etal., 2017). Lines were maintained by crossing heterozygous animals with
inbred C57BL/6N wild-type animals. Mice were euthanised by Home
Office Schedule 1 methods.

Micro-CT imaging of whole embryos

E14.5 female mice were sacrificed by cervical dislocation and the uterine
horns removed into ice-cold phosphate-buffered saline (PBS). Embryos
were extracted and a piece of yolk sac collected for genotype analysis.
Embryos were fixed in 4% paraformaldehyde (PFA) at 4°C and left
overnight. After fixation, the samples were washed and stored in PBS at 4°C.
For staining, samples were rinsed in distilled H,O for 10 min before being
submerged in 50% Lugol’s solution and protected from light. Embryos were
then left in the contrast agent for 2 days. Following staining, embryos were
washed in distilled H,O for at least 1 h, embedded in 1% agarose (in distilled
H,0) and left at room temperature for a minimum of 2 h.

High resolution micro-CT images (SkyScan 1172, Bruker) of agarose-
embedded embryos were acquired at a source voltage of 70 kV, with the
current set at maximum (~100 mA). Specimens were imaged, in a standard
orientation, at 3 um with a 0.5 mm aluminium filter. X-ray projections were
acquired at 0.25° increments, and reconstructed using the Feldkamp
algorithm (Feldkamp et al., 1984) provided by NRecon (Bruker). Ring
artefact corrections were applied as necessary. Reconstructions were
automatically cropped to remove background and scaled to 14 um
isotropic voxels using the HARP software (Brown et al., 2018).

Phenotyping pipeline implementation

The image registration pipeline was written in the Python programming
language (Python 3.6+), adapting a modular design that allows for
individual components (registration, inversion, statistics, etc.) to be run
either sequentially or independently using simple TOML configuration
files. Individual image registrations are performed using the elastix toolkit
(Klein et al., 2010; Shamonin et al., 2014). The linear model analysis is
implemented in R. All code is available on Github (https:/github.com/mpi2/
LAMA) and is tested to work on Ubuntu versions 18.04 and 20.4, as well as
Windows 10. The use of interactive shell scripts that show how to use
LAMA on a real dataset is described at https:/github.com/mpi2/LAMA/
wiki/walkthroughs. To make the installation of LAMA as easy as possible
and to help data reproducibility, LAMA is available via the PyPi Python
package repository (https:/pypi.org/project/lama-phenotype-detection).

Population average construction

Micro-CT images from 16 specimens of both sexes were used in the creation
of the population average through a groupwise multi-level and multi-
resolution registration process. For the first level, an initial fixed image was
chosen at random and all other images were rigidly registered onto it. The
registered images were averaged creating a rigidly aligned blurry average.
This population average is invariant to the choice of the initial fixed image,
because the composition of rigid transformations entails only a change of
pose. For the second registration level, the rigid registration outputs
were affinely registered onto the blurry average. A new (less) blurry average
was computed from the outputs of this affine step. For the last registration
levels, the process of alignment to the group average followed by
recalculation of the average was repeated, using B-spline transformations,
which allow local nonlinear deformations. We used a five-level Gaussian
pyramid with increasing resolution for the images and five corresponding
B-spline levels with decreasing control point spacing, with a final grid
spacing of 8 voxels, to sequentially align coarser to finger anatomical
structures (Fig. 1A). The parameter file for our population average and the
final population average image available for download at https://www.doi.
org/10.5281/zenodo.4559800.

Image segmentation/E14.5 Atlas creation

Key anatomical structures within the E14.5 population average were
identified manually by referencing the online digitised mouse atlas (Graham
et al., 2015), which itself is based on The Atlas of Mouse Development
(Kaufman, 1992). Structures that could be identified were restricted to those
that showed good contrast and resolution within the population average.
ITK-SNAP was used (Yushkevich et al., 2006; www.itksnap.org) to create
the segmentations, using a variety of semi-automated and manual methods
suited to the size and complexity of each of these anatomical structures, and
combined into a single label file. These structures were then merged with
some previous segmentations of brain structures derived from an E15.5 atlas
(Wong et al., 2012) to give a total of 184 anatomical components. Small,
spindly labels in the atlas were flagged by calculating a 3D euclidean
distance transform for each label using the Python package edt (https:/
github.com/seung-lab/euclidean-distance-transform-3d) and flagging labels
with a value <1.5. The resulting atlas and associated metadata files are
available for download at https://www.doi.org/10.5281/zenodo.4559800.

Generation of data for phenotype detection

Baseline and mutant specimens were registered onto the previously created
population average image. The outputs of this registration include the rigid,
similarity, affine and B-spline spatial transformations, co-registered images
and the Jacobian determinants det(jac) of the composition of the B-spline
transformations, a scalar field that describes the local volume change in each
voxel. Statistical analysis of these outputs (described below) produces
statistical parametric heat maps that can be overlaid onto the population
average image or superimposed onto the input images by applying the
inverse of the spatial transformations. The statistical parametric heat maps
can be viewed with the Volume Phenotype Viewer (VPV) (Brown et al.,
2018; https:/github.com/mpi2/vpv).

Statistical analysis

Multiple linear regression analysis was conducted in R (www.R-project.org)
using the Im() function from the MASS package (Venables and Ripley,
2002). Benjamini-Hochberg FDR (BH-FDR) correction was carried out
using the padjust R package (Benjamin and Hochberg, 1995).

Voxel-level data

Jacobian determinants, generated at each voxel within the population average
mask, provide information about how the registration has behaved locally.
The scalar value of the Jacobian determinant at a given location is the factor by
which that region has expanded [det(Jg)>1] or shrunk [det(Jg)<I] in volume
during registration. This approach, known as tensor-based morphometry, can
be used to reveal biologically significant localised shape or size changes
within a population (Ashburner and Friston, 2000). To account for small
registration inaccuracies, a Gaussian blur of full-width-half-maximum
(FWHM) 100 um is applied to voxel-level data. Each voxel is fitted to a
linear model voxel~genotype+WEV, where WEV stands for whole embryo
volume. We use WEV as a proxy for developmental stage, and the addition of
it as a fixed effect controls for changes that are due to developmental stage
only. To account for multiple testing, the resulting P-value maps are corrected
using the Benjamini Hochberg method. The final parametric heat maps are
made by thresholding the t-static volume at ¢>0.05. This is output as a 3D
image that can be overlaid onto the target or registered image in VPV.

Whole-organ volume analysis

Organ volumes and whole-embryo volumes are derived for each specimen.
Significant volume differences are detected by using an organ-specific
linear model organ volume/WEV~genotypetWEV. We apply a
permutation-based approach (for each organ) for multiple testing
correction described previously by Hrabé de Angelis et al. (2015). To
summarise, organ-specific null distributions are generated by sampling
synthetic mutants from the baseline data in such a way as to match the
distribution of the number of mutant specimens per line. For example, if
there are 40 mutant lines and 10 of these have n=3 and the other 10 have n=4,
we create 50% synthetic lines with »=3 and 50% with n=4. Synthetic
mutants and baseline controls are fitted to the linear model as described
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above and the genotype effect P-values are computed. Alternative
distributions are made by computing genotype effect P-values from
testing the real mutants of each line. To obtain a dataset-wide P-value
threshold per organ, combined null and alternative P-values for the organ
are ranked and a descending P-value threshold search is conducted starting
at P=0.05 until a threshold is found where the proportion of alternative
P-values under the threshold divided by the proportion of null P-values
under the threshold is <0.05. Mutant P-values below this threshold are
assigned as significant, which sets the organ-specific FDR to 5%.

Detection of sex-specific differences

For the initial experiment that tested for a sex effect on organ volume
(Fig. 4A,B), organ volumes from all available males and females were fitted
to the linear model organ volume/WEV~sex+WEV. False discovery
correction was performed across all organs using the Benjamini Hochberg
method, as it was not possible to permute the data as all the data was fitted to
the model. For the organ volume analysis that tested varying sample
numbers (Fig. 4C,D) organ-specific P-value thresholds were generated
using the permutation based method described above. Only experiments
where combinations of male and female sample size allowed at least 500
unique null permutations were included. Jacobian determinant analysis
(Fig. 4E,F) was carried out as described above.

Variable penetrance and low N

To identify potentially variable expressivity or incomplete penetrance of organ
volume phenotypes, LAMA routinely performs what we term ‘specimen-level
analysis’. After the analysis of a mutant line as a group, each individual
specimen is analysed singly, i.e. the organ volume, or voxel value, for a single
specimen is fitted to a linear model along with baseline controls to obtain a
specimen-level P-value for the genotype effect. Owing to the reduction in
power from using one specimen, we have set the FDR threshold for the
specimen-level analysis to 20%. The voxel-level data are processed similarly to
the gene-level voxel data and the voxels are thresholded to an FDR of 5%.

Optimisation and quality control

At each level and resolution of the registration process, the similarity metric
output by elastix is plotted against iteration number, allowing the user to
visually decide when the optimisation process has converged, and set an
optimal number of iterations in future.

Image registration can sometimes fail to produce acceptable results, e.g.
when the moving image is over fitted to the fixed image, producing unrealistic
warping. To check for issues such as these, after each registration stage an
additional HTML report was generated that contains mid-sagittal slices for each
registered image for rapid quality control. Another issue that can be encountered
using B-spline-based image registration is folding of the deformation field,
which prevents topology preservation and has no inverse transformation. This
problem can be detected by the presence of negative Jacobian determinants. In
that case, only pixels with negative Jacobian determinants are displayed,
allowing the user to quickly identify problematic regions within the registered
images. The registration stage of the analysis is the most time-consuming part of
the pipeline, and so it is a requirement to be able to optimise registration
parameters, especially within a high-throughput context.

Comparing Acan phenotypes found by LAMA to known
phenotypes

Tables of known phenotypes were generated by querying MGI phenotype
pages for the gene of interest Acan: www.informatics.jax.org/marker/
phenotypes/MGI:99602. Only phenotypes generated from homozygous
null strains were included to aid in the comparison. Duplicate and redundant
phenotypes (e.g. abnormal bone structure if more specific bone phenotypes
were present) were removed. Phenotypes that might not translate to a gross
anatomical dysmorphology that could be potentially detected by LAMA
(e.g. deafness) were also removed.
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Fig. S1. Sex differences in wild type embryos

(A) Wild type embryos gonad examples. Sagittal sections of rigidly-aligned wild type embryo images showing the left
gonad (LG) with the stomach (S) also indicated. Females (top) and males (bottom). (B) Representative sagittal
sections of affinely-registered (normalised for overall embryo size) wild type specimens overlaid with automatically
segmented lens label, illustrating difference in lens sizes between females (top rows) and males (bottom rows). (C)
Plot of whole-embryo normalised organ volume against whole embryo volume (in voxels). numbers correspond to

specimens in B. Scale bar: 1mm. A: anterior, P: posterior, S: superior, |: inferior.
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Fig S2. (A) Plots of organs with significant Acan-/- genotype effect. X axis: whole embryo volume, y axis: organ
volume in voxels, blue ponts: wild type specimens, orange ponts: Acan-/- specimens. (B) Comparison of wild type
and Acan-/- mutant lungs. Rigidly-aligned specimens overlaid with individual lung lobe labels from automatic
segmentation showing mutants (left 3) and stage-matched wild types (right 3). The top row shows a sagittal section.
The bottom row shows a coronal section. The dotted line in the sagittal sections corresponds to the section chosen

for the coronal view. Scale bar: 1Tmm, RLCr: right lung cranial lobe, LL: left lung lobe, RLM: right lung middle lobe,

C
o
)

©

£
fe
;9
£

o)

|4

©
i)

C

(0]

£
Q

Q

Q

>
(7p]

L]
FE)

[

()

£

Q
o

(]

>

(0]
o

RLCa: right lung caudal lobe.



Development: doi:10.1242/dev.192955: Supplementary information

Fig S3. Sagittal sections of population averages from E15.5 (A) and E18.5 (B) wild type embryo data from the IMPC

embryo pipeline. Scale bar: 1mm
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Table S1. E14.5 Atlas label information
Columns - label: label number in atlas images, label_name: the descriptive name, EMAPA term: Anatomical structure: associated
EMAPA anatomical term, EMAPA organ system ID: the top level EMAP organ system ID, EMAPA organ system name: the top level

EMAPA organ system name, Used in current analysis: If FALSE, not used in the current study.

Click here to Download Table S1

Table S2. Assessing the dependence of organ volume on WEV.

Results from fitting wild type organ volumes to linear model: O78dn volume | WEV ~ WEV p: WEV effect p-value. q:
Benjamini-Hochberg FDR-corrected p-value for WEV effect, t: WEV effect t-statistic.

Click here to Download Table S2

Movie 1. Volume rendered E14.5 atlas consisting of 184 segmented organs.
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http://www.biologists.com/DEV_Movies/DEV192955/TableS1.csv
http://www.biologists.com/DEV_Movies/DEV192955/TableS2.xlsx
http://movie.biologists.com/video/10.1242/dev.192955/video-1

