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Machine learning discriminates a movement disorder
in a zebrafish model of Parkinson’s disease
Gideon L. Hughes1, Michael A. Lones2, Matthew Bedder1,5, Peter D. Currie3, Stephen L. Smith4,5 and
Mary Elizabeth Pownall1,4,*

ABSTRACT
Animal models of human disease provide an in vivo system that can
reveal molecular mechanisms by which mutations cause pathology,
and, moreover, have the potential to provide a valuable tool for drug
development. Here, we have developed a zebrafish model of
Parkinson’s disease (PD) together with a novel method to screen
for movement disorders in adult fish, pioneering amore efficient drug-
testing route. Mutation of the PARK7 gene (which encodes DJ-1) is
known to cause monogenic autosomal recessive PD in humans, and,
using CRISPR/Cas9 gene editing, we generated a Dj-1 loss-of-
function zebrafish with molecular hallmarks of PD. To establish
whether there is a human-relevant parkinsonian phenotype in our
model, we adapted proven tools used to diagnose PD in clinics and
developed a novel and unbiased computational method to classify
movement disorders in adult zebrafish. Using high-resolution video
capture and machine learning, we extracted novel features of
movement from continuous data streams and used an evolutionary
algorithm to classify parkinsonian fish. This method will be widely
applicable for assessing zebrafish models of human motor diseases
and provide a valuable asset for the therapeutics pipeline. In addition,
interrogation of RNA-seq data indicate metabolic reprogramming of
brains in the absence of Dj-1, adding to growing evidence that
disruption of bioenergetics is a key feature of neurodegeneration.

This article has an associated First Person interview with the first
author of the paper.
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INTRODUCTION
Parkinson’s disease (PD) is common, affecting about 1% of the
population over 60 (Tysnes and Storstein, 2017), and it has no cure.
The incidence of PD increases with age; therefore, this statistic is
likely to become worse owing to an ageing population. Most cases
of PD are not inherited, arising sporadically; however, several

monogenic forms of PD have been identified (reviewed in
Hernandez et al., 2016). Studying the genes disrupted in patients
with inherited forms of PD has been instrumental for progress in
understanding the molecular basis of the disease (Clark et al., 2006;
Clements et al., 2006; Shimura et al., 2000).

A valuable approach to understanding mechanisms by which gene
mutations can result in human pathogenesis relies on in vivo experiments
using animal models. Invertebrate models such as Caenorhabditis
elegans (Ved et al., 2005) andDrosophila (Lu andVogel, 2009) provide
important platforms for studying neurodegenerative diseases in the
context of a complete nervous system; however, the genetically tractable
vertebrate Danio rerio shares more features of neuroanatomy with
humans. Retrograde tracing has been used to identify dopaminergic
(DA) neurons in zebrafish that project from the ventral diencephalon to
the ventral telencephalon (Rink and Wullimann, 2001). These
neurons are sensitive to the neurotoxin 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) (known to induce PD in
humans) and considered analogous to the ascending midbrain
DA neurons of the mammalian nigrostriatal pathway. In addition
to anatomical similarities, vertebrate genomes share a high level of
conservation such that orthologues of PD genes have been
identified and manipulated in zebrafish (Anichtchik et al., 2008;
Bretaud et al., 2007; Flinn et al., 2009; Keatinge et al., 2015; Zhao
et al., 2012). However, most of the zebrafish models of PD have
used transient post-transcriptional gene inhibition protocols
focusing on the analysis of larval DA neurons (Bretaud et al.,
2007; Flinn et al., 2009; Zhao et al., 2012) and swimming behaviour
(Flinn et al., 2009; Zhao et al., 2012). In this study, we have
developed an adult zebrafish model of PD that presents movement
disorders typical of human patients.

Loss-of-function mutations in PARK7 cause a rare form of early-
onset PD (Bonifati et al., 2003). PARK7 codes for the protein DJ-1,
which has multiple roles in protecting cells from toxic protein
aggregation and oxidative stress, and loss of these functions
contributes to the presentation of parkinsonian pathology. DJ-1
protein is a member of a deeply conserved DJ-1/ThiJ/PfpI
superfamily that includes related proteins from human to bacteria
and archae (Bandyopadhyay and Cookson, 2004). Although these
homologues share a core structure, their diverse functions include
acting as kinases, proteases and chaperones. In humans, DJ-1 has
been found to prevent the aggregation of α-synuclein (Zondler et al.,
2014), regulate transcription of oxidative stress response genes (Xu
et al., 2005) and maintain mitochondrial function (Thomas et al.,
2011;Winklhofer and Haass, 2010). High levels of oxidative stress in
DA neurons are characteristic of PD patients, so it is interesting that
DJ-1 itself is activated by the oxidation of a specific cysteine residue
(C106) that is essential for its translocation to the mitochondria and
neuroprotective function (Canet-Avilés et al., 2004; Wilson, 2011).
Structural biology (reviewed in Cookson, 2003) and Drosophila
genetics (Oswald et al., 2018) have been particularly informative
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about the biochemistry and function of DJ-1, as a stable homodimer
that acts as a redox sensor in neurons.
The advent of simple and effective gene editing in vertebrates

means that it is feasible to disrupt orthologues of known disease genes
to model human disease; to this end we have created a null mutation
in dj-1 (also known as park7) in zebrafish. In order to assess whether
this mutant provides a good animal model of human disease, we
have developed a novel method to discern recognisable traits of the
condition, which will ultimately facilitate its use in developing
treatments for improvement of symptoms. Neurodegeneration in PD
is characterised by bradykinesia, resting tremor, rigidity and postural
instability (Jankovic, 2008); of these, bradykinesia is a key indicative
feature (Postuma et al., 2015). Recently, medical diagnosis of
bradykinesia has been facilitated with a system called PD-Monitor
that employs an evolutionary algorithm (EA) (a form of artificial
intelligence or machine learning) to optimise predictive models
capable of recognising bradykinesia from finger-tapping tasks (Gao
et al., 2018). EAs can diagnose PD in humans with high accuracy
from data collected using tracking sensors on the thumb and finger
to extract movement data from a finger-tapping exercise performed
by PD patients and healthy age-matched controls. The movement
data were used to train an EA that evolved classifiers with
diagnostic accuracies of 80-90% (Lones et al., 2013). Here, we
report how we have adapted these methods to assess movement in
a zebrafish model of PD using a simple video setup and a
computational platform that could be widely used for assessing
motor impairment phenotypes in zebrafish.
We have harnessed two powerful tools: gene editing to disrupt

dj-1, generating an adult model of PD in zebrafish, and machine
learning to evolve classifiers that discriminate movement data from
our model. We find that training EAs with a continuous data stream
mitigates bias, allows the computation of more wide-ranging
features and can discriminate PD models from control zebrafish.

We report a bradykinesia-like movement disorder in this model of
PD, as well as an RNA-sequencing (RNA-seq) analysis that
indicates metabolic reprogramming in the absence of DJ-1. This
novel and simple platform for discerning movement phenotypes has
the potential to make important contributions to future drug
development for movement disorders.

RESULTS
Gene targeting of dj-1 results in a null allele and loss of DA
neurons
A BLAST search was used to identify any orthologues of PARK7
(DJ-1) in the zebrafish and to compare the amino acid
sequences of the encoded proteins. A single DJ-1 orthologue,
containing six exons, was identified in zebrafish on chromosome 11
(ENSDARG00000116835). The 189-amino acid protein encoded
by dj-1 in zebrafish shared 83% sequence identity with human DJ-1.
Heterozygous dj-1mutants were identified in the F1 generation with
a 2 bp deletion followed by a 19 bp insertion in exon 2 at position
200 in dj-1 (NM_001005938; chr11:41459837) (Fig. 1A). This
resulted in a frameshift and a premature stop codon at nucleotide
position 227. The predicted Dj-1 protein translated from the mutant
transcript would be 56 amino acids in length, missing the essential
C106 residue (Fig. 1B). The heterozygous dj-1 zebrafish carrying
this mutation were in-crossed to create progeny (F2 generation),
with 25% of the animals homozygous for the mutation. At maturity
(16 weeks), western blot analysis using an antibody known to
recognise zebrafish Dj-1 (Bai et al., 2006) revealed a complete loss
of the∼20 kDa Dj-1 protein that is detectable in wild-type but not in
dj-1−/− mutant brains (Fig. 1C). Quantitative reverse transcription
PCR (qRT-PCR) analysis was carried out on RNA extracted from
the brains of five dj-1−/− mutants and three wild-type siblings for
gene expression analyses. qRT-PCR showed a 95% loss of dj-1
expression in the dj-1−/− brains, indicating nonsense-mediated

Fig. 1. The zebrafish dj-1−/− mutation is a genetic null. (A) Wild-type dj-1 target sequence in the zebrafish genome (top). The 20 bp target sequence
(blue) is directly upstream of a 3 bp protospacer adjacent motif (PAM) site (red). A 2 bp deletion (ΔCC) followed by a 19 bp insertion in the target sequence causes
a frameshift mutation in dj-1 (bottom). (B) Comparison of the protein structure for wild-type Dj-1 (top), with essential residue C106 indicated, and the predicted
mutant protein truncated at residue 57 (bottom). (C) Western blot analysis of Dj-1 protein expression in the brains of wild-type adult zebrafish (lanes 1-4) and
their dj-1−/− mutant siblings (lanes 5-7). Gapdh was used as a loading control. (D) qRT-PCR analysis (single replicate) comparing gene expression in brains
extracted fromwild-type adult zebrafish (n=3, biological replicates) and their dj-1−/−mutant siblings (n=5) at 16 weeks post-fertilisation (wpf ). Target gene dj-1was
analysed alongside DA neuron markers dopamine transporter (dat), tyrosine hydroxylase (th) and pituitary homeobox 3 (pitx3); synapsin IIa (syn2a)
acted as a general synapse marker. Student’s t-tests (two-tailed, unpaired) were used to compare the dCt values for dj-1−/− and wild-type samples. Data are
mean±s.e.m., *P<0.05; ns, not significant.
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decay of the transcript (Fig. 1D). Genes known to be expressed in
(DA) neurons – dopamine transporter (dat; also known as slc6a3),
tyrosine hydroxylase (th) and paired-like homeodomain 3 ( pitx3) –
were also found to be downregulated in dj-1−/− mutant brains
compared to their wild-type siblings. dat and th expression were
assessed as both are markers of DA neurons; dat is specific to DA
neurons, whereas th is expressed in all catecholaminergic neurons
(Holzschuh et al., 2001). pitx3 is a transcription factor involved in
the development and maintenance of DA neurons (Filippi et al.,
2007).We conclude that our targeting of dj-1 has resulted in a line of
a genetic null zebrafish.
A PTEN-induced kinase 1 null (pink1−/−) mutant line was

generated by CRISPR/Cas9 targeting of the PINK1 orthologue in
zebrafish with two guide RNAs (gRNAs) producing a 101 bp
deletion in exon 2 of pink1 (at position 591 of NM_001008628)

(Fig. 2H). The predicted Pink1 protein translated from the mutant
transcript would be 183 amino acids in length, losing the majority of
the kinase domain, and qRT-PCR analysis of RNA extracted from
pink1−/− (n=4) and wild-type sibling (n=3) adult brains revealed a
∼90% loss of pink1 expression, indicative of nonsense-mediated
decay of the mRNA. An immunohistochemical analysis was used to
detect DA neurons (Fig. 2); three brains were dissected from wild-
type, dj-1−/− and pink1−/− zebrafish at 12 months post-fertilisation
(mpf), and 100 µm sections were cut with a vibratome through the
posterior tuberculum (pT) in the diencephalon. In zebrafish, the pT
includes a subset of DA neurons that project to the subpallium; these
cells are considered homologous to the anterior-most ascending
mesodiencephalic DA neurons in mammals (groups A8-A10),
which are affected in PD (Rink and Wullimann, 2002, 2001). To
investigate whether these cells are impacted in our zebrafish models

Fig. 2. Reduction of dopaminergic neurons in the posterior tuberculum of PD zebrafish. Immunohistochemical detection of Tyrosine hydroxylase
(Th) in dj-1−/− and pink1−/− brains. A section through the posterior tuberculum (pT) was identified based on the shape of the brain according to Wulliman et al.
(1996). The large pear-shaped Th-positive cells located next to the ventricle in the pT have previously been identified as part of the zebrafish dopaminergic system
projecting to the striatum (Rink and Wullimann, 2001). Therefore, the pear-shaped Th-positive cells identified in the periventricular pT location were counted.
(A) Lateral view of the adult zebrafish brain (left) and cross-section through the adult zebrafish brain (right). Highlighted in red is the pT. (B-G,I-K)
Immunofluorescently labelled Th-positive cells (green) in the pT of wild-type, dj-1−/− and pink1−/− zebrafish (n=3 biological replicates) at 12 months post-
fertilisation (mpf). Hoechst staining of nuclei is in blue. Arrows indicate the cell bodies of the paraventricular DA neurons. (B) Th-positive cells in a section through
the pT (red box) of a wild-type brain. (C) A close-up of the Th-positive cells in the pT from A. (D) Th-positive cells in a section through the pT (red box) of a dj-1−/−

brain. (E) A close-up of the Th-positive cells in the pT fromD. (F,G) Close-ups of Th-positive cells in the pT of two further dj-1−/− brains. (H)(i) CRISPR/Cas9 target
sequences (blue), PAM sites (red) and the 101 bp deletion generated in exon 2 of pink1 (at position 591 of NM_001008628). (ii) Wild-type Pink1 (above)
and the truncated Pink1 protein (below) predicted in the pink1 mutant. (iii) qRT-PCR analysis comparing pink1 expression in brains extracted from pink1−/−

zebrafish (n=4, biological replicates) and their wild-type siblings (n=3) at 16 wpf. Student’s t-tests (two-tailed, unpaired) were used to compare the dCt values for
pink1−/− and wild-type samples. Data are mean±s.e.m., ***P<0.001. (I) Th-positive cells in a section through the pT (red box) of a pink1−/− brain. (J) A close-up of
the Th-positive in the pT from I. (K) A close-up of the Th-positive cells in the pT of a further pink1−/− brain. (L) Counts of Th-positive cell bodies seen
in the pT (single 100 µm section) for wild-type, dj-1−/− and pink1−/− zebrafish (n=3 biological replicates) at 12 mpf.

3

RESEARCH ARTICLE Disease Models & Mechanisms (2020) 13, dmm045815. doi:10.1242/dmm.045815

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s



of PD, we used immunofluorescence to detect the protein Tyrosine
hydroxylase (Th), an enzyme required to produce catecholamines
including dopamine. Our method is informed by the work of Matsui
and Sugie (2017) and Rink and Wullimann (2001) to identify and
count these neurons in zebrafish. The brains were fixed and
embedded in agarose blocks for vibratome sectioning before
processing by immunohistochemistry for Th immunoreactivity
and imaging by confocal microscopy. Cell bodies in the pT positive
for Th that have a pear-shaped appearance and a periventricular
position were identified as pT DA neurons and counted in each of
the sections (Fig. 2B-G,I-K). Fig. 2L indicates the mean number of
pT DA neurons identified for each genotype. In the wild-type brain,
a range of four to five of these cells was identified, consistent with
the retrograde tracing study by Rink and Wullimann (2001), while
the number of pT DA neurons identified in the dj-1−/− and pink1−/−

brains ranged from one to three and one to five, respectively,
suggesting a reduction of these neurons in these genotypes, as
shown previously for pink1 −/− (Flinn et al., 2013).

A simple and effective method for measuring micro-
movement in zebrafish
A progressive loss of DA neurons is characteristic of PD in humans
(Damier et al., 1999); however, to establish whether our dj-1−/− null
zebrafish provide a bone fide animal model of PD we wanted to test
whether the fish share a dyskinesia phenotype. To do this, we
developed a new and simple method to measure features of

movement. In contrast to other fish-tracking programs, our analysis
extracts movement data from the adult tail bending along its whole
axis while accelerating, decelerating and turning. These data are
collected as a continuous feed and converted by bespoke software
into data suitable for use with novel computational methods to test
whether our zebrafish model shows micro-movement features
identified in human patients with PD.

We established filming methods using a specially designed tank
and camera setup that allows consistent video recordings free of
reflections and shadows (Fig. 3A). We also wrote a computer
program (ShadowFish) to generate a minimal set of data to
characterise fish movement; this greatly reduces the
dimensionality of the data, which is essential for input into
computational analyses. ShadowFish software and tank design are
freely available (github.com/ghughesyork/ShadowFish). The
position of the fish spine is approximated in each frame of an
input video clip, and then the flexion or bending angle is measured
at five equidistant positions along the spine (Fig. 3B). Seven x,y
coordinates were also measured along the spine for each frame.
Simplifying the video data in this way facilitates our subsequent
classification analyses using EAs. Forty-six dj-1−/− mutant
zebrafish (12 weeks old) and the same number of age-matched
wild-type controls were recorded swimming for 5 min following an
acclimation time of 10 min after moving into the ShadowFish tank.
Using dj-1−/− and wild-type fish from multiple different breedings
reduced the chances of evolving a classifier that recognised a pattern

Fig. 3. Analysis of extracted features
reveals distinct movement in dj-1−/−

zebrafish. (A) A photograph of the
frustum insert designed to fit an
Aquatics Habitat mating tank with a
GoPro camera attached (left), providing
a simple system for accurate, high-
resolution video capture of adult
zebrafish movement. A diagram of the
fish inside the frustrum insert, recorded
from above using the GoPro camera
(right). (B) A diagram of the angles
measured along the zebrafish trace, at
the five vertices (red dots), when there
is a bend in the tail. x and y coordinates
were measured for the vertices and
endpoints. Measurements were
recorded at 100 frames/s from the video
input, allowing analysis of selected
features of movement. (C-H) The
features of movement compared
between dj-1−/− and wild type (WT) at
12 wpf including distance travelled (C),
velocity (D), percentage of time spent
moving (E), mean duration of a
swimming episode (F), tail beat
frequency at low, medium and high
swimming speeds (G), and tail bend
amplitude at low, medium and high
swimming speeds (H) (single replicate).
The number of replicates (n) is shown
for each graph. Student’s t-tests (two-
tailed, unpaired) were used to compare
features that followed a normal
distribution; the Mann–Whitney U-test
(two-tailed) was used to compare non-
parametric features. Data are mean±
s.e.m., *P<0.05, **P<0.01, ***P<0.001;
ns, not significant.
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occurring in a single progeny. The increased generality of the
evolved classifier improves classification accuracy when used to
discriminate future dj-1−/−mutants. Then, 30-s video clips, filmed at
100 frames/s, were processed from recordings. Two 30-s clips from
each recording were processed using the ShadowFish software; these
were visually assessed to ensure that we removed any video with a
reflection or a shadow or where the fish was not in view. The 30-s
clips were also processed using the ShadowFish software to collect
movement data in the same way from two other genotypes, pink1−/−

and dmdta222a/+.

Extracting features of movement
Initial analyses were undertaken using MATLAB to calculate
selected features of movement including distance travelled
(Fig. 3C), velocity (Fig. 3D), time spent moving (Fig. 3E) and
swimming episode duration (Fig. 3F). Over a 30-s period, dj-1−/−

zebrafish covered significantly less distance at a slower velocity
compared to wild-type fish. While wild-type fish spent 96% of their
time moving, dj-1−/− mutants were moving only 83% of the time.
Additionally, the mean swimming episode duration by a dj-1−/−was
17 s, compared to 25 s for the wild type. Tail beat frequency
(Fig. 3G) and mean tail bend amplitude (Fig. 3H) were analysed at
low, medium and high speeds of movement (Keatinge et al., 2015).
It was hypothesised that mutant fish might need to work harder to
achieve higher speeds through more tail beats; however, only the
tail beat frequency at low speed was significantly affected and
reduced in the dj-1−/− mutant. A trend was seen in the wild-type
zebrafish for the tail bend amplitude to decrease with an increase
in swimming speed, suggesting that momentum allows fish to
coast once higher speeds have been reached, reducing tail bend
amplitude and energy expenditure (McHenry and Lauder, 2005).
In contrast, the mean tail bend amplitude is significantly less in
the dj-1−/− zebrafish at low speeds but significantly greater at
high speeds, and a greater tail bend amplitude was observed in
the Dj-1-deficient zebrafish at high speeds compared to the wild
type (Fig. 3H). As the dj-1–/– mutant fish stop more frequently
(Fig. 3F), the resulting inertia might impede them from gaining
the momentum required for coasting. Alternatively, the dj-1−/−

zebrafish could lack the fine motor control required to moderate
their swimming at speed. This is similar to the hypothesis that
PD patients fail to appropriately scale the size of their
movements to complete a given task (Mazzoni et al., 2012). In
contrast to the differences in movement seen at 12 weeks post-
fertilisation (wpf ), we found that, in younger zebrafish (8 wpf ),
most features of movement of dj-1 mutants were not
significantly different from those of age-matched controls
(Fig. S1). This progressive impairment of movement in dj-1−/−

mutant fish is consistent with the progressive loss of motor
control seen in PD patients (Greffard, et al., 2006).

Evolving classifiers using extracted features of movement
Machine learning has proved successful in analysing highly
complex, non-linear data in human PD patients (Lones et al.,
2013), and we have adapted the methods from our previous study to
this zebrafish model of PD. Automated analyses of the digitised
swimming data were used to measure selected features of movement
in the mutant and wild-type fish, with the aim to distinguish any
combination of features that characterises the movement of the
dj-1−/− zebrafish. In addition, we included data extracted from
another parkinsonian model, the pink1−/− mutant zebrafish, and
from zebrafish heterozygous for sapje (dmdta222a/+) (Bassett et al.,
2003). sapje is a recessive mutation that is lethal when homozygous

and a model for muscular dystrophy, another human disease in
which movement is disrupted. The dmdta222a allele is recessive so in
a heterozygote condition there is no expected phenotype or expected
change in movement, thus providing a negative control for evolving
classifiers.

We describe here an objective method, using machine learning, to
identify any movement phenotype that can distinguish mutants from
the wild type with a defined level of accuracy. Machine learning can
automatically analyse large datasets and ‘learn’ to recognise
differences between the classes of data (Alpaydin, 2016). We use
a form of ‘supervised learning’, where a supervisor provides the
desired output for every input when generating an optimised
classifier (Ayodele, 2010). In this instance, the input is all the
features of movement extracted from the recording of a fish and the
desired output is the class of fish, either mutant or wild type. An EA
is a population-based process designed to optimise the solution to a
defined problem; by evaluating a population of candidate solutions
using a ‘fitness function’ (an objective mathematical measure that
determines the most effective solution) and subsequently spawning
a new population of candidate solutions for the next generation. The
EA goes through multiple generations and the candidate solution
becomes increasingly optimised with each round of evolution. This
culminates in an effective solution being produced and expressed as
a discrete mathematical equation that describes the solution (Smith
et al., 2015). Moreover, EAs are one of the few ‘white box’ forms of
machine learning for which the functions that make up the classifier
can be inspected (Lones et al., 2013); this is a useful characteristic to
allow discovery of any movement phenotype characteristic of a
zebrafish model of PD.

Using selected features of movement, an EA was used to train
classifiers labelling fish as either dj-1−/− or wild type. Forty-six
dj-1−/− and 46 age-matched control zebrafish were recorded
swimming for a period of 5 min. Two separate 30-s clips were
processed from each 5-min recording, generating 92 comma-
separated value (CSV) files containing raw movement data for each
class of fish. After visual quality checks, 30 recordings of dj-1−/− and
an equal number from age-matched wild-type controls were used to
evolve classifiers. The type of EA used was a Cartesian genetic
programming (CGP) algorithm, in which programs are represented as
directed graphs with two-dimensional grids of computational nodes
(Miller, 2011). CGP was selected as it is a white box machine
learning algorithm that is suitable for relatively small sample sizes
and can provide insight into the contribution of respective features in
the resulting classifier, as demonstrated in previous work in analysing
human movement disorders (Lones et al., 2013). Here, we use 30
recordings, and 60 data points were obtained for each class, which,
according to the methods of Bland and Altman (2007), provides a
95% confidence interval of ±0.44 standard deviations. The CGP
network for classifying dj-1−/− fish that achieved the highest test
score on a fold of datasets is shown in Fig. 4A. Velocity, mean tail
beat frequency and time spent moving were the extracted features of
movement used in the highest-scoring dj-1−/− classifier. These data
reveal these features of movement as the most useful for
discriminating the dj-1−/− mutants from wild type. The mean test
score of classifiers evolved using the 20 folds of datasets was 70%,
indicating that an equation could distinguish dj-1−/− fish by their
features of movement 70% of the time. Similar analyses were carried
out to classify extracted features of movement from pink1−/− (another
PD model) and dmdta222a/+ (a negative control) and are presented in
Fig. 4B,C. The EAwas unable to compute an equation to distinguish
these genotypes from controls using extracted features of movement
(test scores were 51.6% and 43.5%, respectively).
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Evolving sliding window classifiers from rawmovement data
For an unbiased classification we used the raw data extracted from
the videos, without selection of any particular features of
movement, for input into an EA. To do this, we processed the
movement data using principal component analysis (PCA) to
condense the data into principal components (PCs) by linear
combination of the tail bend angles in each frame (Fig. S2). This
reduced the dimensionality of the tail bend angles, transforming
the multivariate time series into a univariate time series, while
retaining the inherent variation of the data. PC2 was used to evolve
classifiers as it retained the high frequency movement and subtle
variation important for characterising a movement phenotype
(Lones et al., 2013).
Sliding window classifiers, encoded using CGP, were evolved to

classify the mutants using the PC2 time series as input data. The
mathematical equations generated describe local patterns in the
movement data that can be used for discrimination (Lones et al.,
2013). The window in a sliding window classifier contains the data
from a specific range in a time series, which become the input data

for the evolved algorithm. The raw movement data extracted from
36 clips of dj-1−/− mutants and 64 clips of age-matched control
zebrafish with visually assessed, high-quality tracking were used to
evolve sliding window classifiers. Here, 20 PC2 values (extracted
from 20 frames of a recording) were used as the input data for a
window. The algorithm applies pre-defined functions to the input
data and produces a continuous value between 0 and 1 (Lones et al.,
2013). Subsequently, the window slides along one position in the
time series to get the next overlapping range of data points. The
algorithm is applied to the new input data and produces a further
output value; the process is repeated until the sliding window has
reached the end of the time series. The final classifier output (the
mean of all the output values) labels the data as belonging to one of
two classes depending on a threshold value. Similar analyses were
carried out on the pink1−/− homozygous mutants and dmdta222a/+

heterozygote zebrafish.
One of the aims of this work was to confidently classify zebrafish

using a protocol that is effective and practical, by acquiring short
5-min videos for analysis. Two 30-s clips were determined

Fig. 4. Machine learning evolves classifiers frommovement data and discriminates dj-1−/− zebrafish as distinct from controls. (i)(A-C) An analysis using
an evolutionary algorithm to discriminate a classifier by analysing extracted features of movement. (A) The mean training and test scores for classifiers evolved to
recognise dj-1−/− zebrafish (n=30) at 12 wpf over 20 folds of datasets containing extracted features of movement. The CGP network of the highest scoring dj-1−/−

classifier evolved using the extracted features is depicted as a flow diagram. (B) The mean training and test scores for classifiers evolved to recognise pink1 −/−

zebrafish (n=37) at 14 wpf over 20 folds of dataset containing extracted features of movement. The CGP network of the highest-scoring pink1 −/− classifier evolved
using the extracted features is depicted as a flow diagram. (C) The mean training and test scores for classifiers evolved to recognise dmdta222a/+ zebrafish (n=25)
at 12 wpf over 20 folds of dataset containing extracted features of movement. The CGP network of the highest-scoring dmdta222a/+ classifier evolved using the
extracted features is depicted as a flow diagram. (ii)(D,E) A separate analysis of the rawmovement data using sliding window classifiers trained with the PC2 time
series data to generate symbolic mathematical expressions that describe discriminatory local patterns of movement within the data. (D) The training and test
accuracies for the classifier evolved to recognise dj-1−/− zebrafish at 12 wpf. Mean plots of the PC2 time series data in the 20 windows most useful for
discriminating dj-1−/− mutants (n=36) (red) and age-matched controls (n=64) (black) in the test dataset. (E) The training and test accuracies for the classifier
evolved to recognise pink1 −/− zebrafish at 14 wpf. Mean plots of the PC2 time series data in the 20 windows most useful for discriminating pink1 −/− mutants
(n=39) (red) and age-matched controls (n=44) (black) in the test dataset.
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empirically to provide sufficient data to identify differences in
movement that allow classification of both the dj-1−/− and pink1−/−

mutants from control fish. For the dj-1−/− and pink1−/− datasets, the
sliding window classifiers were able to discriminate mutant fish
around 80% of the time (Fig. 4D,E). The classifiers evolved using
the raw movement data were more effective than classifiers evolved
using select features. This is likely due to the objectivity that is
possible using a continuous stream of data as well as the increased
amount of data analysed from each recording. In addition, each
selected feature was calculated to a single value summarising the
movement in a video clip and reducing the data available to the EA.
To visualise local patterns in the movement data characteristic of
each class of fish [mutant (red) or wild type (black)] a mean plot of
the 20 windows that were most useful for discriminating mutants is
shown for dj-1−/− (Fig. 4D) and pink1−/− (Fig. 4E) mutant
zebrafish. This same set of computational analyses was
undertaken using heterozygous dmdta222a/+ zebrafish and a useful
classifier could not be evolved. Fig. S3 reports the training and test
areas under the curves (AUCs) for 20 runs, showing a mean of 0.78
for train and 0.43 for test. This shows that classifiers are evolved that
over-fit the training data, but these models cannot generalise or
classify any meaningful differences between the movement of
dmdta222a/+ and the wild-type zebrafish. Together, these data
indicate that machine learning can discriminate movement
phenotypes when present, as is the case with the zebrafish models
of PD, but not in the heterozygous carrier of the muscular dystrophy
gene dmdta222a/+ that has no phenotype; this was expected given the
recessive inheritance of the disease. One limitation of our study is
that we did not treat adult animals with drugs; for instance, MPTP
treatment mimics PD, which would be a useful addition to our
protocols. Moreover, the ability of artificial intelligence to identify
PD fish presents the possibility (indeed the next step) of treating the
fish with known or potential therapeutics and then re-assessing the
same fish. We are currently working with collaborators to develop
these further protocols.

Molecular signatures consistent with parkinsonian
pathology characterise dj-1−/− brains
Animal models can provide important insight into the molecular
basis of genetic disease. To investigate any global changes in gene
expression associated with a loss of Dj-1, RNA-seq was carried out
on RNA extracted from adult zebrafish brains using dj-1−/−mutants
and three wild-type siblings at 16 wpf. An overview of these effects
is shown as a volcano plot (Fig. 5A) and a short list of affected genes
was curated using the criteria of fold change ≥1.2 (up- or
downregulated) and false discovery rate (FDR)-adjusted P-value
≤0.05. The list is depicted as a heatmap illustrating the relative
expression of 22 transcripts that were found to have significantly
altered expression in the dj-1−/−mutant brains (Fig. 5B). Validation
of a set of these targets by qRT-PCR analysis confirmed the changes
in expression for some genes of interest (Fig. 5C). These data have
been deposited in NCBI’s Gene Expression Omnibus (GEO) (Edgar
et al., 2002), under accession number GSE135271 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE135271). A list of all
differential transcripts with q<0.05 is provided in Table S2A,B.
Genes significantly affected by loss of DJ-1 include those with

cell functions known to be disrupted in PD. VAMP3, part of a
SNARE complex, found on the vesicle membrane and required for
vesicular transport from early, recycling endosomes to the trans
Golgi network was found downregulated in HeLa cells (Mallard
et al., 2001). DA neurons in the substantia nigra pars compacta
(SNc) have increased vulnerability to dysfunctional intracellular

trafficking, as vesicles transport cargo great lengths and to a high
number of synapses due to their extensive axonal arborisation
(Bolam and Pissadaki, 2012; Giguer̀e et al., 2019). Mitochondrial
dysfunction is accepted as central to PD pathophysiology (Hu and
Wang, 2016). Here, we find that glycine amidinotransferase (gatm),
encoding a mitochondrial enzyme involved in creatine synthesis
(Sandell et al., 2003), is significantly downregulated in dj-1−/−

brains. As well as an energy store, creatine has an antioxidative
function, scavenging for reactive oxygen species (ROS) (Allen,
2012; Gabriel et al., 2013). In addition, glutathione peroxidase 3
(gpx3), encoding an enzyme that reduces hydrogen peroxide,
thereby protecting the cell from oxidative stress, also has reduced
expression in the brains of dj-1−/− zebrafish. Interestingly, the
human GPX3 gene contains a peroxisome proliferator response
element (PPRE) that is activated by PPARγ (Chung et al., 2009), a
signalling pathway found activated downstream of DJ-1 (Han et al.,
2018). pyruvate kinase M1/2a (pkma), a key regulator of aerobic
glycolysis (Sun et al., 2011), is also downregulated, suggesting
dysregulated metabolism in dj-1−/− brains.

In order to take a broader view of the classes of genes sensitive to
loss of DJ-1, we used gene set enrichment analysis (GSEA) to
analyse our RNA-seq data (Subramanian et al., 2007, 2005) and
found enrichment profiles consistent with disrupted metabolism and
cell cycle regulation. This method uses pre-defined sets of genes
that have been categorised based on interactions in a common
pathway or a related biological function. The data from the RNA-seq
analysis were processed and a normalised enrichment score (NES)
calculated to determine whether genes affected are over-represented
in any molecular signature database. The NES reflects the degree to
which the genes in a gene set are over-represented at the top or
bottom of a gene list ordered by association with a genotype. Our
results revealed that dj-1−/− brains have over-representation of the
gene sets presented in Table S3. As would be predicted from several
previous reports (Kim et al., 2005; Lan et al., 2017), we find
enrichment of gene sets associated with PI3K/AKT/mTOR and
mTORC1 signalling (Fig. 5D; Table S3). This is consistent with
increased levels of mTOR in mouse models of PD (Wills et al.,
2012) and the finding that DJ-1 negatively regulates the tumour
suppressor PTEN, which is part of the PI3K/AKT signal
transduction pathway (Kim et al., 2005).

Our GSEA also indicates an upregulation of genes associated
with oxidative phosphorylation in the absence of Dj-1. Metabolic
regulation in neurons is crucial given the high and dynamic energy
demands of the vertebrate brain (Yellen, 2018); moreover, SNc DA
neurons in particular have high metabolic needs (Giguer̀e et al.,
2019). Our results show that some genes coding for players in
glycolysis (Fig. 5C) are downregulated, while the gene set for
oxidative phosphorylation is over-represented (Fig. 5D; Table S3).
We also find the enrichment of the G2 to M transition gene set and
targets of E2F transcription factors (Fig. 5D), as well as other cell
cycle-related genes sets (Table S3) in the brains of dj-1−/− zebrafish.
Interestingly, entering the cell cycle has been linked to cell death in
neurons (Herrup et al., 2004; Herrup and Yang, 2007), and,
moreover, Höglinger et al. (2007) found that the pRb/E2F pathway
caused neuronal cell death in a chemical model of PD, consistent
with the over-representation of mitotic gene sets in dj-1−/− brains,
reflecting their neurodegenerative pathology.

DISCUSSION
Age-dependent neurodegeneration is difficult to model in
organisms with short lifespans, and, moreover, motor disorders
are not always apparent and can be difficult to measure (Lee et al.,
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Fig. 5. Differential gene expression in the dj-1 −/− mutant brain. (A) A volcano plot representing the global changes in gene expression observed by
RNA-seq analysis, comparing RNA from the brains of dj-1−/− mutants (n=3, biological replicates) and their wild-type siblings (n=3) at 16 wpf. The fold change
(log2) of each transcript was plotted against the P-value (−log10). Transcripts in red are down/upregulated less than 2-fold. Transcripts in orange that appear
above the dotted line are differentially expressed with a P-value of <0.05 and down/upregulated more than 2-fold. Transcripts in blue have a P-value of ≥0.05.
(B) A heatmap showing select genes differentially expressed with an FDR q-value of <0.05. Relative expression is represented on a colour scale from blue (low) to
orange (high). (C) qRT-PCR analysis validating the results seen in the RNA-seq using RNA extracted from the brains of dj-1−/− and wild-type siblings
at 16 wpf (n=3 for all but n=5 for kcnk analysis, biological replicates). Student’s t-tests (two-tailed, unpaired) were used to compare the dCt values for dj-1−/− and
wild-type samples. Data are mean±s.e.m., *P<0.05, **P<0.01, ***P<0.001. (D) GSEA enrichment plots for Hallmark gene sets: G2M checkpoint, oxidative
phosphorylation, E2F transcription factors and PI3K/AKT/mTOR signalling. FDR, false discovery rate-adjusted P-value; NES, normalised enrichment score;
P, nominal P-value. Data have been deposited in GEO, accession number GSE135271.
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2017; Rousseaux et al., 2012). There has been some success
modelling PD using neurotoxin-based models in the mouse;
however, these present a rapid loss of DA neurons, which does
not align with the progressive neurodegeneration of PD in humans
(Jackson-Lewis and Przedborski, 2007). Genetic approaches for
modelling PD in mice have had less success in reproducing the
neurodegeneration. The loss of Pink1, Prkn, Dj-1 or Fbxo7 in the
mouse does not reduce the number of nigrostriatal DA neurons or
locomotor ability (Gispert et al., 2009; Kim et al., 2005; Perez and
Palmiter, 2005; Vingill et al., 2016). A further triple knockout of
Pink1, Prkn and Dj-1 in the mouse still failed to produce a
phenotype with recognisable aspects of PD (Kitada et al., 2009). In
contrast, transgenic expression of genes associated with autosomal
dominant PD in humans, LRRK2 (G2019S) and SNCA, was shown
to cause a loss of nigrostriatal DA neurons and locomotor defects in
the mouse (Ramonet et al., 2011; Janezic et al., 2013). In addition,
aggregates of α-synuclein forming in the motor neurons of
transgenic mice overexpressing α-synuclein has been reported,
which could impact the movement phenotype (van der Putten et al.,
2000). Rats may prove a better mammalian model for PD; Dave
et al. (2014) reported a loss of DA neurons and locomotor defects in
rats lacking Dj-1 and Pink1, but not Prkn. Overexpression of
LRRK2 (G2019S) and SNCA in the rat brain has been able to cause
a loss of the nigrostriatal DA neurons in some cases (Dusonchet
et al., 2011; Lo Bianco et al., 2002). Nonetheless, compared to a
mouse or rat models, there are advantages to using zebrafish in drug
screens. Zebrafish are smaller, have lower maintenance costs and
produce much larger broods for generating large numbers of
animals for analyses; there is also the simplicity of administering
candidate drugs in their water. Although the method described here
uses adults and is not suitable for the high-throughput drug screens
used on zebrafish larvae (Gallardo et al., 2015), it may provide a
valuable addition to current drug screening protocols targeted at
genetic diseases that have no larval phenotype but present a later
movement disorder, as part of a multifaceted approach (Volpatti
et al., 2020).

An unbiased method to discriminate movement disorders in
zebrafish
Here, we have used an EA to classify data obtained from recordings
of zebrafish movement by measuring the bending of the spine.
Previous tracking software has analysed location coordinates as fish
swim; this is done in larvae and adults and informs only on the
location or locomotor activity of individuals or groups of fish
(Stewart et al., 2015; Cronin and Grealy, 2017). In contrast, we have
measured the tail bend angle along the back of individual adults, to
inform on muscle movement and assess dyskinesia. Using this
approach, machine learning discriminates a parkinsonian phenotype
in zebrafish deficient in dj-1/park7, a gene that causes a recessive
form of early onset PD in humans. Off-target effects are a worry of
any experimental program that relies on gene targeting. Back
crossing to the wild-type strain for several generations can remove
any potential modifiers linked to the targeted gene, and extending
our study in this way would ensure that the movement phenotypes
distinguished in our analyses tracked with the mutant allele. It is also
important that the fish are genetically similar, except for the allele of
interest, making it difficult to compare across different generations;
therefore, the fish compared were always cousins of the same
generation. In addition, raising fish in separate tanks and the
emergence of traits from unrelated homozygous mutations resulting
from in-crossing wild-type fish are potential caveats to our
interpretations. Nonetheless, machine learning was able to

distinguish dj1−/− and pink1−/− mutants from wild-type cousins,
but could not evolve an equation to discriminate between our control
line, dmdta222a/+ heterozygotes, from wild-type fish, which were
also raised in separate tanks.

Machine learning has also been used to classify mouse models of
PD generated by injection of neurotoxins directly into the brain; the
pronounced movement phenotype is measured using the well-
established Noldus Catwalk gait analysis and discriminated with an
accuracy of 96% (Frohlich et al., 2018). Similarly, the extraction of
movement data and evolution of classifiers to diagnose PD in
humans has been refined to reach accuracies of up to 95% (Lones
et al., 2013). Our novel ShadowFish tracking software extracts data
suitable for analysis by EAs and results in classifiers with ∼80%
accuracy. The ability of our new method to evolve algorithms that
discriminate movement of zebrafish carrying two different PD, but
not that of zebrafish carrying a heterozygous mutation in dmd,
indicates that our method has the potential to reach higher
classification accuracies and provide a valuable new method to
detect movement disorders in a non-mammalian vertebrate model.

Clinical diagnosis of PD is challenging, with an accuracy of
∼80% (Hughes et al., 1992; Rizzo et al., 2016). More accurate, less
subjective diagnosis of PD using EAs has improved diagnostics and
is able to describe the bradykinesia characteristic of PD in a finger-
tapping exercise (Lones et al., 2013), allowing early diagnosis of PD
distinct from other neurodegenerative diseases. Our adaptation of
this technology to evolve classifiers that identify mutant zebrafish
based on movement data will provide a method to screen for drugs
that improve the movement phenotype. We have found that Dj-1-
deficient zebrafish display an overall loss of movement measured as
a reduction in distance travelled, velocity, time spent moving and
duration of a swimming episode; comparable to the bradykinesia
observed in PD patients (Jankovic, 2008). Furthermore, the shorter
duration of swimming episodes indicated more frequent periods of
inactivity, akin to the freezing episodes observed in PD (Chee et al.,
2009). There is, however, a great deal of subjectivity when studying
features selected based on conventional movement measures. In
comparison, the sliding window classifier is much more objective,
automatically extracting features based on minute differences in
movement that are undiscernible to the human eye, rather than the
general features of movement. On examination of the input video
data, we find that the discriminating classifiers often use data from
when the fish turns. This suggests that the movement phenotype in
parkinsonian zebrafish is similar to that found in PD patients, in
whom bradykinesia is particularly evident when turning around
(e.g. Chou and Lee, 2013). A further consideration to take into
account is that a muscle disorder might be contributing to the
movement phenotype, as loss of dj-1 has been found to affect
metabolic respiration in skeletal muscle cells and result in overall
reduced body mass (Edson et al., 2019).

Molecular signature of a PD brain: increased oxidative
phosphorylation and cell cycle re-entry
Confirmation of a valid parkinsonian model was provided by GSEA
(Subramanian et al., 2005), which revealed molecular signatures
described in other genetic models of PD. The DJ-1 protein is
sensitive to ROS (Canet-Avilés et al., 2004;Mitsumoto et al., 2001),
acting as a neuroprotector by quenching excess ROS at the
mitochondrial membrane (Taira et al., 2004) and is also required
for the subcellular localisation of hexokinase (HK1) to the
mitochondria (Hauser et al., 2017). This links DJ-1 activity
directly to mitochondrial function, alongside other notable
autosomal recessive PD genes PINK1 and PRKN that monitor and
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maintain mitochondrial function. Mitochondrial dysfunction is
accepted to be a major factor in the pathology of PD (reviewed in
Cookson, 2012), although it is puzzling how defective mitochondria,
organelles that are essential in all cells, leads to the specific depletion
of SNc DA neurons. One explanation is that the high number of
synapses associated with these neurons results in extraordinarily high
energy demands (reviewed in Bolam and Pissadaki, 2012); indeed,
there is a higher basal rate of mitochondrial oxidative
phosphorylation in SNc DAs compared to DA neurons of the
ventral tegmental area (Pacelli et al., 2015). Recently, good evidence
for this hypothesis has been provided by the Trudeau laboratory,
when they showed that a mouse engineered with increased axonal
arborisation of SNc DA neurons is more vulnerable to PD-causative
neurotoxins (Giguer̀e et al., 2019). Our findings that genes associated
with oxidative phosphorylation are altered in the dj-1−/− zebrafish is
consistent with the notion that disruption of bioenergetics is a key
feature of a neurodegenerative brain.
Upregulation of genes associated with oxidative phosphorylation

in a mouse Prkn−/− model (Giguer̀e et al., 2018) and a zebrafish
dj-1−/− model of PD has been described (Edson et al., 2019), while
dysregulation of genes associated with metabolism is consistent
with a neurodegenerative state in PD (Giguer̀e et al., 2018; Shi et al.,
2015) as well as Alzheimer’s disease (Demetrius et al., 2015). One
interpretation (Yellen, 2018) is that the high energy demands in
neurons requires the uncoupling of glycolysis and oxidative
phosphorylation, and it may be that DJ-1 is required for this
switch. Another interpretation is that neurodegeneration results from
an ‘inverse Warburg effect’; this has been proposed as a cause of
sporadic Alzheimer’s disease, in which oxidative phosphorylation
is upregulated in ageing or otherwise impaired neurons as a
compensatory response to meet energy needs (Demetrius et al.,
2015), an idea supported by our data that oxidative phosphorylation
genes are enriched in the absence of Dj-1.
GSEA also reveals that in zebrafish brains lacking Dj-1, there is

an enrichment of genes associated with mitosis, such as those
regulating the G2/M checkpoint, E2F target genes, as well as the
cancer-related gene sets associated with epithelial mesenchymal
transition, Myc targets and the mitotic spindles. This might seem
surprising, because DJ-1 was first identified by its interaction with
Myc and indeed can transform 3T3 cells when co-expressed with
Myc or Ras (Nagakubo et al., 1997). However, PD genes have been
implicated in cell cycle control (reviewed in West et al., 2005) and
the re-activation of cell cycle proteins (including the E2F factors)
has been detected in tissue from PD patients (Höglinger et al.,
2007). Post-mitotic neurons have mechanisms in place that prevent
cell cycle progression, and re-entering the cell cycle can lead to
apoptosis; this may be a mechanism underlying neurodegeneration
(reviewed in Folch et al., 2012; Herrup et al., 2004; Herrup and
Yang, 2007). We conclude that the over-representation of mitotic
gene sets, together with those indicative of altered metabolism,
reflects the neurodegenerative state of dj-1−/− zebrafish brains.

Machine learning can contribute to drug development
To date, most zebrafish models of PD have been transient models in
larvae, generated using neurotoxins such as MPTP, which cause a
rapid loss of the DA neurons (Bretaud et al., 2004; Feng et al.,
2014), or by morpholino knockdown of PD-associated genes
(Bretaud et al., 2007; Flinn et al., 2009; Zhao et al., 2011); in
addition, an adult pink1−/− mutant zebrafish has been described
(Flinn et al., 2013). A few studies have tested potential therapies on
zebrafish models of PD by measuring the distance travelled and
velocity of larvae (Cronin and Grealy, 2017; Sheng et al., 2010). PD

in humans is both age related in nature and characterised by a
movement phenotype of bradykinesia (slowing of movement),
resting tremor and muscle rigidity (Jankovic, 2008). Given the
progressive loss of DA neurons, an adult model of PD is intuitively
more suitable, and evolving classifiers using tail bend data
provides a more comprehensive, unbiased assessment of the
movement phenotype. The novel use of machine learning
described here has the potential to accelerate the drug discovery
pipeline (Lam and Peterson, 2019) by allowing more
comprehensive screening using non-mammalian vertebrate
models of movement disorders.

MATERIALS AND METHODS
gRNA design
A synthetic gRNAwas designed to target Cas9 cleavage in dj-1 upstream of
the codon for residue C106, in order to produce an early stop codon and loss
of C106 from the translated protein. This cysteine is critical for the oxidative
stress response of DJ-1 (Wilson, 2011). The online CRISPR design tool
ChopChop (https://chopchop.cbu.uib.no) was used to identify a target
sequence near the start of the dj-1 coding sequence. A 20 bp target sequence
(5′-GCCGGTTCAGTGCAGCCGTG-3′) in exon 2 of dj-1was selected and
incorporated into the forward primer for gRNA production. A promoter
sequence for increasing transcription efficiency with T7 RNA polymerase
was added to the 5′ end of the forward primer along with an additional G
nucleotide necessary for the T7 polymerase to work (Nakayama et al.,
2014). This resulted in the following forward primer sequence: 5′-GCAG-
CTAATACGACTCACTATAGGCCGGTTCAGTGCAGCCGTGGTTT-
TAGAGCTAGAAATAGCAAG-3′. pink1 was disrupted using the same
approach, with the modification of two gRNAs designed 100 bp apart:
pink1(1) 5′-GCAGCTAATACGACTCACTATAGGGTGAAGCAGAAA-
GTCGAAGGTTTTAGAGCTAGAAATAGCAAG-3′ and pink1(2) 5′-
GCAGCTAATACGACTCACTATAGCGCAGCTG-TTTATGAGGCTG-
GTTTTAGAGCTAGAAATAGCAAG-3′. The reverse primer used for
gRNA synthesis is common to all gRNAs: 5′-AAAAGCACCGACTCG-
GTGCCACTTTTTCAAGTTGATAACGGACTAGCCTTATTTTAACT-
TGCTATTTCTAGCTCTAAAAC-3′ (Nakayama et al., 2014). For
genotyping, the primers to amplify the dj-1 genomic region were as
follows: For, 5′-GGCTCTGGCCATCATTACTAT-3′; Rev, 5′-GTAAA-
GTCAGACCTGTTTGTGTG-3′. Primers to amplify the pink1 genomic
region were as follows: For, 5′-GGCTGTATTTAGAAAGAAGAAGTT-
TCAG-3′; Rev, 5′-GCAGCACAGTACAATTGTCAACTATAAA-3′.

Generating mutant lines
The strain of zebrafish used was London Wild Type (LWT) and both males
and females between 8 wpf and 14 wpf were analysed for movement
phenotypes. Transcriptomic analyses were carried out on the brains of
zebrafish at 16 wpf and the immunohistochemical analysis was carried out
on the brains of zebrafish at 12 mpf. This study was carried out using
procedures authorised by the UK Home Office in accordance with the
Animals Scientific Procedures Act (1986) and approved by the Animal
Welfare and Ethical Review Body at the University of York and the UK
Home Office.

Cas9 protein was co-injected with dj-1-targeting single-guide RNA into
single-cell embryos from the LWT zebrafish strain to produce the F0 fish
that were outcrossed with wild type to generate heterozygous F1 mutants.
Genotyping of the F1s revealed a male and female carrying the same
mutation in dj-1; these heterozygotes were in-crossed to produce the F2
generation. F2 zebrafish homozygous for dj-1 were out-crossed with wild
type to generate a stock of heterozygous fish (F3); these were in-crossed and
the offspring raised together (F4), genotyped, and used for molecular
analysis and generating stocks of homozygous and wild-type fish for
movement analysis. Genotyping the dj-1 locus in zebrafish was carried out
by PCR of the target region followed by BbvI restriction digest assay;
digestion of wild-type dj-1 amplicon results in products of 214 bp and 55 bp
in length. The BbvI restriction site is lost in the mutated dj-1 so the PCR
product remains 286 bp in length. pink1 was disrupted using two gRNAs
designed 100 bp apart, resulting in a 101 bp deletion detectable by gel
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electrophoresis following PCR of the target region. The breeding strategy
was the same as described above.

Western blotting
Zebrafish brains were dissected from adults and flash frozen in liquid
nitrogen before storing at−80°C. Frozen brains were homogenised in 100 μl
lysis buffer consisting of 50 mM Tris-HCl (pH 7.4), 10 mM sodium
glycerophosphate, 10 mM sodium pyrophosphate, 150 mM NaCl, 5 mM
MgCl2, 1 mM EDTA, 1 mM DTT, 1% Triton X-100, 10% glycerol, 1 mM
sodium orthovanadate and cOmplete™Mini EDTA-free Protease Inhibitor
Cocktail (Roche). The lysate was centrifuged at 21,000 g for 10 min prior to
running on a 12% SDS-PAGE gel. After transfer to a PVDF membrane,
immunodetection used the anti-Dj-1 polyclonal antibody (PA5-72638,
Invitrogen) and anti-Gapdh monoclonal antibody (G8795, Sigma-Aldrich),
both at a dilution of 1:50,000. Horseradish peroxidase (HRP)-linked anti-
rabbit IgG (7074, Cell Signaling Technology) and HRP-linked anti-mouse
IgG (62-650, Invitrogen) were used at concentrations of 1:2000 and 1:4000,
respectively.

qRT-PCR
Zebrafish brains were dissected out of adults before homogenising in 1 ml
TRIzol reagent (Sigma-Aldrich) for RNA extraction. Following
centrifugation at 4°C for 10 min at 21,000 g, RNA was purified from the
upper aqueous phase using the RNA Clean & Concentrator Kit (ZYMO)
following the manufacturer’s instructions. Complementary DNA (cDNA)
was synthesised from 1 μg RNA by reverse transcription using Superscript
IV Reverse Transcriptase (Thermo Fisher Scientific) following the
manufacturer’s instructions with random hexamer primers. Primers were
designed to amplify a product of 50-150 bp with one primer in each pair
crossing an exon junction (Table S1). Each quantitative PCR analysis was
carried out with a minimum of three biological replicates and three technical
repeats. The mean cycle threshold (Ct) value was normalised to the Ct of
reference gene ef1ɑ (also known as eef1a1l1), generating a delta-Ct (dCt)
value for genes of interest. Delta-delta-Ct (ddCt) values were then calculated
by subtracting the dCt values of wild-type siblings from mutants and the
relative fold change was equal to 2(−ddCt). Student’s t-tests were carried out
comparing the dCt values of mutants and wild-type siblings for each gene.
GraphPad Prism5 was used to generate graphs showing the relative fold
change with error bars representing s.e.m.

Immunofluorescence
Adult zebrafish were euthanised at 12 mpf, and whole brains were extracted
and fixed overnight at 4°C in a 4% paraformaldehyde/PBS solution. Brains
were washed twice in PBS for 10 min. Brains were then sectioned
transversely in 3% agarose/PBS by vibratome at a thickness of 100 μM.
Based on the protocol by Matsui and Sugie (2017), brains were incubated in
10 mM sodium citrate buffer (pH 8.5) for 2 h at 80°C. Sections werewashed
twice in PBS with 1% Triton X-100 (PBS/1% Tx) for 15 min. Sections were
then blocked in 2% bovine serum albumin (BSA)/PBS/1% Tx for 30 min.
After blocking, sections were incubated overnight at 4°C with a 1:500
dilution of mouse anti-Th (22941, Immunostar) in 2% BSA/PBS/1% Tx.
Sections were then washed four times in PBS/1% Tx for 30 min. Sections
were incubated overnight at 4°C with a 1:500 dilution of goat anti-mouse
IgG1 conjugated to Alexa Fluor 488 (A21121, Invitrogen) in 2% BSA/PBS/
1% Tx. Sections were then washed four times in PBS/1% Tx for 30 min.
Staining for nuclei was carried out by incubating the sections in 1 μg/ml
Hoechst 33342 in PBS/1% Tx for 10 min. Sections were then washed four
times in PBS/1% Tx for 30 min. Sections were mounted on 15 mm cavity
microscope slides before imaging.

RNA-seq
RNAwas extracted and purified as described above from the brains of three
dj-1−/− mutants and three wild-type siblings at 16 wpf. A NanoDrop ND-
1000 Spectrophotometer was used to quantify each RNA sample and the
RNA integrity was measured using an Agilent 2100 Bioanalyzer. The
NEBNext® Poly(A) mRNA Magnetic Isolation Module was used to isolate
mRNAs from the total RNA before preparing cDNA libraries using the

NEBNext® Ultra RNA Library Prep Kit for Illumina® following the
manufacturer’s instructions. Unique adaptor sequences were added to the
fragments in each cDNA library before pooling them together. The pooled
cDNA libraries were then sequenced using 2×150 bp paired end reads on one
lane of an Illumina® HiSeq 3000 system. Cutadapt 1.16 was used to trim the
adaptor sequences from each read. The fastq files generated were then aligned
to the genome assembly GRCz11, the transcriptome was annotated using
RefSeq (NCBI) and transcript abundance was quantified using Salmon
0.10.2. Differential expression analysis was then carried out on the aligned
transcripts using Sleuth 0.30.0. The likelihood ratio test was used to calculate
statistical significance and the Wald test was used to calculate the beta values
of transcripts, analogous to fold change. A volcano plot of −log10(pval)
against log2(fold change) was generated using MATLAB, and a heatmap
representing the changes in expression of a curated set of these transcripts was
created by uploading the transcripts per million (TPM) values to https://
software.broadinstitute.org/morpheus/.

GSEA
AGSEAwas performed using the GSEA 4.0.0 (Broad Institute) software on
the RNA-seq data. All of the genes from the RNA-seq data were used in the
GSEA to identify gene sets enriched in a certain phenotypic class.
Permutations of the phenotype or genotype labels are used to calculate the
statistical significance of a gene set enrichment score (Subramanian et al.,
2005). Following instructions on the Broad Institute website
(software.broadinstitute.org/gsea) an expression dataset file (.gct) was
created containing the TPM values for each transcript, and a phenotype
labels file (.cls) was created to label the phenotype of each sample. The
Zebrafish.chip file was used to translate zebrafish transcript names to Human
Genome Organisation (HUGO) gene symbols. GSEAwas then performed to
detect enriched HALLMARK gene sets from the Molecular Signature
Database (Broad Institute). Gene set permutation was used to assess statistical
significance of the enrichment scores as the number of samples in a phenotype
was less than 7 (software.broadinstitute.org/gsea). Gene sets with a normalised
enrichment score (NES)≥1.5, FDR q-value≤0.05 and nominal P-value≤0.05
were considered statistically significant.

Video capture
An Aquatics Habitat breeding tank was modified to record zebrafish
swimming while keeping the fish in frame and eliminating any reflection
and shadow. To achieve this, a white plastic insert of 145 mm×90 mm was
designed to fit the bottom of the tank, and a hollow square frustum with
openings at the top and bottom was created with a camera fitted above
(Fig. 3A). The insert allowed for background subtraction and the frustum
kept the fish in frame and reduced reflections and shadows. A raised
platform on the lid positions the camera so that the fish remain in frame at all
times. Following an acclimation time of 10 min, zebrafish were recorded for
5 min. Recordings were carried out between the hours of 14:00 and 17:00
using a GoPro Hero 3 (GoPro, San Mateo, CA, USA) at 100 frames/s at a
resolution of 1280×720 pixels.

Extracting data
The computational processing resources required to analyse a full 5-min
recording are prohibitive, and previous work on assessing movement
disorders in humans found that 30-s samples were sufficient (Lones et al.,
2013). Consequently, two 30-s clips were selected for processing from the
first and second halves of the 5-min recording using bespoke ShadowFish
tracking software. Inspired by methods used for larval fish (Budick and
O’Malley, 2000), this software was written to identify a fish using
background subtraction and trace its midline, dividing it into six parts of
equal length (Fig. 3B). For each frame of recording, the absolute x and y
coordinates of the two end points and five vertices along the spine are
extracted, in addition to the angle at each vertex. This produces five bend
angles and seven x,y coordinates from each frame. ShadowFish
automatically determines the lateral orientation of fish by the direction
of movement and therefore the normalised bending angle can be
determined accordingly. Each processed video clip was visually
assessed before being used to calculate the features of movement or
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evolve a classifier. Any clip in which the fish was out of the field of view,
or the ShadowFish tracking software misidentified a reflection or shadow
of the zebrafish for the fish itself, was removed. The extracted movement
data are written to a CSV file.

Calculating features of movement
MATLAB (MathWorks, Natick, MA, USA) was used to calculate features
of movement, inspired by previous studies (Table S4), from the extracted
raw movement data. The distance travelled by a zebrafish in a recording was
determined by taking the absolute coordinates of the fish every 100 frames
and using the Pythagoras theorem to work out the distance covered in
between. It was necessary to establish when a fish was stationary so data
points at those times were not included in certain calculations of features.
When a fish travelled less than 5 mm over a 1-s period it was classed as
stationary for that second. The time spent moving was the number of
seconds in a clip that the fish travelled over 5 mm out of the total 30 s,
displayed as a percentage. The mean velocity was calculated by dividing the
distance travelled by the number of seconds spent moving. Swimming
episode duration was how long a fish was classed as moving before a
stationary period. To study the tail beat frequency of a zebrafish in a
recording, the sum of the five angles along the spine was plotted over time.
A five-frame moving average was also used to help reduce any noise in the
angles from the raw data. The points of maximum tail bend were identified
as the peaks on the plot. Only peaks with a minimum prominence of five
degrees and a minimum separation of five frames were identified, to leave
out spikes in the data that were unlikely to be full tail bends. Tail bend
amplitudes were the angles identified at the peaks of the plot. Tail beat
frequencies and tail bend amplitudes were also calculated at different
speeds, in case a difference in movement phenotype was more apparent at a
certain speed. Low-speed movement was defined as 0.5≤X<2 cm/s.
Medium-speed movement was defined as 2≤X<4 cm/s and high-speed
movement was ≥4 cm/s.

Methodology and statistics of movement data analyses
Multiple features of movement were extracted from the mutant and wild-
type fish and all parameters that were measured have been reported. In order
to raise and film the numbers of fish required for movement analyses, two or
more in-crossings of F4 homozygous mutants or homozygous wild-type
siblings were carried out. Statistical analysis of the comparison of movement
in wild-type and mutant fish produced the P-values quoted, derived from
either a Student’s t-test, if the data were found to be normally distributed, or
aMann–WhitneyU-test, if the datawere non-parametric. Statistical analyses
were carried out using GraphPad Prism5 to assess differences in the features
of movement for mutant zebrafish and age-matched controls. Any features
extracted that contained no numerical value were removed prior to analysis.
For example, if a fish only travelled at low and medium speed in a clip then
the high-speed tail beat frequency extracted would contain no numerical
value and would therefore be left out of future analyses. The features
containing numerical values were then examined using the Shapiro-Wilk
test to see whether they followed a normal distribution. If the data followed a
normal distribution, the interquartile range (IQR) was used to identify
suspected outliers. Any values at least 1.5×IQR below the lower quartile or
greater than the upper quartile were identified as outliers and removed prior
to statistical analysis. This criterion for excluding outliers was established to
remove fish that failed to swim in a clip; without swimming a fish
contributes no real movement data to the analysis. Features were compared
between classes using a Student’s t-test if the data were normally distributed
or a Mann–WhitneyU-test if the data were non-parametric. The investigator
was not blinded to the genotype of zebrafish during video capture; however,
when evolving classifiers, the extracted features, or PC values, fish were
randomly organised into the three datasets – training, validation and test –
and so the investigator was blinded to the genotype of fish when evolving a
classifier.

Training classification models
PCAwas used to transform the multivariate time series of bend angles into a
univariate time series suitable for classification. A type of EA called implicit
context representation CGP has been effective at classifying PD movement

in humans (Lones et al., 2017) by finding mathematical expressions that
describe patterns of movement indicative of dyskinesia. This approach was
used to train classifiers to discriminate the features of movement from PC2
time series data of dj-1−/− fish from those of wild-type controls. Sliding
window classifiers trained using the PC2 time series data generate symbolic
mathematical expressions that describe discriminatory local patterns of
movement within the data. The classifiers were trained using a stochastic
optimisation algorithm and this was repeated multiple times (20) to generate
multiple models. The features of movement and PC2 time series data from
each recording were organised into three datasets: training, validation and
test. To train classifiers with the features of movement, 60% of the
recordings went into the training set, used to evaluate the effectiveness of
classifiers during training. The remaining 40% of recordings were split
equally between the validation and test sets. This split of the dataset proved
the most effective to classify extracted features of movement. With a lower
number of overall recordings used to train the CGP classifier, it made more
sense to have a higher number in the training dataset. Aiming for a high
number of clips to train the classifier allows it to recognise a common
movement pattern. Whereas classifiers trained with the PC2 time series data
had 50% of the recordings in the training set, 25% in the validation set and
25% in the test set, the sliding window classifier was evolved with a higher
number of clips so more of the clips could go in the validation and test sets.
This split of data was found best for evolving the most effective sliding
window classifier. The validation set was used both for early stopping (i.e. to
stop training when a model began to over-fit the data) and to select the most
general classifier from the multiple models generated during training. The
test set was used to get an unbiased measure of the selected model’s
discriminatory power. The tracking data were visually assessed to make sure
they were of a high quality and the number of clips used in each class are
shown in Tables S5 and S6. The sliding window classifiers were evolved
using the AUC as a measure of fitness that is not sensitive to class
imbalances.
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SUPPLEMENTARY DATA 

Table S1  
Primer sequences for qRT-PCR analysis (5’ – 3’).  
Primer pairs that were designed based on previous publications: dat, th (Chen 
et al., 2012), pitx3 (Sanchez-Simon et al., 2010) and ef1a (Fan et al., 2010).  
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Table S2a  
Genes significantly up-regulated in dj-1-/- zebrafish brains 
Genes that were up-regulated in the brains of dj-1-/- mutants (n = 3) when compared to their wild-type 
siblings (n = 3) at 16 wpf. Differentially expressed transcripts from the RNA-Seq analysis with a Q-value of 
<0.05 were considered significant. tpm = transcripts per million. 

Table S2b  
Genes significantly down-regulated in dj1-/- zebrafish brains 
 Genes that were down-regulated in the brains of dj-1-/- mutants (n = 3) when compared to their wild-type 
siblings (n = 3) at 16 wpf. Differentially expressed transcripts from the RNA-Seq analysis with a Q-value of 
<0.05 were considered significant. tpm = transcripts per million. 
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Table S3  
Gene set enrichment analysis (GSEA) 

Hallmark gene sets enriched in the dj-1-/- zebrafish brain. A list of Hallmark gene sets found significantly 
enriched in the dj-1-/- zebrafish brain. The thresholds for significance were NES >1.5, p-value<0.05 and FDR-
adjusted q-value<0.05. NES = normalized enrichment score. 
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Table S4  
Selection and calculations of extracted features of movement  
The features of movement being extracted and the previous research, investigating movement phenotypes 
in zebrafish, that inspired them. The principles used in this work are described in addition to the principles 
used in previous works.  
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Table S5   
Numbers used to evolve classifiers with features of movement 
The number of mutant and age matched control clips used to evolve classifiers with features of movement 
for each mutant line. An equal number of clips needed to be present in each class as accuracy was used as 
the measure of fitness. Each clip also had to have a value present for the features calculated (e.g. 
low/medium/high speed features). 

Table S6   
Numbers used to evolve sliding window classifiers 
The number of mutant and age matched control clips used to evolve sliding window classifiers for each 
mutant line. The sliding window classifiers used the area under the curve as a measure of fitness which is 
insensitive to class imbalances. This allowed each class to a have a different number of clips. 
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Fig. S1 
Analysis of extracted features of movement in dj-1 -/- zebrafish at 8 wpf 
The features of movement compared between dj-1-/- and wild-type (WT) at 8 wpf including (A) distance 
travelled, (B) velocity, (C) percentage of time spent moving, (D) mean duration of a swimming episode, (E) 
tail beat frequency at low, medium and high swimming speeds, (F) tail bend amplitude at low, medium and 
high swimming speeds. * = P < 0.05, ** = P < 0.01, *** = P<0.001, ns = not significant. 
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Fig. S2 
Principle component analysis 
The 5 principal components (PCs), generated from linear combinations of the 5 angles along the zebrafish 
spine, plot against time. The first PC (PC1) explains the most variation in the data, followed by PC2 and with 
each subsequent PC explaining less of the variation. Together all of the PCs explain 100% of the variation 
within the tail bend angle data. PC1 captured only broad movements whilst PC2 retained some high 
frequency movements.  
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Fig. S3 
Scores of the dmdta222a/+ sliding window classifiers 
Training and test scores (AUCs) from the 20 sliding window classifiers evolved using the PC2 time series 
data from the 20 folds of data set.  
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