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A mouse SWATH-mass spectrometry reference spectral library
enables deconvolution of species-specific proteomic alterations
in human tumour xenografts
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ABSTRACT
SWATH-mass spectrometry (MS) enables accurate and reproducible
proteomic profiling in multiple model organisms including the mouse.
Here, we present a comprehensive mouse reference spectral library
(MouseRefSWATH) that permits quantification of up to 10,597
proteins (62.2% of the mouse proteome) by SWATH-MS. We
exploit MouseRefSWATH to develop an analytical pipeline for
species-specific deconvolution of proteomic alterations in human
tumour xenografts (XenoSWATH). This method overcomes the
challenge of high sequence similarity between mouse and human
proteins, facilitating the study of host microenvironment-tumour
interactions from ‘bulk tumour’ measurements. We apply the
XenoSWATH pipeline to characterize an intraductal xenograft
model of breast ductal carcinoma in situ and uncover complex
regulation consistent with stromal reprogramming, where the
modulation of cell migration pathways is not restricted to tumour
cells but also operates in the mouse stroma upon progression to
invasive disease. MouseRefSWATH and XenoSWATH open new
opportunities for in-depth and reproducible proteomic assessment to
address wide-ranging biological questions involving this important
model organism.

KEY WORDS: Mass spectrometry, SWATH-MS, Proteomics, Mouse,
Xenografts, DCIS, Breast cancer

INTRODUCTION
Mass spectrometry (MS) has become an essential tool for
contemporary proteomic research in life sciences. Conventional
data-dependent acquisition (DDA) mode, where a fixed number of
the most abundant precursor ions in survey scans is automatically

selected for fragmentation, enables the identification of thousands
of proteins in a single MS experiment. However, the stochastic
nature of peptide precursor ion selection in DDA leads to low
reproducibility in peptide identification between experimental runs
ranging from 35% to 60% (Tabb et al., 2010; Krasny et al., 2018;
Bruderer et al., 2015; Barkovits et al., 2020). Sequential window
acquisition of all theoretical mass spectra (SWATH-MS) or data-
independent acquisition mass spectrometry (DIA-MS) is a next-
generation label-free quantification method that enables highly
reproducible peptide identification (ranging from 80% to 98%) and
more accurate quantification in large-scale proteomic analyses
across multiple experiments (Gillet et al., 2012; Muntel et al., 2019;
Collins et al., 2017; Bruderer et al., 2015; Barkovits et al., 2020). In
contrast to DDA, the SWATH methodology captures all peptide
precursor ions in a sample under investigation and fragments these
ions in a series of wide and adjacent isolation windows that cover the
entire mass to charge ratio (m/z) rangemeasured (Gillet et al., 2012).
This approach leads to the generation of a final digital proteome map
comprising fragmentation spectra of all detected peptides in each
sample for subsequent in silico analysis (Guo et al., 2015). The
ability to capture all peptide precursor ions dramatically improves
reproducibility in protein identification across multiple samples.
These quantitative digital proteome maps have been shown to have
wide applications in medical research, such as the discovery of
potential biomarkers and therapeutic targets (Cecchettini et al.,
2019; Gao et al., 2017; Miyauchi et al., 2018; Hou et al., 2016; Xu
et al., 2018), as well as tumour proteotyping for cancer stratification
and classification (Bouchal et al., 2019; Zhu et al., 2019).

Key to the success of SWATH-MS is the use of retention time-
calibrated spectral libraries to identify and quantify peptides from the
complex fragment ion mass spectra encoded within digital proteome
maps (Bruderer et al., 2016). Although most published SWATH-MS
studies have utilized study-specific experimentally derived spectral
libraries, this approach is time consuming, and is prone to wide
variation between laboratories due to the lack of standardization in
DDA data acquisition and library generation. Such variation results
in study-specific bias and poor inter-laboratory reproducibility. The
recent development of the algorithms that control for false discovery
rate (FDR) in SWATH-MS datasets has opened up the possibility of
building large reference spectral libraries that can be readily shared
by the community, increasing data reproducibility across laboratories
and accelerating SWATH-MS experiments without the need to
generate study-specific spectral libraries (Reiter et al., 2009;
Rosenberger et al., 2014).

Several such large reference spectral libraries have been built and
deposited into repositories such as SWATHAtlas (www.SWATHatlas.
org), including libraries for human (Rosenberger et al., 2014), fruit fly
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(Fabre et al., 2017), zebrafish (Blattmann et al., 2019) and yeast (Picotti
et al., 2013). There is, however, currently no publicly available
comprehensive mouse reference spectral library. The mouse as a model
organism has and continues to be used extensively in developmental
biology and medical research due to the complex genetics and
physiological systems that mammals share. The array of innovative
genetic strategies available for engineering mice has revolutionized our
understanding of multiple human diseases, including cancer, diabetes,
autoimmune disease and heart disease, amongst others. Furthermore,
immunocompromised mouse models have been used for more than a
decade as hosts for human tumour (both cell line and patient-derived)
xenografts, which have served as an essential tool to investigate the
factors that drive carcinogenesis as well as to evaluate cancer
therapeutics (Richmond and Su, 2008). Developing a comprehensive
mouse reference spectral library will facilitate the application of
SWATH-MS to address key research questions involving this widely
used model organism. A number of study-specific mouse spectral
libraries have previously been reported (Caron et al., 2015; Williams
et al., 2018; von Ziegler et al., 2018; Malmstrom et al., 2016); for
instance, a spectral library that is comprised of the mouse
immunopeptidome, containing 1573 peptides presented by MHC
class I molecules (Caron et al., 2015), and a spectral library reported by
Williams et al. (2018), which contains 5152 proteins (30% of mouse
proteome) generated from five organs. Notably, in the aforementioned
human tumour xenograft models, a small number of DDA-MS studies
have described the deconvolution of host (mouse) versus tumour
(human) proteomic alterations from ‘bulk tumour’ proteomes (Rajcevic
et al., 2009; Wang et al., 2017; Wildburger et al., 2015), but these
studies lack the reproducibility afforded by SWATH-MS, which has
limited our ability to robustly study the role of the tumour
microenvironment in driving tumour initiation and progression.
In this study, we present a comprehensive mouse reference

spectral library (MouseRefSWATH) generated from 15 distinct
mouse organs and cellular samples. MouseRefSWATH was built
from 254 individual MS experiments and is composed of transitions
for 167,138 proteotypic peptides from 10,597 proteins representing
62.2% of manually validated mouse protein-encoding genes
(SwissProt database). The performance of MouseRefSWATH was
evaluated in two publicly available SWATH-MS datasets, which

showed both qualitative and quantitative reproducibility when
compared to published study-specific spectral libraries. We further
report the development of a novel application of MouseRefSWATH
for SWATH-MS-based mapping of species-specific temporal
proteomic alterations in an orthotopic tumour xenograft model of
breast ductal carcinoma in situ (DCIS). Utilizing this approach, we
reveal, for the first time, simultaneous temporal regulation of cell
migration pathways in both the host mouse mammary gland and
human tumour cells during the course of DCIS to invasive breast
cancer (IBC) progression. This XenoSWATH pipeline for species-
specific deconvolution of ‘bulk tumour’ proteomics data provides a
useful tool with broad applications for the analysis of host
microenvironment-tumour interactions in xenograft models without
the need for prior separation of host and tumour cell populations. The
MS raw data andMouseRefSWATH spectral library for this study are
available via ProteomeXchange with identifier PXD017209 and via
SWATHatlas.org and PeptideAtlas.org with identifier PASS01569.

RESULTS
Proteomic analysis of murine tissue and cells
To maximize coverage of the mouse proteome in the reference
spectral library, we performed DDA proteomic analysis of a
comprehensive range of seven murine organs: heart, brain, lung,
liver, kidney, lymph node and mammary gland (Fig. 1 and Table 1).
In addition, we undertook proteomic profiling from primary CD8+

T-lymphocytes (non-stimulated and activated) as well as
immortalized murine cell lines including normal (NF1) and
cancer-associated (CAF1) fibroblasts (Calvo et al., 2013) and
commercially available cell lines NIH-3T3, C2C12, 4T1 and Ba/F3
of diverse tissue origin (Table 1). As outlined in the workflow
shown in Fig. 1, extracted proteins from each sample type were
digested by trypsin and the resulting peptide mixture was subjected
to offline fractionation in the first dimension either by strong cation
exchange (SCX) chromatographyor reverse-phase chromatography in
high pH (HpH-RP) (Table 2). To calibrate the chromatographic
retention time for individual DDA runs, prior to liquid
chromatography–tandem mass spectrometry (LC-MS/MS) analysis,
each fraction was spiked with the indexed retention time (iRT)
calibration standard that contains a mixture of 11 synthetic peptides

Fig. 1. Overview of the sample types and schematic
workflow used to build the MouseRefSWATH
reference spectral library. Fifteen unique sample
types comprising seven mouse organs, two primary
cell types and six mouse cell lines were analysed to
maximize proteome coverage. The workflow consists
of a first step of sample preparation and data acquisition
of each sample by data-dependent acquisition
(DDA)-based liquid chromatography–tandem mass
spectrometry (LC-MS/MS). In the second step, the
resulting proteomic data were subjected to processing
and spectral library generation using the combined
Search Archives approach in the SpectroMine software.
The subsequent evaluation of the performance of the
MouseRefSWATH library was undertaken with the
Spectronaut software utilizing two publicly available
datasets. CAF, cancer-associated fibroblast; HpH, high
pH; SCX, strong cation exchange.
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(Escher et al., 2012; Bruderer et al., 2016). Peptides from each fraction
were subsequently analysed by LC-MS/MS in DDA mode and the
acquired data were processed by SpectroMine (Keller et al., 2005;
Deutsch et al., 2010). An average of 3200-6600 proteins were
identified across the different samples as shown in Table 2.

Building the MouseRefSWATH spectral library
We built the mouse reference spectral library (MouseRefSWATH)
from the datasets listed in Table 2 by employing the SpectroMine
software (Fig. 1). Only unique protein-specific (proteotypic)
peptides were used to generate the library, which contains 10,597
proteins (Fig. 2A), representing 62.2% coverage of manually
annotated mouse protein-coding genes (SwissProt, 26/10/2018).
Comparative analysis demonstrates a superior proteome coverage
versus published spectral libraries of other higher eukaryotic organisms
[human – 51% (Rosenberger et al., 2014) and zebrafish – 40.4%
(Blattmann et al., 2019)] (Fig. 2B). Fig. 2C shows the distribution of
unique peptides per protein group with 90.6% of proteins represented
by >1 unique peptide in the spectral library and 46.7% of proteins being
represented by >10 unique peptides. The contribution plot (Fig. 2D)
shows that 1949 proteins (18.4%) in the MouseRefSWATH library

were detected in all analysed sample types used in the generation of
the library. The brain contributed the highest number of proteins
(551, 5.2%) to the MouseRefSWATH library, followed by T cells
(165, 1.6%) and lung (127, 1.2%).

Evaluating the performanceof theMouseRefSWATHspectral
library
To demonstrate the utility of the MouseRefSWATH library and
benchmark its performance against study-specific libraries
generated as part of published SWATH-MS studies, we applied
the reference spectral library to two publicly available SWATH-MS
datasets focused on mitochondrial (Williams et al., 2018) and
hippocampal (von Ziegler et al., 2018) proteins (Fig. 1). These
datasets were generated by quadrupole time-of-flight instruments
and consist of MS runs that have included the iRT calibration
standard. It should be noted that the use of the MouseRefSWATH
spectral library for retrospective and prospective analysis requires
spiking of the iRT calibration standard so that the appropriate
retention time calibration can be performed. Each dataset was
analysed using either the original study-specific library generated
by the authors or the MouseRefSWATH library.

Table 1. Overview of the samples used for mouse reference spectra library generation

Sample
Sample
type Mouse/cell strain Detailed sample description

Liver Tissue SCID-beige mice Dissected from 14- to 18-week-old female mouse
Lung Tissue SCID-beige mice Dissected from 14- to 18-week-old female mouse
Mammary gland Tissue SCID-beige mice Dissected from 14- to 18-week-old female mouse
Brain Tissue NCR nude mice Dissected from 6-month-old female mouse
Kidney Tissue NCR nude mice Dissected from 6-month-old female mouse
Heart Tissue NCR nude mice Dissected from 6-month-old female mouse
Axillary lymph nodes Tissue C57BL/6N mice Dissected from 2- to 4-month-old mouse, male or female
Bronchial lymph nodes Tissue C57BL/6N mice Dissected from 2- to 4-month-old mouse, male or female
NIH/3T3 Cell line ATCC CCL 92 Mouse embryonic fibroblast
4T1 Cell line ATCC CRL 2539 Mouse epithelial cell, mammary gland tumour origin
Ba/F3 Cell line ATCC 300 Mouse IL-3 dependent pro-B cell line
C2C12 Cell line ATCC CRL 1772 Mouse C3H muscle myoblast
Cancer-associated
fibroblast

Cell line CAF1 Immortalized fibroblast isolated from mammary carcinoma tissue of FVB/n mouse

Normal fibroblast Cell line NF1 Immortalized fibroblast isolated from normal mammary glands of FVB/n mouse
Normal T cells Primary

cells
OT-I Primary CD8+ effector T cells isolated from splenocytes of OT-I mouse

Activated T cells Primary
cells

OT-I Primary CD8+ effector T cells isolated from splenocytes of OT-I mouse and stimulated by
ovalbumin peptides

Table 2. Overview of the DDA datasets used for the generation of the MouseRefSWATH reference spectral library

Sample Sample type Fractionation Number of runs Total number of protein IDs

Liver Tissue SCX 12 4471
Lung Tissue SCX 24 6295
Brain Tissue SCX 24 6366
Kidney Tissue SCX 12 5093
Heart Tissue SCX 24 3284
Axillary lymph node Tissue SCX 12 5643
Bronchial lymph node Tissue SCX 12 6358
Mammary gland Tissue SCX 24 5433
NIH/3T3 Cell line SCX, HpH-RP 24 5799
4T1 Cell line SCX, HpH-RP 20 6293
Ba/F3 Cell line HpH-RP 8 5353
C2C12 Cell line SCX, HpH-RP 20 6681
CAF1 Cell line SCX 12 5390
NF1 Cell line SCX 12 3702
Normal T cells Primary cells SCX 12 6060
Activated T cells Primary cells SCX 12 6018

DDA, data-dependent acquisition; HpH-RP, reverse-phase chromatography in high pH; SCX, strong cation exchange.
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In a recent mitoproteome study undertaken byWilliams et al. (2018),
a study-specific library based on DDA analysis of both total tissue
lysates and mitochondria-enriched samples was utilized. We sought to
assess the extent to which the MouseRefSWATH library was able to
both qualitatively and quantitatively recapitulate the data generated by
the study-specific library in the published study. The SWATH-MS data
of mitochondrial proteins was downloaded from ProteomeXchange
(PXD005044) and analysed using both libraries (Fig. 2E,F). The
Williams et al. (2018) experimental dataset was generated from
mitochondria enriched from five distinct murine tissues [brown
adipose tissue (BAT), heart, liver, quadriceps, brain] from five to
eight animals. Qualitatively, the MouseRefSWATH library identified
91.1% (640 proteins) of the mitoproteome (Fig. 2E) found using the
study-specific library, with an additional 26 proteins identified
specifically by the MouseRefSWATH library. An assessment of the
quantification of the 640 overlapping proteins showed a good
correlation between both libraries with Pearson’s correlation
coefficient r values ranging between 0.92 and 0.95 (Fig. 2F).
We undertook a similar comparative analysis on the study by von

Ziegler et al. (2018), where the basal mouse hippocampal proteome
was analysed utilizing a study-specific spectral library built from
DDA data generated from the mouse hippocampus. For this
analysis, the SWATH-MS experimental data of hippocampal area
CA1 and CA3 from six different animals were analysed (Fig. 2G,H).
The MouseRefSWATH library identified 80.2% (943 proteins) of
hippocampus proteome found using the study-specific spectral
library (Fig. 2G). The MouseRefSWATH library further identified
211 more proteins compared to the hippocampus-specific spectral
library. Good correlation in protein quantification between the
MouseRefSWATH and study-specific library for the overlapping
943 proteins was observed, with Pearson’s correlation coefficient r
values ranging between 0.78 and 0.81 across the six mice in the
experiment (Fig. 2H). Taken together, our analysis demonstrates
that applying the MouseRefSWATH to SWATH-MS datasets is
routinely able to identify >80% of proteins identified using study-
specific libraries with comparable quantification, highlighting its
broad utility as a general reference library applicable for use in
multiple mouse SWATH-MS datasets without the need to generate
study-specific libraries.

Developing the XenoSWATH analysis pipeline for
deconvolution of mouse and human proteins in tumour
xenograft SWATH-MS data
Mouse xenograft studies are one of the cornerstones of modern
cancer research, where human tumour cells are typically grafted into
a mouse host either subcutaneously or orthotopically as a means to
evaluate oncogene and tumour suppressor gene function or
investigate the therapeutic effects of drugs (Rosenbluh et al.,
2012; Rosato et al., 2018). In these models, there are complex
interactions between the human tumour cells and the host
microenvironment, which play important roles in driving cancer
progression and therapy response (Jansen et al., 2005; Hu et al.,
2008; Lyons et al., 2011). To study these interactions, previous
proteomic studies have attempted to tackle this challenge by
separating human tumour and murine host cells utilizing
immunoaffinity cell-enrichment strategies prior to MS analysis
(Kalita-de Croft et al., 2019). However, such methods are labour
intensive, introduce sample preparation biases and disrupt the in
situ architecture and cellular interactions important for driving
tumour biology. There have also been a small number of DDA-MS
studies that have used either label-free methods or isobaric
labelling to identify species-specific signalling in xenograft

models of glioma and breast cancer (Wildburger et al., 2015;
Rajcevic et al., 2009; Wang et al., 2017); however, these methods
suffer from low reproducibility in peptide identification between
individual experimental runs (Bruderer et al., 2015; Barkovits
et al., 2020).

To address these challenges, we developed a novel pipeline
(XenoSWATH) to deconvolute species-specific proteomic profiles
from SWATH-MS data obtained in mouse xenograft experiments. In
this XenoSWATH workflow (Fig. 3), both the MouseRefSWATH
library as well as a previously published pan-Human reference library
(Rosenberger et al., 2014) were used in the Spectronaut software
(Reiter et al., 2009). In the first step of data processing, peptides were
identified by searching the acquired SWATH-MS data against either
the MouseRefSWATH or pan-Human library. Both libraries contain
proteotypic peptides, which can distinguish individual proteins;
however, given that humans and mice share ∼70% of protein-coding
sequences (Waterston et al., 2002), not all of these proteotypic
peptides are also species discriminating. Therefore, to selectively
quantify human and mouse proteins from ‘bulk tumour xenograft’
proteomic datasets, we focused on peptides that are both protein and
species discriminating (see Fig. 3 for example). To achieve this, rather
than using individual FASTA files comprising in silico digested
peptides for either human or mouse proteins, we instead manually
combined both files into a single FASTA file for peptide
quantification. This modification to the data processing pipeline
enables Spectronaut to compare sequences of the identified peptides
from either the mouse or human reference spectral library with the
sequences of the in silico digested peptides within the combined
FASTA file, and filter out any peptides that are shared between
human andmouse. This leads to the retention of only peptides that are
both proteotypic and species discriminating for peptide
quantification. The resultant output from this XenoSWATH
pipeline is two datasets – one consisting entirely of murine proteins
and the other of human proteins.

SWATH-MS analysis and deconvolution of tumour (human)
and host mammary gland (mouse) proteomic alterations in a
xenograft model of DCIS progression
We applied the XenoSWATH deconvolution pipeline to quantify
the species-specific proteomic alterations associated with DCIS
progression to IBC in an orthotopic mouse intraductal breast DCIS
(MIND) xenograft model. The MIND model is based on the
injection of human breast DCIS cells such as the MCF10DCIS.com
cell line into the mouse mammary duct (Fig. 4A) (Behbod et al.,
2009; Sflomos et al., 2016; Miller et al., 2000). Compared to the
other breast cancer xenograft models, such as subcutaneous and
mammary fat pad injection, the MIND model has been shown to
better recapitulate the mammary gland microenvironment (Sflomos
et al., 2016), a key regulator of breast cancer progression (Hu et al.,
2008; Nelson et al., 2018), and is therefore a more clinically relevant
model for this disease. In our experiments, MCF10DCIS.com-Luc
cells were injected intraductally into the mammary glands of mice,
where they form tumours that faithfully model the process of DCIS
progression over the course of 10 weeks (Fig. 4B-D) (Behbod et al.,
2009). Tumours at 4 weeks post-injection (referenced as 4w,
number of biological replicates n=7) mimic non-invasive DCIS
lesions, while after 6 weeks of growth (6w, n=7), tumours start
microinvading into the surrounding tissue and finally progress to
full IBC at 10 weeks (10w, n=8) post-injection (Fig. 4D). There is a
significant increase in size of the 10w lesions compared to the 4w
(P=0.0012) and 6w (P=0.0059) lesions but no significant difference
in tumour size between 4w and 6w lesions (P=0.317) (Fig. 4B,C);

4

RESOURCE ARTICLE Disease Models & Mechanisms (2020) 13, dmm044586. doi:10.1242/dmm.044586

D
is
ea

se
M
o
d
el
s
&
M
ec
h
an

is
m
s

http://proteomecentral.proteomexchange.org/cgi/GetDataset?ID=PXD005044


most lesions at 6w remain within the duct and only a few cells are
microinvading out of the ducts.
Whole mammary glands with tumour (n=4) were collected after

4w, 6w and 10w post-injection and subjected to SWATH-MS

analysis (Fig. 4A). When processed through the XenoSWATH
pipeline (Fig. 3), we successfully quantified 2086 murine and 1177
human proteins in all samples across the three time-points
(Tables S1 and S2). Our analysis showed no significant

Fig. 2. See next page for legend.
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differences in protein expression levels in both human and murine
datasets between the 4w and 6w specimens, indicating that the non-
invasive DCIS lesions (4w) and tumours with microinvasion (6w)
harbour similar proteomic profiles at this level of resolution.

Comparing the 4w and 6w data with the 10w lesions led to the
identification of 327 murine and 247 human proteins that showed
significant changes in protein expression (Tables S3 and S4).

Gene set enrichment analysis (GSEA) was performed to identify
functional ontologies that were enriched in the murine and human
proteomic datasets upon DCIS progression to IBC (Fig. 4E;
Table S5). This analysis showed a number of ontology networks that
were almost exclusively enriched in either the human tumour cells
(cell death and apoptosis, protein localization to membrane and
epithelial cell development) or the mouse stroma (cell adhesion,
actin filament organization and innate immune response) (Fig. 4F).
Notably, we identified 16 overlapping ontologies that were
upregulated in both species, the majority of which were
associated with increased cell migration (Fig. 4E,F). An
assessment of the upregulated proteins (Log2 fold change >0.58)
in a subset of these overlapping ontologies revealed a complex
regulation of protein networks in both the human and mouse
compartments. For instance, within the networks regulating cell
motility and locomotion (Fig. 4F), specific proteins were
upregulated in the tumour cells only [e.g. macrophage inhibitory
factor (MIF) and peptidylprolyl isomerase A (PP1A)], host cells
only [e.g. S100a8 and S100a9] or in both compartments [e.g.
galectin-3 (LGALS3), fibronectin (FN1), ezrin (EZR), CD44
antigen (CD44)]. Employing the deconvolution pipeline, our
analyses demonstrate, for the first time, that the temporal
upregulation of cell migration pathways consistent with DCIS to
IBC progression is not restricted only to the tumour cells but is
found to also operate in the host tumour microenvironment. This

Fig. 2. Characteristics and performance of the MouseRefSWATH
reference spectral library. (A) Detailed characteristics of the generated
MouseRefSWATH library. (B) Percentage proteome coverage of
MouseRefSWATH library in comparison with published spectral libraries for
other eukaryotic organisms, including human (Rosenberger et al., 2014),
zebrafish (Blattman et al., 2019) and yeast (Picotti et al., 2013). (C) Peptide
coverage of the individual proteins in the MouseRefSWATH library. 90.6% of
the proteins are represented bymore than one unique peptide. (D) Contribution
plot of the tissue- or cell-specific proteins to the overall composition of the
MouseRefSWATH library. The bar chart at the top depicts the total number
of proteins identified in the overlap of datasets contributed by different organs/
cell types as indicated in the dot plot below. The bar chart on the left indicates
the total number of proteins identified in the individual datasets from each
organ or cell type. (E) Venn diagram depicting overlap of mitochondrial
proteins detected by the MouseRefSWATH library and study-specific library
based on analysis of the PXD005044 dataset (Williams et al., 2018).
(F) Similarity matrix showing Pearson’s correlation coefficient of the 640
overlapping mitochondrial proteins, which were quantified by either the
MouseRefSWATH library or the study-specific library. Five to eight animals
were used for each tissue site. BAT, brown adipocyte tissue; quad, quadriceps.
(G) Venn diagram depicting overlap of hippocampal proteins detected by the
MouseRefSWATH library and study-specific library based on analysis of the
PXD006382 dataset (von Ziegler et al., 2018). (H) Similarity matrix showing
Pearson’s correlation coefficient of the 943 overlapping hippocampal proteins,
which were quantified by either theMouseRefSWATH library or the study-specific
library. Two hippocampal areas (CA1 and CA3) from six animals (a-f) were used.

Fig. 3. XenoSWATH workflow of the species-specific
deconvolution analysis pipeline. The ‘bulk tumour
xenograft’ acquired SWATH-MS data are first subjected
to two separate searches by either the
MouseRefSWATH or the pan-Human library in the
Spectronaut software to identify protein-specific
(proteotypic) peptides. A combined FASTA file of human
and mouse in silico digested peptides is then generated
to enable subsequent peptide quantification of species-
discriminating proteotypic peptides. For peptide
quantification, Spectronaut will compare the sequences
of the identified peptides from either the
MouseRefSWATH or pan-Human library searches with
the peptides sequences in the combined FASTA file.
Because protein-specific (proteotypic) peptides that are
not species discriminating (blue) occurmore than once in
the combined FASTA file, Spectronaut filters these
peptides out. Only peptides that are both protein specific
and species discriminating (purple, mouse; green,
human) in the combined FASTA file are retained and
subjected to quantification. The output of this pipeline is
two quantified datasets, one specific for mouse proteins
and the other for human proteins.
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Fig. 4. See next page for legend.
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proof-of-principle experiment demonstrates the utility of our
XenoSWATH deconvolution pipeline for the comprehensive
mapping of temporal alterations in the tumour versus host
proteome in tumour xenograft models and its ability to capture
relevant tumour biology for subsequent investigation.

DISCUSSION
In this study, we have built the first comprehensive mouse reference
spectral library (MouseRefSWATH) for SWATH-MS applications.
TheMouseRefSWATH library is generated from proteomic datasets
acquired across a wide range of murine tissue samples, primary cells
and cell lines, which facilitates versatile use in proteomic profiling of
various sample types. We demonstrate its utility in two publicly
available SWATH-MS datasets, where the use of MouseRefSWATH
identified and accurately quantified >80% of the proteins compared
to study-specific libraries, with a Pearson’s correlation coefficient for
protein quantification of at least 0.78. In both datasets, the
MouseRefSWATH library further identified new proteins, which
would have otherwise not been possible with study-specific libraries.
Moving forward, researchers who seek to undertake a murine
SWATH-MS experiment need only to download and use the publicly
available MouseRefSWATH library, thereby dispensing with the
requirement to generate study-specific libraries, ultimately saving
time and costs.
We have also extended the use of theMouseRefSWATH library and

developed a novel analysis pipeline called XenoSWATH that enables
deconvolution of murine and human proteins from ‘bulk tumour’
xenograft proteomic measurements through the identification of
species-discriminating proteotypic peptides. The lack of tools to
perform a deep analysis of tumour (human) and host (mouse)
molecular alterations in situ has limited our ability to study the role of
the tumour microenvironment in driving tumour progression. In silico
approaches have been developed to deconvolute mouse and human
reads in next-generation DNA and RNA sequencing data derived from
tumour xenografts, but such tools are limited in proteomic data analysis

(Kluin et al., 2018). Prior studies using DDA-MS in human glioma
and breast cancer xenografts have identified species-specific proteins in
the range of 1000-2000 mouse or human proteins (Rajcevic et al.,
2009; Wang et al., 2017; Wildburger et al., 2015). However, owing to
the stochastic nature of thisMSmethod, there is poor reproducibility
in protein identification across independent experiments (∼50%) in
some of these previous studies (Wang et al., 2017). The only
published application of SWATH-MS in a xenograft model thus far
has focused on measuring the murine stromal component by pre-
enrichment of mouse cells with immunoaffinity chromatography
while completely omitting the human tumour cells (Kalita-de Croft
et al., 2019). XenoSWATH confers the ability to distinguish and
reproduciblymap proteomic alterations in both the human andmouse
compartments with comparable protein identification numbers as
DDA-MS and provides a new approach to investigating tumour cell-
microenvironmental interactions in cancer initiation, progression and
therapy response. With the recent development of human tumour
xenograft models in immunodeficient zebrafish (Yan et al., 2019), we
anticipate that XenoSWATH can be readily extended to the study of
host and tumour cell responses in these models by similarly utilizing
the zebrafish reference spectral library available in SWATHAtlas
(Blattmann et al., 2019).

As proof of principle, we undertook a quantitative proteomic
analysis in the MINDmodel and provide the first characterization of
host stroma and tumour cell proteomic alterations that occur during
DCIS to IBC progression. Notably, unlike a previous DDA-MS
study of species-specific proteomic analysis in subcutaneous breast
cancer xenografts (Wang et al., 2017), our study was undertaken in
an orthotopic intraductal model, which better recapitulates the
mammary gland microenvironment. Our analysis reveals complex
network alterations in both compartments, and while the human
tumour cells show an expected upregulation of migration pathways
during progression to invasive disease, we make the unanticipated
discovery that the mouse stroma also undergoes extensive
remodelling with an enrichment of cell migration and motility
networks upon DCIS progression. In the mouse dataset, the highest
observed increase in migration-associated protein expression levels
between early (4w and 6w) versus late (10w) time points were in the
S100a8 and S100a9 proteins (Table S4). These two proteins
together form the calprotectin complex, and stromal cells secreting
calprotectin have been previously observed in the microenvironment
of pancreatic cancer (Nedjadi et al., 2018). Additionally, S100a8 has
been reported to increase the migration and proliferation of colorectal
and pancreatic cancer cells in vitro (Nedjadi et al., 2018) and has also
been associated with metastasis formation in breast cancer (Zhong
et al., 2018). MIF was found to be exclusively upregulated in the
human MCF10DCIS.com cells at 10w post-injection but not in the
mouse stromal cells (Table S3). Increased levels of MIF have been
reported in many cancer types including pancreatic cancer (Tan et al.,
2014), hepatocellular cancer (Huang et al., 2014) or head and neck
cancer (Kindt et al., 2013). Experiments with the murine breast
cancer cell line 4T1 have shown that overexpression ofMIF promotes
tumour metastasis (Simpson et al., 2012) and protects cancer cells
from immunogenic cell death (Balogh et al., 2018). Finally, we
determined that LGALS3, CD44, FN1 and EZR were upregulated in
both tumour and host stromal datasets. These proteins have been
extensively shown in published literature to regulate cytoskeleton
remodelling, epithelial-mesenchymal transition and increased cell
motility (Pucci-Minafra et al., 2017; Mani et al., 2008; Bruce et al.,
2007), all of which are important in breast cancer progression to
invasive disease. These examples highlight the utility of this
deconvolution pipeline in dissecting the individual roles of the

Fig. 4. Quantitative proteomic profiling of ductal carcinoma in situ (DCIS)
progression to invasive breast cancer in the mouse intraductal (MIND)
xenograft model. (A) Experimental workflow of SWATH-MS analysis of
tumour xenografts. MCF10DCIS.com-Luc cells were injected orthotopically
into mouse mammary gland ducts through the nipple. Whole mammary glands
with tumours were removed at 4, 6 and 10 weeks (w) post-injection and
subjected to sample preparation prior to SWATH-MS data acquisition and
analysis by the XenoSWATH pipeline. (B) Representative bioluminescence
images as measured by IVIS at 4w, 6w and 10w post-injection. (C) Total
bioluminescence flux reflecting tumour size in MIND model at 4w, 6w and 10w
post-injection (n=7 for 4w and 6w samples, n=8 for 10w samples). P-value
represents statistical significance of the difference between the sample groups
calculated by two-tailed Mann–Whitney test. Each dot represents one
biological replicate; error bars indicate mean±s.e.m. P/S, photons/s. (D) H&E
images showing initial DCIS lesion formation in the MIND model at 4w,
which progresses to form an invasive tumour at 10w post-injection. Tumour
microinvasion in lesion 10w post-injection is indicated by arrowheads. Scale
bars: 100 μm. (E) Venn diagram showing the overlap of enriched ontologies for
proteins that are significantly upregulated in the 10w specimens (n=4) versus
the 4w (n=4) and 6w (n=4) specimens as identified by gene set enrichment
analysis (GSEA) with FDR-adjusted P-value <0.1. Ontologies associated with
cell motility, migration and cytoskeleton organization are highlighted in red.
(F) Network depicting ontologies enriched in human (purple) and mouse
(green) datasets (10w versus 4w and 6w) and their overlap as identified by
GSEA. Detailed protein networks for two selected ontologies (cell motility and
locomotion) are shown. In these networks, the protein node border colour
represents the mouse dataset while the protein node fill colour represents
the human dataset. Only proteins with expression Log2 fold change >0.58 in
either the mouse or human dataset are displayed. Proteins that are not
detected are represented by grey.
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tumour cells and the associated stroma in cancer biology. This dataset
serves as a rich resource of tumour and microenvironmental proteins
for future functional investigation, candidate biomarkers for
stratifying DCIS patients with increased risk of progressing to IBC,
as well as targets for drug discovery for delaying DCIS progression.
There are several limitations to the XenoSWATH pipeline.

Because the method focuses on quantifying peptides that are both
proteotypic and species discriminating, a significant number of
proteins with high sequence similarity betweenmouse and human are
filtered out and lost during the process, resulting in the quantification
of a reduced subset of the proteome. Despite this limitation, we are
still able to readily identify key pathways that are operating in both the
human and mouse compartment. Given that the stroma is composed
of a number of different cell types including fibroblasts, endothelial
cells and immune cells, as with other population-level based
measurement methodologies, the XenoSWATH pipeline is unable
to resolve the individual contribution of specific stromal cell types to
the aggregate proteomic data. Extending in silico transcriptomic
deconvolution strategies that are currently being used to estimate
stromal cell types to proteomic data may provide better resolution and
address this shortcoming in the future (Sturm et al., 2019).
Collectively, our study has generated the MouseRefSWATH

comprehensive mouse reference spectral library as a standardized
community resource for use in future mouse SWATH-MS studies,
which will not only remove the need for the generation of study-
specific libraries but will also improve inter-laboratory reproducibility.
We further present a new XenoSWATH analysis pipeline for species-
specific deconvolution of xenograft proteomic data, which opens new
possibilities for the in-depth and reproducible assessment of tumour-
host interactions in murine xenograft models. Moving forward, we
anticipate that these tools will have broad applications in addressing
key biological research questions involving this widely used model
organism.

MATERIALS AND METHODS
Murine organs, primary cells and cell lines
Isolation of T cells was carried out under Swiss animal experiment regulations.
All other animal work was carried out under UK Home Office project and
personal licences following local ethical approval from the Institutional Animal
Ethics Committee Review Board and in accordance with local and national
guidelines. Mammary gland (n=2), liver (n=1) and lung (n=2) organs were
dissected from two 14-week-old to 18-week-old virgin female SCID-beige
mice. Brain (n=2), heart (n=2) and kidney (n=1) organs were dissected from
two 6-month-old female NCR nude mice. Axillary lymph nodes (n=6) and
bronchial lymph nodes (n=6) were dissected from three 2- to 4-month-old
C57BL/6Nmale and female mice. All tissue specimens were briefly washed in
cold phosphate-buffered saline (PBS) to remove excess blood and immediately
snap frozen in liquid nitrogen and stored at −80°C.

Primary CD8+ effector T cells were isolated from splenocytes of OT-I
mice and cultured in Roswell Park Memorial Institute (RPMI) medium with
10% foetal bovine serum (FBS) (Gibco), 1% penicillin-streptomycin and
0.1% β-mercaptoethanol. In order to activate OT-I CD8+ T cells, OT-I
splenocytes were treated with 1 μg/ml OVA257-264 peptides in the
presence of 10 ng/ml IL-2 for 3 days, while the non-stimulated resting
CD8+ T cells were collected after culturing with IL-2 alone. Immortalized
normal (NF1) and cancer-associated (CAF1) fibroblasts (Calvo et al., 2013)
were cultured in Dulbecco’s modified Eagle medium (DMEM)
supplemented with 10% FBS, 1× GlutaMAX (Gibco), 0.5% penicillin-
streptomycin and 1× insulin-transferrin-selenium A (ITS-A) (Gibco). NIH-
3T3 cells were cultured in DMEM supplemented with 10% FBS/100 units/
ml penicillin/100 mg/ml streptomycin. C2C12 and 4T1 cells were cultured
in RPMI supplemented with 10% FBS/100 units/ml penicillin/100 mg/ml
streptomycin. Ba/F3 cells were cultured in the same media as 4T1 cells with
the addition of 5 ng/ml IL-3. All cells were cultured in 95% air/5% CO2

atmosphere at 37°C. All cell lines were obtained from American Type
Culture Collection (ATCC) and evaluated for mycoplasma contamination
prior to being used for experiments.

Tissue and cell sample processing
Tissue samples were cut into small pieces and placed into precooled tubes.
All organs were processed as individual biological replicates with the
exception of lymph nodes; six lymph nodes of the same type were pooled to
generate sufficient material for MS analysis. High-salt homogenization
buffer consisting of 50 mM Tris-HCl (pH 7.4), 0.25% 3-[(3-
cholamidopropyl)dimethylammonio]-1-propanesulfonate hydrate
(CHAPS, Sigma-Aldrich), 25 mM EDTA, 3 M NaCl (Sigma-Aldrich) and
10 KIU/ml aprotinin was added to 4 ml/g of tissue, and samples were
homogenized by 2×30 s pulses on ice with a LabGEN125 (Cole-Parmer)
homogenizer. Homogenized samples were rotated for 20 min at 4°C.
Proteins in homogenate were acetone precipitated by mixing with four
volumes of ice-cold acetone, vortexed and incubated for 2 h at −20°C.
Samples were spun for 15 min at 15,000 g at 4°C, the supernatant was
removed and the resulting pellet was resuspended in 0.3 ml urea buffer
consisting of 8 M urea (Sigma-Aldrich), 100 mM ammonium bicarbonate
(Sigma-Aldrich). Protein concentration in samples was measured using the
Pierce 660 nm protein assay (Thermo Fisher Scientific), as per the
manufacturer’s instructions, and stored at −80°C until further processing.

Cells were harvested and lysed in 8 M urea buffer and protein
concentration was measured by Pierce BCA assay (Thermo Fisher
Scientific) as per the manufacturer’s instructions. Cell lysates were stored
at −80°C until further processing.

For each sample lysate, 200 µg total protein was reduced with 20 mM
dithiothreitol (Sigma-Aldrich) at 56°C for 40 min and alkylated by 30 mM
iodoacetamide (Sigma-Aldrich) at room temperature for 25 min in the dark.
Samples were diluted to a final concentration of 2 M urea, 100 mM
ammonium bicarbonate and digested at 37°C overnight with 4 µg
sequencing-grade trypsin (Promega). Digestion was stopped by
acidification to pH<4 with trifluoracetic acid (Sigma-Aldrich), and
resulting peptides were desalted on SepPak C18light (Waters) cartridges
as per the manufacturer’s instructions. Desalted peptides were dried in a
SpeedVac concentrator and stored at −20°C until fractionation.

Fractionation by SCX chromatography
Dried peptides were resuspended in 100 µl buffer SCX-A, consisting of
10 mM NH4COOH (Sigma-Aldrich) in 20% acetonitrile (Thermo Fisher
Scientific), pH 2.7, vortexed, sonicated for 5 min and spun at 15,000 g for
1 min. The supernatant was loaded on a 2.1×100 mm polysulfoethyl A
column with 5 µm, 200 Å particles (PolyLC Inc.) and eluted with buffer
SCX-B (500 mM NH4COOH in 20% acetonitrile, pH 2.7) using a gradient
of 0-10% buffer SCX-B for 2.5 min, 10-50% buffer SCX-B for 20 min, 50-
100% buffer SCX-B for 7.5 min and 100% buffer SCX-B for 10 min.
Twelve fractions were manually collected over 39 min, with fraction 1
collected from 0 to 12 min and fraction 12 from 32 to 39 min. The remaining
ten fractions were collected at 2-min intervals between 12 min and 32 min.
All SCX fractions were dried in a SpeedVac concentrator.

Fractionation by HpH-RP chromatography
Dried peptides were resuspended in 100 µl buffer HpH-A (0.1% NH4OH),
vortexed, sonicated for 5 min and spun at 15,000 g for 1 min. The supernatant
was loaded on a 2.1×150 mm XBridge BEH C18 column with 5 µm, 130 Å
particles (Waters) and eluted with buffer HpH-B (0.1% NH4OH in
acetonitrile) using a linear gradient of 0-50% buffer HpH-B over 60 min.
Fractions were automatically collected into 96-well plates every 30 s between
5 min and 50 min, and fractions were pooled into 12 fractions (columns
pooled) for 3T3 cells or eight fractions (rows pooled) for 4T1, BaF3 and
C2C12 cells. Pooled fractions were dried in a SpeedVac concentrator.

DDA-MS data acquisition
All fractions were resuspended in 20 µl buffer A (2% acetonitrile, 0.1%
formic acid) and peptide concentration was measured using the 280 nm
NanoDrop assay. One microgram of total peptide was analysed in DDA
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mode on an Agilent 1260 HPLC coupled to a TripleTOF 5600+ mass
spectrometer equipped with NanoSource III. Each fraction was spiked with
0.1 µl of iRT calibration mix (Biognosys, AG) and loaded onto a 0.3×5 mm
ZORBAX C18 (Agilent Technologies) trap column. Peptides were
separated on a 75 µm×15 cm analytical column packed with Reprosil Pur
C18AQ beads, 3 µm, 120 Å (Dr. Maisch, GmbH) with a manually pulled
integrated spraying tip. A linear gradient of 2-40% buffer B (98%
acetonitrile, 0.1% formic acid) in 90 min and flow rate of 250 nl/min was
used for peptide separation. All data were measured in positive mode. Full
profile MS scans were acquired in the m/z mass range of 340-1500 with
250 ms filling time; MS/MS scans for the 20 most intense ions with charge
state from 2+ to 5+ were acquired in m/z mass range of 280-1500 with
100 ms filling time. Dynamic exclusion of fragmented ions was set to 12 s.

DDA-MS data processing and MouseRefSWATH reference
spectral library generation
All acquired DDA datasets were searched by SpectroMine (ver 1.0.21621.7
Sapphire) software (Biognosys AG) against a SwissProt mouse database
(downloaded on 26/10/2018) with added iRT peptide sequences.
Carbamidomethylation of cysteines was set as a fixed modification,
oxidation of methionine and proline, deamidation of glutamine and
asparagine, and acetylation of protein N-terminus were set as variable
modifications. A maximum of two missed cleavage sites was allowed
during the search. False discovery threshold on peptide and protein level was
set to 1% to filter search results.

To generate final reference spectral library, retention times in each run
were individually calibrated using iRT calibration peptides. Runs with low
result of calibration fit (R2<0.8) were removed. To avoid inflation of FDR
during the library generation from multiple datasets, Search Archives of all
datasets were combined in SpectroMine and the MouseRefSWATH
reference spectral library was built using the following parameters:
minimum three and maximum six transitions for each precursor, library-
wide protein and peptide FDR threshold of 1%. The MouseRefSWATH
library is deposited in ProteomeXchange with identifier PXD017209 and in
SWATHatlas.org and PeptideAtlas.org with identifier PASS01569.

Comparative analysis of publicly available SWATH-MS data
Publicly available datasets (PXD006382, PXD005044) were downloaded
from the ProteomeXchange data repository via the ProteomeCentral portal
(Vizcaíno et al., 2014) and analysed by Spectronaut (version 13.6.190905)
software (Biognosys AG). Either the MouseRefSWATH library or the
relevant study-specific spectral library was uploaded into Spectronaut and
all samples were processed using FDR threshold of 1% on peptide and
protein levels. Mitochondrial proteins were identified by matching the list of
quantified proteins with the MitoCarta 2.0 database (Calvo et al., 2016). It
should be noted that in the original published studies, older versions of the
Spectronaut software with different settings were used by the authors, which
leads to the discrepancies in the number of reported quantified proteins in
our study when compared to the original published data. Detailed
Spectronaut settings for this study are shown in Table S6.

MIND model
The MIND model was utilized in our studies as previously described
(Behbod et al., 2009; Oliemuller et al., 2017). Briefly, a suspension of 5×104

MCF10DCIS.com-Luc cells was injected intraductally into mammary gland
ducts of 6- to 10-week-old SCID-beige female mice (n=7-8). Luminescence
of the lesions was measured by in vivo imaging assay (IVIS) on IVIS
Illumina II (Perkin Elmer) to monitor tumour growth. Whole mammary
glands with tumour were collected after 4w, 6w or 10w post-injection,
washed in cold PBS and freshly frozen. For each condition, four biological
replicates were further processed and analysed by SWATH-MS.
Haematoxylin and Eosin (H&E) staining was performed on formalin-
fixed and paraffin-embedded samples and tissue images were scanned on a
Nanozoomer XR (Hamamatsu Photonics) automated slide scanner.

MIND model sample processing and SWATH-MS data acquisition
Whole mammary glands with tumours (n=4 for each time point) were
homogenized in high-salt homogenization buffer, proteins were precipitated

with ice-cold acetone at −20°C, centrifuged and the resulting pellet was
resuspended in 0.3 ml urea buffer. Then, 20 µg total protein was digested in
solution by trypsin as described above, desalted on OMIX tips as per the
manufacturer’s instructions and dried in a SpeedVac concentrator. Dried
samples were resuspended in 20 µl buffer A and analysed in SWATH-MS
mode on an Agilent HPLC coupled to TripleTOF 5600+ mass spectrometer
and operated by Analyst 1.5 software (SCIEX). One microgram of sample
was spiked with 0.1 µl iRT peptides and loaded onto a 0.3×5 mm ZORBAX
C18 (Agilent Technologies) trap column. Peptides were separated on a
75 µm×15 cm analytical column packed with Reprosil Pur C18AQ beads,
3 µm, 120 Å (Dr. Maisch, GmbH) with a manually pulled integrated
spraying tip. A linear gradient of 2-40% of buffer B in 120 min and flow rate
of 250 nl/min was used for peptide separation. All data were acquired in
positive-ion mode in SWATH mode using cycles consisting of one 100 ms
profile MS scan over the m/z mass range of 340-1500, followed by 60
SWATH fragmentation windows with a fixed width of 12 Da over the m/z
range of 380-1100 and filling time of 50 ms. All SWATH-MS data were
acquired in technical duplicates. The SWATH-MS data are deposited in
ProteomeXchange with identifier PXD017209.

Implementing XenoSWATH species-specific deconvolution
pipeline and MIND model SWATH-MS data processing
A combined FASTA file was generated in NotePad text editor (Microsoft)
from individual FASTA files containing human (20,316 protein sequences),
mouse (16,997 protein sequences) and iRT peptides. The human and mouse
FASTA files were downloaded from SwissProt (downloaded on 26/10/
2018) and the FASTA file with iRT sequences was downloaded from the
Biognosyswebsite (https://www.biognosys.com/shop/irt-kit#SupportMaterials).
All entries from the mouse and iRT FASTA files were copied and inserted into
the human FASTA file, which was then saved as a new combined FASTA
file. The acquired MIND model SWATH-MS data were processed in
Spectronaut using the MouseRefSWATH reference spectral library, the
published pan-Human reference spectral library (Rosenberger et al., 2014)
and the combined FASTA file. The SWATH-MS data were first searched
using the MouseRefSWATH library. Using the combined FASTA file and
MouseRefSWATH library, Spectronaut selects only the mouse species
discriminating proteotypic peptides from the MouseRefSWATH library for
the quantification of murine proteins. The same approach was repeated with
the pan-Human library for the quantification of human species
discriminating proteotypic peptides. All searches were performed with 1%
FDR threshold on peptide and protein level (detailed Spectronaut settings
are shown in Table S6). In this manner, two separate proteomic datasets
were obtained – one for the tumour component (human) and the other for
the host stromal compartment (mouse). The datasets were separately
quantile normalized using proBatch package (Cuklina et al., 2018) in R
(www.r-project.org) and statistically analysed by two-tailed Student’s t-test
with multiple testing correction (Benjamini and Hochberg, 1995) in Perseus
(version 1.5.6.0, https://maxquant.net/perseus/) (Tyanova et al., 2016).
Results were considered statistically significant if the FDR-adjusted P-value
was <0.05. Analysis of ontologies enriched in 10w versus 4w and 6w was
performed using a GSEA desktop application (https://www.gsea-msigdb.
org/gsea/index.jsp) against human or mouse MSigDb of biological
processes (Subramanian et al., 2005; Mootha et al., 2003). The FDR
threshold for multiple testing correction was set to 0.1 using genotype
permutations due to a low number of biological replicates. Protein networks
were visualized in Cytoscape (version 3.7.1, www.cytoscape.org) (Shannon
et al., 2003) and clustered by the MCL clustering algorithm in
clusterMaker2 Cytoscape plugin (Morris et al., 2011). For the generation
of protein networks in Cytoscape, a fold change cut-off of at least Log2 0.58
was applied.
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E. W., Röst, H., Sun, Z., Rinner, O., Reiter, L. et al. (2013). A complete mass-
spectrometric map of the yeast proteome applied to quantitative trait analysis.
Nature 494, 266-270. doi:10.1038/nature11835

Pucci-Minafra, I., Di Cara, G., Musso, R., Cancemi, P., Albanese, N. N., Roz, E.
and Minafra, S. (2017). Retrospective proteomic screening of 100 breast cancer
tissues. Proteomes 5, 15. doi:10.3390/proteomes5030015

Rajcevic, U., Petersen, K., Knol, J. C., Loos, M., Bougnaud, S., Klychnikov, O.,
Li, K. W., Pham, T. V., Wang, J., Miletic, H. et al. (2009). iTRAQ-based
proteomics profiling reveals increased metabolic activity and cellular cross-talk in
angiogenic compared with invasive glioblastoma phenotype. Mol. Cell.
Proteomics 8, 2595-2612. doi:10.1074/mcp.M900124-MCP200

Reiter, L., Claassen, M., Schrimpf, S. P., Jovanovic, M., Schmidt, A., Buhmann,
J. M., Hengartner, M. O. and Aebersold, R. (2009). Protein identification false
discovery rates for very large proteomics data sets generated by tandem mass
spectrometry. Mol. Cell. Proteomics 8, 2405-2417. doi:10.1074/mcp.M900317-
MCP200

Richmond, A. and Su, Y. J. (2008). Mouse xenograft models vs GEM models for
human cancer therapeutics. Dis. Model. Mech. 1, 78-82. doi:10.1242/dmm.
000976

Rosato, R. R., Davila-Gonzalez, D., Choi, D. S., Qian, W., Chen, W., Kozielski,
A. J., Wong, H., Dave, B. and Chang, J. C. (2018). Evaluation of anti-PD-1-
based therapy against triple-negative breast cancer patient-derived xenograft
tumors engrafted in humanized mouse models. Breast Cancer Res. 20, 108.
doi:10.1186/s13058-018-1037-4

Rosenberger, G., Koh, C. C., Guo, T. N., Rost, H. L., Kouvonen, P., Collins, B.,
Heusel, M., Liu, Y. S., Caron, E., Vichalkovski, A. et al. (2014). A repository of
assays to quantify 10,000 human proteins by SWATH-MS. Scientific Data 1,
140031. doi:10.1038/sdata.2014.31

Rosenbluh, J., Nijhawan, D., Cox, A. G., Li, X. N., Neal, J. T., Schafer, E. J., Zack,
T. I., Wang, X. X., Tsherniak, A., Schinzel, A. C. et al. (2012). beta-catenin-
driven cancers require a YAP1 transcriptional complex for survival and
tumorigenesis. Cell 151, 1457-1473. doi:10.1016/j.cell.2012.11.026

Sflomos, G., Dormoy, V., Metsalu, T., Jeitziner, R., Battista, L., Scabia, V.,
Raffoul, W., Delaloye, J.-F., Treboux, A., Fiche, M. et al. (2016). A preclinical

model for ER alpha-Positive breast cancer points to the epithelial
microenvironment as determinant of luminal phenotype and hormone response.
Cancer Cell 29, 407-422. doi:10.1016/j.ccell.2016.02.002

Shannon, P., Markiel, A., Ozier, O., Baliga, N. S., Wang, J. T., Ramage, D., Amin,
N., Schwikowski, B. and Ideker, T. (2003). Cytoscape: a software environment
for integrated models of biomolecular interaction networks. Genome Res. 13,
2498-2504. doi:10.1101/gr.1239303

Simpson, K. D., Templeton, D. J. and Cross, J. V. (2012). Macrophage migration
inhibitory factor promotes tumor growth and metastasis by inducing myeloid-
derived suppressor cells in the tumor microenvironment. J. Immunol. 189,
5533-5540. doi:10.4049/jimmunol.1201161

Sturm, G., Finotello, F., Petitprez, F., Zhang, J. D., Baumbach, J., Fridman,
W. H., List, M. and Aneichyk, T. (2019). Comprehensive evaluation of
transcriptome-based cell-type quantification methods for immuno-oncology.
Bioinformatics 35, I436-I445. doi:10.1093/bioinformatics/btz363

Subramanian, A., Tamayo, P., Mootha, V. K., Mukherjee, S., Ebert, B. L., Gillette,
M. A., Paulovich, A., Pomeroy, S. L., Golub, T. R., Lander, E. S. et al. (2005).
Gene set enrichment analysis: a knowledge-based approach for interpreting
genome-wide expression profiles. Proc. Natl. Acad. Sci. USA 102, 15545-15550.
doi:10.1073/pnas.0506580102

Tabb, D. L., Vega-Montoto, L., Rudnick, P. A., Variyath, A. M., Ham, A.-J. L.,
Bunk, D. M., Kilpatrick, L. E., Billheimer, D. D., Blackman, R. K., Cardasis,
H. L. et al. (2010). Repeatability and reproducibility in proteomic identifications by
liquid chromatography-tandem mass spectrometry. J. Proteome Res. 9, 761-776.
doi:10.1021/pr9006365

Tan, L., Ye, X., Zhou, Y., Yu, M., Fu, Z., Chen, R., Zhuang, B., Zeng, B., Ye, H.,
Gao, W. et al. (2014). Macrophage migration inhibitory factor is overexpressed in
pancreatic cancer tissues and impairs insulin secretion function of beta-cell.
J. Transl. Med. 12, 92. doi:1186/1479-5876-12-92

Tyanova, S., Temu, T., Sinitcyn, P., Carlson, A., Hein, M. Y., Geiger, T., Mann, M.
and Cox, J. (2016). The Perseus computational platform for comprehensive
analysis of (prote)omics data. Nat. Methods, 13, 731-740. doi:10.1038/nmeth.
3901
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Table S1: Full proteomic dataset of human proteins obtained from MIND model 
experiment as processed by XenoSWATH species-specific deconvolution pipeline. 
Confidence of the protein identification is reported as FDR-adjusted p-value. 

Click here to Download Table S1 

Table S2: Full proteomic dataset of mouse proteins obtained from MIND model 
experiment as processed by XenoSWATH species-specific deconvolution pipeline. 
Confidence of the protein identification is reported as FDR-adjusted p-value. 

Click here to Download Table S2 

Table S3: List of human proteins with significantly altered expression in 10w samples 
compared to 4w & 6w samples. Log2 fold change (Log2FC) for each protein is reported 
along with the FDR-adjusted p-value from the two-tailed Student's t-test. 

Click here to Download Table S3 

Table S4: List of mouse proteins with significantly altered expression in 10w samples 
compared to 4w & 6w samples. Log2 fold change (Log2FC) for each protein is reported 
along with the FDR-adjusted p-value from the two-tailed Student's  t-test. 

Click here to Download Table S4 

Table S5: Overlapping ontologies enriched in both human and mouse dataset (Figure 
4E). GSEA normalized enrichment scores (NES) and FDR-adjusted p-values are shown 
based on analysis of 10w versus 4w & 6w samples. 

Click here to Download Table S5 

Table S6: Detailed Spectronaut settings used for XenoSWATH analysis 

Click here to Download Table S6 
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