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ABSTRACT
Microtubules (MTs) promote important cellular functions including
migration, intracellular trafficking, and chromosome segregation. The
centrosome, comprised of two centrioles surrounded by the
pericentriolar material (PCM), is the cell’s central MT-organizing
center. Centrosomes in cancer cells are commonly numerically
amplified. However, the question of how the amplification of
centrosomes alters MT organization capacity is not well studied.
We developed a quantitative image-processing and machine
learning-aided approach for the semi-automated analysis of MT
organization. We designed a convolutional neural network-based
approach for detecting centrosomes, and an automated pipeline for
analyzing MT organization around centrosomes, encapsulated in a
semi-automatic graphical tool. Using this tool, we find that breast
cancer cells with supernumerary centrosomes not only have more
PCM protein per centrosome, which gradually increases with
increasing centriole numbers, but also exhibit expansion in PCM
size. Furthermore, cells with amplified centrosomes have more
growing MTends, higher MT density and altered spatial distribution of
MTs around amplified centrosomes. Thus, the semi-automated
approach developed here enables rapid and quantitative analyses
revealing important facets of centrosomal aberrations.
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INTRODUCTION
Microtubules (MTs) are cytoskeletal polymers that perform
biological functions essential for life. The interphase MT array is
required for cell migration, intracellular trafficking, and cell
polarization whereas the mitotic MT array organizes the bipolar
spindle and promotes faithful chromosome segregation (Desai and
Mitchison, 1997; Hyman and Karsenti, 1996; Inoue and Salmon,
1995). Consisting of polar tubulin subunits, MT polymers have a
dynamic plus end and a less dynamic minus end (Allen and Borisy,
1974; Bergen and Borisy, 1980; Desai andMitchison, 1997;Walker
et al., 1988). In cycling cells, minus ends are generally focused at
the cell’s MT-organizing center or centrosome, where MTs are
nucleated and anchored (Brinkley, 1985). Centrosomes consist of a

pair of centrioles surrounded by the pericentriolar material (PCM).
Pericentrin and CDK5RAP2 act as scaffolds for recruitment of the
γ-tubulin ring complex (γ-TuRC), which nucleates MTs
(Dictenberg et al., 2002; Fong et al., 2007; Farache et al., 2018;
Stearns and Kirschner, 1994; Moritz et al., 1995; Zheng et al.,
1995). During the G1 phase of the cell cycle, cells have one
centrosome and two centrioles. Centriole duplication occurs in S
phase, resulting in two centrosomes each with two centrioles
(Hinchcliffe and Sluder, 2001; Piel et al., 2000; Vorobjev and
Chentsov, 1982). Concurrent to the centriole duplication cycle,
PCM organization occurs as a toroid around mature centrioles
during interphase, and expands into a more amorphous structure in
preparation for mitosis (Fu and Glover, 2012; Lawo et al., 2012;
Mennella et al., 2012, 2014; Sonnen et al., 2012; Woodruff et al.,
2014, 2015). Centrosome duplication doubles the MT nucleation
capacity during interphase (Salaycik, 2005). Therefore, the number
of centrosomes and expansion of the PCM promote the MT
architecture of the cell.

Defects in the control of centrosome number commonly occurs in
cancer cells, resulting in centrosome amplification (CA) (D’Assoro
et al., 2002; Denu et al., 2016; Ganapathi Sankaran et al., 2019; Guo
et al., 2007; Lopes et al., 2018; Marteil et al., 2018; Salisbury et al.,
2004; Schneeweiss et al., 2003). We and others have previously
quantified the changes in centriole number in cancer cells but, to
date, how the PCM changes in response to more centrioles remains
largely unknown. Moreover, how CA affects MT organization
during interphase is not known. This is important because breast
cancer therapeutics that target MTs, including Taxol, have been
used for decades (Pazdur et al., 1993; Schiff and Horwitz, 2006),
and it highlights the need for quantitative studies of MT
organization in normal and breast cancer cells.

Tracking individual MTs within cells is complicated by high MT
densities. However, MT organization and dynamics can be
measured by quantifying the distribution of fluorescently labeled
MTs and/or MT plus-end binding proteins, such as end-binding
protein 3 (EB3, also known as MAPRE3), which localizes to
growing MT ends (Roth et al., 2019; Semenova and Rodionov,
2007; Stepanova et al., 2003; Straube and Merdes, 2007; Applegate
et al., 2011). Counting EB3 foci, or comets, is time-consuming and
requires quantitative computational approaches (Applegate et al.,
2011). Moreover, these tools require extensive manual annotation
and the detection of centrosomes. Annotating each centrosome is
a laborious process that often requires confirmation of
colocalization between signals by toggling between image
channels and manually adjusting brightness and contrast.
Automation of this analysis requires the automated detection of
centrosomes, the identification of EB3 comets around detected
centrosomes and the analysis of EB3 comet distributions. Similar
approaches are also required to quantify the distribution of MTs
surrounding centrosomes.
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In this study, we establish a semi-automatic analysis pipeline that
uses machine learning to automatically detect centrosomes followed
by user-defined correction of errors. Machine learning is a class of
techniques where a computational model is ‘trained’ to emulate the
annotations of an expert. The problem of detecting centrosomes
introduces additional challenges to extant machine learning
pipelines: the number of training annotations is too small to train
existing machine learning models, and the large size of the image
files makes existing models run slowly. Here, we introduce a new
pipeline that tackles these challenges so that training is efficient and
the run time is quick. The identification of centrosomes by machine
learning is then coupled to automated analysis pipelines for the
PCM, MTs and EB3 comets around the identified centrosomes.
Finally, the entire pipeline is encapsulated in a new graphical tool
that allows users to visualize the automated detections and to correct
errors from the automated analysis.
This semi-automated image analysis pipeline was used to

investigate centriole and centrosome frequency, PCM size and
MT distributions in normal and breast cancer cells with amplified
centrosomes. We discovered that breast cancer cells with amplified
centrosomes exhibit increased PCM protein levels and PCM size,
based on γ-tubulin and pericentrin fluorescence. Moreover, we
found that breast cancer cells with amplified centrosomes have
elevated MT density and MT growth near centrosomes. In
summary, centrosome amplification increases MT nucleation and
promotes changes to MT density and spatial distribution of MTs
around amplified centrosomes in breast cancer cells.

RESULTS
Machine learning for centrosome detection and cell
segmentation
As a first step in creating an automated analysis pipeline for
determining changes to the MT organization in centrosome-
amplified breast cancer cells, we developed a centrosome detector
using machine learning. Centrosome foci can be difficult to detect
because of large variations in the signal-to-noise ratio. In
preliminary experiments, we found that simple image processing
techniques that rely on consistent signal-to-noise ratios often failed
to detect these foci accurately. An alternative algorithm for detecting
centrosomes was designed by adapting existing object detection
protocols using computer vision (Liu et al., 2016). This prior work
uses convolutional networks to assign a score to every location in
the image. The core output at a particular location is interpreted as
the probability of a centrosome at that location. Convolutional
networks are machine learning models comprised of sequences of
convolution operations interspersed with subsampling operations.
The filters of these convolutions are automatically estimated by the
learning algorithm based on a training dataset consisting of pairs of
images and the desired outputs. We 'train' the convolutional network
on a dataset consisting of images with annotated locations of
centrosomes. For each centrosome, we annotate the two centrioles,
which are marked only when the centrin foci colocate with the
PCM. Thus, the convolutional network is trained to detect
centrosomes by localizing the two centrioles.
We found that using prior out-of-the-box convolutional network

architectures used in computer vision presented two major
challenges. First, these models require millions of training images
that are not pertinent to biological samples (He and Sun, 2014). This
is because the convolutional network has a large number of
parameters; with more parameters, more data are required to
optimize these parameters. Second, these architectures are designed
to run on small images (typically 224×224 pixels) and so are very

slow when run on large fluorescence microscopy images (typically
greater than 1000×1000 pixels).

To address these challenges, we designed a new convolutional
network architecture that requires less training data, memory and
time to run (Fig. 1A). The input to the network is a three-
dimensional fluorescence image stack where each xy coordinate is
projected to their maximum pixel intensity. We utilized maximum
intensity projections because analyzing complete three-dimensional
volumes is slow and difficult to train owing to the large number of
pixels that need to be analysed, with a vanishingly small fraction of
pixels that will correspond to centrosomes. The mean and standard
deviation of the fluorescence intensity across all pixels is calculated,
and the mean is subtracted from each pixel and divided by the
standard deviation. Subtracting the mean makes the result invariant
to changes in brightness in the original image or, more precisely, the
addition of a constant to the intensity of all pixels. Analogously,
dividing by the standard deviation makes the result invariant to
changes in contrast or, more precisely, multiplication of the intensity
of all pixels by a constant. The result is thus brightness- and
contrast-normalized.

The network then uses this normalized intensity image to
compute four images (corresponding to four scores per pixel;
Fig. 1A, panels 2–5). Two of these images are the fluorescence
intensity for centriole (Fig. 1A, panel 3) and PCMmarkers (Fig. 1A,
panel 4); we used these because colocalization of high-intensity foci
in these channels likely indicates centrosomes. By themselves, these
channels might be noisy and produce spurious foci. We obtained
two more images by running a small, fast four-layer fully
convolutional network on each individual channel (Fig. 1A,
panels 2 and 5). The network reduces the resolution by a factor of
eight, but also reduces noise and removes spurious foci. Reducing
resolution has two benefits. First, it makes the network much faster.
Second, because the convolution operations used by the network
operate on fixed-size image patches, at a lower resolution these
patches correspond to a larger fraction of the image, thus allowing
the network to analyze a larger part of the image to make decisions
for each pixel. All outputs are up-sampled using nearest-neighbor
interpolation to the size of the original image and converted to a
score between 0 and 1 using the sigmoid function:

f ðxÞ ¼ 1

1þ e�x

� �
, before being multiplied together, resulting

in a final accurate score for each pixel corresponding to the
likelihood of finding a centrosome at that location (Fig. 1A, panel 6).
Our model applies this sigmoid function on four different channels
(x) (Fig. 1A). Two of those channels are outputs from a small
convolutional network, which can learn to scale its outputs
appropriately during training. The other two channels are the
centrin and pericentrin, which are not scaled beyond the brightness
and contrast normalization mentioned above. The full model has
fewer than 10,000 parameters and is very efficient (fewer than 7
gigaflops, compared to 35 gigaflops for a standard object detection
approach; Liu et al., 2016).

Local maxima in this output were identified as centrioles
colocated with PCM (circles in Fig. 1A, panel 7). More precisely,
pixels in the output were considered sequentially in decreasing
order of scores. The highest scoring pixel was declared as a
centriole, and subsequent, lower-scoring pixels were declared
centrioles only if no previously declared centriole was fewer than
r=5 pixels (0.65 µm) away (this is called non-maximum
suppression; Viola and Jones, 2011). This produces a ranked list
of putative centrosome detections, and the user can choose where to
threshold this list.

2

TOOLS AND RESOURCES Journal of Cell Science (2020) 133, jcs243543. doi:10.1242/jcs.243543

Jo
u
rn
al

o
f
Ce

ll
Sc
ie
n
ce



The non-maximum suppression algorithm described here is
commonly used in the computer vision literature and has been
proven to be more effective than most other alternatives
(Girshick et al., 2014). While in principle the algorithm can
potentially identify pixels that are not local maxima in large
regions of almost uniform score, in practice this is unlikely to
happen because the convolutional network is strongly penalized
during training if it produces such regions. The full centrosome

detection pipeline is shown in Fig. 1A and example detections
are shown in Fig. 1B.

We annotated centrosomes on a small dataset of ten images and
used these as training images to train the convolutional networks. To
evaluate this centrosome detection approach and make sure that it
was indeed detecting centrosomes correctly, we conducted the
following ‘leave-one-out’ evaluation. We obtained algorithmic
detections for each annotated image using a model trained on the

Fig. 1. A machine learning algorithm for centrosome and cell detection. (A) Separate convolutional networks operating on centrin (centrioles, red) and
pericentrin (PCM, green) fluorescence signals assign a score for each pixel indicating the likelihood that it is a centrosome (panels 2 and 5). These are passed
through a sigmoid function [f(x)=1/(1+e−x)] andmultiplied together with the intensities of the centrin and pericentrin channels (panels 3 and 4), also after a sigmoid
function, to produce a final score for each pixel (panel 6). Peaks in the final score are detected using non-maximum suppression (NMS) and identified as
centrioles (panel 7). Scale bars: 1 μm. (B) Left panels, raw images of centrosomes stained for centrioles (centrin, red) and PCM (γ-tubulin, green). Right panels,
detected centrioles (white circles). Scale bar: 1 μm. (C) Evaluation of the centriole detection in terms of the fraction of centriole detections that are deemed correct
(precision) and the fraction of centrioles detected (recall). A detection is deemed correct if it falls within a distance of ten pixels from the correct centriole.
The plot shows precision and recall as the selection criterion is made less conservative by reducing the threshold score at which a centriole is detected.
(D) Variation of average precision (averaged over multiple recall values from 0 to 100% as the criterion for a correct detection is made more lenient. The x-axis is
the maximum distance between a true and a predicted centriole at which the predicted centriole is still considered correct. (E) Precision and recall values
for a noisy image compared to the original image. Staining: centrioles (centrin, red) and PCM (γ-tubulin, green). Scale bar: 1 μm. (F) Pipeline for segmenting out
individual cells. (1) original image, (2) output of the neural network that identifies pixels that fall within cells, (3) boundary map obtained from the random walk
segmenter with estimated boundary strength, (4) final segmentation. Staining: centrioles (centrin, red) and PCM (γ-tubulin, green). Scale bar: 10 μm. (G)
Comparison between predicted cell segmentation and human-annotated cells. Staining: centrioles (centrin, red) and PCM (γ-tubulin, green). Scale bar: 10 μm.
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other annotated images. We then marked detected foci as correct if
they were within 10 pixels (1.3 µm) of a human-annotated centriole,
and as spurious otherwise. If multiple foci were detected where
there was only one centriole, all but one of the foci were considered
spurious. We then measured the precision (the fraction of detected
foci that were deemed correct) and the recall (the fraction of human-
annotated centrioles that were detected). An ideal algorithm would
detect all and only correct centrosomes, achieving precision and
recall of 100%. We plotted how precision varied with recall when
the score threshold for declaring a centrosome was reduced
(Fig. 1C). Although not perfect, the centrosome detector
maintained a precision of 90% when recall was close to 50%, and
still maintained a precision of more than 50% at high levels of recall
(>75%). We compared the model’s results with that of an alternate
baseline model that did not have any convolutional network on
either channel. This baseline model only used channels 3 and 4, as
shown in Fig. 1A, and introduced significantly more false positives.
As a result, even when detecting less than 30% of the centrosomes,
more than 10% of its detections were false positives (Fig. S1B).
We next evaluated the ability of the centrosome detector to

accurately localize the centrosome (Fig. 1D). As above, detected
foci were marked correct if they werewithin a threshold distance of a
human-annotated centriole. We varied this distance threshold, and
at each distance threshold we computed the average precision, or the
precision averaged over multiple values of recall. We found that the
centrosome identification maintains a high average precision even
for stringent thresholds (a distance of 5 pixels corresponds to
0.325 µm and 0.65 µm, through 2×2 binning), indicating that the
detector accurately localizes the centrioles of centrosomes. Finally,
we asked how resilient the centrosome detection is to noise. We
artificially added Gaussian noise to the image and computed the
precision versus recall curve for the centrosomes identified in a
noisy image (Fig. 1E). Even with noise more than 16 times the
standard deviation of the original image, centrosomes were
consistently detected. However, note that the assumption of
Gaussian noise might not correspond to the noise observed in real
microscopy images.
Importantly, although the centrosome detector does make errors,

the accuracy is a function of the training data. To understand how
additional training data might improve accuracy, we annotated an
additional ten images, and compared the accuracy of a model trained
on five images with a model trained on 15 images (Fig. S1E). We
found that the additional training data significantly improved
accuracy, both in terms of precision (i.e. it reduced the incorrect
detections) and the recall (i.e. the model trained on the larger
training set detected more centrosomes).
Next, the analysis requires that individual cells are separately

analyzed. To group the detected centrosomes into each individual
cell, we created a pipeline for segmenting the cells in the image
(Fig. 1F). In the first step, a convolutional network identifies all
pixels that fall inside a cell. This convolutional network is trained
using a small dataset where the cells have been annotated by hand.
The output of this network can be interpreted as a probability p(x)
for each pixel x that indicates whether it falls inside a cell. The next
step is to group the pixels with a high p(x) into separate cells. To do
this, local peaks were identified in this output as markers for
possible cells and a randomwalk segmenter (Grady, 2006) was used
to segment the cell pixels by assigning each cell pixel to one of the
markers. However, the random walk segmenter can over-segment
and subdivide a single cell into multiple cells. We, therefore,
estimate the strength of the boundary between the cells using the
convolutional network output. We define this boundary strength as:

Pn
i¼1

1� p xið Þð Þ=n, where the summation is over all pixels on the cell

boundary (Fig. S1A). A user-defined threshold was used to merge
cells that are separated by weak boundaries. We qualitatively
compared the result of the semi-automatic segmentation approach
to a human-annotated cell. Although the machine-generated
segmentation does not accurately track cell boundaries, it was
able to identify all the cells and capture the bulk of the interior of the
cell, especially in the vicinity of the centrosome (Fig. 1G).

Taken together, these results suggest that our centrosome
detection and cell segmentation approach can increase the speed
and accuracy of analyses but may require manual intervention when
predictions are incorrect.

Evaluation of PCM and MT organization using machine
learning-aided image processing
Once centrosomes and cell boundaries have been detected, we
designed automated image processing algorithms to analyze the
spatial distribution of centrosomal PCM proteins, MTs and EB3
comets at and around the centroid of centrosomes (Fig. 2A–D).
This analysis routine can be automatically run on cells with
detected centrosomes. These image processing routines and the
machine learning-aided detection of centrosomes and cells
described above were encapsulated into a semi-automatic
graphical tool for analysis.

Below we first describe the image processing algorithms for the
analyses of centrosomal proteins, MTs, and EB3 comets. We then
describe the semi-automatic graphical tool that encompasses both
these image processing algorithms and the machine learning-aided
detection of centrosomes and cells.

PCM and MT intensity analyses
To quantify PCM and MT intensity in concentric rings at and
around centrosomes, images were projected to their maxima and the
centroid of the identified centrosomes was algorithmically
computed. When there are multiple centrosomes that are spatially
separated by more than 40 pixels (∼5 µm), the algorithm groups
them into separate clusters using single-link hierarchical clustering
and performs the analysis only on the largest cluster. Next, the
distance of each pixel from the centrosome centroid in two
dimensions was calculated (Fig. 2A, top panel). For each radius
from inner r1 to rn where n is the user-defined number of radii used
in the analysis, the tool computes the total fluorescence intensity (In)
of the pixels between the concentric radii. The difference in total
intensity (In+1 – In) between the nth and (n+1)th regions provides the
fluorescence intensity in the nth concentric ring [Fig. 2A, middle
panel; Fig. 2B, top panel; nth, orange ring; (n+1)th, blue concentric
ring]. To correct for the total area of each ring the intensity is
normalized to the number of pixels within each ring.

Only pixels that fall within the cell boundary are quantified. To
define the cell boundary for the MT intensity computation, a low
threshold was used on the α-tubulin fluorescence channel; this was
motivated by the fact that microtubule fluorescence extends
throughout the cell area (Fig. 2B, bottom panel). In a case where
such a channel is not available, one can also use the cell body
estimated by the cell segmentation algorithm as a rough estimate.
For the PCM density computation, smaller radii (in steps of
0.13 µm) and a smaller total diameter were used so that the analysis
region was always inside the cell. Cells with centrosomes close to
the edge of the cell or the edge of the image were not analyzed.
Therefore, we did not need to account for the cell area (Fig. 2A). In
each case, once the pixels within the cell were defined (i.e. the
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cellular area) then, for each radius from inner r1 to rn the tool
computes the differential area (An+1 – An) between the nth and
(n+1)th regions. Dividing the differential intensity by the
differential cell area provided the density (Fig. 2B). Altogether,
this generated an analysis routine to measure the spatial distribution
of MTs and PCM fluorescence per unit area.

EB3 Foci analysis
To quantify the distribution of MT nucleation and growth from
centrosomes, we designed a similar algorithm to measure the
distribution of EB3 foci on images of fixed cells (Fig. 2C). The
algorithm detects EB3 comets by utilizing a median filtering step to
remove noise in the form of stray pixels with high fluorescence

Fig. 2. Algorithms to quantify PCM and microtubule density around centrioles. (A) PCM density analysis. Top left panel, schematic of centriolar
centroid (black circle) estimation based on centrioles (cyan foci). Top right panel, centrosomes in MDA-231 cells stained for centrioles (centrin, red) and γ-tubulin
(PCM, green). Middle left panel, schematic for analysis of PCM intensity. Middle right panel, the region around the centroid of the centrioles is divided into
concentric rings, and the differential intensity (In+1−In) of pericentriolar material is calculated around centrosomes. Bottom left panel, schematic for analysis of
differential area. Bottom right panel, the region around the centroid of the centrioles is divided into concentric rings, and the differential area (An+1−An) is calculated
around centrosomes. Scale bar: 1 μm. (B) MT density analysis. Top left panel, schematic of analysis of differential MT intensity (In+1−In) for each ring. Top right
panel, centrosomes in MDA-231 cells stained for centrioles (CEP192, red) and MTs (α-tubulin, green). Bottom left panel, schematic for analysis of differential
area (An+1−An) around centrosomes in MDA-231 cells. Bottom right panel, image of thresholded MTs. Scale bar: 5 μm. (C) EB3 density analysis. Left, the
pipeline for detecting EB3 foci. (1) Original image (mNeon–EB3, green). (2) Processed image after applying the median filter and subtracting a box filter blurred
version of the same image. Pixels on EB3 foci have high intensity and all other pixels are made close to 0 intensity. (3) Thresholded binary image. Connected
components in this image are considered as EB3 foci. Right, schematic of analysis of EB3 density for each ring. Top left panel, schematic for analysis of
differential EB3 counts (En+1−En). Top right panel, centrosomes in mNeon–EB3 MCF10A cells stained for centrioles (centrin, green) and γ-tubulin (red). Bottom
left panel, schematic for analysis of the differential area. Bottom right panel, image of thresholded EB3 foci. Scale bar: 5 μm.
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intensity. The median filter replaces each pixel with the median of
its neighbors, thus removing pixels having very high or very low
intensity values. Then, to identify pixels with greater intensity than
their neighbors, high-pass filtering was performed. This involves
first computing a blurred version of the image by convolving with a
box filter, which replaces every pixel by the average of its neighbors
in a k×k neighborhood, and then subtracting the blurred image from
the original. Thresholding this differential image provided a binary
image that identified pixels corresponding to EB3 comets. Finally,
connected component analysis was performed on this binary image.
This analysis identifies contiguous regions of the image that have a
‘true’ value. Each connected component identified in this binary
image was considered an EB3 comet (Fig. 2C).
Analyzing the distribution of EB3 comets in concentric rings, as

described above, requires additional considerations because EB3
comets can straddle multiple rings. For each EB3 comet, we
identified the pixel on the comet farthest from the centroid of the
centrosomes. Then, for each radius (rn) from the centroid of the
centrosome, we counted the EB3 comets for which the most
centrosome-distal pixel fell within this radius. The differential EB3
counts were then computed in the nth ring as the difference in comet
counts (En+1 − En) and divided by the differential cell area to obtain
the EB3 density (Fig. 2C, right panel).

A semi-automatic graphical tool for MT, PCM and EB3 analyses
We encapsulated the centrosome detection, cell segmentation, and
MT, PCM and EB3 analysis algorithms described above into a
single tool with a graphical user interface (Fig. 3A). This graphical
user interface does not include the ‘training’ of the machine
learning-based centrosome detector, which is trained separately and
used for all subsequent analyses.
To validate the performance of the machine learning-based

centrosome detector, we compared its detections to human
annotation. For this comparison, we used the output of the
machine learning-based centrosome detector without any
corrections, except for a tuning of the threshold on the score for
each image. We first compared the number of interphase cells with
centrosomal annotations identified by the machine versus the
number identified by human annotation. The average number of
interphase cells with centrosomal annotations detected in a replicate
by the machine was 52, which is very similar to the average of 55
identified by humans (Fig. 3B). Furthermore, the numbers of
human- versus machine-annotated, centrosome-amplified and non-
amplified cells were similar (Fig. 3C). We next assessed the number
of centrioles detected by the machine and compared it to the number
detected by human annotation. Most annotations fall on the identity
line (the line of unit slope) (Fig. 3D). This suggests that most
machine-annotated and human-annotated centriole numbers were
similar (Fig. S1C). Linear regression on centriole numbers also
suggested a line with approximately unit slope (1.12). Although
some annotations fall outside the identity line, they are present on
both sides of the identity line suggesting that there was not a bias for
too few or too many centrioles in the prediction by the algorithm.
Furthermore, on mitotic cells, the algorithm detected both
centrosomes accurately. The percentage of mitotic centrosomes
detected by the machine was similar to that identified by humans
(Fig. 3E,F; Fig. S1D). These data validate the performance of the
machine-learning centrosome detector.
To allow for corrections to the machine output, this semi-

automatic tool permits manual intervention. In particular, the user
can choose thresholds for centrosome detection and cell
segmentation and visualize the machine’s outputs. The user can

correct these outputs by removing spurious foci, adding
centrosomes and cell boundaries that were not detected and
merging cells that have been mistakenly marked as two separate
cells. The tool also allows the user to control various aspects of the
analysis itself, such as the radii used for spatial analysis, the
thresholds for identifying EB3 comets, and the thresholds for
determining the cell area. Finally, this tool can be easily generalized
to analyze the distribution of any protein around centrosomes or any
other user-identified foci.

With this tool, analysis is performed with the following steps.
First, the centrosome detection model and cell segmentation model
are loaded followed by loading of the image (Fig. 3A, step 1).
Second, the centrosome detection and cell segmentation models run
[run machine learning (ML) models; Fig. 3A, step 2]. This
automatically detects centrosomes and cell boundaries and
presents them as an overlay on the original image. In case of an
error in the cell segmentation, the segmentation can be corrected by
adding additional cell boundaries or merging wrongly segmented
cells. One can also remove cells from further analysis (Fig. 3G, step
3). The tool also allows for the removal of spurious detections or the
inclusion of missed centrosomes (Fig. 3H, step 4). The tool
automatically characterizes cells as being centrosome-amplified
based on the number of detected centrosomes (cells with greater
than two centrosomes), with amplified cells highlighted by a thick
outline. This automated labeling can also be corrected if needed
(Fig. 3A, step 5). Finally, once the centrosomes have been finalized,
the type of analysis is chosen (Fig. 3A, step 6). The analysis is
performed automatically, and the results saved in a tabular format.

The tool also allows for corrections (i.e. removal of spurious
detections and identification of missed centrosomes) to be saved for
future training of the centrosome detection model. The training can
be performed using a separate command-line utility that is packaged
with the tool.

In summary, we have generated a new tool with a graphical
interface that allows users to analyze the spatial distribution of
centrosomal proteins and MTs around centrosomes. The tool
performs semi-automated analyses, automating parts of the analysis
pipeline but also allowing for user interventions.

The semi-automatic machine learning algorithm detects
PCM defects in breast cancer cells
To test whether PCM levels are elevated in breast cancer cells with
amplified centrosomes, the algorithm described above was used to
quantify the levels and distribution of PCM proteins in normal
mammary epithelial cells and breast cancer cells (MCF10A and
MDA-231, respectively).

Analyses were first performed using manual annotation of
centrosomes. The levels and distribution of PCM proteins (γ-tubulin
and pericentrin) were quantified at centrosomes with normal or
amplified numbers. Approximately 23% ofMDA-231 breast cancer
cells had CA, whereas only 5% of normal-like breast cells
(MCF10A) had CA (Ganapathi Sankaran et al., 2019). The
relative intensities of γ-tubulin and pericentrin were quantified per
unit area in normal and amplified centrosomes (Fig. 4). Centrosomal
γ-tubulin was elevated by ∼40% at amplified centrosomes
compared to non-amplified centrosomes in both MCF10A and
MDA-231 cells (Fig. 4A,B). We next asked whether the relative
γ-tubulin intensity per centrosome is different between a non-
amplified and an amplified centrosome. In order to answer this, we
arrested MDA-231 cells in S phase and quantified the relative
intensity of γ-tubulin per centrosome per unit area. We found that
the centrosomal γ-tubulin was elevated by ∼30% in an amplified
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centrosome relative to that at a non-amplified centrosome (Fig.
S2A,B). This suggests that γ-tubulin is not only elevated in the
entire cluster of amplified centrosomes but also elevated per
centrosome in an amplified centrosome. Furthermore, the relative
γ-tubulin intensity diminished by at least 70% outside the
pericentriolar space (between 1.0 to 2.0 µm), similar to the
intensity profile seen for non-amplified centrosomes (Fig. 4B).
This suggests that while the PCM protein levels are elevated at the
core centrosome, γ-tubulin remains constrained to the pericentriolar
space of the amplified centrosomes. Consistent with the increase in

centrosomal γ-tubulin intensity, pericentrin protein was also
elevated at centrosomes in breast cancer cells with amplified
centrosomes (Fig. 4C,D). The magnitude of increase in both
γ-tubulin and pericentrin intensity correlated with increasing
numbers of centrioles. Intensities gradually and continuously
increased up to two-fold relative to the levels in cells with non-
amplified centrosomes (Fig. S2C,D). However, unlike γ-tubulin, the
pericentrin protein intensity at the amplified centrosomes did not
diminish as rapidly outside the core pericentriolar space when
compared to non-amplified centrosomes.

Fig. 3. A semi-automatic graphical tool
for performing PCM and MT density
analysis. (A) Screenshot of the graphical
interface that encapsulates the machine
learning-aided detection of centrosomes
with image processing algorithms to
analyze the spatial distribution of MT
organization. The steps to perform the
PCM and MT density analysis are shown
in red boxes. Scale bar: 10 μm.
(B) Comparison between the number of
cells with centrosomes detected by
machine and the number detected by
human annotation. Data are shown as
mean±s.e.m. of four independent
replicates. (C) Comparison between
number of centrosome-amplified (red)
and non-amplified (black) cells with
centrosomes detected by machine or
human. Data are shown as mean±s.e.m. of
n≥3 replicates. (D) Distribution of centriole
numbers detected by machine versus
humans.Eachdot represents thenumberof
centrioles annotated in each cell by the
machine and the human. The dot size
represents the number of cells that have the
same pair of values: bigger black circles
represent a higher number of annotations
while smaller gray circles represent a lower
numberofannotations.A totalof68cells are
represented.Only cells that were annotated
by both the algorithm and human were
considered. (E) Left panel, screenshot of
the image in thegraphical interfaceshowing
a mitotic cell stained for centrioles (centrin,
green), PCM (pericentrin, red), and
chromosomes (DAPI, blue). Right panel,
screenshot of the image in the graphical
interface showing detected centrosomes
(magenta) in the mitotic cell. Scale bars:
10 μm. (F) Percentage of mitotic
centrosomal annotations detected by
machine versus human. Data are shown as
mean±s.e.m. percentages of mitotic
annotations by human and by machine,
computed over two independent replicates.
(G) Screenshot of an image in the graphical
interface showing edited cell boundaries
(red, green, magenta, white, cyan, and
yellow boundaries). Scale bar: 10 μm.
(H) Left panel, screenshot of a spurious
detection (green arrow) as a centrosome.
Right panel, screenshot after removal of
the spurious detection (green arrow) in the
graphical interface.Circles indicate features
annotated as centrosomes by the detection
algorithm. Scale bars: 10 μm. ns, not
significant (Wilcoxon test).
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Fig. 4. Centrosome-amplified breast cancer cells exhibit PCM defects. (A) Non-amplified and amplified centrosomes in MCF10A cells (left) and MDA-231
cells (right) stained for centrioles (centrin, red) and γ-tubulin (green). Scale bar: 1 μm. (B) Left panel, γ-tubulin fluorescence intensity per unit area in amplified (red)
cells relative to non-amplified (black) MCF10A cells obtained using human annotation (P=1.9×10−6). Right panel, γ-tubulin fluorescence intensity per unit area in
amplified (red) cells relative to non-amplified (black) MDA-231 cells obtained using human annotation (P=1.9×10−6). (C) Non-amplified and amplified
centrosomes in MCF10A cells (left) and MDA-231 cells (right) stained for centrioles (centrin, red) and pericentrin (cyan). Scale bar: 1 μm. (D) Left panel,
pericentrin fluorescence intensity per unit area in amplified (red) cells relative to non-amplified (black) MCF10A cells obtained using human annotation
(P=3.8×10−6). Right panel, pericentrin fluorescence intensity per unit area in amplified (red) cells relative to non-amplified (black) MDA-231 cells obtained using
human annotation (P=1.9×10−6). (E) The slope, or first derivative, of fluorescence intensities of γ-tubulin and pericentrin at amplified centrosomes outside
the core pericentriolar space (between 1.0 µm and 2.0 µm). (F) Left panel, γ-tubulin fluorescence intensity per unit area in amplified (red) cells relative to
non-amplified (black) MCF10A cells obtained usingmachine annotation (P=3.8×10−6). Right panel, γ-tubulin fluorescence intensity per unit area in amplified (red)
cells relative to non-amplified (black) MDA-231 cells obtained using machine annotation (P=3.8×10−6). (G) Left panel, pericentrin fluorescence intensity per unit
area in amplified (red) cells relative to non-amplified (black) MCF10A cells obtained using machine annotation (P=3.8×10−6). Right panel, pericentrin
fluorescence intensity per unit area in amplified (red) cells relative to non-amplified (black) MDA-231 cells obtained using machine annotation (P=3.8×10−6).
(H) The slope, or first derivative, of fluorescence intensities of γ-tubulin and pericentrin at amplified centrosomes outside the core pericentriolar space (between
1.0 µm and 2.0 µm). In B,D,F,G, data are shown as mean+s.e.m., see Materials and Methods for numbers of cells analyzed. U µm−2, units µm−2. *P<0.05.
P-values were calculated using the Wilcoxon test.
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To quantify the differences in how γ-tubulin and pericentrin
diminish outside the pericentriolar cloud, we estimated the first
derivative, or slope, of γ-tubulin and pericentrin fluorescence
intensities outside the core pericentriolar space (Fig. 4E; Fig. S2E).
The slope of γ-tubulin intensity at amplified centrosomes was more
negative in comparison to the slope of pericentrin intensity at
amplified centrosomes. The γ-tubulin fluorescence intensity
diminished quickly outside the core pericentriolar space at
amplified centrosomes in comparison to pericentrin fluorescence
intensity (Fig. 4E; Fig. S2E). Moreover, this suggests that the
increase in centrioles at amplified centrosomes modulates the
organization of specific pericentriolar proteins.
We next utilized the semi-automatic machine learning algorithm

to quantify the pericentriolar defects at amplified centrosomes that
were described using manual annotation and quantification above.
The semi-automatic graphical tool annotated cells with greater
than two centrosomes as amplified. However, if the cells were mis-
annotated as non-amplified, then the annotations were manually
edited to amplified centrosomes. The tool corroborated the results
from the manual quantification: higher γ-tubulin levels in
amplified relative to non-amplified centrosomes were reported
by the semi-automated analysis (Fig. 4B,F). Although the
centrosomal γ-tubulin intensity was elevated, the distribution
remained encompassed within the pericentriolar space (60% of
total fluorescence intensity) of the amplified centrosomes.
Pericentrin was also elevated at centrosomes in breast cancer
cells with CA (Fig. 4D,G). Furthermore, pericentrin expanded the
pericentriolar space of amplified centrosomes (Fig. 4H). These
results show that the semi-automatic machine learning algorithm
detects the same centrosome organization defects at amplified
centrosomes as found by the more laborious manual annotation
and quantification.

MT density is increased at amplified centrosomes
The increase in γ-tubulin at amplified centrosomes suggests that
MTs might also be elevated around centrosomes. To test whether
cells with amplified centrosomes have increased MTs, we
measured the MT fluorescence intensity per unit area using the
algorithm. MT intensity was 30% greater in both MCF10A and
MDA-231 cells with amplified centrosomes compared to cells
without CA (Fig. 5A,B). Overall, these data suggest that
centrosome-amplified breast cancer cells have an increase in
centrosome-associated γ-tubulin that promotes MT nucleation to
increase the MT density.
To test whether amplified centrosomes increase the number of

growing MT ends, we created stably expressing tetracycline-
inducible mNeon–EB3-expressing MCF10A and MDA-231 cell
lines. Tetracycline was added for 48 h to induce expression of
mNeon–EB3, and the number of EB3 comets per unit area was
measured using the EB3 density feature in the graphical interface
(Fig. 5C–H). A 20% and 40% increase in the EB3 density was
observed at amplified centrosomes relative to the non-amplified
centrosomes in MCF10A and MDA-231 cells, respectively. This
suggests that amplified centrosomes nucleate more MT ends
compared to non-amplified centrosomes. Furthermore, the density
of EB3 foci was elevated closer to centrosomes in comparison to
density at the cell periphery in both MCF10A and MDA-231 cells
(Fig. 5E,H). This is consistent with the elevated MT density that is
observed closer to centrosomes relative to the cell periphery
(Fig. 5B). Taken together, the data suggest that MT nucleation is
enriched at amplified centrosomes in comparison to that at non-
amplified centrosomes of MCF10A and MDA-231 cells.

DISCUSSION
A semi-automatic graphical tool for centrosome detection
and analysis of MT organization
We designed a semi-automatic graphical tool that can speed up the
analysis of centrosomes andMTs. It does so by performing an initial
automated detection of centrosomes that can later be corrected, and
it removes the need for manual identification of EB3 comets.
Because of limitations in the amount of training the machine learning
algorithm can realistically incorporate, we found that user correction
of the algorithm’s predictions was crucial to ensure the accuracy of
the analysis. These corrections can be used to further train the
underlying model, allowing the model to improvewith use. However,
in our experiments, we did not perform such retraining so as to keep
the model fixed during analysis. Furthermore, retraining provides
flexibility to the tool, allowing it to be used for different experiments.
Training scripts and models are publicly available to the research
community (https://bharath272.github.io/centrosome-analysis/).

While correcting the output from the algorithm, we found several
commonmodes of error. First, unlike internet images wheremachine-
learning technologies are routinely used, the dynamic range of
fluorescence images can vary significantly, and naïve training of
convolutional networks does not generalize across such variations.
We addressed this by normalizing each image independently to have
zero mean and unit variance. Second, we found that while the
algorithm correctly identified the rough location of the centrosomes,
it often did not correctly estimate the number of centrioles. We thus
had to correct its predictions as towhich cells exhibited CA. Accurate
counting has not been addressed in the computer vision literature and
deserves further attention (Chattopadhyay et al., 2017). Finally, we
found that the algorithm often merged nearby cells or estimated their
boundary incorrectly. These issues reveal challenges that must be
addressed by future computer vision research.

In this study, we have used machine learning for the segmentation of
cells and the detection of centrosomes. We used machine learning for
these two steps of the analysis because these are the steps that are
difficult to specify by hand as precise computational procedures. Other
steps of the analysis, such as the measurement of the fluorescence
intensity or the computation of the centroid of the centrosomes, are
precise computations that can be created without resorting to machine
learning. Nevertheless, our results show that machine learning
techniques can provide a significant degree of automation and partly
mitigate the difficulties associated with manual annotation.

PCM proteins and their organization around amplified
centrosomes in breast cancer
Taxol (paclitaxel), Taxotere, and cabazitaxel are MT-stabilizing
drugs that have been used in chemotherapy for the treatment of
cancers (Ho and Mackey, 2014; Pazdur et al., 1993; Schiff and
Horwitz, 2006). These drugs promote mitotic arrest. However, the
proportion of cells lost by mitotic arrest does not explain the efficacy
of Taxol as a chemotherapy agent. The alternate hypothesis that
Taxol affects interphase breast cancer cells has not been well studied
(Weaver, 2014). Specifically, it is unclear whether these MT-
stabilizing drugs differentially impact underlying differences in the
interphase centrosomes and MTs of normal compared to
transformed breast cells (Weaver, 2014). To understand the
differences in interphase centrosomes and MTs of breast cancer
cells, we investigated the levels and the distribution of centrosome
PCM proteins andMTs using our semi-automatic machine learning-
aided approach. We found that amplified centrosomes in interphase
breast cancer cells not only have elevated γ-tubulin and pericentrin
but that the distribution of pericentrin localization is expanded. This
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suggests that there are more PCM sites that promote MT nucleation
and MTs that are organized around amplified centrosomes. This
might disrupt MT-related processes like cellular motility,
ciliogenesis, signaling, and MT-dependent transport (Caviston
and Holzbaur, 2006; Desai and Mitchison, 1997; Hyman and
Karsenti, 1996; Inoue and Salmon, 1995). Furthermore, expansion
of the PCM may interfere with MT-motor-dependent trafficking
(Galati et al., 2018; Nanjundappa et al., 2019). This altered MT-
motor-dependent trafficking may affect responses to MT-stabilizing
drugs.

The interphase MT network is altered in centrosome-
amplified breast cancer cells
In addition to the increased PCM, we found that the density of MTs
was elevated in MCF10A and MDA-231 cells with amplified

centrosomes compared to those with non-amplified centrosomes.
This increased MT organization could be attributed to cell cycle
differences, because S-phase cells have elevated microtubule
density relative to G1-phase cells (Salaycik, 2005). However, the
pool of non-amplified centrosomes included interphase cells with
either one (likely G1-phase) or two (likely S-phase) centrosomes.
Hence, cell cycle differences likely do not explain the increase in
MT organization observed in the centrosome-amplified cell
population. An increase in microtubule nucleation from additional
centrosome-proximal PCM sites is a more likely explanation for the
increase in MT density that was observed with centrosome
amplification. Finally, whether cytoplasmic α/β-tubulin concentrations
are elevated in these cells to promote increased MT assembly is not
known. Nevertheless, our studies suggest that amplified centrosomes
promote an increased MT network in interphase breast cancer cells.

Fig. 5. Centrosome-amplified breast cancer cells exhibit increased MT density. (A) Non-amplified and amplified centrosomes in MCF10A cells (left)
andMDA-231 cells (right) stained for centrioles (CEP192, red) andMTs (α-tubulin, green). Scale bar: 10 μm. (B) Left panel, MT fluorescence intensity in amplified
(red) MCF10A cells relative to non-amplified (black) cells (P-values: gray asterisk, P=4×10−6; black asterisk, P=3.4×10−6). Right panel, MT fluorescence intensity
in amplified (red) MDA-231 cells relative to non-amplified (black) cells (P-values: gray asterisk, P=8×10−6; black asterisk, P=2×10−2; red asterisk, P=9.3×10−3).
(C) Non-amplified and amplified centrosomes in Tet-induced mNeon–EB3 MCF10A cells stained for centrioles (centrin, green) and γ-tubulin (red). Scale bar:
5 μm. (D) Processed images of non-amplified Tet-induced mNeon–EB3 MCF10A cells utilized for the measurement of EB3 counts and area. Circle indicates
region of interest. (E) EB3 foci counts per unit area in non-amplified (black) and amplified (red) MCF10A cells (gray asterisk, P=3.1×10−2). (F) Non-amplified and
amplified centrosomes in Tet-induced mNeon–EB3 MDA-231 cells stained for centrioles (centrin, green) and γ-tubulin (red). Scale bar: 5 μm. (G) Processed
images of amplified Tet-induced mNeon-EB3 MDA-231 cells utilized for the measurement of EB3 counts and area. Circle indicates region of interest. (H) EB3
counts per unit area in amplified (red) MDA-231 cells relative to non-amplified (black) cells (gray asterisk, P=3.1×10−2). Data in B,E,H are shown as mean+s.e.m.
See Materials and Methods for numbers of cells analyzed. U µm−2, units µm−2. Gray asterisks correspond to tests for significant differences in mean at
each distance from the centrosome (paired Student’s t-test). This tests whether the red dots are consistently higher than the black dots. Black asterisks correspond
to tests for significant differences in mean non-amplified microtubule intensity between 0.5 µm and 5.2 µm (Wilcoxon test). Red asterisk corresponds to a test of
significant difference in mean amplified microtubule intensity between 0.5 µm and 5.2 µm (Wilcoxon test).
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Similar to MT density, we observed that the number of growing
MTs, as judged by EB3 density, is elevated in centrosome-amplified
breast cancer cells relative to that in cells without centrosome
amplification (Fig. 5E,H). Furthermore, our results revealed
differences in MT populations between MDA-231 and MCF10A
cells. EB3 density decreased towards the cell periphery of
centrosome-amplified MDA-231 cells relative to the density in
centrosome-amplified MCF10A cells. MT density also decreased
towards the cell periphery in centrosome-amplified MDA-231 cells
(Fig. 5B). However, unlike MDA-231 cells, MT density in
MCF10A cells with amplified centrosomes was greater at the cell
periphery (Fig. 5B). The increased MT density from MCF10A
amplified centrosomes at the cell periphery might be explained
either by the presence of longer and more stable MTs or by
increased nucleation and branching of the MT network (Goshima
et al., 2008; Ishihara et al., 2014; Petry et al., 2013). It remains
unclear why MCF10A and MDA-231 cells exhibited these unique
profiles in MT growth and density. An increase in MT density and
EB3 comets around amplified centrosomes reflects differences in
MTs between non-amplified and amplified interphase breast
cancer cells. Such altered cytoskeletal architecture could lead to
changes in intracellular trafficking and disrupt cellular processes
including ciliogenesis, cell migration and cell polarization
(Bouchet and Akhmanova, 2017; Caviston and Holzbaur,
2006; Siegrist and Doe, 2007).
In summary, we built a semi-automated tool with a graphical

interface that enables quantitative measurements of centrosome
aberrations. Using this approach, we detected centrosome
aberrations in cancer cells and showed an increase in MT
nucleation that promotes changes to MT density and the spatial
distribution of MTs around centrosomes. This not only highlights
how the use of the machine learning-based approaches for the
detection of centrosomal aberrations can speed up manual analysis
but also reveals how such semi-automatic analysis can be globally
applied to quantitative cell biological problems.

MATERIALS AND METHODS
Cell culture
Breast cancer cell lines MCF10A and MDA-MB-231 (MDA-231) were
obtained from the University of Colorado Cancer Center Tissue Culture
Core. Mammalian tissue culture lines were all grown (following a method
similar to that described by Ganapathi Sankaran et al., 2019) at 37°C with 5%
CO2. MCF10A cells were received at passage 51 and were grown in DMEM/
F12 (Invitrogen #11330-032), 5% horse serum (Invitrogen #16050-122),
20 ng ml−1 EGF (Invitrogen #PHG0311), 0.5 mg ml−1 hydrocortisone
(Sigma #H-0888), 100 ng ml−1 cholera toxin (Sigma #C-8052), 10 μg ml−1

insulin (Sigma #I-1882) and 1% penicillin and streptomycin (Pen/Strep;
Invitrogen #15070-063). MDA-MB-231 cells, received at passage 15, were
grown in DMEM (Invitrogen #11965-092), Pen/Strep (Invitrogen #15070-
063) and 10% FBS (FBS; Gemini Biosciences). Cell lines were authenticated
at the sources and tested negative for mycoplasma using the MycoAlert
mycoplasma detection kit through the University of Colorado Cancer Center
Tissue Culture Core. Cells were passaged and sub-cultured using trypsin
(Invitrogen #150901-046) when cultures reached 60–80% confluency
(Ganapathi Sankaran et al., 2019).

Generation of tetracycline-inducible mNeon–EB3 MCF10A and
MDA-231 cells
The EB3–mNeon (C-terminal fusion) fragment was obtained through PCR
with Phusion DNA polymerase of a pre-existing plasmid (pmNeonGreen-
EB3-7; Allele Biotechnology) using primers that have Nhe1 and Xma1 sites
appended to them. This was cloned into the tetracycline-inducible construct
pcw57.1 using the enzymes Nhe1 and Age1 The resulting C-terminal fusion
construct is referred to as tetracycline-inducible mNeon–EB3 in the text.

Lentivirus harboring tetracycline-inducible mNeon–EB3were made by the
transfection of 293FT cells. 293FT cells were plated in 6-cm dishes and
allowed to reach 50%–70% confluency. Cells were then transfected with
tetracycline-inducible EB3–mNeon constructs, and second-generation
lentivirus packaging plasmids (pMD2.G and psPAX2) using
Lipofectamine 2000 (Life Technologies # 11668019). The 293FT cells, the
viral constructs pMD2.G and psPAX2, and pcw57.1 were obtained from Dr
Heide Ford, University of Colorado, Aurora, CO. 293FT medium containing
virus was harvested and MDA-231 and MCF10A cells were infected for 24–
48 h in the presence of 10 μg ml−1 (26.7 μM) polybrene. After a 24 h
recovery, transduced cells were selected with puromycin at 2 μg ml−1

(4.24 μM) and were flow-sorted to isolate and plate single cells into 96-well
plates. Such clones were cultured in 50% filtered conditioned medium with
50% fresh medium. Tetracycline-inducible mNeon–EB3 MCF10A and
MDA-231 cells were induced with tetracycline (Invitrogen #550205) at
2.5 μg ml−1 (5.63 μM) (Ganapathi Sankaran et al., 2019).

Transfections
293FT cells at 50–80% confluence were transfected using Lipofectamine
2000 (Invitrogen # 11668019). Plasmid DNA and Plus reagent (Invitrogen
# 11514015) were mixed at 1:1 and incubated for 5 min. This mixture was
then combined with Lipofectamine at a 1:3 ratio. Complexes were diluted in
Opti-MEM (Invitrogen # 31985062). After a 4 h incubation, the complexes
were removed and the transfected cells were supplied with fresh medium
(Ganapathi Sankaran et al., 2019).

Immunofluorescence
12-mm diameter coverslips were acid-washed and heated to 50°C in
100 mMHCl for 16 h. This was followed by washes with water, 50%, 70%,
and 95% ethanol for 30 min each. Coverslips were coated with type-1
collagen (Sigma # C9791), air-dried for 20 min in the laminar hood and
exposed to UV light for cross-linking of collagen for 20 min (procedure
similar to that described in Ganapathi Sankaran et al., 2019). Cells were
cultured on collagen-coated coverslips to 55–70% confluence. For
centrosome immunofluorescence, cells were fixed with 100% methanol at
−20°C for 8 min. Fixed cells werewashed with PBS/Mg (1× PBS and 1 mM
MgCl2), and then blocked with Knudsen Buffer (1× PBS, 0.5% BSA, 0.5%
NP-40, 1 mM MgCl2 and 1 mM NaN3) for 1 h. Cells were incubated
overnight with primary antibodies diluted in Knudsen Buffer at 4°C.
Coverslips were washed with PBS three times in 5-min intervals. Secondary
antibodies and Hoechst 33258 (10 μg ml−1, Sigma #B2261) were diluted in
Knudsen buffer and incubated for 1 h at room temperature. Coverslips were
mounted using Citifluor (Ted Pella) and sealed with clear nail polish
(Ganapathi Sankaran et al., 2019). Antibodies used for immunofluorescence
were anti-centrin (1:2000; 20H5; Abcam), anti-pericentrin (1:2000;
Abcam), anti-CEP192 (1:2000; obtained from Dr Andrew Holland, Johns
Hopkins University, Baltimore, MD), anti-γ-tubulin (1:1000; DQ-19;
Sigma) and anti-α-tubulin (1:500; DM1A; Sigma). Alexa-Fluor
secondary antibodies were diluted to 1:1000 for all experiments
(Molecular Probes).

S-phase arrested and M-phase cells
Cells were grown on collagen-coated coverslips overnight using the procedure
described above. Cells were treated with 1.6 µg ml−1 aphidicolin for 22 h and
then fixed with methanol. For the M-phase cells, cells were arrested in
S-phase as above for 21 h, washed three times with medium to remove the
drug and allowed to progress out of the arrest for 10 h. They were then fixed
with methanol using the procedure described above.

Microscopy
The fluorescence imaging, as shown in the figures, used methods identical
to those described in Dahl et al. (2015). Briefly, images were acquired using
a Nikon TiE (Nikon Instruments, Inc.) inverted microscope stand equipped
with a 100× PlanApoDIC, NA 1.4 objective. Images were captured using an
Andor iXon EMCCD 888E camera or an Andor Xyla 4.2 CMOS camera
(Andor Technologies). Images in Fig. 4A,B were acquired using a Swept
Field Confocal system (Prairie Technologies/Nikon Instruments) on a Nikon
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Ti inverted microscope stand equipped with a 100× Plan Apo λ, NA 1.45
objective. Images were captured with an Andor Clara CCD camera (Andor
Technologies) (Ganapathi Sankaran et al., 2019).

Nikon NIS Elements imaging software was used for image acquisition.
Image acquisition times were constant within a given experiment and ranged
from 50 to 400 ms, depending on the experiment. All images were acquired
at approximately 25°C. We utilized maximum intensity projections of the
complete z-stacks for visualization of centrosomes. Maximum intensity
projections of centrosomes compromise spatial information but have
advantages over sum projections, which oversample centrosomes and
collect more out of focus light, thus exaggerating differences in fluorescence
intensity during quantification. The findings of previous studies support the
visualization of centrosomes using maximum intensity projections (Dahl
et al., 2015; Ganapathi Sankaran et al., 2020 preprint; Holland et al., 2010).
For these reasons, maximum intensity projections were utilized. Adjustments
to images presented in the figures involved only global, linear intensity
changes. In the schematics (Fig. 1A,F; Fig. S1), for visualization of the neural
network outputs, which can have an arbitrary dynamic range, global non-
linear intensity normalization was performed to remove saturation artifacts
and enhance contrast. This was done mainly to visualize the neural network
outputs and does not add, remove, or alter any feature.

Centriole and centrosome number counts
Cells were scored as amplified, non-amplified and under duplicated based
on centrin and γ-tubulin staining (Dahl et al., 2015). We classified cells with
one or two centrosomes as non-amplified and cells with greater than two
centrosomes as amplified. In other words, cells with two centrin and one
γ-tubulin foci (one centrosome) or four centrin and two γ-tubulin foci (two
centrosomes) were classified as non-amplified, whereas cells with greater
than four centrin and two γ-tubulin foci were classified as amplified. Cells
with three centrin foci and one γ-tubulin foci were classified as amplified,
whereas cells with three centrin foci and two γ-tubulin foci were classified as
under duplicated.

Computational tools
The semi-automatic graphical user interface was created as a standalone
Python program. The training script is a separate program packaged with the
graphical interface. The version of Python used was 3.6, and it was used in
conjunction with Anaconda as a package manager. The graphical user
interface accepts TIFF files. The size that a pixel denotes can be input
through the interface. The graphical user interface was created using the
Tkinter Python library. The underlying machine learning models were built
using the PyTorch library; we used version 0.4.1. The code also relies on the
NumPy library for matrix computations, the SciPy library for a variety of
signal processing routines, the Matplotlib library for plotting and the Tifffile
library for reading and writing TIFF images. The training annotations were
collected using a separate stand-alone program with a graphical user
interface.

The centrosome detection model was trained using stochastic gradient
descent with momentum (Krizhevsky et al., 2012). The parameters of the
training procedure were as follows: learning rate, 0.01; momentum, 0.9;
weight decay, 0.0001; the total number of epochs, 100; batch size, 1.
Because pixels on centrosomes are very few in number, the learning
problem was found to be extremely imbalanced. To deal with this
imbalance, the training loss on centrosomal pixels was increased by a
factor of 1000. Such scaling is common in the machine learning literature
whenever the dataset is imbalanced (Cui et al., 2019). The scale is usually
chosen based on empirical accuracy of the model on the training set. This is
mathematically equivalent to statistically sampling centrosomal pixels 1000
times more often during the stochastic gradient descent procedure. Such
scaling mitigates the problem of an imbalanced dataset: without it, the
model fails to detect any centrosomes. However, the scaling is merely a
heuristic and does not completely eliminate the problem of dataset
imbalance. Pixels within five pixels of a centrosome were ignored during
training to avoid penalizing the algorithm for small deviations.

The cell segmentation model was also trained using stochastic gradient
descent with momentum. The parameters of the training procedure were as
follows: learning rate, 0.01; momentum, 0.9; weight decay, 0.0001; the total

number of epochs, 100; batch size, 1. The tolerance for the random walk
segmenter was set to 0.01.

The centrosome analysis code is available here: https://bharath272.github.
io/centrosome-analysis/. Also included with the code is a training script that
can be used to train a new model based on the saved corrections from the
graphical tool. This training script can be run from the terminal as follows:
python train_foci_detector.py –trainfiles trainingset.csv –modelfile
foci_model.pt.

Here, trainingset.csv must be a CSV (comma-separated values) file
formatted as follows. Each row of this file consists of the path to the image (a
TIFF file), and the path to the corresponding corrected annotation (a JSON
file, saved from the graphical tool using the ‘Save corrections’ feature),
separated by a comma. Such a CSV can be created using most spreadsheet
software including Microsoft Excel. Once run, the training script will save
the resulting trained foci detector in the file foci_model.pt.

Statistics and biological replicates
All center values represent means and error bars represent the standard error
of the mean. All the experiments in the figures were performed using at least
three independent biological replicates, except for Fig. 3E which was done
in two independent biological replicates. The number of cells used for
training the algorithm were as follows: Fig. 1C, 40 cells; Fig. 1D, 40 cells;
Fig. 1E, 40 cells. The number of cells used in each immunofluorescence
experiment were as follows: Fig. 3B, 52 cells per experiment (215 cells in
total, four independent replicates); Fig. 3C, 40 cells per experiment; Fig. 3D,
40 cells per experiment; Fig. 3F, 12 mitotic cells (two independent
replicates); Fig. 4A,B,F, 40 cells per condition/80 cells per experiment (∼40
centrosomes per condition); Fig. 4C,D,G, 40 cells per condition/80 cells per
experiment (∼40 centrosomes per condition); Fig. 5A,B, 30 cells per
condition/ 60 cells experiment; Fig. 5C–E, 40 cells per experiment; Fig. 5F–H,
40 cells per experiment.

Fisher’s test was utilized to examine the significance of contingency
when data were classified into two or more categories. A Student’s two-
tailed unpaired t-test was used to examine significance between two normal
unpaired distributions (equal variance assumed). Student’s two-tailed paired
tests were used to examine significance between two normal continuous
paired distributions. Pairing was assumed when two measurements were
taken for an individual variable. For example, in Fig. 5B every measurement
corresponding to non-amplified and amplified centrosomes, at a particular
distance from the centrosome (0.5, 1, 1.3, 2.6, 3.9 and 5.2 µm), were
considered ‘paired’. Normality tests were performed both on the raw data
and meta-data extracted from the replicates of raw data. The Shapiro–Wilk
normality test and D’Agostino–Pearson omnibus normality test were
utilized to examine the normality of data. The Shapiro–Wilk normality test
was used when the number of samples was less than eight. When the number
of samples was greater than eight, the D’Agostino–Pearson omnibus
normality test was used. The Mann–WhitneyU-test was utilized to examine
the significance of non-normal unpaired distributions, and theWilcoxon test
was used utilized to examine the significance of non-normal paired
distributions. Results were considered statistically significant with P<0.05.
P-values are denoted in the figure legends.
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Figure S1: (A) Pipeline for estimating boundary strength based on the convolutional 

network output. The neural network estimates p(x), which is the likelihood of a pixel 

being in the cell body (top left). The random walk segmenter uses this likelihood to over-

segment cells (top right). We identify the boundary between the predicted cells (bottom 

left) and estimate the strength of the boundary (bottom) using 1-p(x) (bottom right). In 

the bottom panel, darker colors indicate stronger boundaries. Scale bar represent 5 μm. 

(B) Percentage of centrioles detected using machine learning versus standard image

processing at score thresholds that yield fewer than 10% false positives. (C) Mean 

interphase centriole number identified by human versus machine. Mean±SEM. Mann-

Whitney U test. ns: not significant. (D) Mean mitotic centriole number identified by 

human versus machine. Mean±SEM. Mann-Whitney U test. ns: not significant. (E) 

Improvement in accuracy when the centrosome detection model is trained with 15 

images (red) instead of 5 images (black).  
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numbers in MDA-231 cells obtained using human annotation. The slope or first

derivative of fluorescence intensities of γ-tubulin and Pericentrin at non-amplified (black) 

and amplified centrosomes (red) outside the core pericentriolar space (between 1.0 m 

to 2.0 m). Mean±SEM, Um-2: Unitsm-2, Students t-test (paired). 

Figure S2: (A) Non-amplified and amplified centrosomes in S-phase arrested MDA-231 

cells stained for centrioles (centrin, red) and γ-tubulin (green) Scale bars represent 1 

μm. (B) γ-tubulin fluorescence intensity per centrosome per unit area in amplified (red) 

relative to non-amplified (black) MDA-231 cells obtained using human annotation (p-

value: 2.7*10-12). (C) γ-tubulin fluorescence intensity per unit area at various distances 

from the centroid of varying centriole numbers in non-amplified (black) and amplified 

(red) MDA-231 cells obtained using human annotation. (D) Pericentrin fluorescence 

intensity per unit area at various distances from the centroid of varying centriole 
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