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How fast can raptors see?
Simon Potier*, Margaux Lieuvin, Michael Pfaff and Almut Kelber

ABSTRACT
Birds, and especially raptors, are highly visual animals. Some of them
have the highest spatial resolving power known in the animal kingdom,
allowing prey detection at distance. While many raptors visually track
fast-moving andmanoeuvrable prey, requiring high temporal resolution,
this aspect of their visual system has never been studied before. In this
study, we estimated how fast raptors can see, by measuring the flicker
fusion frequency of three species with different lifestyles. We found that
flicker fusion frequency differed among species, beingat least 129 Hz in
the peregrine falcon, Falco peregrinus, 102 Hz in the saker falcon,
Falco cherrug, and 81 Hz in the Harris’s hawk, Parabuteo unicinctus.
We suggest a potential link between fast vision and hunting strategy,
with high temporal resolution in the fast-flying falcons that chase
fast-moving, manoeuvrable prey and a lower resolution in the
Harris’s hawk, which flies more slowly and targets slower prey.

KEY WORDS: Falcon, Flicker fusion frequency, Hawk, Raptor,
Temporal resolution, Vision

INTRODUCTION
Vision provides instantaneous and detailed information about the
environment (Land and Nilsson, 2012). For an animal to perceive
objects of interest, like food or mates, many aspects of vision are
important, such as the visual field (the space around the head from
which visual information can be gathered), colour perception,
contrast sensitivity and spatial resolution (Martin, 2017). Species
that forage visually need specialized visual abilities. Birds and
especially raptors are believed to be highly dependent on their visual
capabilities even though other senses such as olfaction may also be
important (Caro et al., 2015; Potier, 2019). For instance, raptors have
the highest achromatic (differences only occur in luminance, i.e. the
grey level) and chromatic (differences only occur in chromaticity)
spatial resolution found among extant animals (Mitkus et al., 2018;
Potier et al., 2018; Reymond, 1985).
Whilemany aspects of vision in birds have been studied (e.g. visual

fields, colour vision or visual spatial resolution; Martin, 2017), the
temporal resolution, i.e. the ability to resolve rapidmovements, of bird
vision remains poorly known. However, many birds need fast eye
sight to perform very quick and precise flight manoeuvres, in order to
avoid harmful encounters with stationary objects such as branches,
fast-moving predators or flockmates or – in the case of raptors – with
fast-flying prey. Each of these tasks requires high resolving power
for visual details not only in space but also in time. Temporal
resolution has been behaviourally estimated only in domestic

chickens (Gallus domesticus: Lisney et al., 2011; Nuboer et al.,
1992), rock pigeons (Columba livia: Hendricks, 1966), budgerigars
(Melopsittacus undulates: Boström et al., 2017; Ginsburg and
Nilsson, 1971) and some passerines (Boström et al., 2016;
Greenwood et al., 2004). Among these birds, the passerines have the
highest temporal resolution, with a maximum of∼140 Hz in the pied
flycatcher (Ficedula hypoleuca: Boström et al., 2016).

In raptors, while spatial resolution has been estimated in a number
of species (Mitkus et al., 2018), temporal resolution has not been
studied in any species so far. This is surprising because raptors have
different specializations that could be related to high temporal
resolving power: (1) raptors have relatively high spatial resolution
and can thus benefit from high temporal resolution to reduce motion-
induced blur (as has been suggested for insects: Srinivasan and
Bernard, 1975); (2) they have a highmetabolic rate (Zar, 1968), which
is positively correlated to temporal resolution (Healy et al., 2013);
(3) they have a deep fovea with steep slopes (Oehme, 1964; Potier
et al., 2017b; Walls, 1942), which has been hypothesized to increase
temporal acuity (Bringmann, 2019) by more pronounced image
distortion (Pumphrey, 1948); and (4) some raptors, such as falcons,
fly at surprisingly high speed when diving on fast-moving prey (e.g.
52–58 m s−1 for the gyrfalcon, Falco rusticolus: Tucker et al., 1998;
theoretically up to 138–174 m s−1 for the peregrine falcon, Falco
peregrinus: Tucker, 1998), and other species hunt fast-flying prey in
complex forest environments. Therefore, we expect raptors to have
relatively high temporal resolution which enables them to track fast-
moving prey at high speed in complex environments.

In this study, we determined the flicker fusion frequency (FFF), i.e.
the frequency at which an intermittent light stimulus appears to be
steady, at several light intensities, in order to find the critical flicker
fusion frequency (CFF), as an estimate of the maximal temporal
resolution in an individual. We studied (1) two species of falconiform
raptors, the peregrine falcon (F. peregrinus Tunstall 1771) and saker
falcon (Falco cherrug Gray 1834), both of which fly at high speeds
and mostly hunt fast-moving avian prey, and (2) one species of
accipitriform raptor, the Harris’s hawk [Parabuteo unicinctus
(Temminck 1824)], which flies at lower speeds and generally hunts
slower, terrestrial prey, such as small mammals (Ferguson-Lees and
Christie, 2001). We hypothesized that all studied species may have
high temporal resolution but, depending on their lifestyle, falcons
may have higher temporal resolution than hawks.

MATERIALS AND METHODS
Ethics
This study was conducted under a formal agreement between the
animal rearing facility Les Ailes de l’Urga (France) and Lund
University (Sweden). In agreement with French law, the birds were
handled by their usual trainers under the permit of Les Ailes de l’Urga
(national certificate to maintain birds ‘Certificat de capacite’ delivered
to the director of the falconry, Patrice Potier, on 20 June 2006).

Subjects and study site
Three Harris’s hawks, two peregrine falcons and one saker falcon
participated in the experiments (see Table 1). All birds belong to theReceived 25 June 2019; Accepted 26 November 2019
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French falconry park Les Ailes de l’Urga, where they are kept in
good health and allowed to fly regularly. They were tested close to
their holding aviaries and returned to them immediately after each
experimental session. During the period of this study, the birds’
body mass was measured every day and maintained at 90% (for
falcons) and 95% (for hawks) of the free-feeding body mass. The
ratio of experimental body mass to free-feeding body mass was
lower in falcons than in hawks because the falcons were parent-
reared while the hawks were hand-reared, and therefore more
habituated to human presence.

Experimental setup
Experiments were conducted in a room measuring 200×200 cm in
area and 220 cm in height. Threewalls were made of grey fabric, but
the wall on which the stimuli were presented was made from wood
and painted in a similar grey colour (Fig. 1). The room was
illuminated from above using a white LED lamp that did not flicker
(Trådfri LED 1000 lm, IKEA). A diffusion filter (LEE filters 452,
Andover, UK) was used to distribute the light evenly in the room.
We presented two light stimuli (generated by white LED lamps;
Jansjö LED, IKEA), 2 cm in diameter and placed 140 cm above the
floor and 115 cm apart from each other, to the birds simultaneously.
We used a front-mounted diffusion filter (LEE filters 452) to create
even light distribution, and neutral density filters (LEE filters) to
generate different intensities. A custom-built circuit (based on an
ARDUINOUNO, programmed in open source ARDUINO software
IDE, library Tone, and connected via a power transistor to the
lamps) was used to generate square wave light stimuli with exact
frequencies between 10 and 1000 Hz. A stimulus with a flicker

frequency of 1000 Hz served as the perceptually constant stimulus
(hereafter referred to as constant light).

A perch placed under each stimulus allowed access to a hidden
hole where a food reward could be given by the experimenter (S.P.
for hawks and M.L. for falcons). The birds began each trial from a
starting perch, 110 cm above the floor and 180 cm from the stimuli.
The stimuli thus had an angular diameter of 0.6 deg when seen from
the starting perch.

Behavioural procedure
Experiments were conducted from 10 September 2018 to 11
February 2019. Using operant conditioning and positive
reinforcement, we trained each bird individually to discriminate
between the constant light as the rewarded stimulus and the
flickering light as the unrewarded stimulus (see Boström et al.,
2017, for similar procedure). Initially, we trained the bird to fly from
the starting perch to the perch in front of the constant light (Fig. 1).
During the first 2 days, the food reward was visible and two constant
light stimuli were presented, to train the bird to fly to a randomly
chosen perch. Then, we started the training with one constant and
one flickering light. If the bird made a correct choice and flew to the
side presenting the constant light, it received a food reward (a piece
of chicken, less than 2 g). If the bird flew to the simultaneously
presented lamp flickering at 10 or 20 Hz, it did not receive a reward.
The sides of the rewarded and unrewarded stimuli were changed in a
pseudo-random order (i.e. the positive stimulus was not presented
on the same side for more than three consecutive trials). Thus,
during a session of 30 trials, the rewarded stimulus was presented 15
times on each side. When a bird reached 80% correct choices in two

Table 1. Information on all birds used in the experiment

Order Common name Species name Individual Sex Age (years) Body mass (g)

Falconiformes Peregrine falcon Falco peregrinus Waston Male 3 530
Xéros Male 2 540

Saker falcon Falco cherrug Xélor Male 2 700
Accipitriformes Harris’s hawk Parabuteo unicinctus Nadja Female 8 1050

Gypsie Female 7 1050
Lancelot Male 8 750

Fig. 1. A female Harris’s hawksitting on the starting perch andmaking a decision.Note that the bird covers the left stimulus. The hidden hole is just below the
visible stimulus. Photo credit: Hervé Colosio.
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consecutive sessions of 30 trials each, we considered that it had
learnt the task and started test sessions.
Each test session started with five easy trials (unrewarded

stimulus flickering at 10 or 20 Hz). After this, we used a 2 up–
1 down experimental procedure to increase the frequency of the
unrewarded stimulus in steps of 10 Hz until the bird could no longer
distinguish the two stimuli. If a bird made two correct choices, we
increased the frequency by 10 Hz. If a bird made one incorrect
choice, we decreased the frequency by 10 Hz. Closer to the
resolution limit of the bird, the same procedure was continued with
steps of 5 Hz, 2 Hz and finally 1 Hz until the bird could no longer
discriminate the two stimuli; thus, its FFF was reached. To precisely
determine the FFF, several frequency reversals in steps of 1 Hz
were performed at the threshold frequency (Fig. 2A). The
procedure was repeated at five different stimulus luminances
[160, 2650, 14,100, 26,400 and 55,500 cd m−2, measured using a
photometer (Hagner ScreenMaster, Hagner, Solna, Sweden);
Table 2] with two background luminances (0.1 and 2.9 cd m−2;
Table 2). For each luminance, we present the averaged FFF
determined in three test sessions. Each bird was tested individually
at all light intensities, in random order, but only once per day. We

determined the CFF as the maximum FFF of a bird at any specific
light intensity.

Statistical analyses
All analyses were performed in R (v.3.5.1) using ggplot2 (https://
CRAN.R-project.org/package=ggplot2), lmerTest (Kuznetsova et al.,
2017), emmeans (https://CRAN.R-project.org/package=emmeans)
and RVAideMemoire (https://CRAN.R-project.org/package=
RVAideMemoire) packages. Differences between falcons and
hawks in session duration (log transformed) and quantity of food
consumed (log transformed) were analysed using linear mixed
models with bird identity as random effect following a Gaussian
error distribution. We tested for differences in FFF between
falcons and hawks at each luminance level, using linear mixed
models, following a Gaussian error distribution. Stimulus luminance
(log transformed) in interaction with order (falcons versus hawks)
was used as a fixed effect and bird identity as a random effect.
Pairwise comparisons were obtained using the contrast and Tukey
adjustment method. The differences between falcons and hawks in
the number of trials per session was analysed using linear mixed
models with bird identity as a random effect, following a Poisson
error distribution.

For all linear mixed models, the best fixed effect structure was
selected using the AIC criterion following the method described by
Zuur et al. (2009). We inspected the residuals of each model to
ensure that they fitted the assumption of linear mixed models
following a Gaussian or Poisson error distribution. Throughout the
paper, we present the estimates, t-values and P-values for fixed
effects in REML (residual maximum likelihood estimation) models,
except for the number of trials, where we present the estimate,
z-value and P-value for fixed effects in ML (maximum likelihood
estimation with Laplace approximation) according to the Poisson
error distribution (Zuur et al., 2009).

RESULTS
All individuals were highly motivated and participated in the
experiment at all intensities. The average number of trials (excluding
the five first easy trials) per session was 44±2 (mean±s.e.m.) and did
not differ between falcons and hawks (estimate=−0.26±0.16,
z=−1.61, P=0.11). Within a session, the mean quantity of food
consumed was 71±3 g (mean±s.e.m.) and did not differ between
falcons and hawks (estimate=−0.15±0.15, d.f.=6.11, t=−1.04,
P=0.34). The duration of a session, and therefore the decision
time, was significantly higher for falcons than for hawks (falcons:
19.68±1.83 min, hawks: 11.86±0.46 min; estimate=0.38±0.11,
d.f.=3.92, t=3.50, P=0.03; see Table S1).

Generally, the peregrine falcons had the highest FFFs, followed
by the saker falcon and the Harris’s hawks (Fig. 2B). Specifically,
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Fig. 2. Flicker fusion frequency (FFF) of falcons and hawks. (A) An
example test session at a stimulus luminance 2650 cd m−2 with the saker falcon.
Each dot corresponds to a correct choice at the FFF determined as 71 Hz.
(B) FFF at five stimulus luminances. Blue squares: Harris’s hawks (n=3); red
circles: peregrine falcons (n=2); green triangles: saker falcon (n=1). Symbols
represent means±s.d. of individual birds; lines represent species averages.

Table 2. Stimulus and cage illumination for all tests

Stimulus luminance
(cd m−2)

Background luminance
(cd m−2)

Cage illuminance
(lx)

160 0.1 28
2650 0.1 28
14,100 2.9 1000
26,400 2.9 1000
55,500 2.9 1000

Stimulus luminance was measured using a photometer pointing toward the
stimuli. Background luminance was measured 3 cm above the stimuli with the
same photometer pointing directly towards the background. Cage luminance
was measured 30 cm above the starting perch using the photometer as a
luxmeter pointing upward.
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one Harris’s hawk, one peregrine falcon and the saker falcon had
their highest FFF (and thus their CFF) at a stimulus luminance of
26,400 cd m−2 (81, 120 and 102 Hz, respectively; Fig. 2). For the
three other individuals, the FFFs increased continuously with
luminosity (Fig. 2), and thus the CFF could not be determined.
Indeed, for those individuals, the FFF was slightly higher at the
highest stimulus luminance of 55,500 cd m−2 (77 and 75 Hz for the
two other Harris’s hawks and 129 Hz for the second peregrine
falcon) than at 26,400 cd m−2. The mean FFFs for each species at all
luminances are shown in Fig. 2B.
Based on AIC criterion, the best fixed effect structure to

explain FFF was the interaction between stimulus luminance and
bird order. Indeed, we found a significant interaction between
stimulus luminance and bird order for the FFFs (d.f.=4, χ2=26.31,
P<0.001). Specifically, falcons had higher FFFs than hawks at high
stimulus luminance (luminance 265,000 cd m−2: estimate=40.00
±7.97, d.f.=7.18, t=5.02; P=0.02; luminance 55,500 cd m−2:
estimate=35.33±7.99, d.f.=7.23, t=4.42, P=0.04). At lower
luminance, FFFs of falcons and hawks were similar (all P>0.10;
see Table S1).
For all tested individuals, the FFF was much lower at low light

intensities. Indeed, the FFFs were significantly different for
different stimulus luminances for both falcons and hawks.
Specifically, while FFFs did not differ significantly for the three
higher stimulus luminances (14,100, 26,400 and 55,500 cd m−2;
all P>0.33 for falcons and hawks; see Table S1), FFFs at the
low luminances (160 and 2650 cd m−2) were significantly
different from the others (all P<0.008 for falcons and hawks;
see Table S1). We also found that FFFs were significantly
different between the two lower stimulus luminances (160
and 2650 cd m−2) for falcons (estimate=−32.44±4.60,
d.f.=15.69, t=−7.05, P=0.001) but not for hawks (estimate=
−10.72±4.67, d.f.=16.67, t=−2.29, P=0.44).

DISCUSSION
Our study is, to our knowledge, the first to investigate the temporal
resolution in diurnal birds of prey. Using behavioural experiments,
we found that peregrine falcons have a higher temporal resolution
of vision than most other vertebrates, but this was not the case for
Harris’s hawks. These differences in temporal resolution are
discussed below in terms of lifestyle and eye physiology; however,
we cannot exclude other reasons, such as differences in metabolic
rate or body size. Species with high metabolism and small body
size have been shown to have higher CFF (Healy et al., 2013). We
did not test for a sex difference in temporal resolution as no sex
difference in hunting strategies has been reported in the studied
species (Ferguson-Lees and Christie, 2001). Furthermore, no sex
difference has been reported in the blue tit (but this was not tested
by Boström et al., 2016). While the age of individuals was
different, there is no or little indication that this should affect
temporal resolution (for humans, see Brozek and Keys, 1945, and
Ellemberg et al., 1999). Finally, it is important to note that the
temporal resolution of vision has been recorded using different
methods [electroretinography (ERG), optomotor responses and
behavioural assays; see Table 3], and the results obtained with
these methods may not be directly comparable (but see Inger et al.,
2014). For instance, ERGs produce accurate estimates of the
retinal response, which may give higher values than those based on
behavioural tests because it excludes potential temporal summation
of signals happening at later stages of neuronal processing (Lisney
et al., 2012).

Temporal resolution and lifestyle
The airborne (involving high manoeuvrability and sometimes fast-
flying abilities) and diurnal lifestyles of birds have been suggested
to be linked to high temporal resolution of vision (Boström et al.,
2016; Inger et al., 2014). Indeed, the temporal resolution of some

Table 3. Bird species for which flicker fusion frequency (FFF) has been tested

Common name Species name Method Mean CFF Reference

Great horned owl Bubo virginianus ERG 40.0* Ault and House (1987)
Little owl Athene noctua ERG 50.0* Porciatti et al. (1989)
Zebrafinch Taeniopygia guttata Optomotor 55.0 Crozier and Wolf (1941)
House sparrow Passer domesticus Optomotor 55.0 Crozier and Wolf (1944)
Domestic chicken Gallus domesticus Behavioural 63.5* Rubene et al. (2010)
Short-eared owl Asio fammeus ERG 67.5 Bornschein and Tansley (1961)
Budgerigar Melopsittacus undulatus Behavioural 69.4 Ginsburg and Nilsson (1971)
Domestic chicken Gallus domesticus Behavioural 71.5* Jarvis et al. (2002)
Rock pigeon Columba livia Behavioural 77.0* Hendricks (1966)
Harris’s hawk Parabuteo unicinctus Behavioural 77.7 Present study
Budgerigar Melopsittacus undulatus Behavioural 84.2* Boström et al. (2017)
Domestic chicken Gallus domesticus Behavioural 87.0 Lisney et al. (2011)
Rock pigeon Columba livia ERG 100.0 Bornschein and Tansley (1961)
European starling Sturnus vulgaris ERG 100.0* Maddocks et al. (2001)
Saker falcon Falco cherrug Behavioural 102.0 Present study
Domestic chicken Gallus domesticus ERG 104.0 Lisney et al. (2012)
Domestic chicken Gallus domesticus Behavioural 105.0 Nuboer et al. (1992)
Brown-headed cowbird Molothrus ater ERG 114.7 Ronald et al. (2018)
Peregrine falcon Falco peregrinus Behavioural 124.5 Present study
Collared flycatcher Ficedula albicollis Behavioural 128.1 Boström et al. (2016)
Blue tit Cyanistes caeruleus Behavioural 130.3 Boström et al. (2016)
Pied flycatcher Ficedula hypoleuca Behavioural 138.2 Boström et al. (2016)
Rock pigeon Columba livia ERG 143.0 Dodt and Wirth (1953)

ERG: electroretinogram recorded from the eye; Optomotor: reaction to a rotation pattern of gratings; Behavioural: dual choice test between a steady and an
intermittent stimulus.
Note that critical flicker fusion frequency (CFF) values represent the highest value (when possible) obtained with a given individual. Values are given for non-UV
lights only, to make data comparable.
*When FFF continuously increased with luminance for some individuals, the highest FFF is given.
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species of birds including the domestic chicken, the rock pigeon, the
blue tit (Cyanistes caeruleus), the collared flycatcher (Ficedula
albilicollis) and the pied flycatcher, exceeds the range of CFFs
recorded in other vertebrates (see Table 3 and Inger et al., 2014, for a
list of FFF data of vertebrates).
Acknowledging the relatively small dataset (but intra-specific

variation among individuals appears to be lower than inter-specific
variation; see Lisney et al., 2011; Boström et al., 2016), our results
show some diversity in the temporal resolution among raptors. We
found a higher temporal resolution in falcons, species that have
positively selected genes for photoresponse recovery and/or light
adaption, which may contribute to high temporal resolution (Wu
et al., 2016). In particular, the highest temporal resolution was found
in the peregrine falcon, which is known to be the fastest-flying
animal in the world. This species can dive theoretically at
138–174 m s−1 (Tucker, 1998), with a recorded speed of up to
96 m s−1 for a captive individual (recorded by falconer Patrick Morel
on a female peregrine using a Microsensory RTS mini device).
It hunts fast-escaping and manoeuvrable prey, such as shorebirds,
passerines and pigeons (Drewitt and Dixon, 2008; Ward and
Laybourne, 1985). By contrast, the temporal resolution of the
Harris’s hawk was considerably lower. This species flies at lower
speed and forages mainly on mammals such as rodents, rabbits and
hares, which are not as fast and manoeuvrable as the flying prey of
falcons (Figueroa and González-Acuña, 2006). Our results are in
agreement with the suggestion (Boström et al., 2017) that fast-flying
species aiming for fast-moving prey have a high temporal resolution.
For these species, high temporal resolution should be important
because they need to rapidly integrate information (Laughlin and
Weckström, 1993) for essential tasks such as pattern recognition

(Srinivasan and Lehrer, 1984), motion vision (Healy et al., 2013) and
depth perception (Martin, 2017). However, behavioural assays have
shown that Harris’s hawks have similar temporal resolution to that of
chickens (Jarvis et al., 2002; Lisney et al., 2011), which forage on
seeds. This could suggest that high temporal resolution may also be
essential for other behaviours, such as predator avoidance (e.g.
looming escape; de Vries and Clandinin, 2012).

Temporal resolution and fovea
One of the functions of the bird fovea that have been debated for
almost 80 years (Bringmann, 2019) is its contribution to image
fixation by improving the sensitivity to movements (Pumphrey,
1948). Pumphrey (1948) has proposed that species possessing a
deep fovea with steep slopes may fixate prey more accurately.
Indeed, deeper foveas with steeper slopes distort the image more
strongly, possibly making motion detection, and therefore temporal
resolution, more efficient compared with shallower foveas (with
shallower slopes). According to this hypothesis, one could expect
that species that forage on fast-moving prey possess a deeper fovea
with steeper slopes to allow for better fixation of the prey, compared
with species hunting slow-moving prey. We found no evidence for
this hypothesis. By contrast, the species with the lowest temporal
resolution, the Harris’s hawk, has a deeper fovea with steeper slopes
than the species with the highest temporal resolution, the peregrine
falcon (Mitkus et al., 2017; Potier et al., 2016, 2017a). One possible
explanation for this might be that the deep-foveated birds, with
steeper slopes and a small region of high visual acuity, are more
likely to foveate accurately, and therefore experience lower slip
velocities whilst fixating a target. Consequently, they may not
require high temporal resolution to mitigate motion-induced blur.
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The dependence of motion-induced blur on spatial and temporal
acuity of vision has been modelled in Srinivasan and Bernard
(1975). More comparative studies are needed to explore whether
foveal shape may be related to temporal resolution.

Luminance and lifestyle
Raptors are considered to be highly adapted to see well and perform
visual tasks in bright daylight (Mitkus et al., 2018). Indeed, their
spatial resolution decreases significantly at low light levels (Reymond,
1985). Our study is the first to investigate temporal resolution at
very high luminance in birds. Indeed, previous studies did not test
temporal resolution with stimuli of luminances higher than
7500 cd m−2 (Boström et al., 2016, 2017). In our study, the
highest FFF of all species was found at very high luminances of
more than 25,000 cd m−2 (Fig. 3). Thus, raptors have high temporal
resolution only at very high light intensities. A recent study on
visually related genes indicated that the transduction genes should
favour fast vision in falcons (Wu et al., 2016). Furthermore, similar
to owls but unlike accipitriforms, falcons also harboured one
positively selected dim-light vision gene (Wu et al., 2016), and
peregrine falcons have been observed hunting at low light levels
(DeCandido and Allen, 2006), suggesting high temporal resolution
at low light levels. However, our experiment revealed that falcons
(falconiforms) have high temporal resolution only under very bright
light conditions. With low stimulus intensities, their FFF was similar
to that of hawks (accipitriforms).

Increasing welfare of raptors in captivity
It is well accepted that flicker of artificial lights used in their enclosures
can be detected by captive birds (Greenwood et al., 2004) and may
affect their behaviour, such as mate choice (Evans et al., 2006), induce
physiological stress (Maddocks et al., 2001; Evans et al., 2012) and
potentially have an impact on visual performance, as shown in mice
(Yu et al., 2011). In many countries, raptors are kept for purposes such
as falconry or display, which can be essential for raptor conservation
and research (Kenward, 2009; Potier, 2016). While most raptors are
kept in outdoor aviaries, indoor aviaries using artificial lighting are also
used for reproduction (Nelson, 1972). Our study provides evidence
that bright artificial illumination flickering at 100 Hz (common in
Europe) or 120 Hz (USA) may not be suitable in enclosures for
raptors, specifically falcons. As we used small stimuli, the FFFmay be
higher with larger stimuli (Kalloniatis and Luu, 2007). Therefore,
when raptors are kept under bright artificial illumination, we suggest
the use of lamps with higher flicker frequencies or no flicker at all.
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