
METHODS & TECHNIQUES

The aerodynamic force platform as an ergometer
Marc E. Deetjen*, Diana D. Chin and David Lentink*

ABSTRACT
Animal flight requires aerodynamic power, which is challenging to
determine accurately in vivo. Existing methods rely on approximate
calculations based onwake flow fieldmeasurements, inverse dynamics
approaches, or invasive muscle physiological recordings. In contrast,
the external mechanical work required for terrestrial locomotion can be
determined more directly by using a force platform as an ergometer.
Based on an extension of the recent invention of the aerodynamic force
platform, we now present a more direct method to determine the in vivo
aerodynamic power by taking the dot product of the aerodynamic force
vector on thewing with the representativewing velocity vector based on
kinematics and morphology. We demonstrate this new method by
studying a slowly flying dove, but it can be applied more generally
across flying and swimming animals as well as animals that locomote
overwater surfaces. Finally, ourmathematical framework alsoworks for
power analyses based on flow field measurements.

KEY WORDS: Aerodynamic force platform, Ergometer, External
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INTRODUCTION
The energy required to locomote on land, in water and in the air is a
critical parameter for understanding the muscle physiology,
comparative biomechanics and movement ecology of animals
(Alexander, 1999; Alexander, 2003). The external work required to
locomote has been analyzed extensively in terrestrial locomotion
(Biewener, 1992; Biewener, 2003; Biewener et al., 1988; Gordon
et al., 2017), in particular since force platforms started to be used
as ergometers (Cavagna, 1975). The external aerodynamic or
hydrodynamic power required to locomote in fluids is less
straightforward to determine (Alexander, 2003; Biewener and
Patek, 2018; Dudley, 2002; Pennycuick, 2008; Videler, 2012;
Vogel, 1994). Flapping flight is a particularly energetically
demanding form of locomotion, and accurately determining the
aerodynamic power required to fly has proven challenging
(Alexander, 2003; Biewener and Patek, 2018; Dudley, 2002;
Pennycuick, 2008).
The most widely used method (Chin et al., 2017) to determine the

aerodynamic power required for flight is probably aerodynamic
modelling of flapping wings based on quasi-steady blade element
models (Ellington, 1984a; Pennycuick, 2008; Weis-Fogh, 1972,
1973). These models have been improved using dynamically scaled
robotic models, which rely on simplifying the body kinematics,
morphology, and fluid-structure interaction of animals (Dickinson

et al., 1999; Dickson et al., 2008). Another valuable modelling
approach is using computational fluid dynamics models based on
kinematics models or measurements (Liu, 2002). All these
approaches involve computing the aerodynamic force based on a
significant number of assumptions that have yet to be better validated
with in vivo experiments. Unfortunately, current in vivo methods for
determining aerodynamic power also have significant limitations that
constrain their ability to rigorously validate models. Aerodynamic
power calculations based on wake flow measurements (Muijres et al.,
2011; Von Busse et al., 2014) assume the power can be calculated
based on measuring the wake in a transverse plane behind or below
the animal. By making this assumption, they only consider the
“outflow” surface of the control volume and neglect contributions
from the rest of the volume, which could be significant (Lentink et al.,
2015). Another approach is inverse dynamics, in which measured
body kinematics and morphology are used to determine both the
velocity and acceleration distribution of the body. This requires taking
the second time-derivative of kinematics, which is known to be
significantly noisier than the first derivative needed to determine the
velocity distribution (Hedrick et al., 2003; Ros et al., 2011, 2015).
Further, the inertia tensor distribution needs to be determined, which
currently requires sacrificing the animal after the measurements.
Flight muscle work loop measurements, on the other hand, are more
informative in terms of determining the total power required to move
the wing (Biewener et al., 1992; Tobalske et al., 2003). Accurate
calibration of the muscle force measurement based on surgically
implanted strain gauges remains challenging however (Biewener,
2011; Biewener and Patek, 2018; Biewener et al., 1992; Jackson et al.,
2011; Tobalske and Biewener, 2008), and the invasive nature of the
experiment can change the animal’s flight behavior (Tobalske et al.,
2005). Finally, muscle recordings alone cannot be used to establish
the external aerodynamic power required to fly, because they include
the additional power to overcome friction and inertia in the
musculoskeletal system. Despite limitations, these methods have all
been instrumental for developing our present understanding of the
energetics of animal flight. This understanding can be advanced
further if there is a better and more convenient method for
determining the aerodynamic power in vivo that relies on smaller
assumptions. Here we present a new method to determine the
aerodynamic power required to fly based on taking the vector dot
product of the aerodynamic force vector on the wing with
the representative velocity vector of the wing. We directly measure
the wing velocity and the vertical and horizontal aerodynamic
forces, and calculate the lateral aerodynamic force based on a first-
principles derivation. We demonstrate this simple and accurate
method by analyzing the aerodynamic power that a dove exerts to fly
slowly.

MATERIALS AND METHODS
Here, we present an accurate method for measuring the time-
resolved aerodynamic power a bird generates in flight as
demonstrated for a single perch to perch flight of a dove
(Fig. 1A). The basic idea of this method relies on the fact that theReceived 21 June 2019; Accepted 26 March 2020
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total aerodynamic power for both wings Paero equals two times the
force vector for each wing ~Fwing dotted with the representative
velocity vector for each wing~vwing:

Paero ¼ 2~Fwing �~vwing: ð1Þ

As we describe in the following sections, we directly measure the
representative velocity vector using wing kinematics (Fig. 1C,D)
and directly measure horizontal and vertical forces to recover two of
the three components of the force vector (Fig. 2A). By combining
these measured quantities, we can calculate lift and drag (Fig. 2B),

Fig. 1. Images of the second wingbeat of a dove in slow flight are used to compute its wing velocity. (A) The dove flies from the right perch to the left
perch inside the aerodynamic force platform (AFP). Force panels above and below the dove (orange) measure the time-resolved vertical aerodynamic force, and
panels behind and in front of the dove (purple) measure the time-resolved horizontal aerodynamic force produced by the dove. Each of the four panels is
connected in a statically determined manner to three force sensors (orange and purple cones). Five pairs of high-speed cameras (C1–C5; cameras further
from the bird appear smaller) and projectors (P1–P5) image the body, tail and left wing of the dove from different viewangles. (B) The high-speed camera-projector
based imaging enables us to fit 3D surfaces to the body, tail, and wings (right wing copied from the left assuming bilateral symmetry), shown at 13% of the
second stroke (after takeoff ). The quarter-chord velocity vector ð~vjÞ for every tenth blade element is plotted in purple, and the representative wing velocity vector
(~vwing; Eqn 2) is plotted in green. Drag ð~DÞ, plotted in red, points in the opposite direction as the wing velocity vector, and lift ð~LÞ, plotted in blue, points
perpendicular to the wing velocity vector and the radial vector ð~rspan ¼ XP9 � XshoÞ. The 2D net vertical (z) and horizontal (x) force measured by the AFP is
distributed equally to each wing and the combined 2D aerodynamic force ð�~Fwing;x;zÞ is plotted in gray. We compute the lateral (y) component of the aerodynamic
force and plot the combined 3D aerodynamic force ð�~FwingÞ in black.We tracked the following 3D landmarks on the dove: the 9th primary tip (large black dot; XP9),
wrist (small gray dot on the wing close to the shoulder), shoulder (large black dot; Xsho), left and right eyes (large gray dots; the right eye dot is not visible in
this view), tip and base of the beak (gray cone), top of the head (small gray dot above the left eye), left and right feet (small gray dots left of the tail; right foot dot is
not visible in this view), and middle of the back (small gray dot above the shoulder). (C) The x, y and z components of the representative wing velocity vector are
plotted in purple, green and orange respectively, and the magnitude of the 3D vector is plotted in black (based on quarter-chord velocity calculation method).
(D) The representative wing speeds are similar for the quarter-chord velocity method (solid line) and the chord-averaged velocity method (dashed line), because
both use the full wing surface. The speed from the simplified method using the shoulder and ninth primary kinematics (dotted line) deviates more during mid-
downstroke. (E) The angle between the 3D direction of the representative wing velocity vector based on the quarter-chord method and that of the other two
computational methods differs most during stroke reversal where the speed is low. The low speed makes the direction of velocity more sensitive to small
deviations, but the effect on aerodynamic power is mitigated by the low magnitude of the velocity vector. The gray region indicates downstroke, the star indicates
the frame displayed in B and the avatars show the representative wing velocity vector in green.
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which allows us to find the third component of wing force (Fig. 2D).
Together, these measurements combine to produce a direct method
for computing aerodynamic power (Fig. 3).

Animal experiment
The experimental setup consisted of a structured-light system
(Fig. 1A) to image the 3D surface of the dove (Fig. 1B),

synchronized with an aerodynamic force platform (AFP; Fig. 1A)
to measure the vertical and horizontal aerodynamic forces
produced by the dove (Fig. 2A). We analyzed the second
wingbeat after takeoff of a 2-year-old male near-white Ringneck
dove [Streptopelia risoria (Linnaeus 1758) 140–142 g, 0.48 m
wingspan], which was trained to fly between perches 0.65 m apart
inside the AFP. An open window in the acrylic side wall of the

Fig. 2. Vertical and horizontal aerodynamic forces produced by the dove are used to compute the lateral aerodynamic force. (A) The measured net
horizontal (x, purple) and vertical (z, orange) aerodynamic force includes four wing strokes from takeoff to landing (gray region: downstroke; force normalized
by bodyweight, bw; horizontal and vertical forces on perches: dotted line). The inset shows the second stroke after takeoff with the measured 3D surface
of the dove (the flight direction ismirrored tomatch temporal direction). On top of each surface, we overlay the horizontal and vertical aerodynamic forces produced
by the left wing which sum to the gray vector (�~Fwing;x;z, also shown in Fig. 1B). (B) The lift (blue) and drag (red) force vectors are computed from the measured
aerodynamic forces and kinematics using Eqns 10,11,14,15. (C) The computed lift and drag become sensitive when �S (Eqn 16) approaches zero. We
plot �S based on the three different methods for calculating velocity to illustrate when zero values occur. To mitigate spikes in these sensitive regions, we apply
smoothing using weights (Eqn 17). Data in the dark red region are assigned a weight of zero, data in the light red region are assigned a weight between zero and
one, and all other data are assigned a weight of one. (D) We plot the measured net horizontal (x, purple) and vertical (z, orange) aerodynamic force (from A;
integrating the body yaw angle of 6.8 deg using Eqns 14,15) and the computed lateral force. The lateral force without singularity smoothing (black dots) feature
scatter at stroke reversal, which is effectively addressed by singularity smoothing (green line; faded green line corresponds to regions with singularity: red
regions in C). Results for B and D are shown for the quarter-chord velocity blade element method. The avatars in B and C show lift in blue and drag in red from
Fig. 1B. The avatar in D shows measured and total aerodynamic forces from Fig. 1B in gray and black, respectively.
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AFP was used to bring the dove in and out of the AFP. Thewindow
was closed with an additional acrylic panel prior during each
recorded flight. The perches were mounted 0.36 m above the
bottom plate of the AFP and the residual descent angle between the
takeoff and landing perch was 2 deg. Training involved a
combination of positive reinforcement and light tapping on the
tail to cue a flight. All experiments were in accordance with
Stanford University’s Institutional Animal Care and Use
Committee.

Wing velocity calculation based on kinematics
measurements
We calculated the time-resolved representative velocity vector of the
dove’s wing (Fig. 1C) based on 3D kinematics measurements
(Fig. 1B). The kinematics were measured by tracking marker points
on the dove as well as by measuring the 3D surface of the dove’s
body, tail and left wing using our 3D calibrated (Deetjen and
Lentink, 2018) structured light method (Deetjen et al., 2017) at 1000
frames s−1 (Fig. 1A,B). Additionally, we manually tracked the

Fig. 3. Total aerodynamic power is calculated by dotting the aerodynamic force (Fig. 2D) with the measured velocity (Fig. 1C). (A) The aerodynamic
power per unit bodyweight generated during the second stroke is primarily produced during the downstroke. The vertical motion contribution (Pz curve) is largest,
and the addition of the horizontal motion contribution (Px+Pz versus Pz curve) causes the power to peak mid-downstroke. The lateral motion contribution peaks
right before and after mid downstroke (see Px+Py+Pz versus Px+Pz curve). Results are shown for the quarter-chord velocity blade element method. The avatar
shows the representative wing velocity in green and total aerodynamic force in black from Fig. 1B. Faded lines correspond to filtered regions with singularity: red
regions in Fig. 2C. (B) The total aerodynamic power computed using the three different methods for calculating velocity is similar. Compared with the quarter-
chord velocity method, the power computed using the chord-averaged velocity method primarily deviates during mid-downstroke, whereas the power computed
using only the shoulder and wingtip kinematics also deviates during the down-to-upstroke transition. Finally, we plot the stroke-resolved power calculation based
on the quasi-steady model (Dickson et al., 2008) in orange (for details see Fig. S2). (C) The average specific aerodynamic power based on the three velocity
calculation methods all show that the majority of power is produced during the downstroke. The chord-averaged velocity method overestimates power on the
downstroke by a similar amount as the simple kinematics method (for this single flight). For reference, we also plot the average specific aerodynamic power based
on the quasi-steadymodel in orange, and the actuator disk model (Pennycuick, 2008), in blue. The stroke-averaged power prediction is based on the actuator disk
model with an induced power factor of 1.2 for flapping flight (Ellington, 1984b; Pennycuick, 2008) in combination with the horizontal projection of the actuator disk
area measured during the full second wingbeat. (D) The equations used in the main text to compute aerodynamic power are summarized in this flow chart. We
adopted the same line style for the velocity box as the line style used for plotting the aerodynamic power in B for the three different velocity calculation methods.
For computing the lift direction, L̂, the negative sign is used for the left wing and the positive sign for the right wing. To keep the computational flow chart straight
forward, we omitted the minor body yaw adjustment. When body yaw with respect to the AFP is substantial, Eqns 12,13 should simply be substituted by
Eqns 14,15 that explicitly include body yaw.
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following feature points using triangulation: ninth primary wingtip,
shoulder, wrist, middle of the back, left and right feet, left and
right eyes, tip and base of the beak, and top of the head (Fig. 1B).
For the wingtips, shoulder, wrist, back and the top of the head,
we attached square retro-reflective marker tape and identified
their centers when they were visible. The remaining frames
were estimated with a combination of manual estimation and
interpolation.We combined these collected kinematics and surface
data to fit a smooth morphing surface to the body, tail, and wings
of the dove (see Appendix 1 for more details). Finally, we assumed
bilateral symmetry for the right wing, because we focused our
cameras and projectors on the left wing to maximize resolution and
because the flight path was approximately straight (6.8 deg off the
centerline based on tracking kinematics points on the body and
head). In Appendix 3, the yaw angle of 6.8 deg is taken into
account to increase the accuracy of the resulting aerodynamic
power. The combined wing surface reconstruction and point
tracking enable a high-fidelity computation of the representative
wing velocity vector based on integrating the distributed velocity
along the entire wing (Fig. 1C).
The primary method we used for calculating the representative

wing velocity uses the velocity vector at the quarter-chord location
of blade elements (25% chord length behind the leading edge). We
used this location because we estimated that the center of pressure is
located at the quarter-chord and thus, the aerodynamic force acts at
this location. For thin-airfoils at low angles of attack, the center of
pressure is assumed to be located at the quarter-chord (Pennycuick,
2008). For flapping wings, the angle of attack varies and attains high
values. Hence, the center of pressure, which is a function of the
angle of attack, shifts in the direction of 50% chord length (Dickson
et al., 2008; Himmelskamp, 1947). The precise location of the
center of pressure influences the aerodynamic power mid-stroke as
shown in Fig. S1. To evaluate this, we calculated the average angle
of attack during the downstroke of the dove in our study, 49±13 deg,
and found the estimated center of pressure on the dove’s wings
shifted to roughly 27±11% chord. This estimate is based on center
of pressure measurements made with a robot flapping wing, which
underpins the established quasi-steady model for flapping wings
(Dickson et al., 2008) we implemented. It was confirmed by the
small difference between the aerodynamic power determined
using the quarter-chord method versus the quasi-steady method
based on the representative wing velocity vector (Fig. S1). Hence,
we used the quarter-chord as a reasonable approximation for the
location of the representative velocity vector of each chord
following aircraft aerodynamics convention (Drela, 2014;
Leishman, 2006).
In total, we compared three methods for computing the

representative wing velocity vector (Fig. 1D): (1) Using the
velocity vector at the quarter-chord from the surface measurement;
(2) using a chord-averaged velocity vector from the surface
measurement; (3) only using the velocity of the shoulder and ninth
primary frommanually tracked kinematics. For all three methods, the
representative wing velocity vector used to compute total
aerodynamic power (Eqn 1) is given by:

~vwing ¼

Pn
j¼1

Sjj~vjj2~vj
Pn
j¼1

Sjj~vjj2
; ð2Þ

where Sj is the surface area of the j
th of n blade elements and~vj is the

associated velocity vector (derivation in Appendix 2). We use blade

elements with a spanwise width of 1 mm to compute
the representative wing velocity and to fit the measured surface of
the wing. For the three methods used to compute~vwing, we define the
velocity of each blade element ~vj as: (1) the velocity at its quarter-
chord, (2) the velocity averaged over the entire chord, or (3) the
linearly interpolated velocity based on the measured velocities at the
shoulder and ninth primary:

~vj ¼ j � 0:5

n
~vP9 þ n� j þ 0:5

n
~vsho; ð3Þ

where~vP9 is the velocity of the ninth primary and~vsho is the velocity
of the shoulder. The blade elements start at the shoulder ( j=1) and
end at thewingtip ( j=n) and the 0.5 constants are used to estimate the
velocity at the spanwise center of each element.

Aerodynamic force measurement and reconstruction
We determined the time-resolved aerodynamic force vector
generated by each dove’s wing by measuring the net aerodynamic
forces in the horizontal and vertical directions (Fig. 2A). We then
combined these 2D forces with our 3D wing kinematics
measurements to reconstruct the lateral force and thus 3D force
vector (Fig. 2D). The vertical and horizontal aerodynamic forces of
the dove were measured using a 2D AFP (Lentink, 2018; Lentink
et al., 2015). Previous 1D versions of the AFP (Chin and Lentink,
2016; Ingersoll and Lentink, 2018) measured vertical forces by
instrumenting the floor and ceiling of a flight chamber with carbon
fiber composite panels. The new 2D AFP used in this study
(Fig. 1A) adds two more panels on the front and back sides of the
flight chamber (1 m length×1 m height×0.6 m width) to measure
horizontal forces as well. Each of the four panels is connected in a
statically determinedmanner to three Nano 43 sensors (six-axis, SI-9-
9.125 calibration; ATI Industrial Automation) sampling at 2000 Hz
with a resolution of 2 mN. These force plates mechanically integrate
the unsteady pressure and shear distributions over its walls, which
form a closed mechanical control surface integral of the Navier-
Stokes equations over the volume in which the dove flies. Thus, they
sum up to the time-resolved net aerodynamic force generated inside
by the dove (Lentink, 2018; Lentink et al., 2015). The pressure and
shear stress distributions on the walls result from the motion of the
dove, which generates airflow inside that is updated with the speed of
sound (Hightower et al., 2017; Lentink, 2018; Lentink et al., 2015).
The associated phase delay due to the traveling time of the acoustics
waves in the volume is on the order of 1.5 ms (for 0.5 m distance from
the wall and a speed of sound of 340 m s−1). This time delay is
negligible compared with the period of the cut-off frequency of the
force plates (80 Hz, 12.5 ms) and the wingbeat period (10 Hz,
100 ms). Consequently the AFP recovers the net aerodynamic force
generation with almost no phase delay, similar to terrestrial force
platforms, which are also constrained by their natural vibration
frequency.We alsomeasured takeoff and landing forces bymounting
the perches on carbon fiber beams, each of which was connected in a
statically determined manner to three Nano 43 sensors set on
mechanically isolated support structures. The force measurements
were filtered using an eighth-order Butterworth filter with a cutoff
frequency of 80 Hz for the plates and 60 Hz for the perches, or about
8 and 6 times the flapping frequency of a dove, respectively. This
enabled us to filter out noise from the setup, because the natural
frequencies of the force plates were all above 90 Hz, and the perches
had natural frequencies above 70 Hz.

The setup was validated by tethering a quadcopter to an
instrumented beam and then comparing vertical and horizontal
forces measured by the beam with forces measured by the AFP as
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reported previously (Lentink et al., 2015). Over a period of 10 s and
a sampling rate of 1000 Hz, the impulse ratio and the mean force
ratio of the 2DAFP to the beamwere both 1.00±0.02 (n=10 trials) in
the vertical direction and 1.00±0.01 in the horizontal direction
(n=20 trials). Additionally, for a flight that starts and ends at rest, we
expect that the total vertical impulse imparted by the legs and wings
should equal full bodyweight (bw) support (Chin and Lentink,
2017), and that the net horizontal impulse should equal zero.
Integrating the forces from takeoff to landing for the dove’s flight,
we measured a vertical impulse ratio (impulse from legs and wings
divided by impulse due to bodyweight) of 1.03, and a horizontal
impulse (impulse from legs and wings divided by bodyweight) of
0.02 bw·s.
We converted the direct measurement of the net 2D aerodynamic

force produced by the dove into the 2D forces generated by each
wing by assuming bilateral symmetry. The vertical and horizontal
components of the aerodynamic force on the left and right wing,
Fwing,z and Fwing,x, respectively, equal:

Fwing;z ¼ �0:5ðFAFP;z � Fbody;z � Ftail;zÞ; ð4Þ
Fwing;x ¼ �0:5ðFAFP;x � Fbody;x � Ftail;xÞ; ð5Þ

where FAFP;z and FAFP;x are the net vertical and horizontal forces
directly measured by the AFP. The body forces Fbody;z and Fbody;x,
as well as the tail forces Ftail;z and Ftail;x are very small (∼0.5±0.4%
bw) compared with the wing forces due to the low body velocity
(1.2±0.3 m s−1). We estimated these forces by modeling the body as
an ellipsoid (Alonso et al., 2010) and the tail as the average between
a delta wing and flat plate at low Reynolds numbers (Earnshaw and
Lawford, 1964; Taira et al., 2007).
We used the 2D aerodynamic forces on each wing together with

the direction of the wing’s measured velocity to calculate the third,
lateral, aerodynamic force component (Fig. 2D). The 3D
aerodynamic force can be decomposed into the lift and drag
vector components generated by the wing (Fig. 2B). We then
leverage the measured wing velocity to find the directions of these
lift and drag vectors:

~Fwing ¼ �DD̂� LL̂: ð6Þ
Here, D and L are the magnitudes of the drag and lift vectors and D̂
and L̂ are the representative unit vector directions for each wing
(Eqns 10,11). We can also rewrite Eqn 6 to explicitly show the three
equations that are formed:

Fwing;x ¼ �DD̂x � LL̂x; ð7Þ
Fwing;y ¼ �DD̂y � LL̂y; ð8Þ
Fwing;z ¼ �DD̂z � LL̂z; ð9Þ

where x, y and z subscripts indicate the x, y or z components of the
corresponding vectors in Eqn 6. Using the AFP, we directly measure
Fwing,x and Fwing,z, and using the measured velocity, we can directly
determine the direction of drag, which by definition acts in the
opposite direction as velocity:

D̂ ¼ �

Pn
j¼1

Sjj~vjj~vj

Pn
j¼1

Sjj~vjj~vj
�����

�����
: ð10Þ

Additionally, we know that the direction of lift L̂ is perpendicular to
velocity and we assume that it also acts perpendicular to the
radial vector of thewing, because the aerodynamic force is governed

by pressure. Thus, the direction of overall lift produced by the
wing equals:

L̂ ¼ +
D̂�~rspan
jD̂�~rspanj

; ð11Þ

where the radial vector~rspan is the vector from the shoulder to the
ninth primary. The negative sign is used for the left wing and
the positive sign for the right wing. When we put this all together,
we can solve for the lateral aerodynamic force Fwing,y in Eqn 8 by
solving for D and L as follows:

D ¼ � L̂xFwing;z � L̂zFwing;x

L̂xD̂z � L̂zD̂x

; ð12Þ

L ¼ D̂xFwing;z � D̂zFwing;x

L̂xD̂z � L̂zD̂x

: ð13Þ

For greater accuracy in cases where the flight path of the bird is
misaligned with the world reference frame, as defined by the AFP,
the following equations for yaw adjusted drag, DA, and lift, LA,
should be used in place of D and L:

DA ¼ �ðL̂L;xcos2u� L̂L;y cos u sin uÞFwing;z � L̂L;zFwing;x

�S
; ð14Þ

LA ¼ ðD̂L;xcos
2u� D̂L;y cos u sin uÞFwing;z � D̂L;zFwing;x

�S
; ð15Þ

�S ¼ ðL̂L;xcos2u� L̂L;y cos u sin uÞD̂L;z

� L̂L;zðD̂L;xcos
2u� D̂L;y cos u sin uÞ; ð16Þ

where θ is the yaw angle of the bird (derivation in Appendix 3; effect
of yaw adjustment in Fig. S4). Future studies could improve on this
result by measuring the kinematics for both the left and right wings
separately to relax the bilateral symmetry constraint. By plugging
the magnitude of lift and drag into Eqn 8 (L and D for small yaw
angles or LA and DA for large yaw angles), we then solved for the
lateral aerodynamic force. For large yaw angles, the horizontal force
in Eqn 7 also needs to be updated from the direct measurement by
plugging in the yaw adjusted magnitude of lift and drag. Finally, we
calculated aerodynamic power using the full 3D aerodynamic force
vector dotted with the 3D representative velocity vector of the wing,
as summarized in Fig. 3D.

Sensitivity analysis of aerodynamic power
Near stroke reversal, the aerodynamic power is sensitive to the
directions of the lift and drag vectors (Fig. 2B,C). This sensitivity
arises from the methodology we use to compute the lateral
aerodynamic force, and here we show why the results are
sensitive at stroke reversal and how we mitigate this issue.

Before mitigating the effects of computed aerodynamic power
sensitivity, we first need to identify why it occurs near stroke
reversal and quantify it. Sensitivity occurs when the denominator of
Eqn 14 ð�SÞ: is close to zero, causing the magnitude of the drag
vector to spike (Fig. 2C). The magnitude of drag contributes directly
to the aerodynamic power, making this particular denominator
critical in understanding the overall sensitivity of the aerodynamic
power calculation to wing orientation. In the absence of yaw (θ=0),
the denominator is made up of the horizontal (subscript x) and
vertical (subscript z) components of the unit lift vector ðL̂Þ and the
unit drag vector ðD̂Þ, or in other words, the 3D unit lift and drag
vectors projected into the 2D sagittal plane of the dove (2D vectors
L̂xz and D̂xz respectively). To build intuition for why lift and drag
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are sensitive at stroke reversal, consider the following cases when
the denominator approaches zero: (1) The drag vector projected into
the 2D sagittal plane ðD̂xzÞ is small, and (2) the lift and drag vectors
projected into the 2D sagittal plane (L̂xz and D̂xz) either point in the
same direction or the opposite direction. Case 1 occurs when the
wing velocity, and thus drag, is pointed primarily in the lateral (y)
direction, while case 2 occurs when either lift or drag is pointed
primarily in the lateral direction. This explains why the highest
aerodynamic power sensitivity is at stroke reversal when the wing is
moving primarily in the lateral direction.
Now that we have a way of quantifying the level of sensitivity, we

can mitigate its effects. In order to mitigate spikes in computed
lateral force in sensitive regions, we smoothed the computed
aerodynamic force in the lateral direction Fwing,y with weights W
determined by the following formula:

W ¼ 1�max 0;min 1;
log j�Sj � log c1
log c0 � log c1

� �� �
: ð17Þ

We designed this formula, based on classical fuzzy logic (Bansod
et al., 2005; Zadeh, 1988), to decrease the weight on points for
which �S (Eqn 16) approaches zero. When the magnitude of the
denominator drops below a value of c0=0.15, the weight equals zero
because the result is too sensitive to be used. Conversely, if the
magnitude of the denominator is greater than c1=0.35, all values are
weighted equally with a value of one. The c0 and c1 parameters were
tuned by hand, and the logarithm serves to smooth the transition at
c1. We plotted the computed lift and drag magnitudes in Fig. 2B and
the original versus the smoothed aerodynamic forces in Fig. 2D to
show this approach is practical and useful to resolve mathematical
singularities.

RESULTS AND DISCUSSION
Here, we present how the aerodynamic force platform (AFP) can be
used as an ergometer by computing the aerodynamic power required
for flapping flight directly as the vector dot product of force and
velocity. By using this method, we are able to compute aerodynamic
power (Fig. 3) based on first principles: we directly measured the
velocity vector, we directly measured two of three components of
force, and the third component of force is a logical outcome based
on first principles. We demonstrate the utility of this newmethod for
the second stroke after takeoff of a dove by computing the x, y and z
components of aerodynamic power (Fig. 3A). We found that the
majority of the aerodynamic power is produced during the
downstroke (Fig. 3C) and that its magnitude is primarily
determined by the product of force and velocity in the vertical (z)
direction. Further, the largest contribution of power in the forward
(x) direction occurs during the latter half of the downstroke, and the
largest contribution of power in the lateral (y) direction occurs at the
beginning of the downstroke.
To determine the influence of the methods used to calculate the

representative wing velocity vector on aerodynamic power, we
compared the quarter-chord based velocity calculation with the two
other methods that require less information (Fig. 3B,C). While the
quarter-chord based calculation requires the leading and trailing
edges of the wing to be precisely identified, the chord-averaged
velocity method can be used when the leading and trailing edges are
difficult to determine (i.e. when the location of the quarter-chord
point cannot be determined). Despite this simplification, both the
quarter-chord and chord-averaged methods give similar time-
resolved trends throughout most of the stroke. This makes sense
because both methods leverage the full 3D reconstructed wing

surface, suggesting that the chord-averaged calculation, which is
more robust to error in the wing surface reconstruction, could be the
best approach when surface data are noisy. The main difference
occurs during mid-downstroke, when the chord-averaged
method overestimates power (for this single flight). This can be
attributed to the difference in the estimated location of the center of
pressure (Fig. S1), which influences the aerodynamic power mid-
downstroke. In contrast, the quarter-chord estimate closely matches
the aerodynamic power for a center of pressure location computed
based on angle of attack (Dickson et al., 2008). When we compare
the calculated power for the well-resolved (quarter-chord method)
versus the minimalistic wing (shoulder and ninth primary)
kinematics, we again found that the methods give overall similar
time-resolved results. The power calculated using the minimalistic
method deviates during both the mid-downstroke and the down-to-
upstroke transition, on average overestimating the power (for this
single flight). This is due to differences in both the direction
(Fig. 1E) and the magnitude (Fig. 1D) of the velocity vector
compared with the quarter-chord method. Additionally, the
minimalistic model gives less well-resolved results at the end of
the downstroke, because the denominator is closer to zero over a
longer time window (Fig. 2C). Still, we saw that even coarse wing
kinematics are sufficient to provide informative power measurements
using the AFP as an ergometer. Future computational fluid dynamics
or robot flapping wing studies could provide further insight into
how the velocity calculation can be improved beyond what we
present here.

Finally, we compared our method to calculate the aerodynamic
power based on in vivo kinematics and aerodynamic forces with two
commonly used aerodynamic models: the quasi-steady model based
on lift-drag polars of spinning animal wings (Dickinson et al., 1999;
Dickson et al., 2008) and the actuator disk model (Ellington, 1984b;
Pennycuick, 2008) for predicting the aerodynamic power of
flapping animal wings (for details and results see Fig. 3B,C and
Fig. S2). Both models are based on in vivo kinematics, but whereas
the quasi-steady model predicts the stroke-resolved aerodynamic
power, the actuator disk model only predicts the stroke-averaged
power. Comparing the predictive performance of these models for
this single flight, we found that the quasi-steady model identifies a
peak in aerodynamic power during mid-downstroke, whereas our
direct method identifies a dip. This dip in aerodynamic power can be
attributed to a dip in the angle of attack during mid-downstroke
(Fig. S3A), during which the lift peaks and the drag dips (Fig. 2B).
Additionally, during the upstroke, the quasi-steady model
overpredicts power by a significant margin (Fig. 3B,C). The
stroke-averaged power prediction is, however, much closer and only
22% higher than our method. The actuator disk model, on the other
hand, underestimated the stroke-averaged power prediction by 28%
compared with our method. This shows that both stroke-averaged
model predictions are reasonable, and of these two models, the
actuator disk model is easiest to implement. Furthermore, because
the time-resolved aerodynamic power prediction by the quasi-
steady model (based on lift-drag polars for a fruit fly shaped wing) is
erroneous during mid-downstroke and mid-upstroke, it is of limited
use to analyze the time-resolved flight of doves. Even with more
accurate lift-drag polars for dove wings, the aerodynamic power
discrepancy mid-downstroke cannot be properly addressed. This is
because the angle of attack of spinning wing polars does not have a
mid-downstroke dip (Crandell and Tobalske, 2011; Dickinson et al.,
1999; Dickson et al., 2008; Kruyt et al., 2014; Lentink and
Dickinson, 2009a; Usherwood, 2005, 2010), as wemeasured in vivo
(Fig. S3A). Similarly, the mid-upstroke peak predicted by the
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quasi-steady model cannot be prevented with more accurate polars
(Crandell and Tobalske, 2011; Dickinson et al., 1999; Dickson
et al., 2008; Kruyt et al., 2014; Lentink and Dickinson, 2009b;
Usherwood, 2005; Usherwood, 2010). Including additional terms
in our quasi-steady model, such as added mass effects and rotational
lift (Dickinson et al., 1999; Dickson et al., 2008), did not resolve the
discrepancy either. This is because added mass effects, which
depend on wing acceleration, and rotational lift effects, which
depend on angle of attack rotation, both peak at stroke reversal and
thus have minimal effect mid-stroke (Figs S2, S3B). In contrast, the
stroke-averaged model predictions are simpler and more reliable
and thus preferable as estimates. Consequently, we found the
following key advantages of our method: it requires the smallest
number of assumptions, it provides stroke-resolved aerodynamic
power, and it is based primarily on in vivo data and first-
principle equations (except for the center of pressure model,
which is corroborated from robot flapping wing experiments).
These advantages are key for reconstructing wingbeat-resolved
‘aerodynamic workloops’ of flight muscles. However, whenever
quick estimates are needed for aerodynamic power, the actuator
disk model may provide a particularly simple estimate. Finally,
our method not only provides the wingbeat-resolved aerodynamic
power, it simultaneously provides the wingbeat-resolved wing
kinematics and aerodynamic forces. All these parameters are
informative for evaluating the in vivo external work performed by
flight muscles in the context of the overall flight mechanics of the
animal, which no model can currently offer with comparable
accuracy and precision. For an optimal implementation to
evaluate the aerodynamic performance of flying animals, we
recommend following the AFP design guidelines in Hightower
et al. (2017). The current AFP volume is a smaller design,
meaning that the aerodynamic power exerted by the animal is
lower than during free flight in the atmosphere as a result of wall
effects (Hightower et al., 2017). However, when the main goal of
the study is to evaluate muscle function using the AFP as an
ergometer, our method succeeds in accurately measuring the
aerodynamic power produced by the bird as it flies in the AFP,
and this smaller volume design has the benefit of providing better
time resolution.
In conclusion, our mathematical derivations based on first

principles and experimental results for a slow flying dove show
how the AFP, together with a simple kinematics analysis, can be used
as an ergometer. This more direct measurement of aerodynamic
power enables new investigations into how flying animals generate
aerodynamic power by beating their wings in vivo. The aerodynamic
power calculation algorithm is generally reliable and only requires
numerical stabilization during stroke reversal (Fig. 2C), therefore this
approach can be used to compute the time-resolved aerodynamic
power generated by the flight muscles (which we will report
elsewhere for more individuals). Further, the analysis presented here
shows the promise of future applications of aerodynamic and
hydrodynamic force platforms (Lentink, 2018) as ergometers for a
range of locomotor behaviors, including flying, swimming and
locomotion over a water surface. Finally, the mathematical
framework we developed is equally useful for 3D aerodynamic
force and power analyses based on flow field measurements using
particle image velocimetry for aerial and aquatic locomotion.

APPENDIX 1
Measuring the surface of the wing in 3D
We automatically measured the 3D surface of the flying dove by
using a structured-light system (Fig. 1A). Subsequently, by

integrating manually clicked marker and tracker points, we fit 3D
surfaces to the body, tail and left wing of the dove (Fig. 1B).

The 3D surface data were measured using an automated
structured-light system designed to image rapidly deforming
objects. We used five synchronized high-speed cameras
(Phantom Miro: three M310, one R-311, one LC-310; Vision
Research, Wayne, NJ, USA) and high-speed projectors (DLP®

LightCrafter™ E4500MKII™; EKB Technologies, Bat-Yam,
Israel) operating at 1000 frames s−1. All the cameras and
projectors were simultaneously calibrated using a method we
previously developed (Deetjen and Lentink, 2018). We then used the
structured-light method we previously developed (Deetjen et al.,
2017) to reconstruct the 3D shape of the dove. Changes in the stripe
detection and stripe matching portions of the structured-light method
were made to improve the 3D reconstruction robustness. We attached
color filters (72.0 mm diameter custom filters; two blue: low-pass
filter with 475 nm cutoff, two green: band-pass filter centered around
540 nm with 80 nm full width at half maximum, one red: high-pass
filter with 600 nm cutoff; Andover Corporation, Salem, NH, USA) to
each camera corresponding to the projecting color of its paired
projector. Since there were only three different colors, some of the
camera-projector pair colors overlapped. For these overlapping color
pairs, we reduced the frame rate of each projector to 500 frames s−1

and alternated frames to distinguish between the patterns projected by
the two projectors projecting in the same color.

In order to relate the 3D surface measurements of the dove to the
force directions measured by the AFP and the direction of gravity,
we identified a world reference frame (Fig. 1A). The direction of
gravity was determined by tracking a falling sphere, using custom
software developed in MATLAB R2017b (MathWorks, Inc.,
Natick, MA, USA). Next, the forward direction of the dove was
determined by imaging a carbon fiber rod resting on the centers of
both the takeoff and landing perch. Lastly, the perch positions were
determined based on minimizing the reprojected error from visible
points on each perch.

After acquiring 3D surface data, we fitted surfaces to the body,
tail, and left wing of the dove (Fig. 1B). We assumed bilateral
symmetry for the right wing because we focused our cameras and
projectors on the position of the left wing. To begin, data points
were manually categorized as body, tail, left wing or outlier points.
This was achieved by first aligning the body in each frame using a
weighted iterative closest point (ICP) algorithm (Kjer and Wilm,
2010) applied to the kinematic points on the body of the dove.
Next, manually placed ellipsoids, cones and other 3D shapes
were used to group the points that corresponded to each category.
After categorizing the points, we fitted surfaces to the body,
tail and left wing. The body surface, which we assumed did
not change shape temporally, was fit using the Gridfit toolbox
in MATLAB (https://www.mathworks.com/matlabcentral/fileex
change/8998-surface-fitting-using-gridfit), which was modified to
fit a closed surface by using spherical coordinates. The tail surface
was approximated as a flat plate with edges defined by a circular
sector with a fixed 3D center and radius. The 3D data were fitted to
this surface with the tail elevation, twist and spread angles varying
smoothly in time. Finally, the left wing surface was fitted using the
Gridfit toolbox modified to also vary smoothly in time. This fit was
applied after the data for each frame was transformed to a ‘wing
reference frame’, which we defined by using kinematics points on
the wing. The edges of the wing were found by reprojecting the 3D
surface back onto the five camera images to determine which
locations were on the wing. The edges between frames were
smoothed using morphological image processing and a modified
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version of the Gridfit toolbox to fit a closed edge using polar
coordinates varying smoothly in time.

APPENDIX 2
Derivation of representative wing velocity for aerodynamic
power
In order to calculate the time-resolved aerodynamic power a bird
needs to exert in flight, we need to integrate measured body and
wing kinematics (Fig. 1) together with aerodynamic forces (Fig. 2).
The total aerodynamic power for both wings Paero is the dot product
of the wing force vector ~Fwing and the representative wing velocity
vector~vwing times two if we assume symmetry between wings:

Paero ¼ 2~Fwing �~vwing: ðA1Þ
We measure two of the three components of the wing force directly,
but we need to derive the representative wing velocity vector from
first principles. To start, we can approximate Eqn A1 as a
summation because there are contributions toward total power
distributed across the entire wing:

Paero ¼ 2
Xn
j¼1

~Fwing;j �~vj: ðA2Þ

The summation is over n blade elements, which start at the shoulder
and are spaced 1 mm apart. We expand the aerodynamic force of the
jth blade element which is made up of the lift vector and the drag
vector:

~Fwing;j ¼ �0:5rSjðCL;jL̂j þ CD;jD̂jÞj~vjj2; ðA3Þ
where ρ is air density, Sj is surface area, CL,j and CD,j are the lift and
drag coefficients, and L̂jand D̂j are the lift and drag unit vectors. By
definition, lift is perpendicular to velocity ðL̂j �~vj ; 0Þ and drag
points in the opposite direction as velocity ðD̂j �~vj ; �j~vjjÞ, so
Eqns A2,A3 together can be reduced to:

Paero ¼ r
Xn
j¼1

SjCD;jj~vjj3: ðA4Þ

Additionally, the same expansion of the aerodynamic force into lift
and drag components can be applied directly to Eqn A1 to begin
isolating the representative wing velocity:

Paero ¼ 2
Xn
j¼1

�0:5rSjðCL;jL̂j þ CD;jD̂jÞj~vjj2
 !

�~vwing: ðA5Þ

If we assume that the directions of wing lift and drag remain
constant along the entire span of the wing, (L̂j ¼ L̂ and D̂j ¼ D̂ for
all j), then we can reduce:

Paero ¼ j~vwingjr
Xn
j¼1

SjCD;jj~vjj2: ðA6Þ

This simplification is possible because the jth lift unit vector dotted
with the representative wing velocity equals zero and the jth drag
unit vector dotted with the representative wing velocity equals the
negative of the representativewing velocity. By combining Eqns A4
and A6 and solving for j~vwingj, we find that:

j~vwingj ¼

Pn
j¼1

SjCD;jj~vjj3

Pn
j¼1

SjCD;jj~vjj2
: ðA7Þ

Finally, if we assume that the drag coefficient is spanwise invariant
(CD,j =CD for all j ), and we recognize that velocity points in the
opposite direction as drag, we can simplify:

~vwing ¼

Pn
j¼1

Sjj~vjj2~vj
Pn
j¼1

Sjj~vjj2
: ðA8Þ

We use this representative wing velocity vector to compute
aerodynamic power based on this first-principles derivation.

APPENDIX 3
Derivation of body yaw angle effect on aerodynamic power
Thus far, we have assumed that the bird’s flight is not only
bilaterally symmetric, but also straight from one perch to the other:
aligned with the world reference frame defined by the AFP. Here,
we derive the needed adjustment for the case where the bird’s flight
direction is yawed with respect to the world reference frame. In this
analysis we still make the reasonable assumption that the bird flies
bilaterally symmetric along its flight path in an approximately
straight line.

Because we still assume that the bird’s flight is symmetric, the
aerodynamic power produced by each wing is equivalent to each
other. Hence, Eqn 1 remains valid, and we only need to calculate the
representativewing velocity and aerodynamic force on the left wing.
Furthermore, because the computation of the left wing velocity
vector (Eqn 2) is based solely on kinematics, it is unaffected by the
yaw angle. Similarly, the computation of the left wing drag and lift
unit vectors are solely based on kinematics. Therefore, the key
variables we need to compute in order to adjust the aerodynamic
force (Eqn 6) for body yaw offset, are the adjusted magnitudes of
drag, DA, and lift, LA.

In order to compute the adjusted magnitudes of drag and lift, we
retrace the steps in Eqns 4–13 for both wings separately. The
aerodynamic force from each wing adds up to the total force as:

2~Fwing ¼ ~Fwing;L þ~Fwing;R; ðA9Þ
where the subscripts L and R refer to the left and right wings
respectively, and the x and z components of ~Fwing are computed in
Eqns 4,5 using the AFP measurements. This can be expanded
according to Eqn 6:

2~Fwing ¼ �DAðD̂L þ D̂RÞ � LAðL̂L þ L̂RÞ; ðA10Þ
where the magnitudes of the drag and lift are the same for each wing
for flights along an approximately straight line. From Eqns 10 and
11, we see that in order to expand further, we need to solve for the
velocity vector of the right wing.

To solve for the representative wing velocity of the right wing, we
utilize the bilateral symmetry of the wings in the bird body reference
frame. We define the rotation matrix from the world reference frame
to the bird body reference frame Rz as:

R z ¼
cos u � sin u 0
sin u cos u 0
0 0 1

2
4

3
5; ðA11Þ

where the angle θ is the yaw angle of the bird. For this particular
flight, θ=6.8 deg. Next, to simplify the notation, we represent the x,
y and z components of the left wing velocity as:

~vwing;L ¼ vL;x vL;y vL;z
� �T

; ðA12Þ
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where the velocity vector is in the world reference frame. To find the
components of the right wing, we first transform the left wing
velocity into the symmetric bird body reference frame, represented
by a tilde:

~vL;x ~vL;y ~vL;z
� �T¼ Rz vL;x vL;y vL;z

� �T
: ðA13Þ

Next, from the symmetry assumption, we can find the velocity
vector in the right wing:

~vR;x ~vR;y ~vR;z
� �T¼ ~vL;x �~vL;y ~vL;z

� �T
; ðA14Þ

and transform back into the world reference frame:

~vwing;R ¼ R�1
z ~vR;x ~vR;y ~vR;z
� �T

; ðA15Þ

~vwing;R ¼
vL;xð1� 2sin2uÞ � vL;yð2 cos u sin uÞ
�vL;yð1� 2sin2uÞ � vL;xð2 cos u sin uÞ

vL;z

2
4

3
5: ðA16Þ

Now that we have the representative wing velocity for each wing,
we use these vectors to compute the aerodynamic force on each
wing. Similar to the velocity vector, we derive the drag and lift
vectors for the right wing using the left wing. Since the drag vector
points in the opposite direction as the velocity vector, we can use the
same transformation:

D̂L ¼ D̂L;x D̂L;y D̂L;z

� �T
; ðA17Þ

D̂R ¼
D̂L;xð1� 2sin2uÞ � D̂L;yð2 cos u sin uÞ
�D̂L;yð1� 2sin2uÞ � D̂L;xð2 cos u sin uÞ

D̂L;z

2
64

3
75: ðA18Þ

Computing the lift vector requires the radial vector, r̂span, which has
the same symmetry properties as the velocity vector:

~rspan;L ¼ rL;x rL;y rL;z
� �T

; ðA19Þ

~rspan;R ¼
rL;xð1� 2sin2uÞ � rL;yð2 cos u sin uÞ
�rL;yð1� 2sin2uÞ � rL;xð2 cos u sin uÞ

rL;z

2
4

3
5: ðA20Þ

For the left wing, the expanded lift vector equals:

L̂LjD̂L �~rspan;Lj ¼ �D̂L �~rspan;L

¼
D̂L;zrL;y � D̂L;yrL;z

D̂L;xrL;z � D̂L;zrL;x

D̂L;yrL;x � D̂L;xrL;y

2
64

3
75 ¼

A
B
C

2
4

3
5; ðA21Þ

L̂L ¼
L̂L;x

L̂L;y

L̂L;z

2
64

3
75 ¼ 1

A2 þ B2 þ C2

A
B
C

2
4

3
5; ðA22Þ

where the variables A, B and C are used to simplify the notation. For
the right wing, the expanded lift vector equals:

L̂RjD̂R �~rspan;Rj ¼ D̂R �~rspan;R

¼
Að1� 2sin2uÞ � Bð2 cos u sin uÞ
�Bð1� 2sin2uÞ � Að2 cos u sin uÞ

C

2
4

3
5;
ðA23Þ

L̂R ¼
L̂L;xð1� 2sin2uÞ � L̂L;yð2 cos u sin uÞ
�L̂L;yð1� 2sin2uÞ � L̂L;xð2 cos u sin uÞ

L̂L;z

2
64

3
75: ðA24Þ

Substituting Eqns A17, A18, A22, and A24 into Eqn A10 results in:

~Fwing ¼ �D

D̂L;xcos
2u� D̂L;y cos u sin u

D̂L;ysin
2u� D̂L;x cos u sin u

D̂L;z

2
64

3
75

� L

L̂L;xcos
2u� L̂L;y cos u sin u

L̂L;ysin
2u� L̂L;x cos u sin u

L̂L;z

2
64

3
75; ðA25Þ

which follows the same format as Eqn 6. Hence, we can solve for the
adjusted drag and lift magnitudes in the same manner as
Eqns 12–13:

DA ¼ �ðL̂L;xcos2u� L̂L;y cos u sin uÞFwing;z � L̂L;zFwing;x

�S
,

ðA26Þ

LA ¼ ðD̂L;xcos
2u� D̂L;y cos u sin uÞFwing;z � D̂L;zFwing;x

�S
, ðA27Þ

�S ¼ ðL̂L;xcos2u� L̂L;y cos u sin uÞD̂L;z

� L̂L;zðD̂L;xcos
2u� D̂L;y cos u sin uÞ: ðA28Þ

As expected, when the yaw angle is zero, the adjusted drag and lift
magnitudes equal the non-adjusted values in Eqns 12,13. Further, at
body yaw angles of ±90 deg, there is a singularity which should be
avoided by sufficiently aligning the world reference frame with the
bird’s flight path as we do in our study. We used these body-yaw
adjusted magnitudes for drag and lift to compute the aerodynamic
force on each wing, which we subsequently used to compute
the total aerodynamic power. The small influence of this body
yaw adjustment on our aerodynamic power calculations is shown
in Fig. S4.
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Fig S1. Sensitivity of the time-resolved aerodynamic power to the estimated chord-wise
location of the center of pressure. We adopt the same notation for displaying results based on the
quarter-chord (25% chord) velocity method (solid line) as in the main text. The most detailed calculation
of aerodynamic power (green line) is based on estimating the center of pressure at each chord section based
on the measured local angle of attack (α), which allows us to predict the center of pressure according to
the quasi-steady model developed for flapping wings; Eq. 20 in (Dickson et al., 2008). We also made power
calculations for fixed centers of pressure closer to the leading edge of the wing (12.5% is colored light blue)
and closer to the trailing edge of the wing (colored red; 37.5% is red, and 50% is light red) to demonstrate
the sensitivity of our calculations. A center of pressure at 12.5% corresponds to an angle of attack of 16
degrees, and 50% corresponds to 99 degrees (Dickson et al., 2008), which are beyond the extremes that
we measured in angle of attack (Fig. S3A). (A) The magnitude of the representative wing velocity as a
function of stroke phase (plotted as in Fig. 1D). (B) The computed lateral aerodynamic force normalized
by bodyweight (plotted as in Fig. 2D). (C) The total aerodynamic power per unit bodyweight (plotted
as in Fig. 3B). (D) The average specific aerodynamic power per unit bodyweight plotted as in Fig. 3C.
(Gray region, downstroke; force normalized by bodyweight, bw; faded lines correspond to filtered regions
with singularity, the red regions in Fig. 2C)
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Fig S2. Breakdown of quasi-steady model contributions to aerodynamic power. The power
calculation based on in vivo aerodynamic force and kinematics measurements can be approximated using the
quasi-steady model (Dickson et al., 2008), which gives a stroke-resolved power prediction as well as a stroke-
averaged value. The quasi-steady prediction (Dickson et al., 2008) is based on the 3D surface measurement
of the dove’s wing; the time- and spanwise-resolved wing chord, angles of attack, and velocity vectors. To
estimate the spanwise resolved steady state lift and drag coefficients, we combine the spanwise angle of attack
and lift-drag polars (both the positive and negative polar) for a hummingbird (Calypte anna) wing (Kruyt
et al., 2014) as an approximation. (Gray region, downstroke; power normalized by bodyweight, bw)
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Fig S3. Stroke-resolved wing stroke, deviation, angle of attack and twist kinematics. (A)
The wing stroke angle (orange), deviation angle (green), angle of attack (red) and twist angle (blue) are
plotted versus stroke phase during the 2nd wingbeat. The corresponding stroke plane is pitched down over
25 degrees with respect to the horizontal (about the y axis; Fig 1B), which we determined based on a linear
fit of the tip of the 9th primary feather throughout the full wingbeat. See Fig. 6 in Ingersoll and Lentink
2018 (Ingersoll and Lentink, 2018) for a standard diagram showing the angle definitions that we adopt here
with respect to the stroke plane. (B) The angular velocity of wing twist peaks near the downstroke-upstroke
transition. (Gray region, downstroke)
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Fig S4. Including body yaw angle improves the accuracy of aerodynamic power calculation.
The aerodynamic force and power are plotted for two cases: The dotted lines are computed assuming that
the bird had zero body yaw relative to the world reference frame θ = 0° (Eqns 12-13). The solid lines are
computed using the measured body yaw angle (Eqns 14-15; Appendix A3) of θ = 6.8° based on the dove’s
tracked kinematics. (A) The x, y, and z components of the aerodynamic force per unit bodyweight vector
plotted as in Fig. 2D. (B) The total aerodynamic power per unit bodyweight plotted as in Fig. 3B. (C) The
average specific aerodynamic power per unit bodyweight plotted as in Fig. 3C. (Gray region, downstroke;
faded lines correspond to filtered regions with singularity, the red regions in Fig. 2C)
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