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The UPRosome – decoding novel biological outputs
of IRE1α function
Hery Urra1,2,3,*, Philippe Pihán1,2,3 and Claudio Hetz1,2,3,4,*

ABSTRACT
Different perturbations alter the function of the endoplasmic reticulum
(ER), resulting in the accumulation of misfolded proteins in its lumen, a
condition termed ER stress. To restore ER proteostasis, a highly
conserved pathway is engaged, known as the unfolded protein
response (UPR), triggering adaptive programs or apoptosis of
terminally damaged cells. IRE1α (also known as ERN1), the most
conserved UPR sensor, mediates the activation of responses to
determine cell fate under ER stress. The complexity of IRE1α
regulation and its signaling outputs is mediated in part by the
assembly of a dynamic multi-protein complex, named the UPRosome,
that regulates IRE1α activity and the crosstalk with other pathways. We
discuss several studies identifying components of the UPRosome that
have illuminated novel functions in cell death, autophagy, DNA damage,
energy metabolism and cytoskeleton dynamics. Here, we provide a
theoretical analysis to assess the biological significance of the
UPRosome and present the results of a systematic bioinformatics
analysis of the available IRE1α interactome data sets followed by
functional enrichment clustering. This in silico approach decoded that
IRE1α also interacts with proteins involved in the cell cycle, transport,
differentiation, response to viral infection and immune response. Thus,
defining the spectrum of IRE1α-binding partners will reveal novel
signaling outputs and the relevance of the pathway to human diseases.
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Introduction
The endoplasmic reticulum (ER) is a highly dynamic and complex
membranous network, responsible for a variety of crucial cellular
functions, including protein synthesis and folding, and intracellular
Ca2+ storage (Schwarz and Blower, 2016). A complex network of
chaperones, foldases and cofactors, in addition to specific ionic and
redox requirements, tightly control protein folding and quality
within the ER lumen (Dubnikov et al., 2017). However, a significant
amount of newly synthetized proteins do not reach their proper
folding state and are delivered to the proteasome by the ER-
associated degradation (ERAD) machinery (Hwang and Qi, 2018).
Altered ER function can lead to the abnormal accumulation of
unfolded or misfolded proteins, a condition known as ‘ER stress’
(Walter and Ron, 2011). ER stress triggers a series of adaptive
mechanisms collectively known as the unfolded protein response
(UPR) (Hetz, 2012; Walter and Ron, 2011). UPR signaling results

in transcriptional and translational responses in order to increase the
protein folding capacity of the cell and restore proteostasis (Oakes
and Papa, 2015). If the UPR is unable to cope with protein
misfolding stress, the pathway activates self-destruction programs to
eliminate damaged cells by apoptosis (Urra et al., 2013).

Abnormal levels of ER stress are implicated in a variety of human
diseases, including cancer, metabolic disorders, inflammation and
neurodegenerative diseases (Wang and Kaufman, 2016). However,
novel biological functions of the UPR beyond its traditional role in
protein homeostasis are currently emerging. The UPR consists of
three arms and the most conserved branch is initiated by the stress
sensor inositol-requiring enzyme 1α (IRE1α; also known as ERN1)
(Walter and Ron, 2011). The activation status of IRE1α signaling is
regulated by the assembly of a multiprotein platform at the ER
membrane, which we have previously termed the UPRosome (Hetz
and Glimcher, 2009). The UPRosome also controls the crosstalk
between the UPR and other stress pathways through the binding of
adapter and signaling proteins and, in addition, might mediate non-
canonical functions of the UPR (Hetz et al., 2020).

Here, we review all available protein–protein interaction studies
to discuss emerging roles of the UPR in the control of cell function
in addition to highlight novel regulatory aspects of IRE1α. We also
present a new global analysis of available interactome data sets to
speculate about possible novel functions of IRE1α in normal
physiology and disease.

ER stress and the UPR
Under normal conditions, specialized secretory cells (i.e. pancreatic
β-cells, B cell lymphocytes and salivary glands) require an active
UPR to cope with the high demand for folded proteins, which
generates abnormal levels of misfolded or unfolded intermediates. In
addition, a number of conditions, such as hypoxia, nutrient
deprivation, mutations in secretory cargoes and loss of Ca2+, redox
or lipid homeostasis, can also result in altered ER protein homeostasis
or ‘proteostasis’ (Walter and Ron, 2011). In the past 20 years, chronic
ER stress and overactivation of the UPR have been proposed as a
relevant contributor to the development of several diseases, including
cancer, diabetes, neurodegeneration and inflammatory disorders,
among others (Wang and Kaufman, 2016). Activation of the UPR
reprograms the transcription of hundreds of genes involved in
different aspects of the secretory pathway including the translocation
of proteins into the ER, protein folding, glycosylation, redox
metabolism, protein quality control, translation, ERAD and lipid
biogenesis, among others (Hetz, 2012). If chronic ER stress results in
irreversible cellular damage, UPR signaling switches from adaptive
to pro-apoptotic programs through the engagement of several cell
death mechanisms (Tabas and Ron, 2011; Urra et al., 2013).

The UPR is initiated by three types of ER transmembrane
proteins that act as ER stress sensors and transducers, including
IRE1α and IRE1β (ERN2), activating transcription factor 6
(ATF6; also known as ATF6α) and ATF6β (also known as
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ATF6B), and protein kinase RNA (PKR)-like ER kinase (PERK;
also known as EIF2AK3) (Box 1). These sensors act in concert to
regulate downstream transcription factors that engage adaptive or
pro-apoptotic programs depending of the extent of cellular damage
(Box 1).
The most conserved pathway of the UPR is initiated by the serine/

threonine protein kinase IRE1α. Under ER stress, IRE1α dimerizes
and auto-transphosphorylates, favoring a conformational change
that activates its endoribonuclease domain (Karagöz et al., 2019).
Active IRE1α catalyzes the excision of a 26-nucleotide intron in the
mRNA encoding the transcriptional factor X-box binding protein-1
(XBP1) (Walter and Ron, 2011), which then is ligated by the tRNA
ligase RTCB (Jurkin et al., 2014; Kosmaczewski et al., 2014; Lu
et al., 2014). This processing event leads to a shift in the open
reading frame of the XBP1 mRNA, generating a new C-terminal
domain sequence (Calfon et al., 2002; Lee et al., 2002; Yoshida
et al., 2001). The resulting spliced XBP1 protein (XBP1s) acts as a
potent transcription factor that controls the upregulation of several
UPR genes involved in protein folding, protein entry into the ER

and ERAD (Hetz et al., 2011). In addition, the RNase domain of
IRE1α can mediate the direct cleavage of multiple RNAs, in a
process known as regulated IRE1α-dependent decay (RIDD)
(Hollien et al., 2009; Hollien and Weissman, 2006). RIDD
involves the cleavage of conserved RNA sequences that contain a
specific secondary structure similar to the hairpins present in the
mRNA of XBP1 (Maurel et al., 2014). The binding of IRE1α to
the adaptor protein TNFR-associated factor 2 (TRAF2) can engage
the activation of other signaling pathways, such as MAPK
pathways, regulating cell death and autophagy (Nishitoh et al.,
2002; Urano et al., 2000) (see figure in Box 1). Active IRE1α
molecules can be found as dimers and oligomers, which might
determine the regulation of XBP1 mRNA splicing and RIDD
(Bouchecareilh et al., 2011; Ghosh et al., 2014; Wang et al., 2012).
Nevertheless, the molecular mechanism underlying the selectivity
for mRNA substrates is still controversial and poorly understood. In
summary, the UPR represents a network of signaling pathways that
orchestrate adaptive responses to ER stress on a dynamic and
regulated manner.

Box 1. The unfolded protein response
The UPR is controlled by three ER transmembrane proteins named IRE1α, PERK and ATF6 (see figure). PERK is a type I protein kinase, which under ER
stress phosphorylates the eukaryotic translation initiator factor-2 (eIF2α) at serine 51, resulting in the inhibition of general protein translation (Harding et al.,
2000b). In addition, this event simultaneously triggers the selective translation of mRNAs that contain inhibitory upstream open reading frames (uORFs)
within their 5′-untranslated region (UTR) such as the activating transcription factor 4 (ATF4) (Vattem andWek, 2004). ATF4 controls the expression of genes
involved in the antioxidant response, folding capacity, amino acid metabolism and autophagy (Harding et al., 2000a). Upon chronic ER stress, ATF4
upregulates the transcription factor CCAAT-enhancer-binding protein homologous protein (CHOP; also known as GADD153), resulting in the activation of
pro-apoptotic programs (Tabas and Ron, 2011; Urra et al., 2013). For instance, CHOP induces the expression of the phosphatase subunit (GADD34 or
PP1C) that results in eIF2α de-phosphorylation, thereby restoring protein synthesis and resulting in oxidative stress and proteotoxicity (Han et al., 2013;
Marciniak et al., 2004). ATF6 is an ER transmembrane protein that contains a bZIP transcription factor in its cytosolic domain. Upon ER stress, ATF6 is
cleaved in the Golgi apparatus by the site-1 and site-2 proteases (S1P and S2P), resulting in the release of its cytosolic region (ATF6f) (Haze et al., 1999).
ATF6f then acts as a potent transcription factor, regulating many UPR target genes that are related to ERAD and protein folding (Adachi et al., 2008;
Yamamoto et al., 2007).
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IRE1α stress-sensing mechanism and regulation
For almost 20 years, it has been assumed that the chaperone BiP (also
known as Grp78 and HSPA5) is the main mediator involved in the
activation of all three UPR stress transducers (Bertolotti et al., 2000;
Shen et al., 2002). However, accumulating evidence suggests that
additional regulators and modes of activation exist. In yeast, Kar2 (a
homolog of BiP) interacts with the luminal domain of IRE1p, keeping
it in a monomeric and inactive form (Okamura et al., 2000).
Interestingly, the direct binding of misfolded proteins to a MHC-like
groove present in the luminal domain of IRE1p has been proposed to
trigger its activation (Credle et al., 2005; Gardner and Walter, 2011).
For mammalian IRE1α, the mechanisms of activation are still under

debate and three different models have been proposed (for extensive
reviews see Adams et al., 2019; Karagöz et al., 2019; Preissler and
Ron, 2019). Historically, it has been proposed that IRE1α monomers
are prone to spontaneously forming dimers and become activated, a
process inhibited by a physical interaction with BiP (Bertolotti et al.,
2000). In this model, BiP binding destabilize IRE1α dimers, resulting
in their inactivation, whereas, under ER stress, BiP preferentially binds
unfolded proteins, releasing IRE1α, which then spontaneously
activates (Amin-Wetzel et al., 2019, 2017). Alternatively, BiP has
been suggested to act as a sensor where the binding of misfolded
proteins to its substrate-binding domain (SBD) transduce signals to
IRE1α through its ATPase domain (Carrara et al., 2015; Kopp et al.,
2018). Once BiP is released from the IRE1α luminal domain, it
interacts with substrates to assist the folding of non-native proteins at
the ER (Adams et al., 2019). A recent report also reinforced the idea of

a crucial role for BiP in the activation and clustering of IRE1α (Ricci
et al., 2019) (Fig. 1). As for its yeast homolog, mammalian IRE1α also
contains an MHC-like groove at the interface facing the ER lumen;
however, the volume and positioning of this groove, as resolved in the
crystal structure, was not compatible with peptide binding (Zhou et al.,
2006). In contrast, in vitro studies have demonstrated that misfolded
proteins can bind to the luminal domain of IRE1α, inducing a
structural rearrangement that facilitates its dimerization (Karagöz et al.,
2017) (Fig. 1). However, the experimental systems used in these
studies are exclusively based on in vitro approaches and further work is
needed to demonstrate the so-called ‘direct recognition model’.
Besides, other studies have failed to detect the binding of misfolded
proteins to the luminal domain of IRE1α (Oikawa et al., 2009).
Interestingly, structural and functional analysis of the luminal domain
of PERK suggest that it is also able to bind to misfolded proteins
(Dalton et al., 2018 preprint; Wang et al., 2018b).

Recent studies have also suggested a new concept whereby
IRE1α signaling is coupled to the function of a network of ER
luminal chaperones. For example, the binding of BiP to IRE1α is
mediated by the co-chaperone ERdj4 (also known as DNAJB9),
functioning as a recycling loop to keep IRE1α in a monomeric state
(Amin-Wetzel et al., 2017) (Fig. 1). In addition, using an
interactome screen followed by functional validation we recently
identified HSP47 (also known as SERPINH1), a collagen-specific
chaperone, as a new IRE1α-binding partner that facilitates the
dissociation of BiP from its luminal domain. HSP47 binding to
IRE1α promotes its activation (Sepulveda et al., 2018) (Fig. 1).
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Fig. 1. Sensing of ER stress bymammalian IRE1α. IRE1α is maintained in a repressed andmonomeric state through an association with the ATPase domain of
BiP (brighter green) through a recyclingmechanism that involves ERdj4. ERdj4 binds to the IRE1α luminal domain, which leads to BiP recruitment. The interaction
between ERdj4 and the substrate-binding domain (SBD) of BiP (in darker green) results in the activation of the ATPase domain of BiP and the dissociation
or ERdj4, thus BiP–ERdj4-mediated repressing mechanism is crucial for maintaining IRE1α in a monomeric and inactive form. Then, BiP is released from the
IRE1α luminal domain allowing the interaction with misfolded proteins. Upon ER stress, misfolded proteins dock to the SBD of BiP, triggering the dissociation from
IRE1α through allosteric regulation (indirect model). In addition, misfolded proteins interact directly with the luminal domain of IRE1α, promoting IRE1α
dimerization (direct model). These events induce the auto-transphosphorylation of IRE1α, which induces a conformational change in its RNase domain that
allows its activation. Besides the BiP- and ERdj4-mediated repressing mechanism, IRE1α activation may be regulated by other ER chaperons, such as HSP47
and PDIA6, which can further boost IRE1α signaling, or by PDIA1 (also known as PDI) that can inhibit IRE1α activity. HSP47 can bind to and displace BiP
from the luminal domain of IRE1α, thereby allowing the binding of misfolded proteins. During the attenuation phase, BiP and ERdj4 may operate as a buffer to
sequester inactive IRE1α.
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Since collagens are the most abundant cargo of the secretory
pathway, these findings suggest that the demand for collagen
production is tightly coupled to the activation of the UPR, possibly
as a mechanism to improve the secretory capacity of the cell (Rojas-
Rivera et al., 2018). Furthermore, depending on the experimental
setting, the disulfide isomerase PDIA6 attenuates or enhances
IRE1α signaling through an interaction with specific oxidized
cysteine residues in the ER lumen (Eletto et al., 2016, 2014;
Groenendyk et al., 2014). Recently, it has been demonstrated that
phosphorylated PDI (also known as PDIA1) directly interacts with
the IRE1α luminal domain, reducing its activity under ER stress (Yu
et al., 2020) (Fig. 1). Thus, these few studies suggest that multiple
ER chaperones are coupled to the IRE1α activation and signaling
process to adjust the folding capacity of the cell.
Accumulating evidence indicates that IRE1α is also activated by

lipid bilayer stress. Structural and functional studies have revealed
that the IRE1α transmembrane domain is indispensable for its
activation under lipid bilayer stress (Kono et al., 2017), while the
luminal domain is not required (Volmer et al., 2013). A similar
mechanism has also been proposed for ATF6 activation under these
stress conditions (Tam et al., 2018). In addition to the
transmembrane domain of IRE1α, an adjacent amphipathic helix
is required to sense lipid stress (Halbleib et al., 2017). Thus, the
UPR-sensing mechanisms might be coupled to other homeostatic
fluctuations that are beyond its function in protein folding stress.

The UPRosome – fine-tuning ER stress signaling
Although all three UPR stress sensors are simultaneously activated
under ER stress, studying the composition of the UPRosome has
revealed a new paradigm whereby the kinetics and amplitude of
their individual responses can be regulated through the selective
binding of specific cofactors. The concept of the UPRosome
suggests the establishment of a dynamic multi-protein platform in
which IRE1α associates with other components to regulate its
signaling and crosstalk with other pathways (Hetz and Glimcher,
2009). Thus, UPR signaling intensity does not represent a direct
measurement of stress levels since the amplitude and kinetics of
IRE1α downstream responses can be tuned by several positive and
negative regulatory steps.
Because most of the studies characterizing IRE1α-binding

partners have only been performed once, or the characterizations
use non-equivalent experimental conditions or were validated at
different levels, here, we have compared the experimental
conditions used in different studies to identify regulators of
IRE1α signaling. Almost 95% of the interactors described in the
literature were defined using overexpression systems; however, 48%
of them were also validated at the level of endogenous proteins or in
cell-free systems with purified components to detect direct
interactions. In addition, in many studies, the possible effects of
ER stress on the formation of protein complexes were tested.
As shown in Table 1, many of the IRE1α-binding partners have

been described only once, with no follow-up studies confirming
these interactions. Thus, readers must be aware of the differences
between widely studied and confirmed interactors (i.e. BiP, PDIs
and filamin A) and proteins that have been assessed only once. To
this end we have summarized all the available data about IRE1α
interactors (Table 1).
IRE1α has been described as a low-abundance protein in HeLa

cells (Kulak et al., 2014), questioning the existence of multiple
protein complexes or its function as a scaffold protein. The most
probable scenario is that the interaction of IRE1α with UPRosome
components is highly dynamic and transient (a ‘hit and run’ model),

modulated by signaling events initiated by ER stress, or the
interactions could depend on subpools of IRE1α segregated by
their oligomerization and phosphorylation state (or other post-
translational modifications). Supporting this notion, it was recently
demonstrated that IRE1α cluster formation is highly dynamic, with
changes within minutes upon ER stress (Belyy et al., 2020). An
alternative hypothesis is that IRE1α interactions occurred in
subdomains within the ER membrane where some UPRosome
components are enriched. This is supported by recent findings
indicating the enrichment of IRE1α and PERK in contacts between
mitochondria and ER (Carreras-Sureda et al., 2019; Hayashi and Su,
2007; Mori et al., 2013) (see below). In addition, interactions of
IRE1α with the translocon (Acosta-Alvear et al., 2018; Plumb et al.,
2015; Sundaram et al., 2017) and the ERAD machinery (Yanagitani
et al., 2009, 2011) have been reported, supporting the idea that there
are distinct ER subdomains containing specific IRE1α-containing
protein complexes. Moreover, IRE1α interacts with many proteins
through adaptors that can physically bind to other signaling proteins.
In the next three sections, we discuss the identification of different
components of the UPRosome and their significance to the regulation
and function of the UPR.We divide the discussion into three different
categories: inhibitors, positive modulators and post-translational
modifiers (see also Table 1 and Fig. 2).

Cytosolic IRE1α inhibitors
We previously identified Bax inhibitor-1 (BI-1, also known as
TMBIM6) as the first negative regulator of IRE1α signaling that
associated with its cytosolic domain (Lisbona et al., 2009). This
interaction was also shown to be important to regulate IRE1α
function in models of ischemia, diabetes and liver steatosis (Bailly-
Maitre et al., 2010, 2006; Lebeaupin et al., 2018). Another negative
regulator of IRE1α signaling is fortilin (also known as TPT1), which
can directly interact and inhibit both the kinase and RNase domains,
protecting cells from ER stress-induced apoptosis (Pinkaew et al.,
2017). Fortilin preferentially binds to phosphorylated and active
IRE1α, modulating the attenuation phase under prolonged ER stress
(Pinkaew et al., 2017). A recent report showed that the BH3-only
protein BID also negatively regulates the RNase activity of IRE1α
(Bashir and Majid Fazili, 2019 preprint). A common feature of the
negative regulators of IRE1α is that they block its sustained
activation, disabling the capacity to engage apoptotic programs
under chronic ER stress (Fig. 2A).

Positive modulators of IRE1α
The enhancement of IRE1α signaling by positive regulators is highly
complex as these proteins can control several steps of IRE1α activation
and signaling (Hetz et al., 2020) (Fig. 2B). The first identified enhancer
of IRE1α signaling was the protein tyrosine phosphatase 1B (PTP-1B;
also known as PTPN1) (Gu et al., 2004). PTP-1B promotes XBP1
mRNA splicing and JNK activation under ER stress, but not PERK
signaling (Gu et al., 2004). However, a physical interaction between
IRE1α and PTP-1B has not been reported.

We identified the first direct enhancers of IRE1α signaling as the
pro-apoptotic BCL-2 familymembers BAX andBAK (also known as
BAK1), two crucial components of the cell death machinery (Hetz
et al., 2006a). BAX and BAK locate to the ER and fine-tune IRE1α
activation and the amplitude of its signaling under ER stress.
Similarly, two other BCL-2 family members, the BH3-only proteins
BIM (BCL2L11) and PUMA (BBC3), have been described to repress
the attenuation phase of IRE1α to sustain its signaling (Rodriguez
et al., 2012). Thus, one possible scenario is that BAX and/or BAK
might facilitate IRE1α dimer formation in the activation phase,
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Table 1. Possible components of the UPRosome

Experiment description

Detection Interaction

Protein Methods used
Endo-
genous

Over
expressed In vitro In vivo Cell type

ER
stress Others References

Activity modifiers

Positive modifiers
ABL1 IP ✖ ✔ ✖ ✖ INS-1 – – Morita et al., 2017
BAK PD-IP ✔ ✔ ✔ ✖ MEF ▴ – Hetz et al., 2006
BAX PD-IP ✔ ✔ ✔ ✖ MEF ▴ – Hetz et al., 2006
PUMA IPMS-PD-Y2H ✔ ✔ ✔ ✖ MEF/HEK ▴ – Rodriguez et al., 2012
BIM IPMS-PD-Y2H ✔ ✔ ✔ ✖ MEF/HEK ▴ – Rodriguez et al., 2012
DAB2IP IP ✔ ✔ ✔ ✖ EC ▴ – Luo et al., 2008
ER PTC PAR-CLIP-IPMS – – – – HEK ▴ 415 Acosta-Alvear et al., 2018
HSP47 IPMS-PLA-IP-PD-MST ✔ ✔ ✔ ✖ MEF/HEK ▴ 8 Sepulveda et al., 2018
HSP90AA1 IP ✔ ✔ ✖ ✖ COS-7/INS-1 = – Marcu et al., 2002; Ota and Wang, 2012
HSP72 IP-PD ✖ ✔ ✔ ✖ PC12 = – Gupta et al., 2010
JAB1 Y2H-IP-PD-CL ✖ ✔ ✖ ✖ HEK ▾ – Oono et al., 2004
NMIIB IPMS-IP ✖ ✔ ✖ ✖ HEK ▴ – He et al., 2012
NMI MAPPIT-IP ✖ ✔ ✖ ✖ HEK – 5 Brozzi et al., 2014
PRKCSH IP-PD ✔ ✖ ✔ ✖ LO2 ▴ – Shin et al., 2019
PTP1B N.T. – – – ✖ MEF – – Gu et al., 2004
RIPK1 IP ✖ ✔ ✖ ✖ HEK – – Estornes et al., 2014
RNF13 IP ✖ ✔ ✖ ✖ HEK – – Arshad et al., 2013
RNH1 IPMS-PLA ✔ – ✖ ✖ HK-2 ▴ – Tavernier et al., 2018
RTCB IP ✔ ✔ ✔ ✖ HEK – – Jurkin et al., 2014; Kosmaczewski et al., 2014
Sec61 IPMS-IP ✖ ✔ ✔ ✖ HEK = – Plumb et al., 2015; Sundaram et al., 2017
TAOK3 Y2H-IP ✖ ✔ ✖ ✖ HEK ▴ – Yoneda et al., 2001
TRAF2-6 IP ✔ ✔ ✖ ✖ PM HEK – 3 Nishitoh et al., 2002
UBD MAPPIT ✔ – ✖ ✖ HEK βH1 cells – 5 Brozzi et al., 2016
YIPF5 IP ✔ – ✖ ✖ HeLa – 5 Taguchi et al., 2015

Inhibitors
BI-1 IP-PD ✔ ✔ ✔ ✖ MEF HEK = – Lisbona et al., 2009
BiD PD-Y2H ✖ ✔ ✔ ✖ HEK – – Bashir and Majid Fazili, 2019
Fortilin PLA-IP-BLI ✔ - ✔ ✖ PC3 ▴ – Pinkaew et al., 2017
BiP IP-PD-MST ✔ ✔ ✔ ✖ AT42J HEK ▾ – Bertolotti et al., 2000 and many others
PDIA6 IP/MST ✔ ✔ ✔ ✖ HEK ▾ – Eletto et al., 2014; Groenendyk et al., 2014
PDI IP-PD ✔ ✔ ✔ ✖ HepG2 ▴ – Yu et al., 2020

PTM modifiers
Positive modulators

CHIP IPMS ✔ ✔ ✖ ✖ HEK – 4 Zhu et al., 2014
PARP16 IP ✖ ✔ ✖ ✖ Hela = – Jwa and Chang, 2012
PSEN1 IP ✖ ✔ ✖ ✖ SK-N-SH – – Katayama et al., 1999
PKA N.T. – – – – Hepatocytes – – Mao et al., 2011

Inhibitors
Caspases N.T. – – – – KMS11/OPM2 – – Shemorry et al., 2019
PPM1l IPMS ✖ ✔ ✖ ✖ INS-1 ▴ 6 Lu et al., 2013
RACK1 IP ✔ - ✖ ✖ INS-1 HEPG2 ▴ – Qiu et al., 2010
RPAP2 IP ✖ ✔ ✖ ✖ OVCAR8 – – Chang et al., 2018
SEL1L IP ✖ ✔ ✖ ✖ HEK ▾ OS9 Sun et al., 2015
MITOL IP-PD ✔ ✔ ✖ ✖ HEK – – Takeda et al., 2019

Protein stability
DDRGK1 IP ✖ ✔ ✖ ✖ HEK ▴ UFM1 Liu et al., 2017
OPTN IP ✔ – ✖ ✔ MODE HT29 = – Tschurtschenthaler et al., 2017
SIGMAR1 IP ✖ ✔ ✔ ✖ CHO – – Mori et al., 2013
SYVN1 IP ✔ ✔ ✖ ✖ HEK HCT116 ▴ p53 Gao et al., 2008; Sun et al., 2015
USP14 Y2H-IP ✔ ✔ ✖ ✖ MEF HEK PC ▾ – Nagai et al., 2009

Novel functions
FLNA Y2H-IP-PD-CL ✔ ✔ ✔ ✖ MEF HEK ▴ 70 Urra et al., 2018; Tavernier et al., 2018;

Augusto et al., 2020
ITPR1–ITPR3 IP-PLA-PD ✖ ✔ ✔ ✖ MEF HEK – – Carreras-Sureda et al., 2019

The table indicates different IRE1α-binding partners identified with different approaches. Methods used indicates the technique used to determine the interaction
including immunoprecipitation (IP), pull-down (PD), immunoprecipitation followed by mass spectrometry (IPMS), yeast two hybrid (Y2H), proximity ligation assay (PLA),
mammalian protein–protein interaction trap (MAPPIT), microscale thermophoresis (MST), bio-Layer interferometry (BLI), photoactivatable ribonucleoside enhanced
cross-linking and immunoprecipitation (PAR-CLIP) and co-localization (CL). N.T., not tested; PTM, post-translational modifications; ER PTC, ER protein targeting
components; ✖, no positive interaction detected; ✔, interaction detected; ▴, upregulation; ▾, downregulation; =, no changes observed. The number of the other
IRE1α-binding proteins described is also indicated (Others) and these are listed in Table S1.
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whereas BH3-only proteins stabilize IRE1α dimers and/or oligomers
during the attenuation phase after prolonged ER stress.
IRE1α oligomerization can be also regulated by specific factors.

For instance, the non-muscle myosin heavy chain IIB (NMIIB)
protein stabilizes the formation of IRE1α oligomers (He et al., 2012).
In agreement with this finding, drugs that destabilize the actin
cytoskeleton decrease IRE1α activation and cluster formation in
mammalian and yeast cells (He et al., 2012; Ishiwata-Kimata et al.,
2013). Remarkably, ER stress induction leads to the phosphorylation
and activation of two important regulators of the actin cytoskeleton,
the myosin regulatory light chain (RLC), a crucial activator of NMIIB
(He et al., 2012), and filaminA (Urra et al., 2018), supporting the idea
of an actin cytoskeleton crosstalk with the UPR. It has been also
described that the tyrosine protein kinase ABL1 interacts with IRE1α
and stabilizes the formation of oligomers, which may favor IRE1α
RNase activation towards RIDD (Dufey et al., 2020; Morita et al.,
2017). Finally, Yip1A (also known as YIPF5) regulates IRE1α auto-

transphosphorylation and the formation of oligomers (Taguchi et al.,
2015).

Sec61, a core component of the translocon, forms a complex with
IRE1α at the ERmembrane, recruiting the unspliced XBP1 (XBP1u)
through a pseudo-transmembrane domain present in the nascent
protein chain (Plumb et al., 2015). The close proximity between
XBP1u and the IRE1α–Sec61 complex is crucial to optimize the
XBP1 mRNA splicing process (Plumb et al., 2015). Other studies
have suggested that the interaction between Sec61 and IRE1α
maintains the balance between dimers and oligomers (Sundaram
et al., 2017). In addition, this protein complex was also found in an
unbiased interactome, showing that IRE1α binds to several proteins
and ribosomal RNAs that are part of the signal recognition particle
(SRP) and the ribosome (Acosta-Alvear et al., 2018), indicating that
IRE1α is in close proximity with the ER protein translocation and
targetingmachineries. Recently, the protein kinaseC substrate 80K-H
(PRKCSH) was shown to physically interact with IRE1α, promoting
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ERAD by USP14, Sel1 L or SYVN1.
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its phosphorylation and oligomerization under ER stress (Shin et al.,
2019). Taken together, this evidence indicates that different factors
tune the balance between IRE1α dimers and oligomers to determine
the amplitude and kinetics of UPR signaling.

Post-translational modifiers of IRE1α signaling
Auto-transphosphorylation of IRE1α is a key event required for the
activation of the RNase domain. Several phosphorylation sites have
been identified in the cytosolic domain of human IRE1α, including
serine residues 551 and 562 in the linker region, serine residues 724,
726 and 729 in the kinase activation loop, and threonine 973 in the
C-terminal RNase domain (Prischi et al., 2014), whereas the
phosphorylation in the serine residues located in the kinase domain
are crucial for IRE1α RNase activation (Prischi et al., 2014).
Homologous serine phosphorylation sites have also been described
in yeast (Armstrong et al., 2017). Interestingly, the phosphorylation
at serine 729 has been associated with the selective increase in
RIDD activity in XBP1-deficient B cells (Tang et al., 2018).
Protein kinase A (PKA) has been suggested to directly

phosphorylate serine 724 to enhance IRE1α signaling after fasting
or glucagon stimulation (Mao et al., 2011). Similarly, in the brain, the
activation of IRE1α by brain-derived growth factor (BDNF)
(Martínez et al., 2016) is also mediated by PKA activation
downstream of its receptor (Saito et al., 2018). Three phosphatases
dephosphorylate IRE1α in different contexts. For instance, the
association of the receptor for activated C kinase 1 (RACK1) to
IRE1α recruits the phosphatase PP2A to the complex after glucose
stimulation to sustain UPR signaling (Qiu et al., 2010). In addition,
the ER-located phosphatase PP2Ce (also known as PPM1L)
dephosphorylates IRE1α in the context of metabolic lipid control
(Lu et al., 2013). Interestingly, in a siRNA screen targeting 273
human phosphatases, the RNA polymerase II-associated protein 2
(RPAP2) was found to de-phosphorylate IRE1α (Chang et al., 2018).
Hence, the regulation of the phosphorylation status of IRE1α is
another key step fine tuning its signaling.
Additional post-translational modifications also modulate IRE1α

signaling (Fig. 2C). IRE1α can be ADP-ribosylated under ER stress by
the poly(ADP-ribose) polymerase 16 (PARP16), an event that is
required for their full activation (Jwa and Chang, 2012). In addition,
ubiquitylation of IRE1α at lysine residues 545 and 828 by the E3 ligase
CHIP (also known as STUB1) regulates the phosphorylation status of
IRE1α (Zhu et al., 2014). The E3 ligase MITOL (also known as
MARCHF5) ubiquitylates IRE1α at lysine 481, inhibiting its signaling
under prolonged ER stress (Takeda et al., 2019). S-nitrosylation of
IRE1α at two conserved cysteine residues located in the RNase domain
also attenuates its activity under metabolic stress and neurodegeneration
(Nakato et al., 2015; Wang et al., 2018a; Yang et al., 2015).
Another important step modulating IRE1α signaling is the

control of its stability (Fig. 2D). The E3 ubiquitin ligase synoviolin
(SYVN1) ubiquitylates IRE1α to induce its degradation (Gao et al.,
2008; Sun et al., 2015). Interestingly, ubiquitin D (UBD) can
associate with IRE1α, impacting JNK signaling (Brozzi et al.,
2016). Furthermore, DDRGK domain containing 1 (DDRGK1), a
component of the ubiquitin-fold modifier 1 (Ufm1) system, interacts
with and regulates IRE1α protein stability by inducing its
ufmylation through a non-covalent modification (Liu et al., 2017).
IRE1α can also be targeted to ERAD byUSP14 (Nagai et al., 2009),
or to the autophagy pathway by optineurin (Tschurtschenthaler
et al., 2017). In addition, HSP90 can stabilize IRE1α by interacting
with its cytosolic domain (Marcu et al., 2002; Ota andWang, 2012).
Interestingly, IRE1α can also be cleaved by caspases in some cancer
models, resulting in the generation of a fragment that can inhibit cell

death (Shemorry et al., 2019). Altogether, these reports suggest that
many different factors tune IRE1α signaling at multiple levels.

Finally, although the UPRosome concept was originally conceived
exclusively for IRE1α regulation (Hetz and Glimcher, 2009), recent
studies have shown that ATF6 and PERK can be also modulated by
specific interacting proteins (reviewed in Hetz et al., 2020). Thus, the
concept of the UPRosome could be extended to PERK and ATF6.

IRE1α as a signaling platform – novel physiological outputs
Most of the studies in the field have addressed the biological
function of IRE1α in the control of transcription and translation
through XBP1s or RIDD, impacting multiple cellular processes
(reviewed in Oakes and Papa, 2015; Wang and Kaufman, 2016).
However, recent findings have pointed to novel functions executed
through alternative signaling pathways (Fig. 3).

Two recent examples from our group have revealed that IRE1α
influences cell physiology by acting as a scaffold protein,
independently of its enzymatic activities (see below) (Carreras-
Sureda et al., 2019; Urra et al., 2018). To further decode possible
new IRE1α functions, here, we performed an extensive analysis of
almost 40 IRE1α-binding partners reported in the literature
(Table 1), followed by a gene ontology (GO) analysis and
functional clustering. In addition, we also included other IRE1α-
binding proteins presented in data sets available from different
public interactome screenings (Acosta-Alvear et al., 2018; Urra
et al., 2018) (Table S1). This comparison revealed eight common
UPRosome components in at least two data sets (Fig. 3A).
Furthermore, our GO analyses of all the 495 proteins identified
showed that almost all significant associations fall into 20 different
biological processes (Table S2). This functional analysis can be
further minimized to five major clusters of proteins involved in cell
cycle, cytoskeleton regulation, protein targeting, ribosome
biogenesis and protein translation (Table S2). In the next
sections, we discuss available evidence that suggests the
involvement of IRE1a in different biological processes by
IRE1α through the interaction with specific factors.

IRE1α and cell death programs
A number of studies support a direct molecular connection between
IRE1α and several signaling pathways regulating cell death. For
instance, binding of IRE1α to SH2/SH3-containing adaptor protein
Nck can modulate p38MAPK family and ERK1 (MAPK3) signaling,
impacting cell survival (Nguyên et al., 2004). In addition, IRE1α can
enhance the activation of NF-κB by interacting with TRAF2 and the
inhibitor of nuclear factor κβ kinase (IKK), promoting cell death (Hu
et al., 2006). Remarkably, the IRE1α–TRAF2 interaction also triggers
the activation of the apoptosis signal-regulating kinase 1 (ASK1) and
Jun-N terminal kinase (JNK) pathway (Nishitoh et al., 2002; Urano
et al., 2000). The IRE1α–MAPK signaling branch is also modulated
by other components of the UPRosome, such as AIP1 (Luo et al.,
2008), RNF13 (Arshad et al., 2013), UBD (Brozzi et al., 2016), BI-1
(Castillo et al., 2011) and N-Myc interactor (Brozzi et al., 2014).
However, the mechanisms of JNK activation downstream of IRE1α
and its consequences for cell fate under ER stress are not completely
understood.

Our GO enrichment analyses and functional clustering revealed a
group of IRE1α-binding partners that are involved in apoptosis,
including pro-apoptotic proteins of the BCL-2 family (BAX, BAK,
BIM and PUMA), α-catenin and BI-1 (Fig. 3B). We speculate that
this association may represent a molecular interface to monitor
alterations in proteostasis and engage cell death programs when cell
damage is deemed irreversible.
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IRE1α and protein degradation pathways
One of the outputs of UPR activation under ER stress is the
engagement of the autophagy and ERAD pathways, contributing

to stress mitigation (Rashid et al., 2015). The interplay between
autophagy and the UPR affects the progression of several human
diseases, such as neurodegenerative diseases (Hetz et al., 2009;
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Fig. 3. Possible novel outputs of the IRE1αUPRosome. (A) Venn diagram comparing the composition of all UPRosome proteins described in global references
listed in Table 1 (56 proteins; blue circle), and two available screens using either yeast two-hybrid [32 proteins (index score >4); yellow circle; Urra et al., 2018] and
immunoprecipitation followed by mass-spectrometry analysis [405 proteins (P>0.01); green circle; Acosta-Alvear et al., 2018]. Gene ontology (GO) analysis and
functional clustering of all IRE1α-binding proteins was performed (see Table S2). (B) Cell death. IRE1α regulates the cell death process through multiple
mechanisms that involve NFκB, JNK and RIDD. Our GO analysis also indicates that IRE1α interacts with clusters of proteins involved in cell death such as
components of the BCL-2 family (BAX, BAK, BIM and PUMA), and BI-1 (TMBIM6) or α-catenein (CTNNA1), which can also be crucial components of the cell
death machinery. (C) Protein degradation pathways. IRE1α associates with TRAF2 and BI-1/TMBIM6 to regulate JNK activation and autophagy. Our GO
functional clustering indicates that IRE1α can also physically interact with components of the chaperone-mediated autophagy (HSPA8, HSP90AA1 and CHIP) or
components of the ERAD pathway, among them SYVN1, USP14, the DERL1 family and SEL1L. Also, IRE1α interacts with OS9 and BiP, which also have been
described to target proteins for degradation. (D) Cytoskeleton regulation. We have previously described that IRE1α regulates actin cytoskeleton through FLNA
interaction. Here, we found that IRE1α also interacts with a cluster of proteins that are part of or regulate the cytoskeleton such as CORO1B and CORO1C,
ARPC1A and ARPC1B, NMIIB, CDC42 and MYO1B. In addition, IRE1α binds to other proteins that can indirectly regulate the cytoskeleton, such as ABL1,
BAIAP2, NCKAP1 and DPSYSL3. (E) Ca2+ homeostasis. IRE1α location at mitochondria-associated membranes (MAMs) regulates the docking of the IP3Rs
(ITPR1, ITPR2 or ITPR3) at this subcompartment, promoting Ca2+ release from the ER. This mechanism enhances the transfer of Ca2+ to the mitochondrial
matrix, promoting ATP production to tune bioenergetics. Our GO analysis reveals that IRE1α could affect this process by interacting with other proteins such as
BAX, BAX and BI-1/TMBIM6 or through ABL1 and LYN. (F) Translation and ribosome function. IRE1α interacts with SEC61, keeping it in close proximity to all
ribosome components. We postulate that IRE1α can interact with several ribosomal proteins (RPL proteins) and ribosome assembly proteins such as FTSJ1–
FTSJ3 and URB1. In addition, IRE1α can bind to proteins involved in translation such as EIF4B–EIF4H. (G) DNA damage response. We recently described that
upon DNA damage, IRE1α is specifically activated to induce the degradation of mRNAs (Ppp2r1a and Ruvbl1) through regulated IRE1α-dependent decay
(RIDD), sustaining DNA repair and promoting survival. The molecular mechanism involves that downstream of ATM and ATR; ABL1 interacts with IRE1α
promoting its oligomerization and RIDD. (H) Cell cycle control. It is known that IRE1α can regulate cyclin A expression through XBP1s promoting cell cycle
progression. Our GO analysis reveals that IRE1α specifically binds to components that regulate cytokinesis such as CORO1B and CORO1C, PRC1, NUSAP1
and KPNB1. Also, IRE1α interacts with several proteins that can indirectly regulate cell cycle such as DCNT1, ACTR1A and PPP2R1A. (I) Vesicle transport and
protein targeting. IRE1α can regulate the expression of secretory genes through XBP1s. We also indicate that IRE1α can affect vesicle transport through several
other proteins such as the SEC24 family or components of vesicle formation and transport, such as SNAP23, SNAPIN and MYO1C. In addition, this process can
be further modulated by other proteins including KIF5B, PKA, PSEN and DHX9. See Table S1 for the full names of proteins included here.
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Vidal et al., 2012), cancer (Hart et al., 2012) and auditory loss
(Kishino et al., 2017). Interestingly, the formation of the IRE1α–
TRAF2 complex can also induce autophagy in a JNK-dependent
manner (Castillo et al., 2011). Indeed, JNK activation mediates
the phosphorylation of BCL-2 (Pattingre et al., 2009); this
disrupts the Beclin-1–BCL-2 complex, facilitating phagosome
initiation and autophagy (Pattingre et al., 2005). The IRE1α–
TRAF2 interaction can be further modulated by BI-1, displacing
TRAF2 from the complex, blocking autophagy flux (Castillo
et al., 2011).
Our GO analysis indicates that IRE1α interacts with three

proteins involved in targeting substrates to chaperone-mediated
autophagy (CMA) – HSPA8, HSP90AA1 and STUB1 (Kaushik
et al., 2011). IRE1α also associates with factors involved in ERAD,
including SYVN1, a crucial E3 ubiquitin-protein ligase of
the ERAD pathway, DERL1 and DERL3, proteins regulating the
retrotranslocation of misfolded proteins to the cytosol, and
the proteasome-associated deubiquitylase USP14, which controls
the ubiquitylation status of proteasome-targeted proteins (Fig. 3C).
Hence, IRE1α interacts with components of autophagy and ERAD
machineries, suggesting that IRE1α could be involved in the
regulation of these pathways.

Regulation of the actin cytoskeleton
Using a yeast two-hybrid screen, we recently identified almost 70
candidate proteins that might directly bind to the cytosolic region of
IRE1α, where filamin A was the strongest hit (Urra et al., 2018).
Filamin Awas also validated as a strong IRE1α interactor in a second
unbiased screen (Tavernier et al., 2018) and, in addition, in a recent
study (Augusto et al., 2020). FilaminA is an actin-filament-crosslinking
protein that regulates cytoskeleton dynamics, impacting different
processes, such as cell migration, adhesion and mechanotransduction
(Kim andMcCulloch, 2011; Lynch and Sheetz, 2011).We showed that
IRE1α acts as a scaffold to recruit filamin A to the ER membrane and
facilitate its phosphorylation to modulate cytoskeleton dynamics (Urra
et al., 2018; Fig. 3D). In this model, PKCα mediates the
phosphorylation of many filamin A proteins at serine 2152 in an
IRE1α-dependent manner (Urra et al., 2018).
The interaction between IRE1α and filamin A requires a proline-

rich domain located at the distal C-terminal region of IRE1α (Urra
et al., 2018). Interestingly, disruption of this domain does not affect
XBP1mRNA splicing, whereas it selectively inhibits the regulation
of the actin cytoskeleton, fully separating both cellular functions
(Urra et al., 2018). In vivo studies demonstrated that IRE1α ablation
decreases cortical neuronal migration in the mouse brain (Urra et al.,
2018). Since filamin A mutations in humans are the main cause of
periventricular nodular heterotopia (PVNH), a genetic disorder
characterized by abnormal neuronal migration (Fox et al., 1998;
Sarkisian et al., 2008), we speculate that IRE1α loss of function
might contribute to PVNH as reported for other filamin A regulators
(Sarkisian et al., 2008; Zhou et al., 2010). Recently, it has been
reported that the IRE1α and FLNA interaction is also implicated in
the migration of cells infected with intracellular parasites (Augusto
et al., 2020).
According to our GO analysis, IRE1α interacts with other actin-

binding proteins such as CORO1B and CORO1C, which are
involved in actin remodeling and lamellipodia formation in the
migrating leading edge (Cai et al., 2007) and in ER-associated
endosome fission (Hoyer et al., 2018) (Fig. 3D). In addition, we
found an important cluster of regulators of actin and microtubule
dynamics, suggesting that IRE1α may affect cytoskeleton
remodeling through several mechanisms.

Reprograming cell metabolism by IRE1α through Ca2+ signaling
IRE1α and PERK have been reported to be enriched at the ER–
mitochondrial contact sites (termed mitochondria-associated
membranes; MAMs) (Carreras-Sureda et al., 2019; Mori et al.,
2013; van Vliet et al., 2017). It was suggested that the specific
localization of UPR stress sensors at this ER membrane subdomain
set the threshold for UPR activation (Mori et al., 2013). However,
the actual role of the IRE1α pool located at MAMs in mitochondrial
physiology was not defined until very recently. Under ER stress, the
inositol-1,4,5-trisphosphate receptors (IP3Rs) trigger the exit of
Ca2+ from the ER to the cytosol, regulating autophagy and apoptosis
(Kiviluoto et al., 2013). ER Ca2+ release is pivotal to tune
mitochondrial function to produce ATP, because different
enzymes of the tricarboxylic acid cycle (TCA) are Ca2+

dependent (Giorgi et al., 2018). The ER-to-mitochondria
Ca2+ transfer process requires local microdomains of high Ca2+

concentrations to be efficient (Csordás et al., 2010; Giacomello
et al., 2010). We recently reported a novel function of IRE1α in
sustaining ER–mitochondrial communication and bioenergetics by
demonstrating that IRE1α regulates the distribution of IP3Rs at
MAMs through a direct interaction (Carreras-Sureda et al., 2019).
IRE1α localization at MAMs recruits and docks IP3Rs, improving
mitochondria calcium transfer to burst energy metabolism. In
addition, besides IP3R localization, IRE1α expression alters the
protein composition of MAMs (Fig. 3E). The GO analysis also
suggested that IRE1α interacts with other proteins that can regulate
calcium homeostasis, such as BAX, BAK and BI-1 (Fig. 3E).

Ribosomes and the translocation machinery
As discussed above, the XBP1u mRNA is recruited to the ER by
the formation of a complex between IRE1α and Sec61
(Plumb et al., 2015). However, the mechanisms explaining how
RIDD substrates are made available to the ER membrane are still
unknown. Using photoactivatable ribonucleoside crosslinking and
immunoprecipitation (PAR-CLIP), it was shown that IRE1α is part
of a large complex containing almost 400 different RNAs, including
mRNAs, ncRNA and rRNA (Acosta-Alvear et al., 2018).
Furthermore, IRE1α interacts with the exposed surface of
translating ribosomes, and with components of the SRP and
translocon (Acosta-Alvear et al., 2018). Therefore, IRE1α could
function as a scaffold to recruit and maintain the protein targeting
and translation machineries in close proximity under ER stress
conditions (Acosta-Alvear et al., 2018) (Fig. 3F). Our analysis
suggests that IRE1α could not only regulate mRNA translation by
interacting with several ribosomal proteins, but also through the
regulation of ribosome biogenesis or their assembly since IRE1α
interacts with FTSJ3 and URB1 (Acosta-Alvear et al., 2018), two
important regulators of ribosomal biogenesis (Morello et al., 2011).
Other IRE1α-binding proteins are involved in the translation
machinery for rRNA, ncRNA and mRNAs, suggesting that
IRE1α could also regulate translation through the EIF4 complex.
Hence, IRE1α associates with ribosome and translocon
components; however, the functional consequences of these
interactions need to be defined.

DNA damage response
Although it was not found in our dataset analysis, we recently
reported that ABL1, a previously characterized IRE1α-interacting
protein (Morita et al., 2017), induces the selective activation of
IRE1α under genotoxic stress to promote DNA repair programs.
Upon DNA damage, ABL1 interacts with IRE1α, selectively
activating RIDD in the absence of XBP1mRNA splicing (Fig. 3G).
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This activity results in the degradation of Ppp2r1a and Ruvbl1
mRNAs, two factors that are involved in the DNA damage response
(DDR) by regulating the de-phosphorylation of checkpoint kinase 1
and 2 (CHK1/2; also known as CHEK1/2) and histone 2AX
(H2AX) (Chowdhury et al., 2005; Jha et al., 2008). The specific
activation of IRE1α by genotoxic stress promotes DNA repair and
cell cycle progression, resulting in cell survival. This function is
conserved in evolution as demonstrated in fly and mouse models of
DNA damage (Dufey et al., 2020). Other studies have also linked
the DDRwith the UPR, because XBP1u controls the levels of p53, a
central regulator of the DNA damage response, through its
ubiquitylation and degradation (Huang et al., 2017). In addition,
ER stress in tumor cells sensitizes cells to death induced by DNA-
damaging agents (e.g. chemotherapy and radiotherapy)
(Bobrovnikova-Marjon et al., 2010; Weatherbee et al., 2016;
Yamamori et al., 2013). These studies suggest that the UPR
functionally interacts with pathways that maintain genome stability.
In addition to the above examples, our GO enrichment analyses

identified some interesting clusters of proteins involved in
additional functions, including cell cycle control and protein
transport (see Box 2 and Fig. 3H,I). Taken together, the analysis
of the available interactome data sets reinforce the notion that the
UPRosome is implicated in several biological processes that need to
be further studied.

Concluding remarks
TheUPR is a central signal transduction pathway that acts to restore ER
function and proteostasis, and engages a series of adaptive responses or
triggers apoptosis under acute or sustained ER stress. The mechanisms
that explain this transition from adaptive to pro-death are not

completely defined, but are essential to understanding how cell fate
is determined under ER stress. One possible explanation may involve
the dynamic nature of the UPRosome as a mechanism to regulate
IRE1α signaling outputs. BiP is the most validated IRE1α-binding
partner and has a fundamental role in adjusting the capacity of a cell to
trigger the UPR. Importantly, several single studies suggest that UPR
activation, and the threshold of ER stress to induce IRE1α activation
and attenuation, is regulated by other ER chaperones and foldases
including HSP47, PDIA6 and PDIA1. We speculate that these
observations represent the tip of the iceberg, suggesting that the ER
stress surveillance process is broadly coupled to the folding machinery
involving a complex network of chaperones.

After the proposition of the UPRosome concept more than
10 years ago (Hetz and Glimcher, 2009), many new IRE1α-binding
partners have been identified that modulate its activity, conformation
and stability. As stated in Table 1, many of these interactions were
determined using artificial overexpression systems and validated only
once. Although the number of IRE1α-binding partners is quite large
(∼47 proteins), with dozens of laboratories confirming the concept of
the UPRosome, readers must be cautious when interpreting these
data sets since further independent validation is needed. Despite the
fact some of these interactors were defined in single studies, several
binders were properly validated using different complementary
approaches. Here, we provide a new layer of analysis by performing a
broad bioinformatics assessment using most data sets available,
highlighting clusters of proteins sharing similar functions, suggesting
novel functions of the UPR through protein–protein interactions and
eliminating the bias of one-time interactors or reports.

Overall, available studies assessing the nature of the IRE1α
interactome have revealed unexpected biological functions of the
pathway in diverse processes such as autophagy, cell migration and
cytoskeleton dynamics, protein translation and energy metabolism.
Some of these emerging roles are mediated by non-canonical
signalingmodes independent of the canonical IRE1αRNase domain,
where IRE1α operates as a scaffold that recruits proteins involved in
multiple cellular processes. Thus, we propose that a comprehensive
analysis of the IRE1α interactome is required to understand the global
impact of the pathway to cell physiology and disease. We expect that,
depending on the cell type and stimuli analyzed, distinct UPRosomes
are assembled in a dynamic manner. There might be even different
IRE1α-containing complexes in different ER compartments, as we
proposed for the MAM subdomains. Since IRE1α function and
dysfunction has been extensively linked to different human diseases,
strategies to fine tune the composition and activity of the UPRosome
may have important therapeutic applications.
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Box 2. Deciphering novel physiological functions of IRE1α
Our GO enrichment analyses and functional clustering of IRE1α-binding
partners identified some interesting clusters of proteins involved in
different functions including cell cycle control and cytokinesis (Fig. 3H).
IRE1α interacts with CORO1B and CORO1C, two coronins that together
with the Arp2/3 complex control actin rearrangement and cell cycle
progression (Molinie et al., 2019). PRC1 and NUSAP1, two important
players involved in cytokinesis regulation and cancer progression, were
also identified (Li et al., 2018). In addition, our analysis also revealed a
cluster of proteins regulating vesicle transport and protein targeting
(Fig. 3I). For example, distinct isoforms of Sec24 are observed that are
part of the coat protein complex II (COPII), which is involved in the
selection of cargo proteins and the formation of transport vesicles at the
ER (Mancias and Goldberg, 2007). In addition, proteins involved in
vesicle transport and fusion, like SNAP23 and SNAPIN, are also
detected in IRE1α-containing protein complexes (van Niel et al., 2018).
Several molecular motors involved in mRNA trafficking, such as KIF5B
and FXR2 (Hirokawa, 2006), are detected in IRE1α-containing protein
complexes that are crucial for axonal transport, promoting axonal growth
cone and dendrite morphogenesis (Fig. 3I). IRE1α can also interact with
proteins involved in cell differentiation, including the myeloid,
hematopoietic and osteoblastic lineage (Table S2). In addition, IRE1α
associates with crucial components involved in viral transcription,
replication and defense (Table S2). Viral infection induces ER stress
(Verchot, 2016); however, the actual impact of IRE1α on viral infection
and replication is poorly defined. Our analysis reinforces the idea that
IRE1α interacts with partners involved in immune responses including
antigen processing and presentation via MHC class I, cytokine
production and secretion, and phagocytosis. This is in agreement with
functional studies indicating that IRE1α can regulate some of these
processes by mechanism involving RIDD or XBP1s (for an extensive
review, see Osorio et al., 2018).
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Table S1: IRE1α-binding partners analyzed by gene ontology and functional 
clustering. IRE1α binding partners described in published studies (56 proteins), and two 

available screen using Yeast-two hybrid (32 proteins) and Immunoprecipitation followed by 

Mass-spectrometry (405 proteins). For the Yeast-two hybrid screen, only proteins that show 

a yeast growing index >4 were included (Urra et al., 2018). In the case of IP-MS screen all 

proteins that have a P value > 0,01 in the raw data were included to the analysis (Acosta-

Alvear et al., 2018). IRE1α-binding proteins described in other reports are also shown 

Table S2: Gene ontology analysis of IRE1α-binding partners. All IRE1α interacting 

proteins described in Supplementary table 1 were analyzed using the gene ontology 

resource platform (PANTHER-based software (http://www.pantherdb.org/)) in order to 

perform GO Enrichment Analysis. A full list of all biological functions of GO is provided with 

the respective fold enrichment, P value and FDR. 

Click here to Download Table S1

Click here to Download Table S2
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