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Limits to sustained energy intake. XXX. Constraint or restraint?
Manipulations of food supply show peak food intake in lactation
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ABSTRACT

Lactating mice increase food intake 4- to 5-fold, reaching an
asymptote in late lactation. A key question is whether this
asymptote reflects a physiological constraint, or a maternal
investment strategy (a ‘restraint’). We exposed lactating mice to
periods of food restriction, hypothesizing that if the limit reflected
restraint, they would compensate by breaching the asymptote when
refeeding. In contrast, if it was a constraint, they would by definition be
unable to increase their intake on refeeding days. Using isotope
methods, we found that during food restriction, the females shut down
milk production, impacting offspring growth. During refeeding,
food intake and milk production rose again, but not significantly
above unrestricted controls. These data provide strong evidence that
asymptotic intake in lactation reflects a physiological/physical
constraint, rather than restraint. Because hypothalamic
neuropeptide Y (Npy) was upregulated under both states of
restriction, this suggests the constraint is not imposed by limits in
the capacity to upregulate hunger signalling (the saturated neural
capacity hypothesis). Understanding the genetic basis of the
constraint will be a key future goal and will provide us additional
information on the nature of the constraining factors on reproductive
output, and their potential links to life history strategies.

KEY WORDS: Food restriction, Daily energy intake (DEI), Heat
dissipation limit (HDL) theory, Milk energy output (MEO), Gene
expression profile, Hunger signalling, Peripheral limitation, Swiss
mice, Neuropeptide Y, RNAseq

INTRODUCTION

The maximal rate of sustained energy intake or expenditure is the
rate at which an organism can sustain its metabolic performance for
periods of days or weeks without the need to resort to utilization of
stored energy reserves (Drent and Daan, 1980; Weiner, 1989;
Peterson et al., 1990). There has been considerable interest in the
factors that may limit this trait because it provides an upper
boundary within which all aspects of animal performance are
contained. There has been a range of different theories proposed for
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the factors that might impose limits on sustained energy intake,
which have included the idea that the limit is imposed by the
alimentary tract (Toloza et al., 1991; Hammond and Diamond,
1992, 1997; Koteja, 1996; Sadowska et al., 2015; Thurber et al.,
2019), the metabolic capacity of sites where the energy is expended
(Hammond et al., 1996; Zhao et al., 2010), the signalling system in
the brain that regulates hunger (Speakman and Krol, 2005) or the
capacity of the individual to dissipate body heat (Krol et al., 2007,
Speakman and Krdl, 2010).

In small rodents, lactation is the most energy-demanding period
of their lives (Millar, 1977; Loudon and Racey, 1987; Speakman,
2008). Studies of the limitations on lactation performance therefore
provide an ideal testing ground for these alternative ideas, and there
has been a rich vein of research focused on lactation energy limits
stretching back at least 25 years (Hammond and Diamond, 1992;
Hammond et al., 1994, 1996; Speakman and McQueenie, 1996;
Rogowitz, 1998; Johnson et al., 2001a; Krol et al., 2003; Zhao and
Cao, 2009a,b; Wu et al., 2009; Paul et al., 2010; Speakman and
Krol, 2010; Valencak et al., 2010, 2013; Zhao et al., 2010, 2013;
Sadowska et al., 2015; Gamo et al., 2016; Thurber et al., 2019).
Food intake during lactation in small mammals accelerates over
7 days, but then reaches an asymptote. It is widely presumed that
this asymptote reflects a constraint that the animal cannot breach
(Hammond and Diamond, 1997; Johnson et al., 2001a,b; Krol et al.,
2007; Speakman and Krol, 2005, 2011), and hence understanding
what imposes such a limit will give us insights more broadly into the
limits on sustainable intake.

The basis for presuming this is a constraint is as follows. First, if
litter size is experimentally increased, then females do not respond
by elevating their intake or milk production (Johnson et al., 2001a;
Duah et al., 2013), resulting in smaller offspring as the limited milk
has to shared by more individuals. Second, if lactation is combined
with increased energy demands owing to exercise, then mice are
unable to elevate their intake to match both the exercise and
lactation demands (Perrigo, 1987; Duah et al., 2013; Zhao et al.,
2013; Gamo etal., 2016). Similarly, animals challenged by lactation
and infection, or lactation and pregnancy also cannot increase their
intake to deal with both challenges (Johnson et al., 2001b;
Hammond and Kristan, 2000). However, contrasting these data is
the fact that if animals are placed in the cold when lactating, then
they do seem easily capable of eating more food (Hammond and
Diamond, 1992; Johnson and Speakman, 2001; Zhao and Cao,
2009a,b), and in some cases this translates to elevated milk
production and pup growth (Johnson and Speakman, 2001). This
effect of cold exposure was the basis for the formulation of the heat
dissipation limit (HDL) hypothesis (Krél et al., 2003, 2007,
Speakman and Krol, 2010, 2011). The basis of this idea is that there
is a constraint, but this constraint is temperature dependent, and
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List of symbols and abbreviations

Agrp agouti-related peptide

Cart cocaine- and amphetamine-regulated transcript
Con control group

CR caloric restriction

DEE daily energy expenditure

DEI digestive energy intake

DLW doubly labelled water

Drd2 dopamine receptor D2

FR food restriction

GE gross energy

GEI gross energy intake

Htr2a 5-hydroxytryptamine receptor 2A

Lepr Long form leptin receptor

Mc3r melanocortin-3 receptor

Mc4r melanocortin-4 receptor

MDS multidimensional scaling

MEI metabolisable energy intake

MEO milk energy output

Npy neuropeptide Y

Pomc proopiomelanocortin

SDA specific dynamic action

Socs3 suppressor of cytokine signalling 3

Stat3 signal transducer and activator of transcription 3
Stat5b signal transducer and activator of transcription 5 beta
To body temperature

T™MM trimmed mean of M values

Tnf-a tumor necrosis factor o

UEL urinary energy loss

reflects the capability of the animals to dissipate body heat and
hence avoid potentially fatal hyperthermia. Hence, manipulations
that aim to elevate expenditure/intake at a single temperature are
unsuccessful, but lowering temperature alleviates the constraint
allowing intake to rise, while increasing ambient temperature
tightens the constraint causing lactation investment to fall (Krol
et al., 2003; Wu et al., 2009; Zhao et al., 2016).

Attempts to test the HDL theory by shaving lactating females to
alleviate their heat burden have had mixed results (Krol et al., 2007,
Zhao and Cao, 2009a,b; Paul et al., 2010; Zhao et al., 2010; Simons
et al., 2011; Sadowska et al., 2016), as have attempts to expose
females and their offspring to different ambient temperatures
(Valencak et al., 2010, 2013; Zhao et al., 2016). These ambiguous
results mean that it is entirely plausible that the difference in the
response of lactating animals to manipulations at a single
temperature (where they generally do not increase intake and
investment) and those where temperature is manipulated (where the
animals generally do respond by varying intake and investment) is
not because of a limit that varies with temperature (e.g. heat
dissipation), but because of an investment strategy that reflects the
animals’ deeper selection history. That is the strategy they are
following to maximize lifetime reproductive output that has been
moulded by the process of evolution. For example, it has been
suggested that the reproductive value of offspring may vary with
time of year, such that those born earlier in the breeding season
when it is colder may have greater reproductive value than those
born later (Speakman and Krol, 2005). Animals may then be willing
to elevate their investment when it is colder, and lower it when it is
hotter, because of these underlying selection pressures, rather than
any physical process related to heat loss capacity. Thus, at a fixed
temperature, females may ‘choose’ not to elevate their investment
even though they are physiologically capable of doing so. In other
words, the limit reflects ‘restraint’ rather than a ‘constraint’. There is

some evidence for such a trade-off between litters in mice (strain
MF1). When litter sizes were experimentally manipulated, those
mice raising smaller litters showed greater investment in the
subsequent litter (Vaanholt et al., 2018). However, this observation
only shows that the conditions necessary for a restraint to exist are
present, but this does not necessarily imply that the asymptotic
consumption observed when raising the first litter was restrained
(Vaanholt et al., 2018).

Separating whether animals are constrained in their intake
capacity or restraining intake as part of a broader investment
strategy is extremely difficult. In this study, we have tried to
perform such a test. The rationale of the approach is relatively
simple. If one takes a non-breeding small mammal and completely
deprives it of food for 24 h (or partially restricts it for a longer
period), then when food is again provided ad libitum (normally
called the ‘refeeding day’), the animals eat more than their normal
24 h intake to compensate for the day of intake that they missed
(Wilson and Osbourn, 1960; Bartness, 1997; Cameron and
Speakman, 2011; Zhang et al., 2012; Zhao et al., 2014). The
animals in this situation are strongly motivated to eat more food on
the re-feeding day. We hypothesized that lactating animals would
likely have the same sorts of motivations in the face of variable
food supply. Food availability in the wild varies from day to day. If
lactating animals have a target intake that defines their restrained
asymptotic investment level, they might occasionally find
insufficient food to meet this requirement. This would provide
them with a strong motivation to eat more the next day to
compensate for the deficit and keep their average investment on the
restrained track. However, if the asymptotic intake reflects a
physiological or physical constraint, then the day after a period
where they failed to find enough food, they would be
physiologically incapable of eating more to compensate. This
difference provides the setting for a potential test of whether the
asymptotic intake at peak lactation is constrained or restrained.

Studies of mice under caloric restriction suggest that the post-
restriction hyperphagia is driven by a complex network of
hypothalamic neuropeptides that regulate food intake (Barsh
et al., 2000a,b; Schwartz et al., 2000) and are stimulated or
inhibited during the restriction phase (Hambly et al., 2007, 2012;
Speakman and Mitchell, 2011; Derous et al., 2016a) or alter their
network topology (Derous et al., 2016b). Topology is the structure
of the network of interacting genes. If mice in lactation do not
elevate their intake following restriction, one reason may be that the
hunger signalling pathway is already maximally stimulated during
lactation (Hambly and Speakman, 2015), and hence there is no
additional scope in the system to drive additional intake.
Conversely, if this system is further stimulated, yet additional
intake does not occur, this would indicate other physiological or
physical constraints were at play.

The design we used was to expose Swiss mice at peak lactation
(after day 10) to days when they received only 25% or 50% of their
asymptotic intake. They were followed to see how they responded to
this shortfall during the event, and in particular the following day
when they were returned to ad libitum feeding. In some mice, this
included characterization of the hunger signalling network in the
hypothalamus by RNAseq, at the end of the day of restriction, and
measurement of circulating hormone levels in the same individuals.
Mice responded to restriction by cutting down their milk secretion to
their pups and lowering their body temperature. These responses
were made in proportion to the level of restriction and had direct
impacts on pup growth and at the highest level of restriction. Mice
did not elevate their intake or milk production on ad [libitum
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refeeding day, consistent with the asymptote being imposed by a
constraint.

MATERIALS AND METHODS

Ethical review

All the experiments were reviewed and approved by the Institutional
Review Board of the Institute of Genetics and Developmental Biology,
Chinese Academy of Sciences (approval number AP2016052).

Animals

Female Swiss mice were obtained at 9-10 weeks old from a colony
that was maintained in the animal house of Wenzhou University.
Animals were housed individually in plastic cages (29x18x16 cm)
with sawdust bedding, and kept on a 12h:12h light:dark
photoperiod (lights on at 08:00 h) at a constant temperature of
21£1°C. Food (standard rodent chow; produced by Beijing KeAo
Feed Co.) and water were provided ad libitum.

One hundred and eighty-nine virgin female mice were paired with
males for mating for 11 days and then males were removed. One
hundred and seventy-seven females became pregnant and gave birth.
Pups were moved between females on the day of parturition, by
which all mothers were experimentally adjusted to raise 12 pups,
counted as day 0 of lactation hereafter. The mothers were randomly
assigned into one of three groups following litter size adjustment: one
control group (control, n=56), in which the females were fed
ad libitum throughout lactation, and two food restriction (FR) groups,
within which females were provided with 50% or 25% of their
ad libitum food intake on days 13, 15 and 17 of lactation (referred to
as 50%-FR, n=81, and 75%-FR, n=40 groups, respectively), but fed
ad libitum on the days excluding the three days. Note that levels of
restriction generally refer to the amount of food missing rather
than the amount of food provided, and hence those provided with
25% of ad libitum intake were called 75%-FR. The restricted food
intake was calculated based on the average of ad libitum food
intake during days 11 and 12. Twelve females were randomly
selected from each group and were killed at the end of day 13 of
lactation. Another 12 females were randomly selected from the
control group and were killed at the beginning of day 13. The rest
of the females ended lactation when pups were weaned on day 18
of lactation. Body temperature, body mass, litter size and litter
mass were measured throughout lactation on a daily basis.

Body temperature

Body temperature (7},) (control, n=23; FR-50%, n=34; FR-75%,
n=16) was recorded using encapsulated thermo-sensitive passive
transponders (diameter 2 mm, length 14 mm; Destron Fearing, South
St Paul, MN, USA). We implanted transponders subcutaneously in
the dorsolateral hip region of the females after the parturition day,
according to the manufacturer’s specifications. A Pocket Reader was
used to approach the cage until the 7}, data were taken. The reader did
not touch the females and did not affect the behaviour of the mother
and pups in the cage.

Body mass, food intake, litter size and litter mass

Body mass, litter size and litter mass during lactation were measured
on a daily basis following the 7}, measurements (control, n=23; FR-
50%, n=34; FR-75%, n=16). These measurements were performed
at 14:00 h during the period of lactation, but at a 3-h interval across
24 h on day 13 of'lactation (to 0.1 g, Sartorius, Beijing). Food intake
was also determined on day 13 at a 3-h interval, which was
calculated based on the difference of food mass on the hopper over
the 3 h, and was expressed as g 3 h™!.

Gross energy intake and digestibility

Gross energy intake (GEI), digestive energy intake (DEI) and
digestibility were measured (control, n=12, FR-50%, n=17; FR-75%,
n=8) on day 13 (the day of food restriction) and day 16 (ad libitum
feeding day). In detail, food was provided at 14:00 h, and any uneaten
food or food mixed within the bedding was collected along with any
faeces from each animal after 24 h (again at 14:00 h the next day).
Food orts and faeces were separated manually after they were dried at
60°C to constant mass. Gross energy contents of the food (GEgq;
kJ g71) and faeces (GEgyeces; kJ g71) were determined using an IKA
C2000 oxygen bomb calorimeter (IKA, Germany). GEI (kJ day '),
DEI (k] day™), digestibility (%) and gross energy of facces (kJ day ")
were calculated using the following equations (Zhao et al., 2010):

GEI = [food provided x dry matter content of
food—dry spillage of food and uneaten food] X GEgyd,

(1)

DEI = GEI - GEgaeces; (2)
Digestibility = DEI/GEI x 100%, (3)
Gross energy of faeces = Mpeces X GEfaecess (4)

where food provided is in g day !, dry matter content is in %, dry
spillage is in g day™!, and My, is the dry mass of faeces (g day™').
Gross energy content of faeces is in kJ g~! (the energy content per
gram faeces) and gross energy of facces is in kJ day~! (gross energy of
faeces produced by the female per day).

Daily energy expenditure and milk energy output

Daily energy expenditure (DEE) of females was measured on day 13
(the days of food restriction, control, n=19, FR-50%, n=26;
FR-75%, n=11) and day 16 (ad libitum feeding day, control, n=7,
FR-50%, n=9; FR-75%, n=14) of lactation, using the doubly
labelled water (DLW) technique as described previously
(Speakman, 1997; Krol and Speakman, 2003). Briefly, females
were weighed at the start of days 13 and 16, followed by the
intraperitoneal injection of approximately 0.2 g of the DLW
containing enriched 2H and '30. The syringe was weighed before
and immediately after the injection, using a Sartorius balance (to the
nearest 0.1 mg). The initial blood samples were taken after 1 h of
isotope equilibration to estimate initial isotope enrichments. The
final blood samples were taken 24 h after the initial blood collection
to estimate isotope elimination rates. Blood sample collections were
performed by tail tipping, and immediately sealed into two 60 pl
glass capillaries at both sides using a butane torch, which were sealed
again with sealing wax. DEE of the females was calculated based on
CO, production as described previously (Speakman, 1993; Kro6l and
Speakman, 2003). MEO was calculated from the difference between
metabolizable energy intake (MEI) and DEE, during which MEI was
calculated as DEIx(100-3%) because urinary energy loss was
assumed to be 3% of DEI (Drozdz, 1975; Kro6l and Speakman, 2003).

Body composition and body fat content

Twelve females from each group were killed by decapitation at the
end of day 13 of'lactation, which started at 14:00 h on that restriction
day. Twelve females from the control group were killed at the start of
day 13. The heart, liver, lungs, spleen and kidneys, as well as the
mammary glands, were removed and weighed (to the nearest 1 mg).
The gastrointestinal tract was also separated, and weighed (to the
nearest 1 mg) after the contents were removed. The remaining
carcass (including head and tail) was weighed (to the nearest 1 mg)
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to obtain the wet mass. All the materials were dried in an oven at
60°C for at least 2 weeks and then reweighed to obtain the dry mass
(to the nearest 1 mg).

Serum leptin, insulin, corticosterone, tumor necrosis factor a
and prolactin measurements

Serum leptin, insulin, prolactin and corticosterone concentrations were
determined by ELISA (control, n=6; FR-50%, n=6; FR-75%, n=6).
For mouse leptin (Leptin Mouse ELISA Kit, EK2972, MultiSciences
Biotech, Co, LTD, China), the minimum detectable level was
2.48 pg ml~!, and the intra- and inter-assay coefficients of variations
were 2.1% and 5.9%, respectively. For insulin (Insulin Mouse ELISA
Kit, K4271-100, Biovision, Milpitas, CA, USA), the intra- and inter-
assay coefficients of variations were 8% and 10%, respectively. For
tumor necrosis factor oo (TNFa; EK2821, MultiSciences Biotech), the
minimum detectable level was 2.48 pg mI~!, and the intra- and inter-
assay coefficients of variations were 6.1% and 7.6%, respectively. For
serum prolactin (Mouse Prolactin ELISA Kit ab100736, Abcam,
Cambridge, UK), the minimum detectable level was 30 pg ml~'. For
corticosterone (Mouse Corticosterone ELISA Kit, No. 501320,
Cayman Chemical Company, USA), the minimum detectable level
was 82 pgml~!, and the intra- and inter-assay coefficients of
variations were 9.3% and 8.8%, respectively.

Gene expression profiling of the hypothalamus

Six females from each group were killed by decapitation at the end of
day 13 of lactation, the end of the restriction day (control, n=6;
FR-50%, n=6; FR-75%, n=6). Blood was collected for analysis of
peripherally circulating hormone levels. The whole brain was
separated carefully and frozen on aluminium foil on dry ice and
stored at —80°C until RNA was extracted for the RNAseq
measurements. The hypothalamus was carefully dissected at a later
time using a cryostat and landmarks were identified from the mouse
brain atlas. RNA was isolated by homogenizing in Tri-Reagent
(Sigma-Aldrich) according to the manufacturer’s instructions. Prior
to RNA quantification using the Agilent RNA 6000 Nano Kit,
samples were denatured at 65°C.

Extracted RNA from all individuals was sent to the Beijing
Genomic Institute (BGI, Shenzhen, China) for RNA sequencing.
Library preparation was conducted by enriching total RNA using
oligo(dT) magnetic beads. Fragmentation buffer was added to obtain
short fragments from the RNA. The mRNA was used as a template
for the random hexamer primers, which synthesize the first strand of
c¢DNA. The second strand was synthesized by adding buffer dNTPs,
RNase and DNA polymerase. A QiaQuick PCR extraction kit was
used to purify the double-stranded cDNA and washed with EB buffer
for end repair and single nucleotide A addition. The fragments were
ligated with sequencing adaptors, purified using agarose gel
electrophoresis and enriched by PCR amplification. As a quality
control step, an Agilent 2100 Bioanalyzer and an ABI StepOnePlus
Real-Time PCR System were used to qualify and quantify the sample
library. The library products were sequenced using an Illumina Hi-
seq 2000, resulting in 50 bp single-end reads (standard protocol,
BGI). Standard primers and barcodes developed by BGI were used.

Prior to alignment to the reference genome, FASTQ files were
quality controlled to identify the presence of adaptors or low quality
sequences using fastQC (http:/www.bioinformatics.bbsrc.ac.uk/
projects/fastqc/). To ensure high sequencing quality, the reads were
trimmed with a cut-off phred score of 28 using Trimmomatic
(Bolger et al., 2014). Reads were aligned to the reference genome
using HISAT?2 (version 2.1.0) with default settings and a prebuild
index (Mus musculus, GRCm38 release 81 version) (Kim et al.,

2015). Of the 432,335,789 reads, 398,725,650 (92.26%) were
successfully aligned to the reference genome. Aligned sequencing
reads were counted with featureCounts (Liao et al., 2014) by
identification of how many reads mapped onto a single feature
(genes containing exons).

Statistics

Data were analyzed using SPSS 21.0 statistical software. Changes in
body mass, Ty, litter size and litter mass over the period of lactation
were examined using repeated-measures one-way ANOVA. Body
mass, food intake, litter size and litter mass across 24 h of the
restriction day were also examined using repeated-measures
ANOVA. The effect of food restriction on body mass, food intake,
Ty, litter size and litter mass, as well as GEI and digestibility, were
analyzed using one-way ANOVA, followed by Tukey post hoc
multiple comparisons where appropriate. The effect of food
restriction on organ mass was examined using one-way ANCOVA,
with carcass mass as a covariate. Pearson’s correlation analysis was
used to examine relationships between GEI and MEO, DEE and litter
mass. Data are reported as means+s.e.m. Statistical significance was
determined at P<0.05.

Differential gene expression was modelled using the edgeR package
(Robinson etal.,2009) in R (version 3.4.1) (https:/www.r-project.org/).
To remove any genes that exhibited no or a very low number of
mapped reads, only genes that had more than 1 count per million
(CPM) in at least two samples across all treatments were retained for
further analysis. This resulted in a total of 15,780 unique genes. Read
counts were normalized using the trimmed mean of M values (TMM
normalization) (Robinson and Oshlack, 2010) to account for highly
expressed genes consuming a substantial proportion of the total library
size. This composition effect would cause remaining genes to be
undersampled (Robinson et al., 2009). Pairwise comparisons were
conducted between control and 50%-FR, and between control and
75%-FR groups. Comparisons were corrected for multiple testing
using the Benjamini-Hochberg procedure. We next performed a
partial least squares discriminant analysis (PLS-DA) on the
normalized counts using the library mixOmics to predict whether
our classification was representative of the variation observed in the
dataset using R version 3.6.1 (Rohart et al., 2017). Volcano plots were
used to visualize the statistical significance (P-value) versus the
magnitude of the change [log, fold change (FC)] for the pairwise
comparisons (i.e. 50%-FR versus control and 75%-FR versus
control). These were made using the library ggplot2, and text labels
for genes with an absolute log,FC above 2 were added using the
library ggrepel in R version 3.6.1 (Wickham, 2016).

Logged raw expression levels (CPM) were regressed against the
levels of peripheral circulating hormones (assay details below) in
the same individuals. Pathway analysis was performed using
Ingenuity Pathway Analysis (IPA; Qiagen Ltd). To perform the
pathway analysis, we first trimmed the data to exclude genes for
which the expression log ratio was less than 0.2. This yielded 3616
and 3833 differentially expressed genes (DEGs) in the 50%-FR and
75%-FR groups, respectively, relative to the control unrestricted
mice. We overlaid these DEGs on a custom pathway containing the
key hypothalamic genes linked to hunger and food intake
(Speakman and Mitchell, 2011; Derous et al., 2016a,b). We
generated two plots, one based on the log expression fold change
and another based on the P-value of the difference detected. The
pathway is available for use by registered users of IPA via the shared
pathway function in IPA, by contacting the corresponding authors.
In addition, we also explored changes in the canonical pathways
available via IPA.
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RESULTS

Body mass

The three groups did not differ in body mass on days 1 to 12 of
lactation (day 1, [, 70=1.21, P>0.05; day 12, F 7=1.12, P>0.05;
Fig. 1A). Food restriction had a significant effect on body mass on
days 13, 15 and 17, during which food-restricted mice showed
significant lower body mass than the control group (day 13,
F> 70=52.66, P<0.01). The lowest body mass of food-restricted mice
was observed on day 17 of lactation, and the body masses in the
50%-FR (42.8+0.6 g) and 75%-FR (38.7+0.7 g) groups were lower
by 17.0% and 25.1% than that in the control group (51.6+0.8 g)
(day 17, F>70=74.56, P<0.01). Body mass of food-restricted mice
returned to the levels of controls following ad libitum refeeding on
days 14, 16 and 18 (day 14, F, 70=2.46, P>0.05; Table S1).

Body temperature

As observed for body mass, 7, did not differ among the three groups
before the food restriction started (day 1, F570=0.32, P>0.05; day
12, F540=1.57, P>0.05; Fig. 1B). Ty, of the 50%-FR and 75%-FR
groups significantly decreased on days 13, 15 and 17 of lactation
relative to that of the control group (day 13, control, 37.4+0.1°C,

50%-FR, 35.9+0.2°C and 75%-FR, 34.2+0.6°C, F,70=24.10,
P<0.01; day 15, F,70=11.06, P<0.01; day 17, F,70=3.77,
P<0.05). No group differences were observed during ad libitum
refeeding days (day 14, F,70=2.18, P>0.05; day 16, F7,=0.18,
P>0.05; day 18, F, 70=0.58, P>0.05; Table S1).

Gross energy intake and digestibility

GEI, GE of faeces and DEI differed significantly among the three
groups on the day of food restriction, and food-restricted females
had lower GEI and DEI, and produced less faeces than the control
group (day 13, GEL F;34=58.71, P<0.01; Fig. 1C; GE of faeces,
F,54=17.01, P<0.01; Fig. 1D; DEIL, F 34=60.78, P<0.01; Fig. 1E,
Table S1). Digestibility was also significantly different among the
three groups, and food-restricted mice showed lower digestibility
than that of the controls (day 13, F,34=19.43, P<0.01, post hoc
P<0.05; Fig. 1F). During the ad libitum refeeding day, there were no
significant differences among the three groups in GEI, DEI or
digestibility (day 16, GEI, F,34=2.71, P>0.05; DEIL, F,34=2.58,
P>0.05; digestibility, F>34=0.94, P>0.05). The three groups
produced a similar amount of faeces (day 16, F34=0.63, P>0.05;
Table S1).
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Litter size and litter mass

Litter size of the 75%-FR group decreased significantly on day 13
and thereafter compared with that of the control and 50%-FR groups
(day 13, F 70=6.19, P<0.01; day 18, F; 70=8.64, P<0.01; Fig. 1G,
Table S1). On the day of weaning, litter size in the 75%-FR group
(10.6+0.6) was lower by 10.8% and 11.2% than that of the control
(11.9+0.1) and 50%-FR groups (11.9+0.0) (day 18, post hoc
P<0.05), respectively, whereas there was no difference among the
control and 50%-FR groups (day 18, post hoc P>0.05). Litter mass
did not differ among the three groups before the food restriction
treatment (day 12, F,70=2.92, P>0.05; Fig. 1H), whereas it
significantly decreased in the 75%-FR group (82.1£2.5¢g)
compared with the control (95.542.3 g) and 50%-FR groups
(93.3£1.5g) on day 13 and thereafter (day 13, F,;0=10.11,
P<0.01; day 18, F, 70=38.26, P<0.01). In detail, litter mass of the
75%-FR group on day 13 was lower by 14.0% and 12.0%,
respectively, compared with that of the control and 50%-FR groups
(post hoc P<0.05), while there was no significant differences
between the control and 50%-FR groups (post hoc P>0.05).

Body mass, food intake, litter size and litter mass on food
restriction day
Body mass did not differ among the three groups at the start of the
restriction day (0 h, £ 43=0.02, P>0.05; Fig. 2A, Table S1). Food
restriction caused a significant decrease in body mass over a 24-h
period, and it decreased by 9.8+1.03% and 21.3+1.18% after 24 h
food restriction in the 50%-FR and 75%-FR groups, respectively,
compared with 0 h (Fs 360=39.75, P<0.01). Body mass of the 75%-
FR group was significantly lower than other two groups at 9 h and
thereafter (9 h, F43=4.74, P<0.05; 24 h, F 43=18.98, P<0.01).
Food intake was similar between the three groups at the first two
3-h intervals, but it was significantly lower in the 75%-FR group
than in the other two groups at 9 h and thereafter (9 h, control,
3.48+0.33 g3 h™!, 50%-FR, 3.86+0.19 g3 h™' and 75%-FR,
0.43+£0.21 g3 h™!, F,43=59.22, P<0.01; Fig. 2B, Table SI).

In fact, almost no food was available for the females in the 75%-
FR group after 9 h. Food intake of the 50%-FR group was
significantly lower from 15 to 24 h (15 h, F,43=23.98, P<0.01,
24 h, F, 43=216.19, P<0.01).

No difference in litter size was observed among the groups at any
time points of food restriction (0 h, F, 45=1.97, P>0.05; Fig. 2C,
Table S1). Litter mass of the control group increased by 4.6+0.8% at
24h compared with the start (repeated-measures ANOVA,
F7,=38.35, P<0.01; Fig. 2D), and increased by 2.1+0.3% in the
50%-FR group (repeated-measures ANOVA, Fg »50=7.39, P<0.01),
whereas it decreased by 2.8+0.7% in the 75%-FR group (repeated-
measures ANOVA, Fg 55=22.22, P<0.01). However, litter mass was
not statistically different among the three groups (24 h, F, 43=1.66,
P>0.05; Table S1). Litter mass was positively correlated with GEI
during the restriction day (=0.37, P<0.01; Fig. S1A), but no
correlation was observed on the refeeding day.

Daily energy expenditure and milk energy output
DEE of females on day 13 was significantly affected by food
restriction (F, 53=15.73, P<0.01; Fig. 3A, Table S1), and it decreased
by 13.4% and 26.9% in the 50%-FR (100.6+3.1 kJ day~!) and 75%-
FR (84.8+2.3 k] day~!) groups, respectively, compared with the
control group (116.1+3.8 kJ day™!) (post hoc P<0.05). On day 16,
the three groups did not differ in DEE (£, ,7=1.62, P>0.05; Fig. 3B).
Food restriction had a significant effect on MEO, which decreased
notably on day 13 of lactation (/,53=61.86, P<0.01; Fig. 3C). In
detail, MEO decreased by 44.7% in the 50%-FR group compared
with the control group ( post hoc P<0.05). MEO in the 75%-FR group
was on average —17.1£3.2 kJ day~!, much lower than that in the
other two groups (post hoc P<0.05). MEO on the refeeding day (day
16 of lactation) was not different among the three groups (£ ,7=0.43,
P>0.05; Fig. 3D, Table S1).

DEE was positively correlated with GEI on the restriction day
(day 13, r=0.60, P<0.01) and refeeding day (day 16, r=0.60,
P<0.01; Fig. SIB). There was a positive correlation between MEO

Fig. 2. Body mass and food intake of females, and
size and mass of litter on food restriction day.
Changes in (A) body mass, (B) food intake, (C) litter
size and (D) litter mass over a 24 h time course in
food-restricted Swiss mice on day 13 of lactation.
Controls (n=10), mice that were fed ad libitum
throughout the lactation; 50%-FR (n=24) and 75%-FR
(n=12) groups, females that were provided with 50%
and 25%, respectively of ad libitum food intake on
days 13, 15 and 17 of lactation. Data are means
+s.e.m. Asterisks indicate a significant effect of

food restriction (*P<0.05, **P<0.01).
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Fig. 3. The daily energy expenditure (DEE) and milk energy output (MVEO)
on restriction day and refeeding day. Effects of food restriction on (A,B)
DEE and (C,D) MEO in lactating Swiss mice. Controls (con, n=19), mice that
were fed ad libitum throughout the lactation; 50%-FR (n=26) and 75%-FR
(n=11) groups, the females that were provided with 50% and 25%,
respectively, of ad libitum food intake on days 13, 15 and 17 of lactation.
Data are meansts.e.m. Asterisks indicate a significant effect of food restriction
(**P<0.01). Different letters (a, b or c) above the columns indicate significant
difference between the groups (P<0.05).

and GEI (day 13, r=0.98, P<0.01; day 16, »=0.97, P<0.01;
Fig. S1C). MEO was also correlated with DEE (day 13, r=0.44,
P<0.01; day 16, r=0.44, P<0.05; Fig. S1D). Litter mass was
correlated with DEE (r=0.43, P<0.01; Fig. S1E) and MEO on
day 13 (=0.33, P<0.05; Fig. S1F), but the correlations were
not significant on day 16. As indicated in more detail in the
Discussion, these estimates of MEO are likely compromised to
some extent by the strongly dynamic changes in food intake in the
restricted animals.

Body composition

Masses of wet and dry carcass were significantly different among
the four groups, and they were lower in the 75%-FR group than in
the other three groups (Table S2). Liver mass was significantly
lighter in the food-restricted groups than in the two control groups.
Masses of spleen and kidneys were significantly affected by food
restriction, and the minimum was observed in the 75%-FR group.
The four groups differed significantly in the masses of digestive
tracts, including empty masses of the stomach, small intestine, large
intestine and caecum, which were significantly decreased in the
75%-FR group compared with the control groups (Table S2).
Masses of the mammary glands were also significantly different
among the four groups, and the wet and dry masses were 38.2% and
39.3% lower, respectively, in the 75%-FR group than in the control
group (Table S2).

Gene expression profiling of the hypothalamus

The multidimensional scaling (MDS) plot indicated that the three
groups (unrestricted, 50%-FR and 75%-FR) could be separated
based on the major axes of the gene expression profile (Fig. 4A). We
explored the changes in gene expression for the two restriction groups
(50%-FR and 75%-FR) compared with the control unrestricted
group using standard bioinformatics tools. The volcano plots for
the contrasts of 50%-FR and 75%-FR to the control are shown in
Fig. 4B,C. This shows a number of significantly upregulated and
downregulated genes in both conditions. The full list of differentially

expressed genes comparing the 50%-FR and 75%-FR groups with
the control unrestricted group is available in Tables S3 and S4,
including P-values for the contrasts and the false discovery rate
(FDR). For the 50% restriction group, the largest log fold changes
(>2) were for the following upregulated genes, growth hormone
(Gh), 5099, prolactin (Prl), cytochrome p450 family 3 subfamily a
polypeptide 57 (Cyp3a57) and myelin protein zero (Mpz), and for the
following downregulated genes, selectin E (Sele), glutathione
S-transferase pi 2 (Gstp2), haemoglobin beta adult t chain (Hbb-
bt), secretaglobin family 3a member 1 (Scgb3al), transthretin (7tr),
Gm2956 and myosin 3a (Myo3a). For the contrast between the
control and 75%-FR groups, the largest fold changes (>2) were for
the following upregulated genes, Cyp3a57, Gm5099, cyclin
dependent kinase la (Cdknla), otoancorin (Otoa), Leucine rich
glioma activated 1 (Lghg!), and autoimmune regulator (4ire), and
the following downregulated genes, Gstp2, Ttr, Sele, Scgb3al, Ccll2
and caesin2 (Csn2). Clearly, there was substantial overlap in the
responses to the two levels of restriction. A network diagram built in
the Ingenuity Pathway Analysis program (Qiagen) was used for the
main genes involved in hunger signalling (Derous et al., 2016a,b).
When overlaid onto the gene expression profiles on this pathway,
we found at 50% restriction there were no changes in the inhibitory
arm of the network, but on the stimulation side there was
significant upregulation of neuropeptide Y (Npy) (expFC=0.79,
LR=6.2, P=0.0125) but a downregulation of Agouti regulated
peptide (Agrp) (expFC=-0.654, LR=10.98, P=0.00091). There were
smaller, mostly non-significant, changes in the main populations
of melanocortin, dopamine, serotonin and opioid receptors,
except opioid receptor mul was significantly downregulated
(expFC=-0.46, LR=11.6, P=0.00065; Fig. 5). At 75% restriction,
there were also no significant changes in the inhibitory arms of the
system, coupled with downregulation of Agrp (expFC=-0.46,
FC=5.56, P=0.018) and upregulation of Npy (expFC=1.375,
FC=18.57, P=0.0029; Fig. 6). Levels of the long form of the leptin
receptor (Lepr) were also significantly upregulated (expFC=0.57,
LR=8.83, P=0.0029) as well as downregulation of the downstream
intracellular signalling molecule Suppressor of cytokine signalling 3
(SOCS3) (expFC=-1.106, FC=10.3, P=0.0057), which is a
negative regulator of leptin signalling. Neuropeptide Y receptor 1
(Npyrl) was also significantly upregulated (expFC=0.485,
LR=10.78, P=0.052).

We used the IPA software to explore other significantly altered
pathways in the hypothalamus linked to the restriction based on the
FDR values of the analysed genes. One of the most significantly
upregulated pathways in the 50%-FR to control comparison was
Eif2 signalling. This pathway includes 221 components, of which
52 were modulated under 50%-FR (P=3.3x107°, z=2.26; Fig. 7). At
both levels of restriction, the unfolded protein response pathway was
downregulated relative to the controls (50%-FR, 19/56 genes
altered, z=—1.68, P=6.4x107; 75%-FR, 21/56 genes altered,
z=—1.606, P=1.46x107>; Fig. 8). Similarly, at both levels of
restriction the neuroinflammation pathway was also downregulated
(50%-FR, 61/300 genes altered, z=—1.82, P=4.06x10~%; 75%-FR,
69/300 genes altered, z=5.25, P=3.3x107>; Fig. 9).

Relationship of gene expression in the hypothalamus to
circulating hormone levels

Circulating levels of leptin and prolactin were decreased significantly
in the 50%-FR and 75%-FR animals (leptin, /, ;5=14.48, P<0.01;
prolactin, F5;5=57.07, P<0.01), while insulin and corticosterone
levels were increased. Levels of TNFa were unchanged (insulin,
F, 15=3.56, P<0.05; corticosterone, I ;5=4.42, P<0.05; Fig. S2).
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Fig. 4. The multidimensional

Leading logFC dim 2

scaling plot and volcano plot in
food-restricted mice at peak
lactation. (A) Multidimensional
scaling plot showing locations of the
individual control (n=6), 50%
restricted (R50, n=6) and 75%
restricted (R75, n=6) mice in relation
to the two major dimensions of gene
expression in the hypothalamus. The
restricted animals are clearly
separated from the controls and also
divergent in relation to the level of
restriction. (B,C) Volcano plot for the
contrasts of 50%-FR and 75%-FR to
control. All mice were at peak
lactation.
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Expression levels of many of the significantly altered genes in the
hypothalamus were correlated with the levels of circulating leptin,
insulin, prolactin and corticosterone, but less so with circulating
levels of Tnf-a (Fig. 10). We further explored these correlations for
the key genes in the hunger pathway (Fig. 11). Neuropeptide Y (Npy)
gene expression was negatively correlated with both circulating
leptin and prolactin levels. Conversely, Npy was positively associated
with insulin and corticosterone levels. In contrast, Agouti-related
peptide (4grp) showed a positive correlation with circulating leptin
and prolactin, and a negative correlation with corticosterone, while
insulin showed no relationship. Neither proopiomelanocortin (Pomc)
nor cocaine- and amphetamine-regulated transcript (Cart) had a
relationship with the circulating hormone levels. Leptin receptor
expression was negatively correlated with circulating leptin and
prolactin. Suppressor of cytokine signalling 3 (Socs3) expression was
positively correlated with leptin and prolactin. Expression levels of
signal transducer and activator of transcription (Stat3 and Stat5b)
were unrelated to the circulating hormones apart from 7nf-a,

25

probably reflecting the fact that these intracellular signalling
proteins are functionally regulated via phosphorylation rather than
transcriptionally (Fig. 11).

DISCUSSION

Maternal responses to days of restricted intake

When female mice were given less food during peak lactation, they
continued to eat at the same rate as under ad libitum conditions until
their food ran out. They then starved completely until the food was
replenished the next day. In this way, lactating mice were similar to
non-lactating individuals that are given restricted food that also eat
their entire reduced ration relatively quickly, and then completely
starve for the rest of the day (Hambly and Speakman, 2015). Mice
made a number of responses to make up for the shortfall in energy.
This included a reduction in body temperature, which is also
observed in non-lactating individuals under chronic restriction
(Duffy et al., 1989, 1997; Rikke et al., 2003; Tabarean et al., 2010;
Mitchell et al., 2015a). On the first day of restriction, this body
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temperature change was much greater in the mice under 75%
restriction compared with the mice under 50% restriction (Fig. 1B),
which also matches the graded response in non-lactating individuals
(Mitchell et al., 2015a). In non-lactating mice under restriction, there
was an increase in digestive efficiency (Mitchell et al., 2015b).
In contrast, the lactating mice appeared to decrease their digestibility.
It seems most likely that this is just an artefact of fecal production
being time lagged relative to intake, thus some of the fecal production
on the day of restriction would pertain to food taken in the day
previous. The fact that apparent digestion decreased more in mice
under 75% restriction is consistent with this interpretation.

The most profound changes, however, were in daily energy
expenditure and milk production. Mice under 50%-FR scaled back
their milk production to approximately 55.3% of that in the controls,
and mice under 75%-FR actually had an average calculated negative
milk production of 17 kJ day~! (Fig. 3C). This negative value is
probably a direct consequence of the carried over fecal production,
which affected the calculated DEI and thus also the calculated
MEO. That is, the digested energy intake was probably slightly
underestimated because faeces derived from food ingested the
previous day were subtracted from the supplied ration to yield
the digested energy intake, and because MEO is calculated as the
difference between DEI and DEE (Krol and Speakman, 2003), this
led to an underestimate of actual milk production. Nevertheless, this
suggests that under 75% restriction, milk production was probably
almost completely suspended. Because the pups continued to suckle
even though the females had ceased to produce milk, the mammary
glands were probably completely emptied and this likely explains

most of the difference in mass of the mammary glands between the
groups in female mice killed at the end of'the first restriction day. The
strong correlation between the measured DEE, DEI and MEO
indicated that the main mechanism underpinning the reduction of
DEE was the reduction in milk synthesis. This is consistent with
the fact that mice in lactation have very low levels of physical
activity (Gamo et al., 2013; Zhao et al., 2013) and hence the scope to
reduce physical activity is limited. Plus, non-lactating mice on
chronic restriction generally do not reduce activity anyway (Mitchell
et al., 2016).

There were two direct consequences of suspending milk
production in the 75% restriction group. First, growth of the pups
almost completely stopped. This probably meant that the milk they
got on the intervening days when the female was feeding normally
was only sufficient to cover their accumulated metabolic energy
expenditure over the paired restriction and refeeding days, with none
left to support growth. Second, the females lost some of their pups.
Yet, given the extent to which food was restricted, the losses were
relatively slight. Indeed, the mice with 50%-FR did not lose any
pups, and their growth was almost normal compared with that of the
control animals. This suggests that the pups probably enabled
compensation mechanisms to reduce their energy demands and
hence make better use (in terms of growth efficiency) of their
reduced milk supply. The offspring at 75% food restriction probably
did the same, which is why so few of them died, but they were
simply unable to compensate enough to sustain their growth.
Mothers generally ate the pups that were lost, hence discerning the
cause of death was difficult. It is unclear whether mothers waited for
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Fig. 10. Heat map showing the expression patterning in the
hypothalamus of the top 400 altered genes (FDR<0.1) in relation to
circulating hormone levels. Positive correlations are in red and negative in
blue. The large-scale patterns of hypothalamic gene expression were
associated with the peripheral circulating levels of leptin, insulin, corticosterone
and prolactin, but less so TNFa.

them to succumb or whether they actively killed them. It is
conceivable that mothers may actively kill pups to reduce demand.
The ability of mice to rapidly switch off milk supply to protect
themselves, and for their pups to respond to this change by using
their milk supply more frugally, is probably an adaptive response to
variable food supplies in the wild.

Females also lost considerable body mass during the restriction
days, but a large part of this was probably gut fill. Nevertheless,
measurements of body composition in mice killed at the end of the
restriction day showed that they were also extracting energy from
tissues, most notably the liver, skeletal muscle (carcass) and
kidneys, with much less from the heart and lungs. Non-lactating
mice also withdraw energy from lean tissues when they are under
longer-term chronic restriction (Mitchell et al., 2015b,c) with a
hierarchy of tissue use, where heart and lungs are protected relative
to the liver, muscle and kidneys. In the case of liver and skeletal
muscle, a part of this loss over the 24 h of acute restriction observed
here is potentially glycogen utilization and associated water loss.

The overall strategy of the females when under restriction
appeared to be to protect themselves, and to sacrifice the export of
energy to the litter. This impacted growth and, to a small extent in
the 75% restriction group, offspring survival. This strategy makes
sense in terms of fitness because if the restriction was to be
prolonged then it would be better for at least the female to survive to
breed again in the future, rather than both the mother and the current
litter to perish.

Maternal responses on the refeeding days

In non-lactating mice that are placed under 24 h starvation, or less
intense but more chronic food restriction, there is a period of
hyperphagia following the release from restriction (Spydevold et al.,
1978; Bartness, 1997; Mercer et al., 1998; Hambly et al., 2007,
Zhang et al., 2012; Zhao et al., 2014). The extent of hyperphagia is

greater when the level of restriction is greater (Hambly et al., 2007,
2012). During this hyperphagia, body mass rapidly returns to the
level observed pre-restriction, in part reflecting elevated gut fill. In
the lactating mice observed here, we also observed a similar return
of body mass back to the level on the day preceding the restriction
day, when animals were re-fed, supporting the notion that this
change is mostly due to gut fill. However, a major difference
between the mice observed here and non-lactating individuals was
that there was no significant hyperphagia. The level of food intake in
the animals released from restriction was no higher than the levels
observed in the control mice that had not undergone the restriction
day — and this was true independent of the level of restriction they
were exposed to. In parallel with this unaffected food intake, the
level of milk production was also not significantly different between
the three groups (controls, 50% and 75% restricted).

Given the negative impacts of the restriction on the pups, most
notably in the mice under the higher level of restriction, one would
anticipate that if the females were eating to follow a particular
investment strategy, they would have a high motivation to eat more
food and produce more milk on the refeeding days to compensate for
the shortfalls, if they were physiologically capable of doing so. The
fact they did not provides crucial evidence that the intake of the
females in late lactation is not due to such restraint, but more likely
reflects a physiological or physical constraint on performance.

In non-lactating mice, the post-restriction hyperphagia is driven
by stimulation or inhibition of components of a complex network
of neuropeptides during the restriction phase (Hambly et al.,
2007, 2012; Derous et al., 2016a) combined with alterations in the
network topology (Derous et al., 2016b). For comparison, the
typical response for non-lactating mice under 40% caloric
restriction (CR) compared with mice fed ad libitum for 12 h per
day is shown in Fig. 12 (data from Derous et al., 2016a,b). This
figure illustrates the downregulation of inhibitory pathways on the
left side of the diagram (notably for Cart and Pomc and related
genes), and upregulation of the stimulatory side (characterized most
notably for Agrp and Npy and related genes). These contrasting
effects are complemented by upregulation of many of the
main secondary receptor systems including dopamine, opioid,
melanocortin and serotonin signalling receptors. The global
transcriptomic screening in lactating mice that had been restricted at
50% and 75% CR compared with the unrestricted lactating mice did
not completely replicate these changes (Figs 5 and 6). In particular,
for both levels of restriction there was no downregulation of the
inhibitory neuropeptides (Pomc and Cart). Moreover, the main
stimulatory neuropeptides for hunger were adjusted in different
directions: Npy was significantly upregulated, while Agrp was
significantly downregulated under both the restriction conditions.

Why the inhibition arm of the pathway was not downregulated is
uncertain, but perhaps this side of the hunger pathway is already
maximally downregulated by the process of lactation itself, and
hence there is no further scope to decline to even lower levels, i.e.
there is no further ability to reduce inhibitory signals once they are
already effectively zero. In contrast, there is potential scope to
upregulate the hunger stimulating pathway. The mice under both
50%-FR and 75%-FR responded similarly in this respect. They both
upregulated levels of Npy but unexpectedly downregulated levels of
Agrp. It is not exactly clear what this contrasting pattern means with
respect to hunger. However, the changes in Npy were quantitatively
larger than the changes in Agrp. This may indicate that hunger was
elevated when the mice were restricted. Consequently, it seems
unlikely that the reason they did not eat more on the days they were
given unrestricted access to food was because the hunger pathway
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was already at maximal capacity; this is known as the saturated 2012) and that differences in the melanocortin and dopamine
neural control hypothesis (Speakman and Krél, 2005). systems may underpin details of how the animals respond to

We have previously shown that lowered levels of leptin and Tnf-a  restriction (Vaanholt et al., 2015; Derous et al., 2016a,b).
levels from the periphery contribute to the post-restriction Circulating leptin levels in lactation are already reduced to less
hyperphagia effect in non-lactating individuals (Hambly et al., than half of that in virgin females (Zhang and Wang, 2007; Cui
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Fig. 12. Gene expression profile in the hunger signalling pathway of the hypothalamus (pathway from Derous et al., 2016a) for mice under 40% caloric
restriction for 3 months compared with mice fed ad libitum for 12 h per day. Red indicates upregulation and blue downregulation in the restricted group.
Levels under each node of the network indicate the gene at that node. Edges represent known interactions between genes from the literature as indicated by the
IPA software. Intensity of colour is correlated with the significance of the difference. High levels of upregulation of the two genes that stimulate hunger (Npy and
Agrp) and downregulation of the two main inhibitory genes (Pomc and Cart) are apparent.

et al.,, 2011; Krol et al, 2011) and are correlated with milk
production (Cui et al., 2011). Leptin and prolactin declined on the
restriction days, while insulin and corticosterone were increased.
However, while global gene expression in the hypothalamus was
generally responsive to these altered peripheral leptin, insulin and
corticosterone levels (Fig. S2), as anticipated from the pathway
analysis, both Pomc and Cart (the main inhibitory signals) were
unrelated to the peripheral hormonal signals. However, the key genes
stimulatory genes involved in hypothalamic hunger signalling were
responsive to the altered peripheral hormone levels (Fig. 11). Npy was
elevated as leptin fell and corticosterone increased, and was also
related to circulating insulin levels. However, as reflected in the
pathway analysis, Agrp showed the opposite trends to leptin and
corticosterone and was unrelated to insulin.

The fact that one arm of the hunger pathway in the brain was
stimulated under both levels of restriction, but the mice did not eat
more food when derestricted, suggests the constraint on intake does
not reside in the brain hunger system (saturated neural control
hypothesis; Speakman and Krol, 2005). As suggested by earlier
work (Hammond and Diamond, 1992, 1997; Hammond et al., 1996;

Zhao et al., 2010, 2013), the main limitation in this mouse strain at
21°C may be the milk production capacity of the mammary glands.
Hence on the refeeding day, the mice elevated their milk production
back to the maximal level, but despite upregulation of their
neuropeptide hunger signalling, they did not eat additional food
because this could not be channelled into further milk production to
make good the shortfall. An alternative interpretation is that the food
intake and milk production limits could reflect a limit on the
capacity to dissipate heat generated as a by-product of both the
digestive processes (specific dynamic action, SDA) and milk
synthesis (both of which generate significant amounts of heat — see
above arguments regarding efficiency) and hence the risk of
hyperthermia (Speakman and Krol, 2010, 2011). This is established
to be a significant factor in this strain at 30°C (Zhao et al., 2016;
Wen et al., 2017).

A downstream consequence of being unable to upregulate their
intake on the unrestricted days was that the females could not, in the
face of the first restriction event, eat more food to elevate their fat
stores, and thereby provide a buffer that could be drawn on if the
food supply failed again. Some mouse strains, when not lactating,
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do respond to stochastic variations in food supply by elevating their
body fat store (Rozen et al., 1994; Duarte et al., 2012; Zhang et al.,
2012; Monarca et al., 2015), but interestingly, similar studies
of stochastic food exposure in non-lactating Swiss mice do
not evoke such a fat storing response (Zhao and Cao, 2009a,b;
Zhao et al., 2009).

A number of additional pathways were stimulated when the mice
were under restriction. In particular, at 50%-FR the Eif2 pathway
was upregulated (Fig. 7). This pathway is a classical response to
protein restriction. Although the diets we provided at 50%-FR and
75%-FR had greater protein than is required in baseline conditions,
the mice clearly have much elevated protein demands when they are
lactating. Hence there was a shortfall between supply and demand,
which is consistent with upregulation of this pathway. At 75%-FR
there was no significant upregulation of this pathway, possibly
because the mice in this situation shut down milk production.
Hence, their demands for protein may also have declined with the
result that they were no longer in protein deficit. Two additional
pathways were significantly downregulated at both levels of
restriction. These were the unfolded protein (UFP) response
(Fig. 8) and the neuroinflammation pathway (Fig. 9). The UFP
response is a typical stress response that is stimulated under various
situations (Tsai and Weissman, 2010). A major feature of the
response is the degradation of unfolded proteins and as such it may
be activated under restriction as a mechanism to recycle amino acids
to support protein synthesis. Upregulation in these restricted mice
was therefore unexpected and remains unexplained. In contrast,
neuroinflammation involves activation of the brain’s innate immune
system and is classically linked to disorders such as infection and
degenerative brain diseases. However, in the hypothalamus, it is
also observed during dysfunctional weight regulation following
exposure to high fat diets, pointing to a link to food intake regulation
(Thaler et al., 2012; Duffy et al., 2019). The reduction in
neuroinflammation when the mice were restricted parallels the
improvements in neuroinflammation when obese mice are similarly
restricted (Thaler et al., 2012).

The upregulated genes in common to both levels of restriction
were Sele, Gstp2, Ttr and Scgb3al, and the common downregulated
genes were Cyp3a57 and Gm5099. Selectin E (Sele) codes for a cell
adhesion molecule activated by cytokines and linked to
inflammation. Gstp2 is protective against oxidative damage. 7tr
codes for a protein involved in transport of vitamin A and thyroxine.
Scgb3al is also activated by cytokines. Among the downregulated
genes, Cyp3a57 is a cytochrome p450 family member involved in
processing of steroid hormones. Gm5099 is a predicted gene of
unknown function. The reasons why these genes were altered under
both levels of restriction are unclear.

Although our work demonstrates that these mice were constrained
and that this constraint likely has a physiological and hence
presumably a genetic basis, we are currently not aware of the
underlying genetic factors that regulate the asymptotic food intake.
Presumably, the level of the constraint in most mammals is moulded
by the process of natural selection, and hence fits into a wider
context of the costs of reproduction. In these laboratory mice, in
contrast, it may have been shaped by artificial selection pressures
(this strain is bred as a good stock breeding mouse), pleiotropic
changes owing to selection for domestication, or genetic drift. It will
be interesting in future to discern not only the mechanistic basis by
which the constraint is imposed, which has been mostly our focus
here, but also what the wider implications of the level of the
constraint are for the costs of reproducing. Do higher levels of the
constraining factor, for example, have negative impacts on somatic

protection, and hence mediate the widely observed negative inter-
specific relationship between reproductive output and lifespan?
If so, understanding the mechanism by which this trade-off is
generated will be a substantive step forwards in our understanding
of the physiological basis of life history trade-offs.

Conclusions

This experiment demonstrates that the asymptotic food intake at
peak lactation in the Swiss mouse is constrained, rather than
reflecting a restraint by the mother owing to a wider evolutionary
context of investment. Gene expression data for the hypothalamic
hunger signalling network in response to peripheral levels of
circulating hormones suggest the effect was not due to failure to
upregulate the hunger signalling pathway (the ‘neural saturation
hypothesis’).
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Fig. S1 Correlation between GEl and litter mass (A), DEE (B) and MEO (C), and correlation between
DEE and MEO (D) and litter mass (E), and between MEO and litter mass (F) in food-restricted Swiss

mice. Data are plotted. *, significant correlation (P<0.05), **, P<0.01.
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Table S1 The raw data and statistics of the variables in Swiss mice during lactation

Con 50%-FR 75%-FR F P
Body mass (g) during lactation (day 1 - 18)
1 45.8+0.7 47.4+0.7 47.0£1.0 1.21 0.31
2 46.2+0.7 47.5+0.8 47.3+0.8 0.72 0.49
3 47.4+0.7 49.0+0.7 47.7+0.8 1.66 0.20
4 47.6+0.8 49.6+0.6 48.9+0.6 2.32 0.11
5 48.1+0.8 49.8+0.6 49.6+0.6 1.82 0.17
6 48.9+0.7 50.9+0.7 49.4+0.6 2.24 0.11
7 49.8+0.8 51.7+0.7 50.7+0.8 1.58 0.21
8 49.8+0.7 52.3x0.7 51.1+1.2 2.32 0.11
9 50.3+0.8 52.4+0.7 52.3+0.8 2.20 0.12
10 50.6+0.8 52.3+0.7 53.1+0.8 2.25 0.11
11 51.9+0.7 52.5+0.7 52.9+0.8 0.38 0.69
12 51.4+0.6 53.0+0.7 52.8+1.1 1.12 0.33
13 51.6%+0.7 44.0+0.7 40.1+0.6 52.66 0.00
14 52.2+0.7 54.4+0.8 52.2+1.0 2.46 0.09
15 51.7+0.8 43.0+0.6 39.5+0.7 65.68 0.00
16 51.2+0.8 52.91+0.6 51.2+0.9 1.83 0.17
17 51.6+0.8 42.8+0.6 38.7+0.7 74.56 0.00
18 51.3+0.9 53.7+0.7 51.5+1.0 2.83 0.07
Con 50%-FR 75%-FR F P
Body temperature (°C) during lactation (day 1 - 18)
1 37.1£0.1 37.1£0.1 37.2+0.2 0.32 0.73 S
2 37.310.1 36.9+0.1 37.5+0.1 9.69 0.00 '-'(_B’
3 37.2+0.1 37.0+0.1 37.5+0.1 4.70 0.01 g
4 37.310.1 37.2+0.1 37.610.2 2.48 0.09 L
5 37.310.1 37.1+0.1 37.5+0.2 1.92 0.16 i
6 37.1£0.1 37.1+0.1 37.210.1 0.04 0.96 E
7 37.4+0.1 37.2+0.1 37.2+0.2 0.43 0.65 %
8 37.310.1 37.3+0.1 37.610.2 1.28 0.29 g
9 37.310.1 37.2+0.1 37.5+0.2 1.26 0.29 &
10 37.210.1 37.2+0.1 37.4+0.1 0.76 0.47 U:)
11 37.310.1 37.1+0.1 37.210.2 0.76 0.47 ;
12 37.310.1 37.0£0.1 37.210.2 1.57 0.22 8’
13 37.4+0.1 35.91+0.2 34.2+0.6 24.10 0.00 i)
14 37.310.1 37.1+0.1 37.410.2 2.18 0.12 %
15 37.2+0.1 36.310.2 34.7+0.7 11.06 0.00 =
16 37.210.1 37.1+0.1 37.210.1 0.18 0.84 g
17 37.1£0.1 36.3£0.2 36.4+0.3 3.77 0.03 =
18 37.0£0.1 37.1+0.1 37.210.2 0.58 0.57 u%
©
Con 50%-FR 75%-FR F P Tcg
3 5
2
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Litter size during lactation (day 1 - 18)

1 12.0£0.0 12.0+0.0 12.0+0.0 - -
2 12.0£0.0 12.0+£0.0 12.0+0.0 - -
3 12.0£0.0 12.010.1 12.0+0.0 0.28 0.75
4 12.0£0.0 12.010.1 12.0+0.0 0.34 0.72
5 12.0+£0.0 12.010.1 11.9+0.1 0.10 0.90
6 12.0£0.0 12.010.1 11.9+0.1 1.39 0.26
7 12.0£0.0 12.010.1 11.9+0.1 0.92 0.40
8 12.0£0.0 12.010.1 11.9+0.1 2.15 0.13
9 11.910.1 12.010.1 11.9+0.1 1.95 0.15
10 11.910.1 12.010.1 11.9+0.1 1.95 0.15
11 11.910.1 12.010.1 11.9+0.1 1.95 0.15
12 11.910.1 12.0+0.1 11.9+0.1 1.95 0.15
13 11.910.1 12.0+0.1 11.6+0.2 6.19 0.00
14 11.910.1 12.0+0.1 11.6+0.2 6.19 0.00
15 11.910.1 12.0+0.1 11.1+04 7.23 0.00
16 11.910.1 12.0+0.1 11.1+04 7.23 0.00
17 11.910.1 11.9+0.0 10.610.6 8.64 0.00
18 11.910.1 11.9+0.0 10.610.6 8.64 0.00
Con 50%-FR 75%-FR F P
Litter mass (g) during lactation (day 1 - 18)
1 25.7:0.4 26.41+0.6 25.840.7 0.44 0.65
2 29.7£0.6 30.9+0.8 29.7+0.8 0.86 0.43
3 35.3£0.8 36.5£1.0 34.5+1.1 1.09 0.34
4 41.4+0.9 42.611.2 40.5+1.2 0.81 0.45 S
5 48.1+1.1 49.8+1.2 46.7+1.3 1.85 0.16 '-ug
6 55.2+1.3 57.1+1.1 52.2+1.4 4.22 0.02 g
7 62.4+1.3 63.91+1.1 59.2+1.5 3.55 0.03 e
8 69.3£1.5 70.6x1.1 64.911.8 4.02 0.02 i
9 75.211.6 77.0£1.3 70.9+1.8 4.07 0.02 E
10 81.2+1.8 82.9+1.3 76.611.9 3.65 0.03 8
11 86.3t1.9 87.7t1.4 82.0+1.8 291 0.06 g
12 91.3+2.1 92.611.5 86.312.0 2.92 0.06 &
13 95.5+2.3 93.311.5 82.1+2.5 10.11 0.00 ‘,3)
14 99.0£2.3 95.5+1.6 82.3+2.2 14.75 0.00 ;
15 101.612.4 96.0+1.6 76.313.4 26.79 0.00 8’
16 103.7£2.5 98.7+1.7 76.913.2 29.97 0.00 o
17 108.51£2.8 99.4+1.7 72.04.0 42.69 0.00 %
18 117.413.2 111.4+2.4 76.814.4 38.26 0.00 €
E
Con 50%-FR 75%-FR F P 5
Body mass (g) on food restriction day (day 13) u%
0 50.9+1.4 51.2+0.8 51.2+1.0 0.02 0.98 q6
3h 49.611.0 50.8+0.8 49.8+1.0 0.50 0.61 ©
3
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6h 50.0+1.1 50.910.8 50.1+0.8 0.33 0.72
9h 51.2+1.3 51.0+0.8 47.4+0.7 4.74 0.01
12 h 50.9£1.3 51.0+0.9 45.4+v 9.92 0.00
15h 51.0+1.2 50.0+0.8 43.6+0.7 17.37 0.00
18 h 52.4+1.3 48.9+0.7 41.9+0.7 28.29 0.00
21h 51.5+1.2 47.5+0.7 41.2+0.7 28.12 0.00
24 h 49.3+1.4 46.2+0.7 40.3+£0.7 18.98 0.00
Con 50%-FR 75%-FR F P
Food intake (g/3h) on food restriction day (day 13)
0 - - - - -
3h 3.790.50 3.67£0.23 3.3510.26 0.43 0.65
6 h 3.4610.26 3.71+0.18 3.48+0.22 0.48 0.63
9h 3.48+0.33 3.8610.19 0.43+0.21 59.22 0.00
12 h 3.68+0.33 3.8510.19 0.15+0.15 79.40 0.00
15h 3.68+0.31 2.4210.34 0.00+0.00 23.98 0.00
18 h 3.7520.34 1.9310.44 0.00+0.00 14.18 0.00
21h 3.41+0.32 1.0310.34 0.00+0.00 20.12 0.00
24 h 3.5610.33 0.00+0.00 0.00+0.00 216.19 0.00
Con 50%-FR 75%-FR F P
Litter size on food restriction day (day 13)
0 11.610.3 12.0+0.1 11.9+0.1 1.97 0.15
3h 11.610.3 12.01£0.1 11.9+0.1 1.51 0.23
6 h 11.6£0.3 12.0+0.1 11.9+0.1 1.97 0.15
9h 11.610.3 12.0+0.1 11.9+0.1 1.51 0.23 S
12 h 11.610.3 12.0+0.1 11.9+0.1 1.97 0.15 '-ug
15h 11.610.3 12.0+0.1 11.9+0.1 1.51 0.23 g
18 h 11.610.3 12.0+0.1 11.9+0.1 1.97 0.15 O
21h 11.610.3 12.0+0.1 11.8+0.1 1.77 0.18 i
24 h 11.610.3 12.0+0.1 11.8+0.1 1.28 0.29 E
5
Con 509%-FR 75%-FR F P &
Litter mass (g) on food restriction day (day 13) _&
0 84.2+4.7 87.7+1.5 85.513.1 0.45 0.64 U:)
3h 85.2+4.8 88.0+1.6 86.2+3.2 0.29 0.75 ;
6h 85.714.8 88.5+1.5 86.5+3.1 0.33 0.72 8’
9h 85.5+4.8 89.0+1.5 86.413.1 0.52 0.60 g
12 h 86.1+4.7 89.6+1.5 85.913.0 0.73 0.49 o
15 h 86.5+4.7 89.711.6 85.3+3.1 0.82 0.45 .'é
18 h 87.1+4.6 89.711.6 84.9+3.0 0.90 0.41 g
21h 87.214.6 89.611.6 83.91+3.0 1.29 0.29 g
24 h 88.1+4.6 89.5+1.6 83.1+3.0 1.66 0.20 Ijj
kS
]
5 -
=
2
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Con 50%-FR 75%-FR F P
GEI (kJ/d) on day 13 and 16 of lactation
day 13 444,7+31.1 238.5+12.5 104.9+7.4 58.71 0.00
day 16 432.8+27.8 516.2+25.3 470.3£22.9 2.71 0.08
Con 50%-FR 75%-FR F P
GE of feces (kJ/d) on day 13 and 16 of lactation
day 13 89.518.3 64.7+3.8 36.5+3.2 17.01 0.00
day 16 89.517.2 97.313.9 91.416.3 0.63 0.54
Con 50%-FR 75%-FR F P
DEI (kJ/d) on day 13 and 16 of lactation
day 13 355.3+27.0 173.849.4 68.415.8 60.78 0.00
day 16 343.3+26.1 418.9+23.6 378.8+19.7 2.58 0.09
Con 50%-FR 75%-FR F P
Digestibility on day 13 and 16 of lactation
day 13 79.7+1.1 72.9+0.8 65.1+2.3 19.43 0.00
day 16 78.9t1.4 80.8+0.7 80.5+1.0 0.94 0.40
Con 50%-FR 75%-FR F P
DEE (kJ/d) on day 13 and 14 of lactation
day 13 116.1+3.8 100.6%3.1 84.8+2.3 15.73 0
day 14 116.313.9 117.4+£2.8 107.9+2.6 1.62 0.22
Con 50%-FR 75%-FR F P
MEO (kJ/d) on day 13 and 14 of lactation
day 13 184.9+10.3 102.2+11.4 -17.1+£3.2 61.86 0
day 14 258.5£27.8 288.9+21.3 275.2+20.3 0.43 0.65

Control (con), the mice that were fed ad libitum throughout the lactation; 50% and 75%-FR groups,
the females that were provided with 50% and 25% of ad libitum food intake on day 13, 15 and 17 day
of lactation. Data are means + s.e.m.
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Table S2 Effect of food restriction on masses of organs in lactating Swiss mice

Con (Start of Con (End of Fss6 P
d13) d13) 50%-FR 75%-FR

Wet  mass
(8)
Carcass 22.16+0.61°  21.94+0.34°  21.81#0.32°  20.07+0.43° 431 0.01
Liver 3.12+0.12° 2.97+0.07° 2.62+0.07° 2.15+0.08° 21.24 0.00
Heart 0.24+0.01 0.23+0.01 0.23+0.01 0.22+0.01 1.93 0.14
Lung 0.39+0.04 0.38+0.04 0.37+0.01 0.36%0.02 0.14 0.94
Spleen 0.17+0.01% 0.20%0.01° 0.18+0.01*°  0.1440.01°  4.56 0.01
Kidney 0.59+0.02° 0.56+0.01° 0.57+0.01° 0.50+0.01°  7.37 0.00
Stomach 0.49+0.02%° 0.56+0.03° 0.51+0.02*°  0.44+0.02° 3.90 0.01
Small
intestine 2.23+0.12° 2.39+0.11° 1.83+0.08° 1.55+0.10° 12.12 0.00
Large
intestine 0.90+0.06° 0.82+0.05°  0.81+0.03®®  0.68+0.03" 3.78 0.02
Caecum 0.35+0.03° 0.40+0.03° 0.21+0.01° 0.16+0.01° 29.15 0.00
Mammary
gland 5.36+0.26° 4.69+0.34° 4.76+0.21° 3.31+0.32°  8.16 0.00
Dry mass (g)
Carcass 7.206+0.203° 6.880+0.111%° 6.826+0.094°° 6.432+0.125"° 4.83 0.01
Liver 0.905+0.033° 0.885+0.023° 0.770+0.018° 0.601+0.024° 27.85 0.00
Heart 0.058+0.002  0.056+0.002  0.055+0.001  0.053+0.002  1.26 0.30
Lung 0.089+0.009  0.082+0.008  0.079+0.003 0.081+0.006  0.59 0.63
Spleen 0.040+0.003°®  0.049+0.003° 0.043+0.002® 0.035+0.003° 3.73 0.02
Kidney 0.141+0.004° 0.130+0.003° 0.134+0.002° 0.117+0.002° 9.85 0.00
Stomach 0.116+0.006® 0.128+0.006° 0.113+0.004% 0.099+0.004° 4.81 0.01
Small
intestine 0.523+0.023°  0.542+0.025° 0.417+0.018" 0.364+0.021° 13.75 0.00
Large
intestine 0.194+0.013° 0.174+0.009%° 0.175+0.007°° 0.144+0.007° 4.37 0.01
Caecum 0.075+0.006°  0.080+0.007°  0.044+0.002° 0.035+0.002° 27.45 0.00
Mammary
gland 1.533+0.083°  1.347+0.104° 1.301+0.062° 0.931+0.086° 7.83 0.00

Control (con), the mice that were fed ad libitum throughout the lactation; 50% and 75%-FR
groups, the females that were provided with 50% and 25% of ad libitum food intake on day

13 of lactation. Data are meansts.e.m. Different letters on the same rows indicate significant

difference between groups (P<0.05).
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Table S3 The top 388 differentially expressed genes in the hypothalamus (FDR < 0.1) between
lactating control unrestricted mice and lactating mice restricted to 50% of their individual habitual
intake at peak lactation. Data show log2 fold changes for each comparison and overall raw p values
and false discovery rate. Data for additional non-significant genes are available on request and will
be uploaded into a public repository once the paper is accepted for publication. (Table supplied as
excel file as requested in instructions for authors)

Click here to Download Table S3

Table S4 The top 388 differentially expressed genes in the hypothalamus (FDR < 0.1) between
lactating control unrestricted mice and lactating mice restricted to 75% of their individual habitual
intake at peak lactation. Data show log2 fold changes for each comparison and overall raw p values
and false discovery rate. Data for additional non-significant genes are available on request and will
be uploaded into a public repository once the paper is accepted for publication. (Table supplied as

excel file as requested in instructions for authors)

Click here to Download Table S4

C
o
e
(]
£
fe
L
£
>
O
©
-
C
()
£
Q
Q
Q
>
(p)
(]
>
(o)}
9
2
[a1]
©
-+
C
()
£
o
(]
o
b
L
[T
o
©
C
e
>
O
=


http://www.biologists.com/JEB_Movies/JEB208314/TableS3.xlsx
http://www.biologists.com/JEB_Movies/JEB208314/TableS4.xlsx

