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Experimental manipulation of perceived predation risk and cortisol
generates contrasting trait trajectories in plastic crucian carp
Jerker Vinterstare1,*, Kaj Hulthén1, P. Anders Nilsson1,2, Helen Nilsson Sköld3 and Christer Brönmark1

ABSTRACT
Most animals constitute potential prey and must respond
appropriately to predator-mediated stress in order to survive.
Numerous prey also adaptively tailor their response to the
prevailing level of risk and stress imposed by their natural enemies,
i.e. they adopt an inducible defence strategy. Predator exposure may
activate the stress axis, and drive the expression of anti-predator traits
that facilitate survival in a high-risk environment (the predation–stress
hypothesis). Here, we quantified two key morphological anti-predator
traits, body morphology and coloration, in crucian carp reared in the
presence or absence of a predator (pike) in addition to experimental
manipulation of physiological stress via implants containing either
cortisol or a cortisol inhibitor. We found that predator-exposed fish
expressed a deeper-bodied phenotype and darker body coloration as
compared with non-exposed individuals. Skin analyses revealed that
an increase in the amount of melanophores caused the dramatic
colour change in predator-exposed fish. Increased melanization is
costly, and the darker body coloration may act as an inducible
defence against predation, via a conspicuous signal of the
morphological defence or by crypsis towards dark environments
and a nocturnal lifestyle. By contrast, the phenotype of individuals
carrying cortisol implants did not mirror the phenotype of predator-
exposed fish but instead exhibited opposite trajectories of trait
change: a shallow-bodied morphology with a lighter body coloration
as compared with sham-treated fish. The cortisol inhibitor did not
influence the phenotype of fish i.e. neither body depth nor body
coloration differed between this group and predator-exposed fish with
a sham implant. However, our results illuminate a potential link
between stress physiology and morphological defence expression.
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Stress axis, Colour change

INTRODUCTION
Almost all animals constitute potential prey and, hence, predation is
a central feature of most natural systems. As failure to avoid a
potential predator is definitive (i.e. leads to death), prey demonstrate
a plethora of anti-predator defences to avoid capture and
consumption (Brodie, 1977; Brönmark and Miner, 1992; Cott,
1940; Hodge et al., 2018; Price et al., 2015; Ydenberg and Dill,
1986; Young et al., 2004). Over time, anti-predator traits and

defence phenotypes may become canalized (Waddington, 1959),
and thus are always expressed regardless of the prevailing predation
risk (e.g. Välimäki et al., 2012). However, spatio-temporal variation
in predation risk is common, and under such circumstances defence
phenotypes can be the result of within-generation developmental
responses to environmental cues, i.e. predator-induced plasticity or
inducible defences (Tollrian and Harvell, 1999). By adopting an
inducible strategy, prey can achieve a closer phenotype–
environment match, and the energy allocated to build and
maintain a defence can be saved when predators are absent
(Dewitt et al., 1998; Kishida and Nishimura, 2006; McCollum and
Van Buskirk, 1996; Tollrian and Harvell, 1999). Multiple inducible
defence strategies have been identified, including modification to
behaviours (Fraker, 2008; Höglund et al., 2005; Hulthén et al.,
2015; Pettersson et al., 2000; Relyea, 2003), morphology
(Brönmark and Miner, 1992; Van Buskirk et al., 1997),
physiology (Clinchy et al., 2013; Furtbauer et al., 2015; Maher
et al., 2013; Sapolsky et al., 2000), life-history (Kusch and Chivers,
2004; Pollock et al., 2005) and body coloration (Ahlgren et al.,
2013; Cortesi et al., 2015). While many studies have focused on
how predator exposure can alter the expression of a single trait, few
studies have investigated whether prey facultatively alter multiple
and disparate trait types. Furthermore, there is a critical gap in our
knowledge regarding the proximate mechanisms underlying
the regulation and expression of plastic anti-predator defence
phenotypes.

A ubiquitous anti-predator response among vertebrates is the
neuroendocrine hypothalamus–pituitary–adrenal/interrenal (HPA/
HPI) axis, commonly referred to as the stress axis (Clinchy et al.,
2013; Hammerschlag et al., 2017; Oliveira et al., 2014; Sapolsky
et al., 2000). Numerous studies have examined its function in prey
upon predator exposure, where the physiological response shows
as increased secretion of glucocorticoids, e.g. corticosterone or
cortisol (Clinchy et al., 2013; Hammerschlag et al., 2017; Oliveira
et al., 2014; Sapolsky et al., 2000). Recently, it was demonstrated
that an increase in glucocorticoid concentration, caused by either
predator presence or experimental corticosterone manipulation,
triggers facultative expression of a larger tail in amphibian
tadpoles (Maher et al., 2013). Larger tails enhance fast-start
performance, resulting in increased survival probability when
attacked by predators, a well-studied example of an adaptive
inducible defence trait in tadpoles (McCollum and Van Buskirk,
1996; Relyea, 2003; Van Buskirk et al., 1997). Interestingly, the
authors also reported that the distribution of metyrapone (a
glucocorticoid inhibitor) into experimental tanks containing a
natural predator reduced the magnitude of defence expression,
further highlighting the potential role of stress hormones in
regulating the expression of inducible defence traits (Maher et al.,
2013).

Here, we quantified facultative trait expression in crucian carp
(Carassius carassius) in response to experimental manipulation ofReceived 2 September 2019; Accepted 16 January 2020
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perceived predation risk (presence or absence) and cortisol
(cortisol or metyrapone). We quantified changes in crucian carp
relative body depth, a key predator-induced trait known to reduce
predation risk in our model organism (Brönmark and Miner, 1992;
Nilsson et al., 1995). The change from a shallow-bodied to a deep-
bodied phenotype reduces predation risk as deep-bodied
individuals are more difficult to capture because of their
enhanced escape performance and aggravated handling for gape-
limited predators (Domenici et al., 2008; Nilsson et al., 1995).
Furthermore, we analysed changes in body coloration as this trait
is known to play an integral role in communication and predation
avoidance (Caro et al., 2016; Cortesi et al., 2015; Schweitzer et al.,
2015; Stuart-Fox and Moussalli, 2009). Despite this, few studies
have quantified whether individuals can facultatively adjust their
colour in response to perceived predation risk and stress. Teleost
fish can change external body coloration via two different
mechanisms, ‘physiological’ colour change acting through a
synchronized transport of the pigment inside chromatophores
(Fujii, 2000; Sköld et al., 2013), and ‘morphological’ colour
change regulated via chromatophore density and shape, and the
amount of internal pigments (Leclercq et al., 2010; Sugimoto,
2002). The former is rapid, occurring within minutes, whereas the
latter takes substantially more time, usually weeks or months, to
occur (Bagnara and Matsumoto, 2006; Sugimoto, 2002). Further,
a physiological colour change may eventually develop into a
morphological colour change if the triggering stimuli are chronic
and act over longer time scales (Bagnara and Matsumoto, 2006;
Sugimoto, 2002). Given that many different defence traits may
combine to produce an integrated anti-predator defence phenotype
(e.g. Pigliucci and Preston, 2004), we predicted both morphology
and colour would respond to manipulations to the predator
environment. For example, a darker body coloration may enhance
the silhouette of a deep-bodied and hard-to-capture prey
phenotype by producing greater contrast, i.e. be an adaptive
signal to potential predators (Caro, 2009; Rojas et al., 2015). A
darker body coloration may also be of adaptive value for crypsis
and act in concert with the shift towards more nocturnal activity in
crucian carp under intense predation risk (J.V., K.H., D. E.
Nilsson, P.A.N. and C.B., unpublished data). Furthermore, if
activation of the physiological stress response underlies the
expression of inducible anti-predator traits in crucian carp, we
also predicted that experimental manipulation using cortisol
implants would produce a deeper-bodied and darker phenotype
similar to the one expressed following exposure to real predators, as
recently shown in amphibian tadpoles (Maher et al., 2013). To test
these hypotheses, we performed controlled experiments where we
manipulated predation risk (predator presence/absence) and the
stress axis (via intraperitoneal implants containing either cortisol or
metyrapone). After 135 days of treatment exposure, we used digital
photography and chromatophore analyses to quantify treatment
effects on body morphology and coloration traits.

MATERIALS AND METHODS
Study organism
Crucian carp, Carassius carassius (Linnaeus 1758), a common
freshwater fish, constitute an ideal vertebrate model to study
inducible defence expression in response to predation risk. Multiple
field and laboratory experiments have demonstrated that crucian
carp respond to chemical cues from predatory fish, such as pike
(Esox lucius), by inducing a deeper body shape (Brönmark and
Miner, 1992; Brönmark and Pettersson, 1994) and by shifts in key
behaviours, such as becoming more bold and less active when the

perceived risk of predation is high (Höglund et al., 2005; Hulthén
et al., 2014; Pettersson et al., 2000).

Fish collection and experimental set-up
Wild, predator-naive crucian carp were caught with fyke nets
between 16 and 23 July 2014 in a 0.06 ha pond containing only
crucian carp, located ∼18 km from the experimental facility at Lund
University, southern Sweden (pond: 55°42′34.4″N 13°27′18.5″E).
Experimental fish [n=144, body mass (Mb): 9.3±0.9 g; mean±s.d.]
were haphazardly distributed into 24 identical experimental tanks
(152 l, 95×40×40 cm, n=6 crucian carp per tank). Tanks contained
aerated tap water that was filtered through a 10 cm thick foam
sponge filter in one end of each aquarium, and all tanks were
divided in half by a transparent and perforated acrylic glass divider,
thus allowing crucian carp in the predator treatments to perceive
both visual and chemical cues from the pike held in the other
compartment of the tank, but eliminating the risk of actual
predation. To prevent visual interactions between replicate tanks,
a black non-transparent plastic film was externally attached to the
open side of each tank (opposite to the filter side). Prior to the
experimental period, all fish were removed from the tanks,
anaesthetized with benzocaine and surgically implanted with a
small passive integrated transponder (PIT) tag (HDX, Oregon
RFID, 12.0 mm long and 2.12 mm diameter, mass 0.1 g) into the
abdominal cavity (Skov et al., 2005), allowing individual fish
identification over the whole experimental period. Light and
temperature were held constant during the experimental period,
fixed to 14 h light:10 h dark (light from 06:00 h until 20:00 h) and
18°C. Experimental pike were caught by electrofishing in lake
Krankesjön, situated ca. 500 m from the crucian carp pond.
Experiments were performed under permission from the Malmö/
Lund authority for ethics of animal experimentation (licence
M182-15).

Experimental treatments
Experimental tanks were assigned (random permutation) to one of
four treatments: predator absent with sham implant (Sham),
predator absent with cortisol implant (CORT), predator present
with sham implant (P+Sham) and predator present with metyrapone
implant (P+MTP). Metyrapone, here used as a cortisol blocker, acts
by inhibiting the synthesis of cortisol from 11-deoxycortisol by
11β-hydroxylase, a biomedical process that has been demonstrated
to successfully inhibit cortisol synthesis in teleost fish (Hopkins
et al., 1995; Milligan, 2003; Rodela et al., 2012). On 10 December,
all fish were weighed (to the nearest 0.1 g) to enable calculation of
the total volume of substances needed to produce implants suitable
for body mass-specific delivery (see ‘Implants’, below). The
experimental period was initiated 12 days later (on 22 December)
when fish received the treatment-specific implant as described
above, and a single pike (size range 24.5–27.9 cm) was added to
each tank for the two predator treatments. Implants were injected
intraperitoneally with a 23-gauge needle inserted posterior to the
pectoral fin. After each injection, we immediately placed a small ice
bag on the injection site to enhance solidification of the implants,
following previous work (e.g. Bernier and Peter, 2001). Fish that
died within the first 8 days of the experiment (n=6) were replaced
with implanted fish of similar size, while we only added fish to
maintain density levels if mortality occurred later. Mortality rates
over the course of the experiment varied between treatments
(number of cases of mortality for the different treatments:
Sham N=0, CORT N=8, P+Sham N=4 and P+MTP N=5; Fisher–
Freeman–Halton test: χ23,n=144=0.81, P=0.016), but this difference
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was driven by the complete absence of mortality in the Sham
treatment, whereas no difference in mortality was found between the
other three groups χ22,n=108=1.815, P=0.404). Experimental subjects
were fed a mix of frozen chironomids and carp pellets, at a delivery
rate corresponding to 3% of the total Mb within each experimental
tank.

Implants
Cortisol (hydrocortisone, USP 1316004) or metyrapone (Sigma-
Aldrich M2696) was mixed with melted cocoa butter (ClearLife) as
a vehicle for prolonged substance distribution, following previous
studies that manipulated the stress axis in teleost fish (e.g. Bernier
et al., 2004; Bernier and Peter, 2001; Carragher et al., 1989;
Lawrence et al., 2017; McConnachie et al., 2012; Midwood et al.,
2014; Pickering et al., 1989). When the substances were completely
dissolved in the melted cocoa butter (∼40°C), implant solutions
were immediately transferred to syringes (1 ml, TERUMO) and
stored at 4°C until the time of injection. As we focused on the effects
of cortisol implants on the expression of anti-predator traits, and had
no direct interest in treatment-specific plasma concentrations of
cortisol, we employed dosages of cortisol and metyrapone that
previously have been shown to affect plasma levels of cortisol in
Carassius species: 150 µg cortisol g−1Mb (e.g. Bernier et al., 2004)
and 200 µg metyrapone g−1 Mb (e.g. Bernier and Peter, 2001), each
mixed in 10 µl cocoa butter. All substance deliveries, including the
sham injections (containing plain cocoa butter), were individually
adjusted to correspond to an intraperitoneal injection of 10 µl
implant solution g−1 Mb. Fish body mass did not differ among
treatments at the start of the experiment (ANOVA; F3,21.02=0.24,
P=0.869).

Morphology and colour quantification
We terminated the experiment 135 days post-implantation, when all
fish were laterally photographed to provide digital images for
subsequent analyses of relative body depth and body coloration
(percentage of black pixels). Moreover, one fish per tank was killed
for another study, 13 days prior to the end of the experiment; these
fish were also pooled in the total sample size and included in all
statistical analyses. A digital single lens reflex (DSLR) camera
(EOS 450D, Canon Inc., Tokyo, Japan) equipped with an
18–35 mm lens (f/3.5–5.6 IS) was vertically mounted on a copy-
stand. All images were captured in a standardized light environment
using a closed light tent photo studio and four external light bulbs
horizontally projected towards the tent. Each image was captured
remotely using a Canon RC-6 controller. The fish were netted from
their home tanks and laterally placed on a glass plate located on a
white foam board centred below the lens of the camera. A ruler and a
black and white colour card standard were included in each image
for subsequent calibration of scale and white balance.

Morphological measurements
From the digital images, we extracted morphological variables
using the image analysis software ImageJ v.1.49 (https://imagej.nih.
gov/ij/). Standard length was measured as the distance between the
tip of the snout and the end of the last scale anterior to the caudal fin.
To exclude potential effects of differences in body condition and
only account for the expression of the morphological defence, body
depth was measured as the vertical distance from the anterior
insertion part of the dorsal fin to the lateral line (Vinterstare et al.,
2019). Moreover, we calculated Fulton’s condition factor K (K=M/
LS
3, whereM is the mass and LS is the standard length for each fish at

the end of the experiment) in order to test for differences in general

body condition between treatments. No differences in body
condition were found (nested one-way ANOVA: F3,20.59=2.09,
P=0.133).

Colour analysis
Digital photography is an established method to quantify and
compare animal coloration, and here, we followed an earlier
established method (Ahlgren et al., 2013; Rodgers et al., 2013,
2010; Touchon and Warkentin, 2008). In brief, all images were first
converted to 8-bit binary pictures so that each image ranged from 0
to 255 shades of grey, with 0 being true black and 255 true white.
Subsequently, we standardized each image for white balance by
adjusting the brightness in each separate photo from the image-
specific greyscale value obtained from the black and white colour
standard. Thereafter, body darkness was quantified as the
percentage of dark pixels in three different body regions, central
area (a1, 6×6 mm), dorsal area (a2, 6×6 mm) and ventral area (a3,
6×3 mm) (Fig. S1). This was done by adjusting each image for dark
and white threshold values along the grey scale. Threshold values
were decided upon initial observations and chosen to reduce
extreme values, i.e. 0 and 100% dark pixels. For example, crucian
carp are darker dorsally than ventrally, and, hence, we adjusted the
threshold values for dark pixels specifically for each region
accordingly: a1=30, a2=20 and a3=110, meaning that within a1,
for example, values between 0 and 30 were considered ‘dark’,
whereas values above 30 were considered ‘light’.

Skin darkness and chromatophore analysis
To investigate the underlying proximate mechanisms behind
potential treatment differences in body coloration, a subsample
of fish from the four different treatment groups was haphazardly
chosen. These fish (n=86) were frozen (−20°C) and subsequently
sampled for chromatophore analyses using skin scales. In total, we
collected 3–7 scales from the anterolateral part, just behind the
operculum (i.e. within the a1 region; see Fig. S1). Scales were
stored at 4°C in phosphate-buffered saline with 4%
paraformaldehyde as a fixative until analysed. While fish can
possess several different types of skin chromatophores (Fujii,
2000), black–brown melanophores (melanin) were found to be the
most common in crucian carp skin, and we thus focused on these
to quantify body darkness. Melanophore cell density, as a measure
of morphological colour change, was scored manually by counting
the number of melanophores in a 1 mm row perpendicular to the
scale edge; see Fig. S2). Intracellular distribution of melanophore
pigment, as a measure of physiological colour change, was scored
manually under light microscopy using the melanophore index
(MI) (Hogben and Slome, 1931) where MI=1 means that pigment
is aggregated in the centre of each cell whereas MI=5 means that
pigment is evenly distributed throughout each cell (see Fig. S3). A
minimum of three different scales were analysed from each fish
and mean MI and density values from each fish were used for
statistical comparisons. Scoring and photography were performed
using a light microscope equipped with a camera (Leica
Microsystems AB, Kista, Sweden). Chromatophore status was
assessed (by H.N.S.) blind with respect to sample identity and
experimental treatment.

Statistical analyses
Relative body depth at the end of the experiment was analysed with
ANCOVA, using individual body depth as dependent variable,
treatment as factor and standard length as a covariate, including the
standard length×treatment interaction term, followed by Fisher’s
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LSD post hoc test. Body darkness, measured as the percentage of
dark pixels in the three different body regions (a1, a2 and a3), was
analysed with MANOVA and subsequent evaluation of univariate
between-subject effects for significant MANOVA effects, followed
by a pairwise comparison between treatments (Fisher’s LSD based
on the estimated marginal means). The chromatophore analyses of
scale samples were tested in a separate MANOVA because of the
reduced sample size of this subsample. In all models, we nested tank
identity within treatment. The residuals from eachmodel were tested
for normality and all data met the assumption of normal distribution.
All statistical analyses were performed using SPSS v.23.0 for Mac
OS X (SPSS Inc., Chicago, IL, USA).

RESULTS
Inducible morphological defence
The full ANCOVA revealed a non-significant standard
length×treatment interaction term (F3,96.00=2.06, P=0.111), and

the model was reduced and run without the interaction term. The
relative body depth of individual fish was strongly influenced by
treatment (ANCOVA: F3,30.27=11.06, P≤0.001). The post hoc
analysis revealed that P+Sham fish expressed a deeper body shape
compared with Sham (predator-free) fish (P=0.018). However, the
relative body depth of fish from the CORT treatment was
significantly more shallow compared with that of Sham fish
(P=0.023). No effect of metyrapone was found on relative body
depth, i.e. P+MTP fish did not differ from P+Sham fish (P=0.619;
Fig. 1; for details, see Table S1).

Colour – image analysis
Treatment had a strong overall effect on body coloration
(MANOVA, Wilks’ λ: F9,238.66=27.43, P<0.001; Fig. 2);
furthermore, all areas analysed differed significantly across
treatments (univariate between-subject effects for a1–a3:
P<0.001). Post hoc test (LSD) revealed that CORT fish had a
reduced percentage of dark pixels in regions a1 (P=0.011) and a2
(P=0.015) relative to Sham fish, whereas the two predator-exposed
groups had a significantly higher percentage of dark pixels overall
compared with Sham fish reared without a predatory pike (a1–a3,
P<0.001; see Fig. 2). We found no effect of metyrapone on body
coloration, i.e. P+MTP fish did not differ statistically in percentage
of dark pixels compared with P+Sham fish (a1–a3, P>0.05; see
Table S2 for more details).

Colour – chromatophore analysis
Both melanophore cell density and MI were significantly different
between treatments (MANOVA,Wilks’ λ: F6,124.00=8.33, P≤0.001,
Fig. 3). The univariate between-subject effects test revealed a strong
treatment effect on melanophore cell density (F3,63.00=15.40,
P≤0.001) and a marginally (non-) significant treatment effect on
MI (F3,63.00=2.67, P=0.055). Specifically, crucian carp reared in the
presence of a pike (P+Sham and P+MTP) had a significantly higher
melanophore cell density than experimental fish reared in the
absence of a predator (Sham and CORT), whereas no effects were
found for either cortisol or metyrapone (Fig. 3A; Table S3C). The
marginally (non-) significant treatment effect on MI is probably a
trend arising from the highMI observed in Sham fish compared with
a relatively low MI observed among CORT fish (P=0.008; Fig. 3B;
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Table S3). Hence, no effect of predation risk was found on MI
(see Table S3).

DISCUSSION
We found that crucian carp show pronounced plasticity in both
colour and body-shape traits in response to perceived predation risk
and to manipulation of a main glucocorticoid (cortisol) via
intraperitoneal implants. Crucian carp exposed to predatory pike
expressed a darker coloration and developed a deeper body
morphology. Furthermore, we report that treatment with implants
containing cortisol resulted in lighter body coloration and shallower
body depth as compared with those of Sham fish also reared in the
absence of a predator. Intriguingly, implants containing cortisol
thus elicited a trajectory of trait changes contrasting with the
phenotype expressed under direct predator exposure.
The ability to change body colour is a striking and obvious

example of phenotypic plasticity. It is a strategy particularly
prevalent among aquatic and semi-aquatic species, such as
cephalopods (Messenger, 2001), reptiles (Lewis et al., 2017;
Stuart-Fox and Moussalli, 2009), amphibians (McCollum and
Leimberger, 1997; Touchon and Warkentin, 2008) and fish
(Rodgers et al., 2010; Ryer et al., 2008). Many teleost fish have
evolved the capability to alter their body coloration to match the
environmental background (Cott, 1940), enabling predatory fish to
attack via ambush, or prey to enjoy enhanced survival chances from
crypsis (Leclercq et al., 2010; Rodgers et al., 2010; Ryer et al., 2008;
Sumner, 1935). However, to our knowledge, the darkening of body
coloration as observed among crucian carp exposed to predatory
pike is the first example of a teleost colour change directly induced
by controlled manipulation of the predator environment. In addition,
we were also able to show that the colour change in predator-
exposed crucian carp is mediated by a higher melanophore cell
density, whereas no effect of predation risk was found in pigment
dispersion within the melanophores (MI). Our findings thus show
that it is melanogenesis, i.e. a morphological colour change, that
underlies the induced darkening of the body in predator-exposed
crucian carp (Leclercq et al., 2010; Sugimoto, 2002). Such colour
change takes a substantially longer time, and is often induced by
adverse conditions where the enrolment of the stress axis is
considered to be the key factor behind the increased melanin
biosynthesis (Leclercq et al., 2010). The adaptive value of the
colour change in crucian carp may be an accentuation of the

predator-induced morphological defence. Hence, individuals that
have invested in the morphological defence may benefit from
displaying their deep, defended phenotype via a dark and distinct
silhouette to selective predators such as pike, known to avoid such
phenotypes (Nilsson et al., 1995). Hence, a darker body may act as
an effective aposematic signal (Caro, 2009; Rojas et al., 2015).
However, the presence of pike also induced shifts in diel activity
patterns towards nocturnality in crucian carp (J.V., K.H., D. E.
Nilsson, P.A.N. and C.B., unpublished data). Under such conditions,
a darker body may also contribute to crypsis and reduce the risk of
detection by visually oriented predators, such as pike.

In contrast, fish that received a cortisol implant had a more
shallow relative body depth and a lighter body coloration as
compared with Sham fish. These findings were not in line with our
initial prediction and do not align with a previous experiment on
amphibian tadpoles where experimental exposure to corticosterone
elicited trait changes analogous to the predator-induced phenotype
(Maher et al., 2013). The opposite effects of glucocorticoids on
predator-induced traits in amphibian tadpoles and crucian carp
suggest different evolutionary pathways for the physiological
mechanisms that regulate inducible defence expressions. Yet, in
the light of the complex endocrinological pathway of the vertebrate
stress axis, our results suggest that the HPI axis may also have a role
in the regulation of plastic defence expression in our model system.

Numerous studies have examined the proximate and ultimate
functions of the stress axis in prey upon predator exposure (e.g.
Giesing et al., 2011; Hammerschlag et al., 2017; Oliveira et al.,
2014; Sapolsky et al., 2000). The stress response is self-regulated
via a negative feedback systemwhere the majority of steroid actions,
such as glucocorticoid production and secretion, are under genetic
control from the proopiomelanocortin (POMC) gene. Translation of
POMC produces a precursor resulting in multiple peptides,
including hormones having various phenotypic effects (Harris
et al., 2014; Navarro et al., 2016). Among these POMC-derived
peptides, the so-called melanocortins (i) adrenocorticotropic
hormone (ACTH) and (ii) α-melanophore-stimulating hormone
(α-MSH) are of particular interest as they are involved in both stress
physiology and pigment production. Earlier studies have
demonstrated their principal roles in the process of melanogenesis
and pigment dispersion/aggregation (Cal et al., 2017; Cerdá-
Reverter et al., 2011; Ducrest et al., 2008; Fujii, 2000; Leclercq
et al., 2010; Sköld et al., 2015), as well as their role as main
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Fig. 3. Melanophore cell density and index (MI) of fish from the four treatment groups. (A) Melanophore cell density and (B) MI (Sham, n=29; CORT, n=22;
P+Sham, n=20; and P+MTP, n=15). MI=1 means that pigment is aggregated in the centre of each cell whereas MI=5 means that pigment is evenly
distributed throughout each cell, leading to lighter and darker appearance, respectively. Means±s.e.m.; different letters denote statistically significant differences
between treatments.
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regulatory agents in the vertebrate stress axis (Aguilera, 1994;
Sapolsky et al., 2000). For example, ACTH stimulates the adrenal/
interrenal gland to produce and secrete cortisol (Slominski et al.,
2000; Sumpter et al., 1986). Further, enhanced glucocorticoid
concentrations subsequently suppress the pituitary expression of
POMC, resulting in reduced levels of ACTH and α-MSH (Aguilera,
1994; Drouin et al., 1989; Slominski et al., 2000). This self-regulation
of the stress axis is important to regain homeostasis after an acute
stressor and to avoid lethal effects from high glucocorticoid levels.
Chronically stressful environments, as experienced by prey in the
presence of persistent predator cues, may cause sustained
physiological stress with glucocorticoid concentrations above
baseline levels (Balm and Pottinger, 1995; Boonstra, 2013; Clinchy
et al., 2013; Hammerschlag et al., 2017; Maher et al., 2013).
The interaction between the melanocortin system and vertebrate

stress physiology creates an intriguing link behind our treatment-
induced trait alterations. In salmonids, for example, the presence of
dominant individuals has been shown to alter the body coloration
among subordinate conspecifics towards a darker body colour.
Proximately, this was caused by higher levels of ACTH and α-MSH
from enhanced stress levels in the subordinate individuals, i.e.
stress-induced melanogenesis (Höglund et al., 2000). The same
underlying mechanism could explain the morphological colour
change that we observed among predator-exposed crucian carp,
although, from our experiment, it is not possible to determine
whether the treatments altered the activity rates of the HPI axis
differently. However, it should be expected that the constant
presence of a pike predator, involving both visual and chemical
cues, caused an elevated stress level and thereby enhanced
melanogenesis from higher transcription and translation of the
POMC gene (Boonstra, 2013; Clinchy et al., 2013; Hammerschlag
et al., 2017; Hossie et al., 2010; Maher et al., 2013). Further, and
vice versa, intraperitoneal delivery of cortisol should suppress the
expression of POMC via a negative feedback loop, resulting in a
reduced endocrine stress response and reduced melanogenesis/
pigment dispersion within the melanophores (Cal et al., 2017; Fujii,
2000; Leclercq et al., 2010; Sköld et al., 2015). Implants containing
cortisol have indeed been shown to successfully suppress the HPI
axis in goldfish (Carassius auratus) (Bernier et al., 1999; Fryer and
Peter, 1977), a species closely related to crucian carp. However,
cortisol did not increase the melanophore cell density as predator
exposure did; instead, we found that fish originating from the CORT
group had lower MI compared with Sham fish. Lower MI is
unambiguously the mechanistic explanation for why CORT fish had
a lighter body coloration in the central and dorsal region compared
with Sham fish. ACTH and α-MSH drive melanin production
(morphological colour change), but they also regulate pigment
dispersion within the melanophores, leading to altered body
darkness via a physiological colour change (Cal et al., 2017;
Fujii, 2000; Sköld et al., 2015). This fits well with our earlier
arguments, i.e. that implants containing cortisol may reduce
melanocortin concentrations from the negative feedback
suppression of POMC by free cortisol levels (e.g. Sapolsky et al.,
2000), which in theory could explain the lower MI and lighter
external appearance of CORT fish.
Steroid hormones, such as cortisol, may underlie phenotypic

alteration in different traits. For example, experimental
manipulation of cortisol via implants has been shown to influence
growth rate (Bernier et al., 2004; Midwood et al., 2014),
reproduction (Carragher et al., 1989; Crossin et al., 2016) and
behaviour (Barreto et al., 2014). As earlier indicated (e.g. Höglund
et al., 2000), we here add colour change to the growing literature of

phenotypic alteration via cortisol implants. We found no effect of
metyrapone, either on body coloration or on body shape. However,
in contrast to cortisol, metyrapone has rarely been used with a cocoa
butter carrier for prolonged distribution (>24 h) (Hopkins et al.,
1995; Milligan, 2003; Rodela et al., 2012). In fact, one study
revealed that the method of using cocoa butter as a vehicle for in vivo
metyrapone delivery in salmonids only worked during the first days,
and the effect was found to be absent 5 days post-injection
(McConnachie et al., 2012). In comparison, numerous studies have
found prolonged elevation (>5 weeks) of plasma cortisol from
implants containing cortisol (Carragher et al., 1989; Pickering and
Duston, 1983). These findings, and the lack of effect of metyrapone
on the phenotypic trait expression in crucian carp, might be due to
the short half-life of the drug per se, but it has also been suggested
that metyrapone has different mechanisms of action across
vertebrate groups. Doyon et al. (2006) found that metyrapone caused
increased cortisol levels in rainbow trout (Oncorhynchus mykiss).
Hence, the use of metyrapone for prolonged cortisol inhibition in fish
is problematic, but our results indicate that cortisol could act as an
inhibitor of the stress axis. This prediction is in line with earlier studies
on teleost fish, where cortisol has been demonstrated to suppress the
regulation of cortisol release (Bernier et al., 1999; Fryer et al.,
1984; Fryer and Peter, 1977). Therefore, we argue that an
experimental design where cortisol treatment is combined with
predator presence would be an interesting next step as that
combination of treatments may have the potential to disentangle
the underlying physiological effects of melanocortins on the
inducible morphological defences in crucian carp.

In conclusion, we show that crucian carp respond to predation
risk by expressing a significantly darker body coloration, and that
this is regulated by the melanocortin system, via enhanced
melanogenesis. Such predator-induced morphological colour
change might be adaptive, especially when integrated with the
inducible morphological defence in this model system, i.e. a deeper
body shape (Brönmark and Miner, 1992). A darker external
appearance could constitute an enhanced silhouette from greater
contrast of a deep-bodied and hard-to-capture prey phenotype and,
hence, act as an aposematic signal to nearby predators (Caro, 2009;
Rojas et al., 2015), or be a synchronized strategy for crypsis along
with a nocturnal lifestyle (J.V., K.H., D. E. Nilsson, P.A.N. and
C.B., unpublished data). However, colour change from increased
melanization is energetically costly and might explain the brighter
body coloration among crucian carp living in the absence of
predatory pike (Rodgers et al., 2013). Given these results, predator
prey-choice experiments are now needed to assess whether
increased body coloration in combination with an increased body
depth confers additive anti-predator effects, for example by
displaying computerized animations of deep-bodied crucian carp
with different simulated coloration to foraging pike (Ingley et al.,
2015). Further, we have shown that cortisol alters the phenotypic
expression of anti-predator traits, although in completely opposite
trait trajectories from our predictions based on earlier work on
amphibian tadpoles (Maher et al., 2013). Yet, we argue that our
findings follow the theoretical prediction from a physiological
perspective, i.e. that cortisol implants suppress the melanocortin
system, leading to a significant effect on the individuals’ coloration,
and, intriguingly, influencing the body shape of fish by reducing
relative body depth. We conclude that the endocrinological pathways
of the vertebrate stress axis are of considerable interest when it comes
to the interpretation of how different traits might be integrated, and for
our understanding of the underlying mechanisms that regulate
morphological defence expression in plastic organisms.
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Fig. S1. Illustration of the different locations in which we 

estimated  colouration /percentage of black pixels) . All scale 

samples for melanophore analyses were sampled from area 

1. Note that location 3 is narrower than location  1 and 2. 

This was done to exclude the pectoral fin which differ 

significantly in colouration from the dorsal body region. 
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Fig. S2. Representative scale samples from (A) Sham, (B), CORT, (C), P + Sham and (D) P + MTP. The scale bar in 

Fig. 5 represents 1 mm.  

Fig. S3. Illustration of how the melanophore index (MI) was estimated. MI = 1 means that pigment is aggregated in 

the centre of each cell whereas MI = 5 means that pigment is evenly distributed throughout each cell. 
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Table S1. Results from (A) ANCOVA, testing for differences in relative body depth, and (B) subsequent multiple pairwise 
comparison (LSD). Significant differences are indicated with asterisks (*p<0.05, **<p0.01, ***p<0.001). 

A
dependent variable factor d.f. (hyp.) d.f. (error) F-value p-value 

Body depth ∼ Treatment 3.00 30.27 11.06 <0.001*** 

Tank(Treatment) 20.00 99.00 0.87 0.621 

Standard length 1.00 99.00 27.54 <0.001*** 

B
treatment (i) treatment (ii) Mean difference Std. Error p-value 

Sham ∼ CORT 0.05 0.019 0.023* 

Predator + sham -0.06 0.023 0.018* 

Predator + MTP -0.06 0.023 0.006** 

CORT Predator + sham -0.10 0.021 <0.001*** 

Predator + MTP -0.11 0.021 <0.001*** 

Predator + sham Predator + MTP 0.01 0.019 0.619 
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Table S2. (A) Multivariate tests of the percentage of dark pixels within area 1 to 3, (B) test of between-subject effects, and 
(C) subsequent pairwise comparison. Significant differences are indicated with asterisks (*p<0.05, **<p0.01, ***p<0.001). 

A
source Wilks' Lambda d.f. (hyp.) d.f. (error) F-value p-value 

Intercept 0.086 3.00 98.00 346.09 <0.001*** 

Treatment 0.178 9.00 238.66 238.66 <0.001*** 

Tank(Treatment) 0.456 60.00 293.21 1.47 0.02* 

B
source mean square d.f. F-value p-value 

Treatment 

     area 1 33031.80 3.00 98.17 <0.001*** 

     area 2 44775.28 3.00 123.54 <0.001*** 

     area 3 28246.95 3.00 101.82 <0.001*** 

Tank(Treatment) 

     area 1 477.29 20.00 1.42 0.131 

     area 2 533.59 20.00 1.47 0.108 

     area 3 594.66 20.00 2.14 0.007** 
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C
dependent variable treatment (i) Treatment (ii) Mean difference Std. Error p-value 

area 1 Sham ∼ CORT 12.178 4.720 0.011* 

Predator + sham -49.927 4.552 <0.001*** 

Predator + MTP -52.633 4.603 <0.001*** 

CORT ∼ Predator + sham -62.105 4.866 <0.001*** 

Predator + MTP -64.811 4.914 <0.001*** 

Predator + sham Predator + MTP -2.706 4.753 0.570 

area 2 Sham ∼ CORT 12.131 4.899 0.015* 

Predator + sham -60.292 4.724 <0.001*** 

Predator + MTP -61.321 4.777 <0.001*** 

CORT Predator + sham -72.423 5.050 <0.001*** 

Predator + MTP -73.453 5.100 <0.001*** 

Predator + sham Predator + MTP -1.029 4.933 0.835 

area 3 Sham ∼ CORT 1.972 4.286 0.646 

Predator + sham -51.235 4.133 <0.001*** 

Predator + MTP -52.845 4.179 <0.001*** 

CORT Predator + sham -53.207 4.418 <0.001*** 

Predator + MTP -54.817 4.462 <0.001*** 

Predator + sham Predator + MTP -1.61 4.32 0.710 
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Table S3. (A) Multivariate tests for Melanophore Index (MI) and cell density as dependent variables, (B) between-subject effects 
and (C) subsequent pairwise comparison. Significant differences are indicated with asterisks (*p<0.05, **<p0.01, ***p<0.001). 

A
MANOVA Wilks´s lambda d.f. (hyp.) d.f. (error) F-value p-value 

Treatment 0.508 6 124.000 8.329 <0.001*** 

Tank(Treatment) 0.418 38 124.000 1.783 0.009** 

B
source mean square d.f. F-value p-value 

Treatment 

     MI 2.01 3.00 2.67 0.055 

     Cell density 25.30 3.00 15.40 <0.001*** 

Tan(Treatment) 

     MI 1.80 19.00 2.39 0.005** 

     Cell density 2.09 19.00 1.27 0.235 
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C

dependent variable treatment (i) Treatment (ii) 
Mean 

difference 
Std. 

Error p-value 

MI Sham ∼ CORT 0.693 0.252 0.008** 

Predator + sham 0.280 0.280 0.320 

Predator + MTP 0.474 0.307 0.127 

CORT Predator + sham -0.413 0.299 0.172 

Predator + MTP -0.219 0.324 0.503 

Predator + sham Predator + MTP 0.194 0.346 0.577 

Cell density Sham ∼ CORT -0.910 0.372 0.808 

Predator + sham -2.438 0.413 <0.001*** 

Predator + MTP -1.682 0.453 <0.001*** 

CORT Predator + sham -2.347 0.441 <0.001*** 

Predator + MTP -1.591 0.479 <0.001*** 

Predator + sham Predator + MTP 0.756 0.511 0.144 
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